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1 . 1 Coding for Digital Data Transmission

The need for efficient and reliable digital data communication

systems has been rising rapidly in recent years . This need has

been brought on by a variety of reasons , among them being the
increase in automatic data processing equipment and the increased 

need for long range communication . Attempts to develop

data systems through the use of conventional modulation and

voice transmission techniques have generally resulted in systems 
with relatively low data rates and high - error probabilities .

A more fundamental approach to the problems of efficiency
and reliability in communication systems is contained in the
Noisy Channel Coding theorem developed by CE. Shannonl5 ,4

in 1948 . In order to understand the meaning of this theorem ,
source produces binary digits , or
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Figure 1 . 1 . Block diagram of communication system .

the data for transmission

however , that the encoder

separates the source sequence into blocks of v binits and operates 
on only one block at a time . The encoder output is then

transmitted over the channel and changed by some sort of random 
disturbance or noise . The decoder process  es the channel

output and produces a delayed replica of the source binits . The

coding theorem states that for a large variety of channel models ,
encoders and decoders exist such that the probability of the decoder 

reproducing a source binit in error P is bounded byevE

(Rt )
e :::; Pe :::; e

The functions depend upon the channel but
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The obvious response of an engineer to such a theorem is :

" Splendid , but how does one build encoders and decoders that behave 
in this way when v is large ?" It is rather sobering to observe 

that if an encoder stores a waveform or code word for each

possible block of v binits , then the storage requirement must be
proportional to ZV , which is obviously impractical when v is large .

Fortunately , Elias3 and Reiffen13 have proved that for a wide
variety of channel models , the results of the Noisy Channel Coding 

theorem can be achieved with little equipment complexity at

the encoder by the use of parity - check coding . This will be des 
cribed in more detail later .

Unfortunately , the problem of decoding simply but effectively

when v is large appears to be much more difficult than the problem 
of encoding . Enough approach  es to this problem have been

developed to assure one that the Coding theorem has engineering
importance . On the other hand these approach  es have not been
carried far enough for the design of an efficient , reliable data
communication system to become a matter of routine engineering .

This monograph contains a detailed study of one of the three
or four most promising approach  es to simple decoding for long

constraint length codes . The purpose of publishing this work is

primarily to show how such a coding and decoding scheme would
work and where it might be useful . Also , naturally , it is hoped
that this will stimulate further research on the subject . Further

mathematical analysis will probably be fruitless , but there are

many interesting modifications of the scheme that might be made
and much experimental work that should be done .

In order to prove mathematically some results about low - density

parity - check codes , we shall assume that the codes are to be
used on a somewhat re stricted and idealized class of channels .

It is obvious that results using such channel models can be ap -

plied only to channels that closely approximate the model . However
, when studying the probability of decoding error , we are

interested primarily in the extremely atypical events that cause
error s . It is not easy to find models that approximate both these

atypical events and the typical events . Consequently the analysis
of codes on idealized channels can provide only limited insight

about real channels , and such insight should be used with caution .

not upon v ; they are positive when Rt = 0 , and decrease with Rt
until they become 0 at some time rate Ct known as the channel
capacity . The exact nature of the se functions and the particular
class of channels for which this theorem has been proved need
not concern us here . The important result is that the coding

constraint length v is a fundamental parameter of a communication 
system . If a channel is to be used efficiently , that is with

Rt close to Ct ' then v must be made correspondingly large to
achieve a satisfactory error probability .



Coding for Digital Data Transmission 3

The channel models to be considered here are called symmetric 
binary - input channels . By this we mean a time - discrete

channel for which the input is a sequence of the binary digits 0
and 1 and the output is a corresponding sequence of letters from
a discrete or continuous alphabet . The channel is memoryless
in the sense that given the input at a given time , the output at
the corresponding time is statistically independent of all other
inputs and outputs . The symmetry requirement will be defined
precisely in Chapter 3, but roughly it means that the outputs can
be paired in such a way that the probability of one output given
an input is the same as that of the other output of the pair given
the other input . The binary symmetric channel , abbreviated
BSC , is a member of this class of channels in which there are

only two output symbols , one corresponding to each input . The
BSC can be entirely specified by the probability of a crossover
from one input to the other output .

If a symmetric binary - input channel were to be used without
coding , a sequence of binary digits would be transmitted through
the channel and the receiver would guess the transmitted symbols 

one at a time from the received symbols . If coding were

to be used , however , the coder would first take sequences of
binary digits carrying the information from the source and would
map these sequences into longer redundant sequences , called code
words , for transmission over the channel . We define the rate
R of such codes to be the ratio of the length of the information
sequence to the length of the code word sequence . If the code
words are of length n , then there are 2nR possible sequences
from the source that are mapped into n - length code words . Thus
only a fraction 2 - n (1- R) of the 2n different n - length sequences
can be used as code words .

At the receiver , the decoder , with its knowledge of which sequences 
are code words , can separate the transmitted n - length

code word from the channel noise . Thus the code word is mapped
back into the nR information digits . Many decoding schemes find
the transmitted code word by fir st making a decision on each received 

digit and then using a knowledge of the code words to correct 
the errors . This intermediate decision , however , destroys

a considerable amount of information about the transmitted message
, as discussed in detail for several channels in Reference 1.

The decoding scheme to be described here avoids this intermediate 
decision and operates directly with the a posterior ~ proba -

bilities of the input symbols conditional on the corresponding received 
symbols .

The codes to be discussed here are special examples of parity -
check codes .* The code words of a parity - check code are formed�

* For a more detailed discussion of parity - check codes , see
Peter son .IZ



by combining a block of binary - information digits with a block of,'.
check digits . Each check digit is the modulo 2 sum '" of a pre -
specified set of information digits . These formation rules for
the check digits can be represented conveniently by aparity -
check matrix , as in Figure 1.2 . This matrix represents a set
of linear homogeneous modulo 2 equations called parity - check
equations , and the set of code words is the set of solutions of
these equations . We call the set of digits contained in aparity -
check equation a parity - check set . For example , the first parity -
check set in Figure 1.2 is the set of digits (1, 2 , 3, 5) .

The use of parity - check codes makes coding (as distinguished
from decoding ) relatively simple to implement . Also , as Elias3
has shown , if a typical parity - check code of long block length is
used on a BSC , and if the code rate is between critical rate and
channel capacity , then the probability of decoding error will be
almost as small as that for the be st possible code of that rate
and block length .

Introduction4

Xl Xl X3 X4 Xs x6 X7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

Xs = Xl + Xz + X3
n(l - R) =

Unfortunately , the decoding of parity - check code s is not inherently 
simple to implement ; thus we must look for special

classes of parity - check codes , such as described in Section 1.2,
for which reasonable decoding procedures exist .

1.2 Low-Density Parity-Check Codes
Low - density parity - check codes are codes specified by a matrix 

containing mostly O' s and relatively few Its . In particular ,
an (n , j , k ) low - density code is a code of block length n with a
matrix like that of Figure 2 .1, where each column contains a
small fixed number j of l ' s and each row contains a small fixed
number k of 1 ' so Note that this type of matrix does not have
the check digits appearing in diagonal form as do those in Figure 

1.2. However , for coding purposes , the equations represented 
by these matrices can always be solved to give the check

digits as explicit sums of information digits .
Low - density codes are not optimum in the somewhat artificial

�

~:< The modulo 2 sum is 1 if the ordinary sum is odd and 0 if
the ordinary sum is even .

Xl + Xz + X4
+ X3 + X4
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sense of minimizing the probability of decoding error for a given
block length , and it can be shown that the maximum rate at which

they can be used is bounded below channel capacity . However ,

the existence of a simple decoding scheme more than compensates 
for these disadvantages .

1 .3 Summary of Re su Its

An ensemble of (n , j , k ) codes will be formed in Chapter 2 , and

this ensemble will be used to analyze the distance properties of
(n , j , k ) code s . The distance between two words in a code is

simply the number of digits in which they differ . Clearly an important 
parameter in a code is the set of distances separating one

code word from all the other code words . In a parity - check code ,
it can be shown that all code words have the same set of distances

to the other code words . l ? Thus the distance proper  tie s for the

ensemble can be summarized by the typical number of code words
at each distance from the all - zero code word . It is found that the

typical (n , j , k ) code for j ~ 3 has a minimum distance that increases 
linearly with the block length for j and k constant . Figure 

2 .4 plots the ratio of minimum distance to block length for

several value s of j and k and compares the ratio with the same

ratio for ordinary parity - check codes . The (n , j , k ) codes with
j = 2 exhibit markedly different behavior , and it is shown that

the minimum distance of an (n , 2 , k ) code can increase at most

logarithmically with the block length .
In Chapter 3 , a general upper bound on the probability of decoding 

error for symmetric binary - input channels with maximum -

likelihood decoding is derived for both individual codes and for
arbitrary ensembles of codes . The bound is a function of the

code only through its distance properties . The assumption of

maximum likelihood decoding is made partly for analytic convenience 
and partly so as to be able to evaluate codes independently 

of their decoding algorithms . Any practical decoding algorithm

, such as that described in Chapter 4 , involves a trade - off

between error probability and simplicity ; the maximum - likelihood 
decoder minimizes the error probability but is totally impractical 

if the block length is large .

It is shown in Chapter 3 that if the distance properties of the
code are exponentially related to the block length , and if the code

rate is sufficiently low , then the bound to P (e ) is an exponentially
decreasing function of the block length . For the appropriateen -
sernble of codes , these bounds reduce to the usual random coding
bounds . 3 , 4

For the special case of the binary symmetric channel , a particularly 
simple bound to P ( e ) is found ; this is used to show that

over a range of channel crossover probabilities , a typical low -
density code has the same error behavior as the optimum code
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of a slightly higher rate . Figure 3 . 5 illustrates this loss of effective 
rate associated with low - density codes .

In Chapter 4 , two decoding schemes are described . In the
first , which is particularly simple , the decoder first makes a
decision on each digit , then computes the parity checks and

changes any digit that is contained in more than some fixed number 
of unsatisfied parity - check equations . The process is repeated

, each time using the changed digits , until the sequence is

decoded . The second decoding scheme is based on a procedure

for computing the conditional probability that an input symbol is
a I ; this is conditioned on all the received symbols that are in

any of the parity - check sets containing the digit in question . Once
again , the procedure is iterated until the sequence is decoded .
The computation per digit per iteration in each scheme is independent 

of code length . The probabilistic , or second scheme ,

entails slightly more computation than the first scheme , but decodes 
with a lower error probability .

A mathematical analysis of the probability of decoding error

using probabilistic decoding is difficult because of statistical dependencies
. However , for a BSC with sufficiently small crossover 

probabilities and for codes with j ~ 4 , a very weak upper
bound to the probability of error is derived that decreases ex -

ponentially with a root of the code length . Figure 3 . 5 plots crossover 
probabilities for which the probability of decoding error is

guaranteed to approach 0 with increasing code length . It is
hypothesized that the probability of decoding error actually decreases 

exponentially with block length , while the number of
iterations necessary to decode increases logarithmically .

Chapter 5 extends all the major results of Chapters 2 , 3 , and
4 to nonbinary low - density parity - check codes . Although the
theory generalizes in a very natural way , the expressions for
minimum distance , error probability , and probabilistic decoding 

performance error are sufficiently complicated that little
insight is gained into the advantages or disadvantages of amul -
tilevel system over a binary system . Some experimental work
would be helpful here in evaluating these codes .

Some experimental results for binary low - density codes are

presented in Chapter 6 . An IBM 7090 computer was used to
simulate both probabilistic decoding and the noise generated by
several different types of channels . Due to limitation on computer 

time , the only situations investigated were those in which

the channel was sufficiently noisy to yield a probability of decoding 
error greater than 10 - 4. The most spectacular data from

these experiments are given in Figure 6 . 8 , which emphasizes
the advantages of a decoding scheme that operates from a likelihood 

receiver instead of a decision receiver .

6



Some other coding and decoding schemes that appear extremely

promising for achieving low - error probabilities and high data
rates at reasonable cost are the following : first , convolutional

codes3 with sequential decoding as developed by Wozencraft , 17
Fano ,5 and Reiffenj14 second , convolutional codes with Massey ' s
threshold decodingj10 and third , the Bose - Chaudhuri codesz with
the decoding schemes developed by Peterson1  Z and Zierler and
Gorenstein . 18

It has been shown by Fano5 that for arbitrary discrete memoryless 
channels , sequential decoding has a probability of decoding 

error that is upper bounded by a function of the form ean .

Here n is the constraint length of the code and a is a function of
both the channel and the codej a is positive for rates below channel 

capacity C . Fano also shows that for rates below a certain

quantity called R , where R < C , the average amount
f O . codmp do do ~O~ Rb d d b tOt 0 d0 computation in eco 1ng a 19lt 1S oun ey a quan 1 y in e -

pendent of constraint length .
An experimental sequential decoder has been built at Lincoln

Laboratories , Lexington , Massachusetts . 11 By using this decoder 
in a system with a feedback link and an appropriately designed 

modulator and demodulator , reliable transmission has

been achieved experimentally9 over a telephone circuit at about
7500 bits per second rather than the 1200 or 2400 bits per second 

possible without coding .
The two principal weaknesses of sequential decoding are as

follows : Fir st , the amount of computation required per digit is
a random variable , and this creates a waiting line problem at the
decoder ; second , if the decoder once makes an error , a large
block of errors can be made before the decoder gets back on the

proper track . If a feedback link is available , these problems
are not serious , but consider  ably more study is required for
cases in which no feedback exists .

Threshold decoding is the simplest scheme to implement that
is discussed here ; it involves only shift registers , a few binary
adders , and a threshold device . It is most effective at relatively

short constraint lengths , and has a somewhat higher error probability 
and less flexibility than sequential decoding .

The computation per digit associated with the Bose - Chaudhuri
codes on the BSC increases roughly as the cube of the block

length but does not fluctuate widely . The decoding scheme guarantees 
correction of all combinations of up to some fixed number

of errors and corrects nothing beyond . For moderately long
block lengths , this restriction in the decoding procedure causes
a large increase in P . No way is known to make use of the ae -

posterior  i probabilities at the output of more general binary

7
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input channels . This inability to make use of a posterior  i prob -

abilities appears to be a characteristic limitation of algebraic

as opposed to probabilistic decoding techniques .

The computation per digit associated with low - density parity -

check codes appears to increase at most logarithmically with

block length and not to fluctuate widely with the noise . The probability 

of decoding error is unknown , but is believed to decrease

exponentially with block length at a reasonable rate . The ability

to decode the digits of a block in parallel makes it possible to

handle higher data rates than is possible with the other schemes .

For many channels with memory , retaining the a posterior  i

probabilities from the channel makes it practically unnecessary

to take account of the memory in any other way . For instance ,

on a fading channel when the fade persists for several baud lengths ,

the a posterior  i probabilities will indicate the presence of a fade .

If this channel were used as a BSC , however , it would be necessary 

for the decoder to account for the fact that bursts of errors

are more probable than isolated errors . Then , using a posteri -

~ probabilities gives low - density decoding and sequential decoding 

a great flexibility in handling channels with dependent noise .

For channels in which the noise is rigidly constrained to occur

in short , severe bursts , on the other hand , there is a particularly 

simple procedure for decoding the Bose - Chaudhuri codes } Z

When transmitting over channels subject to long fades or long

noise bursts , it is often impractical to correct errors in these

noisy periods . In such cases it is advantageous to use a combination 

of error correction and error detection with feedback and

retransmission . 16 All of the coding and decoding schemes being

considered here fit naturally into such a system , but in cases

where little or no error correction is attempted , low - density

codes appear at a disadvantage .

In conclusion , all these schemes have their own advantages ,

and clearly no one scheme is optimum for all communication

situations . It appears that enough coding and decoding alternatives 

now exist for serious consideration of the use of coding on

particular channels .


