
To understand the role played by mathematical models in science we
must first have some understanding of the nature of the scientific method.
The scientific method may initially be described as a cyclic process through
which human beings learn from experience. As evidence accumulates,
theories in better and better agreement with the actual functioning of
nature can be formulated.

The basic cycle of the scientific method may be divided into three steps:
induction , deduction, and verification . Induction is the step \\"hich carries
the scientist from factual observations to the formation of theories. These
theories may be very close to facts in that they " simply summarize observed 

facts," or they may be as abstract as are those of modern theoretical
physics. The inductive step is necessarily creative, and, although various
rules to aid the theoretical scientist have been proposed, these are at best
uncertain guides and not by any means guarantees of success. The scientist
is able to investigate a process under only a small number of conditions,
after \\"hich he must attempt to explain it in its complete generality. Thus,
even an inspired theory is in part an inspired guess.

Once the theory is formulated precisely, the tools of logic and mathematics 
are available to deduce consequences from it . It is due to the

availability of the second, deductive, step that the formation of theories
becomes of importance to the scientist. For it is during the process of
deduction that the scientist discovers a number of consequences of his
theories \\"hich may not have been immediately obvious to him. In some
cases the chain of deduction may take many years, and the results may be
quite unexpected.

Once a number of interesting consequences have been deduced from the
theory, they must be put to the test of experimental verification. In some
cases the ne\\"ly deduced facts may correspond to events already observed,
whereas in other in Rtances new observations and experiments \\"ill be required 

to test the predictions. In the former case one speaks of the theory
as having served to explain kno\vn facts; in the latter we have succeeded
in predicting novel occurrences.

Our confidence in a theory builds up as more and more of its predictions
turn out to be true. On the other hand, it happens frequently in the history
of science that further testing persuades us to reject a previously accepted
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theory . Very often the rejection of one theory directly stimulates the
formulation of another , improved theory - one which explains both those
old facts on which the discarded theory was based and those new facts
which have led to the rejection of the old theory .

In this book we consider eight mathematical models illustrating theories
from a variety of different branch es of the social sciences. Each chapter is
organized in a manner paralleling the usual application of the scientific
method . First a problem is stated from a branch of the social sciences, then
a mathematical model (theory ) is formed , then a number of consequences
are deduced from this theory , and finally the results are interpreted . We
hope that this procedure will illustrate the manner in which theories are
formed . Indeed it should illustrate the entire cycle of the scientific method ,
with the exception of the gathering of facts . That is, we start with a collection 

of facts already given to us and end at the point where we are ready

to put the predictions of our theory to further observational tests .
Although most of our chapters illustrate the basic cycle , the entire cycle

can best be observed in Chapter V . Mter forming a mathematical model
for a small -groups experiment and developing it in some detail , we present
experimental evidence indicating that the original model may not be adequate

, and we show how the very act of disconfirmation suggests an improved 
model .

It is important to contrast the pure mathematical theory with its interpreted 
version that serves as a model . Let us illustrate this in terms of the

ecology model of Chapter III . From the point of view of pure mathematics ,
we are confronted with a pair of simple differential equations . These equations 

are neither true nor false , since they have no factual content . Rather ,

they are abstract forms which may be studied , and from which we can
deduce certain " if . . . then . . . " statements . For example , we can show
that if certain quantities of any sort happen to obey the laws of nature
expressed in our equations , then these quantities must forever be on the
trajectory determined by their initial values .

Next we find that certain species of animal seem to multiply in a manner
that roughly may be considered to obey these differential equations . We
thus supply: an interpretation , letting x and y stand for actual numbers of
the two species and interpreting t as time measured in a convenient unit .
We have thereby automatically supplied interpretations for all the results
that may be deduced from these equations . Each of these deductions ,
interpreted in the indicated manner , must either correspond to a known
fact or serve as a prediction of an unknown fact .

Closely related to the formation of scientific theories is the problem of
how scientists arrive at their basic concepts . Of particular interest are the
so- called theoretical concepts , those concepts which are reason ably far removed 

from terms that describe our immediate experience . The history of

science points to the conclusion that the most useful theoretical concepts
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are formed simultaneously with the most useful theories . That is, the only
test of the fruit  fulness of a given concept is the fact that we are able to
form fruitful theories in its terms . It is therefore not surprising that in
most of the following chapters it is difficult to separate the formation of a

concept from the formulation of the mathematical model . However , Chapter 
II comes as close to pure concept formation as one can ever hope to

find in a scientific context .

Indeed , in Chapter II the primary problem is not so much that of forming
a mathematical model as it is that of developing a mathematical tool
(a " distance " bet \\'een rankings ) which may later on be used in building a
variety of different models . Such a technique , known as explication , is becoming 

very popular for the formation of precise concepts . One begins with
an imprecisely expressed idea and hopefully arrives at a quite precise and
fruitful concept . The general procedure is as follows : First one lays down the
conditions of adequacy that a precise definition must meet ; then one
search es out the simplest definition that will meet all of them . Chapter II
carries out such a procedure and indicates in some detail the types of
problems with which one is confronted in the formation of mathematical
concepts . t

Very often one finds that a single vague , intuitive idea leads to a number
of distinct and precise concepts , each of which may turn out to be fruitful
in different applications . This is well illustrated in terms of our intuitive
idea of a structure being " in balance " or " in equilibrium ." This idea receives 

different precise formulations in Chapters III , IV , and VIII , where

we discuss the equilibrium or balance of a pair of species, a market , and a
political structure , respectively .

Let us now group mathematical models used in the sciences into types .
One fundamental distinction is whether or not a model is of a so-called
" deterministic " nature . The distinction can be illustrated in terms of

classical physics . For example , Newton 's laws are of a deterministic nature ;
i .e., if one has sufficient information available concerning the past , one can
predict the entire future of the system . On the other hand the models of

statistical mechanics are non -deterministic and therefore probabilistic in
nature ; that is, no matter how much information one has about the past ,
one can predict only the probabilities of certain future occurrences , and
usually the amount of information available loses its value as time passes.
Deterministic models will be found in Chapters III , IV , VI and IX .
Probabilistic models are treated in Chapters V and VII . The reader should

compare the predictions that one deduces from the two types of models .

t The application of the concept of distance developed in Chapter II was to consensus
rankings by a group of experts, which is a procedural matter rather than a scientific
theory. Ho Vv.ever, once such concepts are available, they often prove useful in new
contexts. For example, J. Berger is working on a theory of small groups of experiments
which makes essential use of this concept of distance.
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It should in particular be noted that mere differences in the sorts of

predictions that one can hope to make with each type of model do not imply
that one sort of prediction is less useful than the other .

All the above-mentioned models share the feature of being " predictive "
in nature . They may be contrasted with the models in Chapters II and
VIII , ",.hich are primarily " descriptive ." The model in Chapter II allows
us to compare different ran kings of the same set of objects , ,,'hereas the
model in Chapter VIII allo \\'s us to classify social structures .

I t is sometimes useful to distinguish theories by their levels of abstraction .
We may illustrate this distinction either in terms of the deterministic

theories or in terms of the probabilistic ones. Chapters III and IV both
treat deterministic differential equation models . But the model of Chapter
III is much closer to the level of observations . In this ecological model the
variables represent directly observable quantities ; namely , numbers of
animals in various species. In contrast , Chapter IV attempts to describe
the " underlying machinery " that operates a market . Such quantities as
are needed to describe the utility of various goods for various individuals
are not directly observable .

Similarly , of the t \\'O probabilistic models , the one in Chapter VII is
less abstract than the one in Chapter V . The former deals with such directly
observable quantities as the number of customers in a \\'aiting line ; the
latter attempts to reconstruct the manner in \\'hich a subject in an experiment 

arrives at his decisions . The subject 's mental state is not observable in

as simple and easy a way as is service time , ~.hich is directly measurable .
Of course , none of these models achieve the level of abstraction that char -

acterizes theories in modern physics . In some truly abstract models the
connection with experience is established only very indirectly , after long
chains of deductions . These levels are as yet rarely reached in the socialS
 C Iences.

One of the best examples of a more abstract model in the social sciences

is a model applicable to simple learning experiments that has been developed
by W . K . Estes . We do not treat this in the present volume , as it \vas treated
in some detail in a previous book by the present authors . t

Since many scientists seem to be under the impression that the use of
mathematics is closely tied to the existence of numerical concepts , or at
least of concepts dealing \vith space, it is significant that t ",.o nonnumerical
and nongeometrical models are included in our collection . Both Chapters
II and VIII employ techniques that a classical mathematician \vould not
have recognized as mathematics , namely , abstract distances (metric spaces)
and graph theory . It is thanks to the ever-broadening conception of the
nature of mathematics that such models are available to us today . It is
entirely possible that the greatest success es in the very complex areas of

t John G. Kemeny and J. Laurie Snell , Finite Markov Chains (Princeton , N . J . :
D . Van :ri::ostrand Co., 1960), Chap . VII , Sec. 5.
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the social sciences will be made possible by nonnumerical models produced
by modern mathematics .

Finally let us ask questions concerning the various uses to ,\"hich mathematical 
models can be put . As indicated above , the t ,,'o primary uses lie in

explaining kno ,\"n facts and in predicting facts not as yet known . Of course,
each of our chapters illustrates both of these tendencies to some extent ; for
if the models are correctly formed they will explain the facts on ,\"hich they
were built , and if they contain any element of novelty at all they will
make predictions concerning the future .

We will examine one clear -cut example of each type of use of a model .
Let us first refer to Chapter III as an example of clear -cut scientific explanation

: A cyclic pattern has been observed in the numbers of animals

in certain species in closed ecological systems . The simple model developed
in the chapter offers an elementary explanation for this cyclic behavior .

A good example of predicting the future is provided by Chapter VII .
The " second problem " treated in this chapter has received highly detailed
and extensive study because it enables various industries to predict their
needs for staff and equipment . For example , it is through methods illustrated 

in this chapter that the Bell Telephone Company has planned the

number and type of trunk lines that it must make available to furnish

adequate service to its customers . It is the task of the model to predict
how long the average customer ,viII have to ,,'ait until a telephone trunk
line becomes free , given information concerning the telephone habits of
the customers and specifications as to the number of available trunk lines .
By carrying out a number of such computations , the company may find
the minimum number of trunk lines with which it can furnish what its

directorate considers satisfactory service .
The previous example illustrates the fact that , although some predictions

are made purely out of scientific curiosity , in many instances models with
strong predictive po,,'ers may be used as planning devices . This feature is
also well illustrated in Chapters VI and IX . The technique discussed in the
latter chapter , dynamic programming , has in the last fifteen years proven
invaluable as a planning device for industry . The former chapter contains
a novel idea , suggested as a planning device for the first time in this book .

We hope that one by -product of the present book will be a reinforcement
of the general impression that mathematics has broad and fruitful applications

. Although this point has been conceded in the physical sciences,

and to some extent in the biological sciences, there are still many skeptics
as far as the social sciences are concerned . To some extent this skepticism
is due to the very legitimate objection that the social sciences are vastly
more complex than the physical or biological sciences. Ho ,vever , this seems
to indicate only that their mathematical techniques will have to be more
sophisticated as well . It also indicates that the time \,'hich it " ,ill take to
develop nontrivial models for the social sciences may have to be substantial ,
even in the present age of rapid scientific progress .
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But to some extent the objections are based on a misunderstanding of

the nature of mathematics . Mathematics is best viewed as the study of

abstract relations in the broadest sense of that word . From this point of

view it is not surprising that mathematics is applicable to any \vell - defined

field . Whatever the nature of the phenomena studied in a given social

science , their various components do bear certain relations to each other ,

and once one succeeds in formulating these abstractly and precisely , one

is in a position to apply the full machinery of mathematical analysis . Of

course , it is to be expected that often the mathematical model so formed

will be one not previously studied by mathematicians . Therefore , one may

look forward to the day \ vhen the social sciences will be as major a stimulus

for the development of ne \v mathematics as physics has been in the past .

On the other hand , it has been the good luck of both science and mathematics 
that mathematical models which \ vere developed by mathematicians

purely for their aesthetic satisfaction have subsequently proved to be

extremely useful . An outstanding example of this in the physical sciences

was the invention of " imaginary numbers ," which , as their very name

indicates , were supposed to have no connect  Ion with reality . As it has

turned out , however , these numbers playa crucial role in modern physics .

For example , all of electromagnetic theory is based on their use .

It is not even too surprising to find that the same abstract mathematical

model may serve a variety of different purposes . We find good illustrations

of this point in t \VO of our chapters . In Chapter VII the same mathematical

model is applied on the one hand to the growth of a population , and on the

other to the problem of people waiting in line to be served . An even more

spectacular illustration of this type of strange coincidence may be found

in Chapter VI . The mathematical tools used there were developed by pure

mathematicians \ vho were interested in giving a probabilistic generalization

of some results from the theory of potentials in classical physics . That these

results should turn out to be applicable also to practical planning problems

in economics indicates the tremendous flexibility of an abstract model .

REFERENCES

Danto , A . , and Morgenbesser , S . Philosophy of Science . Ne \v York : Meridian

Books , 1960 . .

Feigl , H . , and Brodbeck , M . Readings in the Philosophy of Science :

New York : Appleton - Century - Crofts , 1953 .

Kemeny , John G . A Philosopher Looks at Science . PrincetonD . Van

No strand Co . , 1959 .

Popper , Karl R . The Logic of Scientific Discovery . New York : Basic Books ,
1959 .

Wiener , P . P . Readings in the Philosophy of Science . Ne \v York : Charles

Scribner ' s Sons , 1953 .


