PREFACE

The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 offered communication engineers the possibility of reducing error rates on noisy channels to negligible levels without sacrificing data rates. The primary obstacle to the practical use of this theorem has been the equipment complexity and the computation time required to decode the noisy received data.

This monograph presents a technique for achieving high data rates and neglegible error probabilities on noisy channels with a reasonable amount of equipment. The advantages and disadvantages of this technique over other techniques for the same purpose are neither simple nor clear-cut, and depend primarily upon the type of channel and the type of service required. More important than the particular technique, however, is the hope that the concepts here will lead to new and better coding procedures.

The chapters of the monograph are arranged in such a way that with the exception of Chapter 5 each chapter can be read independently of the others. Chapter 1 sets the background of the study, summarizes the results, and briefly compares low-density coding with other coding schemes. Chapter 2 analyzes the distances between code words in low-density codes and Chapter 3 applies these results to the problem of bounding the probability of decoding error that can be achieved for these codes on a broad class of binaryinput channels. The results of Chapter 3 can be immediately applied to any code or class of codes for which the distance properties can be bounded. Chapter 4 presents a simple decoding algorithm for these codes and analyzes the resulting error probability. Chapter 5 briefly extends all the previous results to multi-input channels, and Chapter 6 presents the results of computer simulation of the low-density decoding algorithm.

The work reported here is an expanded and revised version of my doctoral dissertation, completed in 1960 in the Department of Electrical Engineering, M.I.T. I am grateful to my thesis supervisor, Professor Peter Elias, and to my thesis readers, Professors Robert M. Fano and John M. Wozencraft, for assistance and encouragement both during the course of the thesis and later.

This research was made possible in part by support extended by the Research Laboratory of Electronics of the Massachusetts Institute of Technology, which is supported in part by the U.S. Army, the Air Force Office of Scientific Research, and the Office of Naval Research; additional support was received through the National Science Foundation (Grant G-16526) and the National Institute of Health (Grant MH-04737-03).

Much of Chapter 4 is reprinted with permission of the editors from an article by the author in the Transactions of the I.R.E., IT-9, pages 21 to 28.

The experimental results in Chapter 6 were obtained in part through the support of the Rome Air Development Center and in part through the support of the M.I. T. Computation Center.

Cambridge, Mass. July, 1963

Robert G. Gallager