1 Machine Musicianship

Machine Musicianship is both an exploration of the theoretical foun-
dations of analyzing, performing, and composing music with com-
puters, and a tutorial in writing software to pursue those goals. The
theoretical foundations are derived from the fields of music theory,
computer music, music cognition, and artificial intelligence. The in-
tended audience includes practitioners in those fields, as well as
composers and interested performers.

The training of musicians begins by teaching basic musical con-
cepts, a collection of knowledge commonly known as musicianship.
These concepts underlie the musical skills of listening, performance,
and composition. Computer programs designed to implement any of
these skills—that is, to make sense of what is heard, perform music
expressively, or compose convincing pieces—can similarly benefit
from a musician’s fundamental level of musicianship.

To be sure, there are many worthy computer music programs
that have no basic musical knowledge at all. The usual technique
is to implement thoroughly that part of musicianship required
for the task at hand. Notation programs must know how many beats
belong in a bar; sequencers must be able to transpose enharmoni-
cally. In this text we will explore how a more systematic foundation
of musical knowledge can further extend such programs’ range of
use as well as improve their communication with human musi-
cians.

Consider a simple example of this level of functionality: music
sequencers can transpose enharmonically, but they cannot execute
a command such as “transpose the selected measures to the subdom-
inant.” The reason for this limitation is that typical programs have

Chapter 1 2

no access to a description of the music in terms of relative harmonic
function. Such an extension would be quite straightforward for cur-
rent sequencers—and there may even be some that do it—though I
have not seen any. Even better would be a sequencer that could trans-
pose to the subdominant without the user having to inform the pro-
gram as to which tonal center is current. That facility is more
computationally demanding, but still well within the reach of estab-
lished algorithms. Examples such as these can be generated at will
and doubtless have occurred to anyone who has used music software
in any depth. The point is that such programs can become more use-
ful simply by better accommodating the practices of fundamental
musicianship.

This book explores the technology of implementing musical con-
cepts in computer programs and how resulting applications can be
used to accomplish tasks ranging from the solution of simple musical
problems through live performance of interactive music composi-
tions to the design and implementation of musically responsive in-
stallations and web sites. These concepts are programmed using both
C++ and Max, a graphic programming environment developed by
Miller Puckette and David Zicarelli (Dobrian 1997). Some experience
with one or both of these is assumed if readers wish to extend the
example programs on their own. The accompanying CD-ROM in-
cludes working versions of the examples, as well as source code and
a hypertext document showing how the code leads to the programs’
musical functionality.

Machine Musicianship is not intended as a programming tutorial,
however. The processes described in these pages constitute a com-
putational approach to music analysis, composition, and perfor-
mance that may engage practitioners in those fields whether they
are programmers or not. I present the practical examples with pro-
gramming information in order to help those who wish to write
their own, but they can also be used as stand-alone applications by
those who do not. It is my hope that interested musicians may even
profit from simply reading the text without any use of a computer
at all.

Machine Musicianship 3

1.1 The Motivation for Machine Musicianship

Designing computer programs that will recognize and reason about
human musical concepts enables the creation of applications for per-
formance, education, and production that resonate with and rein-
force the basic nature of human musicianship. Access to functions
such as phrase boundary recognition makes possible operations that
simply cannot be accomplished without such capabilities. The real-
ization of norms for the expressive shaping of a phrase by a machine
performer, for example, can only be applied once a phrase has been
identified as a phrase in the first place. Further, realizing these con-
cepts algorithmically allows us to augment human musicianship
with processes and representations that only a computer could im-
plement. A complete record of the program’s “listening experience”
is immediately available and can be used both to evaluate the algo-
rithm’s performance and to direct further analysis.

Beyond the pedagogical and practical value, I believe that there
are compelling musical reasons to emulate human musicianship
with computers. Readers may determine for themselves on the ba-
sis of extensive existing repertoire whether or not computer music
programs have contributed to enduring compositions. Those who
dismiss machine musicianship tend to argue that algorithmic
composition programs (as one example) are more interesting techno-
logically than they are musically. Another prominent source of dis-
satisfaction with the enterprise derives from a belief that the
development of increasingly musical programs forms a real and
growing threat to the livelihood of human musicians.

The need for better musicianship in music processing is relatively
self-evident when contrasted with the aesthetic and ethical questions
surrounding the use of automated composition and performance pro-
grams. Computers in music have made possible new kinds of cre-
ation at the same time that they have caused upheaval in the social
and cultural practice of music making. Music programs are cheap,
easy to use, and tireless. These attributes make it attractive to use
them for many tasks that previously were performed by human

Chapter 1 4

musicians. None of these properties, however, have anything to do
with the nature of the music being performed. In other words, a large
part of the motivation for making music with computers is that com-
puters are less troublesome to employ than people. This situation
has had a dramatic effect on the economic prospects for musicians
almost as profound as the proliferation of television and sound re-
cording equipment since the 1940s. One can condemn this trend in a
hand-wringing Luddite reflex, but the situation is unlikely to change
except in the direction of ever greater reliance on machines.

There are other reasons to use computers in music, however, that
have everything to do with the nature of the music performed. My
own interest in computer music generally, and interactive music sys-
tems in particular, stems from the new compositional domains they
open up. Composers have used algorithms in the creation of music
for centuries. The speed with which such algorithms can now be
executed by digital computers, however, eases their use during the
performance itself. Once they are part of a performance, they can
change their behavior as a function of the musical context going on
around them. For me, this versatility represents the essence of inter-
action and an intriguing expansion of the craft of composition.

An equally important motivation for me, however, is the fact that
interactive systems require the participation of humans making mu-
sic to work. If interactive music systems are sufficiently engaging as
partners, they may encourage people to make music at whatever level
they can. I believe that it is critical to the vitality and viability of
music in our culture that significant numbers of people continue (or
begin) to engage in active music making, rather than simply ab-
sorbing reproduced music bombarding them from loudspeakers on
every side.

Tod Machover stresses a similar point:

Traditional instruments are hard to play. It takes a long time to [ac-
quire] physical skills which aren’t necessarily the essential qualities
of making music. It takes years just to get good tone quality on a
violin or to play in tune. If we could find a way to allow people to
spend the same amount of concentration and effort on listening and

Machine Musicianship 5

thinking and evaluating the difference between things and thinking
about how to communicate musical ideas to somebody else, how to
make music with somebody else, it would be a great advantage. Not
only would the general level of musical creativity go up, but you’d
have a much more aware, educated, sensitive, listening, and partici-
patory public. (1999)

We are at an inflection point in the technology of our culture as
the trajectories of television and computer usage cross. Already more
computers than television sets are sold each year in the United
States. Televisions themselves are due to become digital within a
matter of years and households are already becoming wired to re-
ceive a much higher bandwidth of information than they currently
get from a telephone connection. None of this comes as a revelation
anymore and has been thoroughly discussed elsewhere. The interest-
ing question for this discussion is whether people using the new
computer/televisions will simply look at these devices or be moved
to interact with them. I believe that if computers interact with people
in a musically meaningful way, that experience will bolster and ex-
tend the musicianship already fostered by traditional forms of music
education. Ultimately, the goal must be to enrich and expand human
musical culture. Certainly, music will continue to be produced in
any case, but without the ferment of an actively engaged audience
it will lapse into yet another form of consumerism.

Philippe Manoury makes this assessment of the relationship be-
tween music and its society:

Iam convinced that a certain culture is being lost. Musicis increasingly
playingtherole of a diversion and that scares me. Idon’t have anything
against music as a diversion, but I have the impression that our society,
faced with numerous problems and no resolutions in sight, considers
diversion as an antidote to those problems. . . . The more society stag-
nates, the more it distributes this antidote of diversion, in which music
plays an important role. There is an overconsumption of the music of
diversion and people don’t see that music can also be the fruit of a
reflection and an internal process, something they recognize more eas-
ily in literature. (Derrien 1995, 19-20 [my trans.])

Chapter 1 6

Although it is tempting to believe that one’s own approach to mu-
sic-making will lead to a more engaged society and more fully devel-
oped art form, I make no claims of special aesthetic or social virtue
inherent to interactive music. However, as computer music is so of-
ten accused of leading us to a day when machines will listen only
to machines, I feel compelled to observe that many of us are moti-
vated by a much different vision of the computer’s potential connec-
tion to the community of human musicians.

1.2 Algorithmic Composition

The formalization of processes for generating music has a long and
distinguished history in Western art music. From Guido d’Arezzo’s
chant generation method through the isorhythmic motet to serial

’

techniques and Xenakis’ “formalized music,” interest in processes
that produce music has waxed and waned through several centuries
of composition (Loy 1989). Such algorithms move the compositional
act to a meta-level where the evolution of the music’s character is
controlled over time by the manipulation of a limited number of pa-
rameters. Computers can now execute these processes so quickly that
they can be realized on stage as part of an ongoing performance (Cha-
dabe 1989). Interactive systems change the values of compositional
parameters using information from a variety of inputs, including live
performance data from multiple members of an ensemble.

Because these systems derive control parameters from a real-time
analysis of performance, they can generate material based on impro-
vised input as easily as they can on interpretations of notated music.
They become a kind of ligature connecting improvisation to notated
composition, just as the same processes used to govern the response
to notated music can be employed to generate new improvisations
in performance. This possibility expands the domain of composition.
By delegating some of the creative responsibility to the performers
and some to a computer program, the composer pushes composition
up (to a meta-level captured in the processes executed by the com-
puter) and out (to the human performers improvising within the logic
of the work).

Machine Musicianship 7

An interesting effect of this delegation is that the composer must
give very detailed instructions to the computer at the same time that
she gives up such precise direction of the human improviser. The
resulting music requires a new kind of performance skill as much as
it enables a new kind of composition. The human player working
with an interactive system must learn how to perform with it much as
he would learn to play with another human. The very real differences
between computer performers and human performers mean, how-
ever, that the human also acquires a new degree of freedom in invok-
ing and directing real-time algorithms through different styles of
performance. An interactive composition changes and matures as the
human and computer performances increasingly intertwine.

Another possibility, of course, is that the composer will take to
the stage to perform with the system herself (figure 1.1). One of the
notable characteristics of the field is the resurgence of the composer/

Figure 1.1 Mari Kimura improvising

Chapter 1 8

improviser, those musicians who design interactive systems and
then improvise with them and/or other players in performance (e.g.,
Richard Teitelbaum, George Lewis, Chris Chafe, Mari Kimura, David
Wessel, Ed Campion, Laetitia Sonami, and many others).

There is very seldom something new under the composition sun.
Algorithmic thought is certainly not new, having been in evidence
in Western music composition from the beginnings of its notation.
Using processes in performance that change their behavior according
to an analysis of other players’s music, however, was never possible
before the advent of computers and interactive music systems. Such
systems therefore engender a realm of composition that was un-
known only a few decades ago. I believe that this music, however,
should not be described as being ““in its infancy” or passing through
an “‘experimental” phase. Doing so belittles the very real aesthetic
credibility many of these works have achieved and gives composers
an excuse to present works that still belong in the studio.

The musical values evinced in interactive compositions are ulti-
mately the same as those underlying a string quartet. By transferring
musical knowledge to a computer program and compositional re-
sponsibility to performers onstage, on the other hand, the composer
of interactive works explores the creative potentials of the new tech-
nology at the same time that he establishes an engaging and fruitful
context for the collaboration of humans and computers.

1.3 Algorithmic Analysis

There is a certain paradox at the heart of the transfer of musical
knowledge to a machine. We must labor mightily to make a computer
program perform the analysis required of a freshman music student.
Once the work is done, however, the program can make analyses
more reliably and certainly much more quickly than the freshman.
The computer can deliver complete descriptions of each chord in a
dictation within milliseconds of its performance, for example.

The purely quantitative difference of a very great acceleration pro-
duces a qualitative difference in the kinds of tasks a machine musi-

Machine Musicianship 9

cian can reasonably be asked to perform. We would not set a novice
musician in front of an ensemble with no idea of the piece of music
to be played, its key, tempo, character, or form, and expect that
apprentice player to follow what was going on very well, let alone
contribute to the performance in more than a perfunctory way.
Interactive systems whose knowledge of music theory does not go
much beyond that of our hypothetical novice are often put into just
such situations, however. Because these systems always do what
they do correctly and very quickly, a little musical knowledge goes
a long way.

The formalization of musical concepts is proceeding apace
through research in several fields, including music theory, music
cognition, and artificial intelligence. So much work has been done
in recent years that it would be inconceivable to document it all in
one volume. The work reviewed in this text, then, is delimited by
the requirement that the algorithms discussed be able to work in real
time as part of a musical performance involving human players. Even
with that restriction, this text in no way forms a comprehensive over-
view of the field.

There is a particularly interesting convergence between the fields
of music cognition and interactive composition: as music cognition
research becomes increasingly concerned with processes that could
account for musical competence in a real musical environment, it
gives rise to algorithms that can be adapted and used by composers
and improvisers in performance. Whether or not it was a concern of
the great variety of developers whose algorithms are described in
these pages, all of these programs also pass the minimum threshold
of psychological plausibility: they are all capable of execution in real
time using only the information that becomes available as it is pre-
sented in sequence.

Certainly, some aspects of musicianship do not require such de-
manding performance in time; analysis is usually carried out over a
period of days, not milliseconds, with an open score that allows the
analyst to consult the music in any desired sequence. Many excellent
systems of algorithmic analysis model this situation, and a suspen-

Chapter 1 10

sion of the real-time requirement often allows them to produce better
results than their performance-oriented counterparts. To maintain a
more manageable scope, however, some such systems will be consid-
ered only to the extent that they can be adapted to real-time use.
Figure 1.2 illustrates some of the main processes extant in the liter-
ature that can be applied to real-time analysis of musical input. Space
from left to right in the figure corresponds roughly to movement from
low- to high-level processes in the algorithms. The arrows approxi-
mate the flow of information between stages: pitch input is for-
warded to root and key identifiers, for example, while segmentation

pitch structures

| root salience J

l pitch tracking |\

A

| chord identificationl

I key induction l

INPUTS

i E ition
auditory l style recogni

segmentation I

MIDI

pattern processing

quantization J

[beat tracking |

| meter induction |

time structures

Figure 1.2 Machine musicianship processes

Machine Musicianship 11

and style recognition rely in turn on the output of those lower-level
analyses. This list is not exhaustive, but every element in it is mani-
fested by one or more published algorithms.

My interest in this field is twofold: (1) to implement certain pub-
lished processes so that they can be executed in performance; and
(2) to design control structures within which these components can
be combined to produce a more complete account of musical context
and to make the cooperating components work better. This figure
sketches only those processes related to analysis; there are similar
collections that pertain to algorithmic composition and to the genera-
tion of expressive performance.

In their article “On the Thresholds of Knowledge,” Douglas Lenat
and Edward Feigenbaum propose the Empirical Inquiry Hypothesis:
“The most profitable way to investigate Al [artificial intelligence] is
to embody our hypotheses in programs, and gather data by running
the programs. The surprises usually suggest revisions that start the
cycle over again. Progress depends on these experiments being able
to falsify our hypotheses. Falsification is the most common and yet
most crucial of surprises. In particular, these programs must be capa-
ble of behavior not expected by the experimenter” (Lenat and Feigen-
baum 1992, 187).

The Empirical Inquiry Hypothesis—clearly related to Sir Karl
Popper’s observations on the nature of science (1992)—suggests that
machine musicianship programs should be built to exhibit behav-
iors that observers can recognize as correct or incorrect. Many, if not
most interactive music systems are written to function in an environ-
ment of new music performance and improvisation. Their output
can certainly be evaluated by their makers and those familiar with
the idiom. My previous book, Interactive Music Systems (Rowe
1993) and several sections of this one deal with just such examples.
A still broader class of musicians can evaluate the performance
of algorithms that process standard works, however, and in accor-
dance with the Empirical Inquiry Hypothesis many examples in
this text will treat the mainstream classical and jazz repertoires
as well.

Chapter 1 12

I should make clear that this is not a psychology text, though the
techniques I describe could be used to implement music cognition
models or experiments. Psychological theories must address the
question of how the processes they propose are realized in humans.
My measure of success, however, is not whether these programs
match empirical data from research with human subjects, but
whether they output structures that make musical sense. I will gauge
their performance in those terms by comparing their output with the
answers expected from students studying introductory texts in music
theory. The software may produce an acceptable answer by using
processes similar to those of humans, or by using others that are
wildly different. All else being equal, I would prefer that the machine
processes resemble the human ones. Whether or not they do is a side
effect, however. Ultimately I am concerned with machine musician-
ship and not a strict emulation of human music cognition.

1.4 Structure of the Text

The programming examples in Machine Musicianship are written us-
ing two languages: C++ and Max. C++ is an object-oriented pro-
gramming language that is widely available, well documented, and
firmly established as one of the main vehicles for developing com-
puter music applications. As examples are described in the text, I
will develop a library of C++ objects that can be used as the basis
for the reader’s custom programs. This book is not an introduction
to C++ programming. As examples are introduced I will summarize
a few features of object orientation that are particularly valuable in
developing a library for machine musicianship. Beyond that, any
computer store will have a shelf full of introductory C++ books to
which the reader is referred.

The fact that I will be illustrating concepts with C++ programs
does not mean, however, that one must be or become a programmer
to follow the text. C++ programs are a compact and complete way
of notating algorithms. The algorithms themselves are the topic of
interest here and will be explained in the text as they are imple-

Machine Musicianship 13

mented in code. All of the applications described are included on
the accompanying CD-ROM, but only a very small portion of the as-
sociated source code is printed in the text. Non-programmers ap-
proaching Machine Musicianship can then read the theory of the
algorithms in question and run the associated applications to test
their operation. Programmers can run the applications and modify
the source, recorded in its entirety on the CD-ROM, to produce their
own variations. C++ fragments in the text are concentrated at the
end of each chapter so that non-programmers can skip over the code
if they wish.

Max is a graphic programming language developed by Miller Puck-
ette and David Zicarelli. There are a number of compelling reasons
to include it as a development language here. First of all, Max has
spawned a user community that is the most active and prolific group
of interactive music designers working in the world today. There is
no good reason to port Max patches to another language when there
are probably more readers who know Max than know C+ +. In fact,
I will demonstrate how C++ code is translated into a Max external
to suggest how the Max community might make use of the C++ ap-
plications introduced here. Another good reason to use Max is the
library of objects that has already been written for it and for MSP, a
set of digital signal processing extensions. Programmers can quickly
write powerful applications by building on the work of others.

Following this introduction, chapter 2 focuses on symbolic repre-
sentations and algorithms directed toward the processing of pitch
material. Issues such as root salience, chord identification, and
key induction are addressed there. Chapter 3 continues with sub-
symbolic processes, notably neural networks, and expands the field
of application to include rhythm. Chapter 4 moves to higher-level
musical constructs including segments and patterns and discusses
systems whose input consists of a digital audio stream. Chapter 5
begins to look at compositional techniques, including score follow-
ing and algorithmic digital signal processing. In chapter 6 processes
for the automatic application of expressive performance techniques
are reviewed.

Chapter 1 14

In the remaining chapters I look in detail at some distinctive inter-
active systems that have been used in performances or installations.
The particular techniques of interactive improvisation are the nu-
cleus of chapter 7, leading to a discussion of how such machine per-
formers can collaborate with an ensemble of other players. Chapter
8 looks at extensions of interactive environments to include other
media, most prominently graphics, in live performance situations.
Chapter 9 presents several interactive installations, where the in-
herent ability of such systems to deal with unpredictable input
contributes to responsive environments exhibiting a variety of be-
haviors. A presentation of research directions form the conclusion
in chapter 10.

1.5 Machine Musicianship Library

The CD-ROM enclosed in this book contains a library of C+ + objects
that can be used to build interactive programs. The source code of
the examples, also listed on the CD-ROM, provides a set of templates
for users to follow in writing their own applications. The library in-
cludes the files listed in table 1.1.

Many more files are included with their associated projects: the
library is a repository of base classes from which specializations are
built for almost every program in the book. In object-oriented pro-
gramming, a base class is a generalized encapsulation of data and
processes concerned with a particular subset of some application
area. Specializations refine those general classes into derived classes
that address the details of some specific application. All of the analy-
sis processes depicted in figure 1.2, for example, have examples de-
tailed in the text and included on the CD-ROM that are made from
a combination of base classes, derived classes, and custom code.

Max programs are referenced as stand-alone applications, but are
not included in the Machine Musicianship library as the necessary
objects already form the heart of Max itself. One fully developed exam-
ple is ported from the C++ environment into Max as a Max external,
and many of the other C++ examples could similarly produce useful

Table 1.1 Machine Musicianship Library

Machine Musicianship 15

Clock.cp timing routines

Event.cp representation of a group of notes
EventBlock.cp representation of a group of events
File.cp file handling

Listener.cp analysis of incoming MIDI events
ListenProps.cp analysis processes

Mac.cp macintosh 1/0

MMerrors.cp error reporting

Note.cp representation of notes
OMSInPort.cp OMS input routines
OMSOQutPort.cp OMS output routines

OMSSystem.cp
Scheduler.cp
Segment.cp
Utilities.cp

OMS communication
scheduling facilities
representation of segments
miscellaneous

Max objects. Taking programs in the other direction, from Max to
C++, should be facilitated by the Machine Musicianship base classes.

The danger in producing a set of classes like this, particularly
when it includes such entries as Note, Event, and EventBlock,
is that it can be taken as a general representation of music. My inten-
tion is precisely the opposite—I do not believe that there is a simple
and general way to represent all of the aspects of music we might
want to process. The representations suggested by the Machine Musi-
cianship library emerged from the particular collection of applica-
tions described in this book. Other tasks will demand other
representations, or at the very least, modifications of these. Rather
than a proposal for a generalized solution, the classes described here
should be seen as an example of how programmers might design their
own. After getting our feet wet with an initial application, in fact, I
will discuss the issues of representation design more thoroughly in
chapter 2.

