Chapter 1

INTRODUCTION

1.1 Coding for Digital Data Transmission

The need for efficient and reliable digital data communication
systems has been rising rapidly in recent years. This need has
been brought on by a variety of reasons, among them being the
increase in automatic data processing equipment and the in-
creased need for long range communication. Attempts to develop
data systems through the use of conventional modulation and
voice transmission techniques have generally resulted in sys-
tems with relatively low data rates and high-error probabilities.

A more fundamental approach to the problems of efficiency
and reliability in communication systems is contained in the
Noisy Channel Coding theorem developed by C. E. Shannon!®*
in 1948. 1In order to understand the meaning of this theorem,
consider Figure 1.1. The source produces binary digits, or
binits, at some fixed time rate R;. The encoder is a device
that performs data processing, modulation, and anything else
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Figure 1.1. Block diagram of communication system.

that might be necessary to prepare the data for transmission
over the channel. We shall assume, however, that the encoder
separates the source sequence into blocks of v binits and oper-
ates on only one block at a time. The encoder output is then
transmitted over the channel and changed by some sort of ran-
dom disturbance or noise. The decoder processes the channel
output and produces a delayed replica of the source binits. The
coding theorem states that for a large variety of channel models,
encoders and decoders exist such that the probability of the de-
coder reproducing a source binit in error P, is bounded by

-V[EL(Rt)+O(v)] -vE(R;)
e = Pe = e

The functions E(Rt) and EL(Rt) depend upon the channel but
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not upon v; they are positive when Ry = 0, and decrease with Ry
until they become 0 at some time rate C; known as the channel
capacity. The exact nature of these functions and the particular
class of channels for which this theorem has been proved need

not concern us here. The important result is that the coding

constraint length v is a fundamental parameter of a communica-
tion system. If a channel is to be used efficiently, that is with
Ry close to Cy, theny must be made correspondingly large to

achieve a satisfactory error probability.

The obvious response of an engineer to such a theorem is:
"Splendid, but how does one build encoders and decoders that be-
have in this way when v is large?'" It is rather sobering to ob-
serve that if an encoder stores a waveform or code word for each
possible block of v binits, then the storage requirement must be
proportional to 2¥, which is obviously impractical when v is large.
Fortunately, Elias® and Reiffen!® have proved that for a wide
variety of channel models, the results of the Noisy Channel Cod-
ing theorem can be achieved with little equipment complexity at
the encoder by the use of parity-check coding. This will be de-
scribed in more detail later.

Unfortunately, the problem of decoding simply but effectively
when v is large appears to be much more difficult than the prob-
lem of encoding. Enough approaches to this problem have been
developed to assure one that the Coding theorem has engineering
importance. On the other hand these approaches have not been
carried far enough for the design of an efficient, reliable data
communication system to become a matter of routine engineering.

This monograph contains a detailed study of one of the three
or four most promising approaches to simple decoding for long
constraint length codes. The purpose of publishing this work is
primarily to show how such a coding and decoding scheme would
work and where it might be useful. Also, naturally, it is hoped
that this will stimulate further research on the subject. Further
mathematical analysis will probably be fruitless, but there are
many interesting modifications of the scheme that might be made
and much experimental work that should be done.

In order to prove mathematically some results about low-density
parity-check codes, we shall assume that the codes are to be
used on a somewhat restricted and idealized class of channels.
It is obvious that results using such channel models can be ap-
plied only to channels that closely approximate the model. How-
ever, when studying the probability of decoding error, we are
interested primarily in the extremely atypical events that cause
errors. It is not easy to find models that approximate both these
atypical events and the typical events. Consequently the analysis
of codes on idealized channels can provide only limited insight
about real channels, and such insight should be used with caution.
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The channel models to be considered here are called sym-
metric binary-input channels. By this we mean a time-discrete
channel for which the input is a sequence of the binary digits 0
and 1 and the output is a corresponding sequence of letters from
a discrete or continuous alphabet. The channel is memoryless
in the sense that given the input at a given time, the output at
the corresponding time is statistically independent of all other
inputs and outputs. The symmetry requirement will be defined
precisely in Chapter 3, but roughly it means that the outputs can
be paired in such a way that the probability of one output given
an input is the same as that of the other output of the pair given
the other input. The binary symmetric channel, abbreviated
BSC, is a member of this class of channels in which there are
only two output symbols, one corresponding to each input. The
BSC can be entirely specified by the probability of a crossover
from one input to the other output.

If a symmetric binary-input channel were to be used without
coding, a sequence of binary digits would be transmitted through
the channel and the receiver would guess the transmitted sym-
bols one at a time from the received symbols. If coding were
to be used, however, the coder would first take sequences of
binary digits carrying the information from the source and would
map these sequences into longer redundant sequences, called code
words, for transmission over the channel. We define the rate
R of such codes to be the ratio of the length of the information
sequence to the length of the code word sequence. If the code
words are of length n, then there are 2nR possible sequences
from the source that are mapped into n-length code words. Thus
only a fraction 2-™{1-R) of the 2™ different n-length sequences
can be used as code words.

At the receiver, the decoder, with its knowledge of which se-
quences are code words, can separate the transmitted n-length
code word from the channel noise. Thus the code word is mapped
back into the nR information digits. Many decoding schemes find
the transmitted code word by first making a decision on each re-
ceived digit and then using a knowledge of the code words to cor-
rect the errors. This intermediate decision, however, destroys
a considerable amount of information about the transmitted mes-
sage, as discussed in detail for several channels in Reference 1.
The decoding scheme to be described here avoids this intermed-
iate decision and operates directly with the a posteriori proba-
bilities of the input symbols conditional on the corresponding re-
ceived symbols.

The codes to be discussed here are special examples of parity-
check codes.* The code words of a parity-check code are formed

* For a more detailed discussion of parity-check codes, see
Peterson.!?
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by combining a block of binary-information digits w1th a block of
check digits. Each check digit is the modulo 2 sum™ of a pre-
specified set of information digits. These formation rules for
the check digits can be represented conveniently by a parity-
check matrix, as in Figure 1.2. This matrix represents a set
of linear homogeneous modulo 2 equations called parity-check
equations, and the set of code words is the set of solutions of
these equations. We call the set of digits contained in a parity-
check equation a parity-check set. For example, the first parity-
check set in Figure 1.2 is the set of digits (1, 2, 3, 5).

The use of parity-check codes makes coding (as d1st1ngmshed
from decoding) relatively simple to implement. Also, as Elias?
has shown, if a typical parity-check code of long block length is
used on a BSC, and if the code rate is between critical rate and
channel capacity, then the probability of decoding error will be
almost as small as that for the best possible code of that rate
and block length.

X, X, X3 X, Xg X X
1 1.1 0 1 O O X, = X, +x, + X,
nl-R)|[1 1 0 1 0 1 O X, = X X, + X,
1 01 1 0 0 1 X, = X, + %X, + %y

Figure 1.2. Example of parity-check matrix.

Unfortunately, the decoding of parity-check codes is not in-
herently simple to implement; thus we must look for special
classes of parity-check codes, such as described in Section 1.2,
for which reasonable decoding procedures exist.

1.2 Low-Density Parity-Check Codes

Low-density parity-check codes are codes specified by a ma-
trix containing mostly O's and relatively few 1's. In particular,
an (n, j, k) low-density code is a code of block length n with a
matrix like that of Figure 2.1, where each column contains a
small fixed number j of 1's and each row contains a small fixed
number k of 1's. Note that this type of matrix does not have
the check digits appearing in diagonal form as do those in Fig-
ure 1.2. However, for coding purposes, the equations repre-
sented by these matrices can always be solved to give the check
digits as explicit sums of information digits.

Low-density codes are not optimum in the somewhat artificial

* The modulo 2 sum is 1 if the ordinary sum is odd and 0 if
the ordinary sum is even.
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sense of minimizing the probability of decoding error for a given
block length, and it can be shown that the maximum rate at which
they can be used is bounded below channel capacity. However,
the existence of a simple decoding scheme more than compen-
sates for these disadvantages.

1.3 Summary of Results

An ensemble of (n, j, k) codes will be formed in Chapter 2, and
this ensemble will be used to analyze the distance properties of
(n, j, k) codes. The distance between two words in a code is
simply the number of digits in which they differ, Clearly an im-
portant parameter in a code is the set of distances separating one
code word from all the other code words. In a parity-check code,
it can be shown that all code words have the same set of distances
to the other code words.!? Thus the distance properties for the
ensemble can be summarized by the typical number of code words
at each distance from the all-zero code word. It is found that the
typical (n, j, k) code for j = 3 has a minimum distance that in-
creases linearly with the block length for j and k constant. Fig-
ure 2.4 plots the ratio of minimum distance to block length for
several values of j and k and compares the ratio with the same
ratio for ordinary parity-check codes. The (n, j, k) codes with
J = 2 exhibit markedly different behavior, and it is shown that
the minimum distance of an (n, 2, k) code can increase at most
logarithmically with the block length.

In Chapter 3, a general upper bound on the probability of de-
coding error for symmetric binary-input channels with maximum-
likelihood decoding is derived for both individual codes and for
arbitrary ensembles of codes. The bound is a function of the
code only through its distance properties, The assumption of
maximum likelihood decoding is made partly for analytic con-
venience and partly so as to be able to evaluate codes independ-
ently of their decoding algorithms. Any practical decoding algo-
rithm, such as that described in Chapter 4, involves a trade-off
between error probability and simplicity; the maximum-likeli-
hood decoder minimizes the error probability but is totally im-
practical if the block length is large.

It is shown in Chapter 3 that if the distance properties of the
code are exponentially related to the block length, and if the code
rate is sufficiently low, then the bound to P(e) is an exponentially
decreasing function of the block length. For the appropriate en-
semble of codes, these bounds reduce to the usual random coding
bounds.3:*

For the special case of the binary symmetric channel, a par-
ticularly simple bound to P(e) is found; this is used to show that
over a range of channel crossover probabilities, a typical low-
density code has the same error behavior as the optimum code
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of a slightly higher rate. Figure 3.5 illustrates this loss of ef-
fective rate associated with low-density codes.

In Chapter 4, two decoding schemes are described. In the
first, which is particularly simple, the decoder first makes a
decision on each digit, then computes the parity checks and
changes any digit that is contained in more than some fixed num-
ber of unsatisfied parity-check equations. The process is re-
peated, each time using the changed digits, until the sequence is
decoded. The second decoding scheme is based on a procedure
for computing the conditional probability that an input symbol is
a 1; this is conditioned on all the received symbols that are in
any of the parity-check sets containing the digit in question. Once
again, the procedure is iterated until the sequence is decoded.
The computation per digit per iteration in each scheme is inde-
pendent of code length. The probabilistic, or second scheme,
entails slightly more computation than the first scheme, but de-
codes with a lower error probability.

A mathematical analysis of the probability of decoding error
using probabilistic decoding is difficult because of statistical de-
pendencies. However, for a BSC with sufficiently small cross-
over probabilities and for codes with j = 4, a very weak upper
bound to the probability of error is derived that decreases ex-
ponentially with a root of the code length. Figure 3.5 plots cross-
over probabilities for which the probability of decoding error is
guaranteed to approach 0 with increasing code length. it is
hypothesized that the probability of decoding error actually de-
creases exponentially with block length, while the number of
iterations necessary to decode increases logarithmically.

Chapter 5 extends all the major results of Chapters 2, 3, and
4 to nonbinary low-density parity-check codes. Although the
theory generalizes in a very natural way, the expressions for
minimum distance, error probability, and probabilistic decod-
ing performance error are sufficiently complicated that little
insight is gained into the advantages or disadvantages of a mul-
tilevel system over a binary system. Some experimental work
would be helpful here in evaluating these codes.

Some experimental results for binary low-density codes are
presented in Chapter 6. An IBM 7090 computer was used to
simulate both probabilistic decoding and the noise generated by
several different types of channels. Due to limitation on com-
puter time, the only situations investigated were those in which
the channel was sufficiently noisy to yield a probability of decod-
ing error greater than 107%. The most spectacular data from
these experiments are given in Figure 6.8, which emphasizes
the advantages of a decoding scheme that operates from a likeli-
hood receiver instead of a decision receiver.
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1.4 Comparison with Other Schemes

Some other coding and decoding schemes that appear extremely
promising for achieving low-error probabilities and high data
rates at reasonable cost are the following: first, convolutional
codes? with sequential decoding as developed by Wozencraft,!”
Fano,? and Reiffen;14 second, convolutional codes with Massey's
threshold decoding;10 and third, the Bose-Chaudhuri codes? with
the decoding schemes developed by Peterson!? and Zierler and
Gorenstein,!®

It has been shown by Fano” that for arbitrary discrete mem-
oryless channels, sequential decoding has a probability of decod-
ing error that is upper bounded by a function of the form e~on,
Here n is the constraint length of the code and a is a function of
both the channel and the code; a is positive for rates below chan-
nel capacity C. Fano also shows that for rates below a certain
quantity called R, where R < C, the average amount
of computation in decoding a digit is bounded by a quantity inde-
pendent of constraint length.

An experimental sequential decoder has been built at Lincoln
Laboratories, Lexington, Massachusetts.!! By using this de-
coder in a system with a feedback link and an appropriately de-
signed modulator and demodulator, reliable transmission has
been achieved experimentally® over a telephone circuit at about
7500 bits per second rather than the 1200 or 2400 bits per sec-
ond possible without coding.

The two principal weaknesses of sequential decoding are as
follows: First, the amount of computation required per digit is
a random variable, and this creates a waiting line problem at the
decoder; second, if the decoder once makes an error, a large
block of errors can be made before the decoder gets back on the
proper track. If a feedback link is available, these problems
are not serious, but considerably more study is required for
cases in which no feedback exists.

Threshold decoding is the simplest scheme to implement that
is discussed here; it involves only shift registers, a few binary
adders, and a threshold device. It is most effective at relatively
short constraint lengths, and has a somewhat higher error prob-
ability and less flexibility than sequential decoding.

The computation per digit associated with the Bose-Chaudhuri
codes on the BSC increases roughly as the cube of the block
length but does not fluctuate widely. The decoding scheme guar-
antees correction of all combinations of up to some fixed number
of errors and corrects nothing beyond. For moderately long
block lengths, this restriction in the decoding procedure causes
a large increase in P,. No way is known to make use of the a
posteriori probabilities at the output of more general binary_-

5
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input channels. This inability to make use of a posteriori prob-
abilities appears to be a characteristic limitation of algebraic
as opposed to probabilistic decoding techniques.

The computation per digit associated with low-density parity-
check codes appears to increase at most logarithmically with
block length and not to fluctuate widely with the noise. The prob-
ability of decoding error is unknown, but is believed to decrease
exponentially with block length at a reasonable rate. The ability
to decode the digits of a block in parallel makes it possible to
handle higher data rates than is possible with the other schemes.

For many channels with memory, retaining the a posteriori
probabilities from the channel makes it practically unnecessary
to take account of the memory in any other way. For instance,
on a fading channel when the fade persists for several baud lengths,
the a posteriori probabilities will indicate the presence of a fade.
If this channel were used as a BSC, however, it would be neces-
sary for the decoder to account for the fact that bursts of errors
are more probable than isolated errors. Then, using a posteri-
ori probabilities gives low-density decoding and sequential decod-
i—fl—g- a great flexibility in handling channels with dependent noise.
For channels in which the noise is rigidly constrained to occur
in short, severe bursts, on the other hand, there is a particu-
larly simple procedure for decoding the Bose-Chaudhuri codes.’

When transmitting over channels subject to long fades or long
noise bursts, it is often impractical to correct errors in these
noisy periods. In such cases it is advantageous to use a combi-
nation of error correction and error detection with feedback and
retransmission.!® All of the coding and decoding schemes being
considered here fit naturally into such a system, but in cases
where little or no error correction is attempted, low-density
codes appear at a disadvantage.

In conclusion, all these schemes have their own advantages,
and clearly no one scheme is optimum for all communication
situations. It appears that enough coding and decoding alterna-
tives now exist for serious consideration of the use of coding on
particular channels,



