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1. Historical Perspectives

Machine learning (ML ) played a central role in artificial intelligence at its very
beginning . Although the AI limelight has wandered away from machine
learning in the advent of other significant developments, such as problem
solving, theorem proving , planning , natural language processing, robotics , and
expert systems, ML has returned cast in multiple guises, playing increasingly
more significant roles. For instance, early work in linear perceptrons faded
away in light of theoretical limitations , but resurged this decade with much
fanfares connectionist networks with hidden units able to compute and learn
nonlinear functions . In the interim , many symbolic machine learning paradigms
flourished , and several have evolved into powerful computational methods,
including inductive concept acquisition , classifier systems, and explanation -
based learning . Today , there are many active research projects spanning the
gamut of machine learning methods, several focusing on the theory of learning
and others on improving problem solving performance in complex domains. In
the 1980s, the field of machine learning has re-emerged one of the major areas
of artificial intelligence , with an annual ML conference, an established 1,000-
subscriber journal , dozens of books , and ample representation in all major AI
conferences.

Perhaps the tenacity of ML researchers in light of the undisputed difficulty of
their ultimate objectives , and in light of early disappointments , is best explained 

by the very nature of the learning process. The ability to learn , to
adapt, to modify behavior is an inalienable component of human intelligence .
How can we build truly artificially intelligent machines that are not capable of
self-improvement ? Can an expert system be labeled " intelligent ," any more
than the Encyclopedia Britanica be labeled intelligent , merely because it
contains useful knowledge in quantity ? An underlying conviction of many ML
researchers is that learning is a prerequisite to any form of true intelligence-
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therefore it must be investigated in depth , no matter how formidable the
challenge. Philosophical considerations aside, machine learning , like knowledge 

representation and reasoning, cuts across all problem areas of AI :

problem solving, theorem proving , analogical and nonmonotonic reasoning,
natural language processing, speech recognition , vision , robotics , planning ,
game playing , pattern recognition , expert systems, and so on. In principle ,
progress in ML can be leveraged in all these areas; it is truly at the core of
artificial intelligence .

Recently , machine learning research has begun to payoff in various ways:
solid theoretical foundations are being established; machine learning methods
are being success fully integrated with powerful performance systems; and
practical applications based on the more established techniques have already
made their presence felt . Recent success es in machine learning include decision
tree induction applied to industrial process control (based on Quinlan 's ID3 [14]
and its successors) , the integration of explanation -based learning into general
knowledge-intensive reasoning systems (such as SOAR [9] , PRODIGY [11] and
THEO) , and extended forms of neural network learning to produce phonemic-
level speech recognition at an accuracy surpassing conventional methods (such
as hidden Markoff models) in modular time delay neural networks .

To date one can identify four major ML paradigms and multiple subparadigms 
under active investigation : inductive learning (e.g., acquiring concepts 

from sets of positive and negative examples) , analytic learning (e.g.,

explanation -based learning and certain forms of analogical and case-based
learning methods) , genetic algorithms (e.g., classifier systems) [7] ) , and connec-
tionist learning methods (e.g., nonrecurrent " backprop " hidden layer neural
networks) . These machine learning paradigms emerged from quite different scientific 

roots , employ different computational methods, and often rely on subtly

different ways of evaluating success, although all share the common goal of building
machines that can learn in significant ways for a wide variety of task domains. In all
cases, learning can be defined operationally to mean the ability to perform new tasks
that could not be performed before or perform old tasks better (faster, more
accurately, etc.) as a result of changes produced by the learning process. Except for
this basic consensus on what it means to learn , there are precious few assumptions
shared by all four paradigms.

The central purpose of this special volume is to acquaint the reader with
each machine learning paradigm , and do so directly from the proverbial horse's
mouth- that is, as presented by one or more prominent researchers who
practice each respective ML approach. Each author was asked to write a
self-contained article with explicit historical and cross-paradigmatic perspectives 

for a reader well informed in artificial intelligence , but not necessarily an

expert in machine learning .1 Most authors complied and produced comprehen-

1 The articles solicited were submitted to formal review , resulting in significant filtering and in
substantial improvements to most of the accepted manuscripts .
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sive articles setting forth explicitly many of the assumptions inherent in their
machine learning paradigm , the basic computational methods, and the evolution 

of these methods up to and including reports on the authors' latest
research results. If this special volume also serves the role of improving
communication between practitioners of different paradigms of machine learning 

by encouraging cross-comparisons and providing better comprehension of
different means to achieve common aims, so much the better .

2. The Inductive Paradigm

The most widely studied method for symbolic learning is one of inducing a
general concept description from a sequence of instances of the concept and
(usually) known counterexamples of the concept. The task is to build a concept
description from which all the previous positive instances can be rederived by
universal instantiation but none of the previous negative instance (the counterexamples

) can be rederived by the same process. At this level of abstraction ,
the problem may sound simple , but it is not even well posed. The design space
of potential inductive systems is determined by many important dimensions,
such as:

- Description language. The language in which input instances and output
concepts are expressed can vary in representational power (e.g., propositional
calculus, first-order logic , or beyond) , in whether the domain of variables in
the des~ription language is discrete, continuous or mixed , and in whether
individual values are points in the domain or probability distributions among
the possible domain values. Most early concept acquisition systems handled
only certain classes of propositional representations (attribute -value lists) with
single-valued variables drawn from a finite nominal domain . Continuous
variables were arbitrarily partitioned into discrete intervals . Present systems
explore the full range of possibilities . However , most systems make a fixed
vocabulary assumption in that all the relevant descriptors must be present at
the outset. Lately , some researchers are starting to consider the implications of
description languages that grow during the learning cycle, labeling the process
representational shift .

- Noise and instance classification. Most early learning -from -examples systems 
assumed that every instance was correctly classified as positive or negative

with respect to the desired concept; that is, they assumed a benign and
accurate teacher providing a stream of well -formed data [16] . Since such an
assumption is much too restrictive for real-world applications , new systems
explore the possibility of inaccurately labeled and unlabeled instances, of
partially specified instances (where some attributes may be unknown ) , of
measurement errors in the values of the attributes , and of differential relevance
among the attributes . So long as the signal-to-noise ratio is acceptable, and the
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num~er of instances is sufficiently high, statistical techniques integrated into
the learning method come to the rescue.

- Concept type . Some learning systems strive for discriminant concepts ,
where the concept description is a set of tests which separate all instances of
the concept apart from all instances of every other concept known to the

system . Often discriminant concept descriptions are encoded as paths from
the root to the leaves of incrementally acquired decision trees. Other learning
systems acquire characteristic concepts , which strive for compactness and
elegance in the concept descriptions . Such concepts are far easier to communicate 

to human users and often prove more usable when they must be

interpreted by some other part of the performance system. However , the
tradeoff for simplicity of description is often loss of complete accuracy ; characteristic 

concepts do not necessarily comply with the strict discrimination
criterion . Characteristic concept descriptions are often encoded as frames or
logical formulae . The inductive bias of a learning system is often expressed as
preferences in the type of concept to be acquired , and simplicity of the concept
description is the most prevalent form of domain-independent inductive bias.

- Source of instances. The initial learning-from -examples model called for an
external teacher to supply a stream of classified examples for a single concept
to be acquired at one time . In addition to considering the possibility of noise in
the data (discussed above) , one can remove the teacher entirely and use the
external world as a source of data. In such cases, the learner must be proactive
in seeking examples, must cope with multiple concepts at one time , and must
seek its own classification of instances by appealing to an external oracle ( if
available) , by performing experiments ( if possible) , or by conceptual clustering
techniques [10] . Current work also address es the judicious selection of instances 

to reduce maximally the uncertainty in partially formed concepts (a

complex form of multidimensional binary search) .

  - Incremental versus one-shot induction . One-shot inductive learning systems 
consider all the positive and negative instances that will ever be seen as

training data at one time and produce a concept description not open to further
modification [4] . Incremental techniques produce the best -guess concept [ 16]
or the range of concepts consistent with the data so far (as in version spaces
[ 12]) , and can interleave learning and performance . As the latter reflect more
accurately real -world situations in which learning is an ongoing process , they
are currently the ones more heavily investigated .

3. The Analytic Paradigm

A more recent but very widely studied paradigm for learning is based on
analytical learning from few exemplars (often a single one) plus a rich
underlying domain theory . The methods involved are deductive rather than
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inductive , utilizing past problem solving experience (the exemplars) to guide
which deductive chains to perform when solving new problems , or to formulate
search control rules that enable more efficient application of domain knowledge

. Thus, analytic methods focus on improving the efficiency of a system
without sacrificing accuracy or generality , rather than extending its library of
concept descriptions. The precursors of modern analytic learning methods are
macro-operators [5], and formal methods such as weakest precondition analysis

. Presently, analytic learning methods focus on explanation-based learning
[3, 13] , multilevel chunking [9] , iterative macro-operators [2] and derivational
analogy [1] . Some fundamental issues cut across aU analytic methods:

- Representation of instances. In analytic methods an instance corresponds to
a portion of a problem solving trace, and learning uses that single instance plus
background knowledge (often called a domain theory) . In the simplest case an
instance is just a sequence of operators , which can be grouped into macrooperators

, modified in analogical transfer , or viewed as steps in a " proof " of
the problem solution for explanation -based learning . More recently , problem
solving traces carry with them the justification structure (i .e., the goal-subgoal
tree , annotations on why each operator was selected, and a trace of failed
solution attempts, all interconnected with dependency links) . These traces
permit richer learning process es such as generalized chunking , derivational
analogy (applied by Mostow in this volume) and explanation -based specializa-
tion (discussed by Minton et al. in this volume) .

- Learning from success or failure . The earliest analytic techniques acquired
only the ability to replicate success more efficiently (e.g., macro-operators ,
early EBL , and early chunking ) . However , much can be learned from failure
in order to avoid similar pitfalls in future situations sharing the same underlying 

failure causes. Recent EBL techniques, analogical methods, and to some
extent chunking in systems like SOAR [9] learn both from success and from
failure .

- Degree of generalization . The control knowledge acquired in analytical
learning can be specific to the situation in the exemplar or generalized as
permit ted by the domain theory . Generalization strategies range from the
elimination of irrelevant information ( in virtually all analytical methods) to the
application of general metareasoning strategies to elevate control knowledge
to the provably most general form in the presence of a strong domain and
architectural theory (as discussed by Minton et al. in this volume) .

- Closed v~rsus open loop learning . Open loop learning implies one-pass
acquisition of new knowledge , regardless of later evidence questioning its
correctness or utility . In contrast , closed loop learning permits future evaluation 

of the new knowledge for modification or even elimination should it not

improve system performance as desired. Performance measures of newly



6 J.G. CARBONELL

acquired knowledge are often empirical in nature ; only the acquisition of the

4. The Genetic Paradigm

control knowledge is purely analytical .

Genetic algorithms ( also called " classifier systems " ) represent the extreme

empirical position among the machine learning paradigms . They have been

inspired by a direct analogy to mutations in biological reproduction ( crossovers

, point mutations , etc . ) and Darwinian natural selection ( survival of the

fittest in each ecological niche ) . Variants of a concept description correspond to

individuals of a species , and induced changes and recombinations of these

concepts are tested against an objective function ( the natural selection criterion

) to see which to preserve in the gene pool . In principle , genetic algorithms

encode a parallel search through concept space , with each process attempting

coarse - grain hill climbing .

Stemming from the work of Holland [ 7 ] , the genetic algorithm community

has grown largely independent of other machine learning approach  es , and has

developed its own analysis tools , applications , and workshops . However , many

of the underlying problems and techniques are shared with the mainline

inductive methods and with the connectionist paradigm . For instance , as in all

empirical learning , assigning credit ( or blame ) for changes in performance as

measured by the objective function is difficult and indirect . There are a

multiplicity of methods to address this problem in the inductive approach  es ,

dating back to Samuel [ 15 ] . For genetic algorithms , Holland developed the

bucket brigade algorithm [ 8 ] . And , credit / blame assignment is positively

central to all connectionist learning methods , as exemplified by the backpropa -

gation technique .

5 . The Connectionist Paradigm

Connectionist learning systems , also called " neural networks " ( NNets ) or

" parallel distributed systems " ( PDPs ) , have received much attention of late .

They have overcome the theoretical limitations of perceptrons and early linear

networks by the introduction of " hidden layers " to represent intermediate

processing and compute nonlinear recognition functions . There are two basic

types of connectionist systems : those that use distributed representations -

where a concept corresponds to an activation pattern spanning , potentially , the

entire network - and those that use localized representations where physical

portions of the network correspond to individual concepts . The former is the

more prevalent , although hierarchical modularization for complex systems

limits the physical extent of concept representations .

Connectionist systems learn to discriminate among equivalence classes of

patterns from an input domain in a holistic manner . They are presented with

training sets of representative instances of each class , correctly labeled ( with
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some noise tolerance ) , and they learn to recognize these and other instances of

each representative class . Learning consists of readjusting weights in afixed -

topology network via different learning algorithms such as Boltzmann [ 6 ] or

backpropagation . These algorithms , in essence , calculate credit assignment

from the final discrimination back to the individual weights on all the active

links in the network . There are , of course , much more complexity and many

subtle variations involved , as reported in Hinton ' s article in this volume .

Amidst structural diversity , one can find strong functional similarities between 

connectionist learning systems and their symbolic counterparts , namely

discriminant learning in inductive systems and genetic algorithms . Induced

symbolic decision trees and NNets both are trained on a number of pre -

classified instance patterns , both are noise - tolerant , and after training both are

given the task of classifying new instances correctly . In order to evaluate the

appropriateness of each technique to the task at hand , one must ask some

detailed quantitative questions , such as comparing the ease of casting training

data into acceptable representations , the amount of training data required for

sufficiently accurate performance , the relative computational burden of each

technique in both training and performance phases , and other such metrics .

6 . Cross - Paradigmatic Observations

Consider the larger picture , contrasting the three symbolic paradigms and

connectionist systems in general . But , rather than engaging in the perennial

sectarian debate of supporting one paradigm at the expense of the other , let us

summarize the properties of a domain problem that favor the selection of each

basic approach :

- Signal - symbol mapping . From continuous signals such as wave forms into

meaningful discrete symbols such as phonemes in speech recognition . Best

approach : Connectionism ( or traditional statistical learning methods such as

dynamic programming or hidden Markoff models ) .

- Continuous pattern recognition . From analog signals to a small discrete set

of equivalence classes . Best apr ; oach : Connectionism . Inductive or genetic

approach  es require that the signal - symbol map be solved first , or that a

predefined feature set with numerical ranges be given a priori .

- Discrete pattern recognition . From collections of features to membership in

a predefined equivalence class ( e . g . , noninteractive medical diagnosis ) . Best

approach : Inductive learning of decision trees . Other inductive approach  es ,

genetic algorithms , and even connectionist methods can apply .

- Acquiring new concept descriptions . From examples to general descriptions

. Best approach : Induction with characteristic concept descriptions , per -
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- Enhancing the efficiency of rule-based systems. From search guided only by
weak methods to domain-dependent focused behavior . Best approach:
Analytic techniques ranging from macro-operators and chunking to EBL and
analogy. Here is where background knowledge can be used most effectively to
reformulate control decisions for efficient behavior by analytic means.

- Instruction and symbiotic reasoning. From stand-alone system to collaborative 
problem solving. When user and system must pool resources and reason

jointly , or when either attempts to instruct the other , knowledge must be
encoded in an explicit manner comprehensible to both . Best approach es:
Inductive (with characteristic concept descriptions) or analytic (often case-
based analogical) reasoning. Neither genetic systems nor (especially) connec-
tionist ones represent the knowledge gained in a manner directly communicable 

to the user or other system modules. Imagine attempting to understand

the external significance of a huge matrix of numerical connection strengths.

- Integrated reasoning architectures. From general reasoning principles to
focused behavior in selected domains. In principle all methods of learning
should apply , although the analytic ones have been most successful thus far .

At the risk of oversimplification , one may make a general observation :
Connectionist approach es are superior for single-step gestalt recognition in
unstructured continuous domains, if very many training examples are present.
At the opposite end of the spectrum, analytic methods are best for well -
structured knowledge-rich domains that require deep reasoning and multistep
inference , even if few training examples are available . Inductive and genetic
techniques are best in the center of the wide gulf between these two extreme
points . Clearly there are many tasks that can be approached by more than one
method , and evaluating which might be the best approach requires detailed
quantitative analysis. Perhaps more significantly , there are complex tasks
where multiple forms of learning should co-exist, with connectionist ap-
proaches at the sensor interface , inductive ones for formulating empirical rules
of behavior , and analytic ones to improve performance when the domain
model is well enough understood .

mitting explanation to human users or manipulation by other system modules.
Genetic algorithms and connectionist approach es do not produce characteristic
concept descriptions.

- Acquiring rules for expert systems. From behavioral traces to general rules.
If a strong domain theory is present, analogical or EBL approach es are best. If
not inductive or genetic approach es prevail. Connectionist systems do not
preserve memory of earlier states and therefore cannot emulate well multistep
inferences or deductive chains.
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