
~
- 6 . .

Introduction to Logic Testing

Z = XI . X2 .

The output z of an OR gate with inputs Xl and X2 is 1 ifand only ifany of its
inputs are 1, and can be expressed as

z = Xl + X2 .

The output z ora NOT gate or an inverter with input X is 1 ifand only ifits
input is 0, and can be expressed as

z = x .

The output z of a NAND gate with inputs Xl and X2 is 1 ifand only if any of
its inputs are 0, and can be expressed as

The development of computers has been stimulated greatly by integrated -

circuit technology . Circuit density has increased dramatically , and the cost

of devices has decreased as their performance has improved . With these

developments , reliability has become increasingly important . However ,

with the advent of very - large - scale integration (VLSI) , testing has come up

against a wall of , ' intractability " and is at a standstill . Since the gate density

of V L S I circuits is increasing much more rapidly than the number of access

terminals , the ability to generate test patterns and to process fault simulations

is deteriorating . The difficulty can be reduced by the development of

faster and more efficient algorithms for test - pattern generation or by the use

of design techniques to enhance testability .

1 . 1 Logic Circuits

Logic circuits are constructed by interconnecting elements called gates

whose inputs and outputs represent only the values denoted by 0 and 1 .

Some common gates are AND , OR , NOT , NAND , NOR , and EOR

(Excl .usive - OR) ; their symbols are shown in figure 1 . 1 . The output of each

gate can be represented by a logic function or a Boolean function of the

inputs . The terms logic and Boolean are often used to denote the same

meaning . A logic function can be specified by a truth table , a Karnaugh

map , or a set of cubes . Figure 1 . 2 demonstrates these three forms . The

Boolean (logic) operations . , + , and - correspond to AND , OR , and NOT ,

respectively .

The output z of an AND gate with inputs Xl and Xl is 1 if and only ifboth

of its inputs are 1 simultaneously , and can be expressed as

Logic Testing

1- 1___I~j-:-JI 11 I 11 IJ x3

2

Xl -Ij~ - z=xl+x2X 2 --L/-Xl-~ -x 2-LJ- x - { > o- z=xZ=X1oX2

NOTAND OR

x .=[~=))- - x =~~~:).- - x =~l=~)-, z=xix2' z=x,+x2 ' z=x,(l) x2x2 x2 x2
EORNAND

Figure 1.1

NOR

. Xl .

I X .2
(b) Karnaugh map

�

1
1 0

11
�

(c) A set of cubes(a) Truth table

Figure 1.2
Representations for a logic function

Symbols for gates

Xl X2 X3
-

0

-

Xl x2 x3 f

0 0 0 0
-0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

3Introduction to Logic Testing

z = x; ~ = Xl + X2'

The output z ora NOR gate with inputs Xl and X2 is 1 ifand only ifboth of
its inputs are 0, and can be expressed as

z = Xl + X2 = Xl ' X2 '

The output z of an EaR gate with inputs Xl and X2 is 1 if and only ifits input
are not simultaneously equal , and can be expressed as

Z = X I Xl + X I Xl = Xl EB Xl '

Logic circuits can be categorized as combinational or sequential. Acom -

binational (logic) circuit consists of an interconnected set of gates with no

feedback loops . (A feedback loop is a directed path from the output of some
gate G to an input of gate G .) The output values of a combinational circuit
at a given time depend only on the present inputs . Hence, each output can

be specified by a logic function of its input variables . A block diagram for
combinational circuits is shown in figure 1.3, where Xl " ' " Xn are the inputs

and Zl , . . . , Zm are the outputs .

A sequential (logic) circuit contains feedback loops . The output values at
a given time depend not only on the present inputs but also on inputs

applied previously . The history of previous inputs is summarized in the
state of the circuit . Figure 1.4 shows a block diagram for sequential circuits .

A sequential circuit consists of two sections: a combinational circuit and a
memory circuit . The circuit of figure 1.4 has n primary inputs Xl " ' " Xn; m

primary outputs Zl , . . . , Zm; P feedback inputs YI , . . . , Yp; and p feedback

outputs Y1, . . . , Yp. Y1, . . . , Yparealsoinputstothememory , and Yl " " ' YP
are outputs of the memory . The present state of the circuit is represented by

the variables Yl , . . . , Yp, and the next state is determined by Y1, . . . , Yp.
The mathematical model of a sequential circuit is called a sequential

machine or a finite -state machine. A sequential machine M is characterized

by the following :

a finite set S of states,

a finite set I of input symbols ,
a finite set 0 of output symbols ,

a mapping N of S x I into S (called the next -state function), and
a mapping Z of S x I into 0 (called the output function).

The sequential machine Misexpressed by the 5-tuple (S, 1, 0 , N , Z).

Xl

x2 Combinational

Logic

Circuit

xn

4 Logic Testing

Figure 1.3

Zm

Figure 1.4
Block diagram of sequential logic circuits

A sequential machine can be conveniently represented either in tabular

form by a state table (flow table) or in graph form by a state diagram. A state
table, as illustrated in figure 1.5(a), lists the present states as row headings
and the input symbols (also called input values or input states) as column
headings. The entry in row Si and column Ij represents the next state
N(Si' Ij) and the output Z(Si' Ij). The machine shown in figure 1.5(a) has
four states (labeled 1, 2, 3, 4) and a binary input and output. Figure 1.5(b)
shows the state diagram corresponding to the table of figure 1.5(a). A state
diagram is a directed graph whose nodes correspond to states of the
machine and whose arcs correspond to state transitions . Each arc is labeled

with the input value separated by a slash from the output value associated
with the transition .

Sequential circuits are categorized as either synchronous or asynchronous,
depending upon whether or not the behavior of the circuit is clocked at

Block diagram of combinational logic circuits

Zl

z2

Combinational. - .. .
. Logic .
. Circuit '. I. .

Yl Yl
. ,
I Memory '. I
Yp I I Yp

Zl

z2

I

I
I

Zm

Xl
x2

Xn

Combinational

I I

I

X I Logic : z
n m

: Circuit :
. .

Yl Yl
I I

I I

I .

Yp Yp

clock

5Introduction to Logic Testing

x

0 1

1/ 0 1/ 1

1

2

3

4

(b) State diagram

Figure 1.6
Block diagrarrI for a synchronous sequential logic circuit

(a) State table

Figure 1.5
Representations for a sequential machine

Zl
z2

Xl
x2

2, 0 3, 0
3, 0 2, 1
4, 0 1, 1
1, 1 4. 0

6 Logic Testing

SR

S Q Q 00 01 11 10

clock CP - I I I - 11 I
R Q 111101 - 11 I

(a) SR flip - flop

JK

J Q Q 00 01 11 10

CP - I I o 11 11 I
K Q 1111 1 111

(b) JK flip - flop

T

T Q Q 1

- ornlCP Q
1 1 o

(c) T flip - flop

D

D Q Q 1

- o rnlCP Q
1 o 1

(d) D flip - flop

Figure 1.7
Representations for flip -flops

Introduction to Logic Testing 7

clock

Q

R Q

s

Figure 1.8
Realization of the SR flip-flop

Figure 1.9
Block diagram for asynchronous sequential logic circuit

discrete instants of time . The operation of synchronous sequential circuits is

control led by a synchronizing pulse signal called a clock pulse or simply a
clock. The clock is usually applied to the memory portion of the circuit .

Figure 1.6 is a block diagram for synchronous circuits . A series of bistable

memory elements called clocked flip -flops (FF) are used in synchronous
circuits . The most popular memory elements are the D (Delay), T (Trigger),

SR (Set-Reset), and JK flip -flops shown in figure 1.7. Figure 1.8 shows a
realization of the SR flip -flop . Other flip -flops can be similarly constructed
from cross-coupled NAND or NOR gates.

The behavior of an asynchronous circuit is not synchronized ; it is unclocked
. Each feedback line is assumed to have a finite , positive , pure delay,

as is shown in figure 1.9. Proper operation of such an asynchronous circuit

requires the following conditions .

Xl zl

x2 . . Corobinational z2
I I

I Logic I. I

X Z

n Circuit m

I I

. .

I .

.

.

.

8 Logic Testing

. Because of delays, a combinational circuit may produce a transient error

or spike, called a hazard. Such an error , if applied to the input of an
unclocked flip -flop or latch , may result in a permanent incorrect state.

Hence the combinational logic portion of the circuit should be designed to
be hazard -free.

. The inputs are constrained so as to change only when the memory

elements are all in stable conditions (Yi = Yi for all i). This is called the
fundamental mode operation .

. A situation whereby more than one state variable must change in the
course of a transition is called a race condition . If correct behavior of the

circuit depends upon the outcome of the race, then it is called a critical race.

To ensure that the operation of the circuit is not affected by transients , the
critical race should be avoided by making the proper state assignment .

1.2 Fault Modeling

L <?gic gates are realized by transistors , which are classified into bipolar
transistors and metal oxide semiconductor field -effect transistors

(MOSFET, or simply MOS). The logic families based on bipolar transistors
are transistor-transistor logic (TTL), emitter-coupled logic (ECL), and so
forth . Some logic families based on MOSFET are p-channel MOSFET

(p-MOS), n-channel MOSFET (n-MOS), and complementary MOSFET
(CMOS). Although ECL and TTL are important for high-speed applications

, their integration sizes are limited by the heat generated by their
heavy power consumption and by large gate sizes. In contrast , the MOS

logic families are well suited for LSI or VLSI , because larger integrations
can be obtained with them than with bipolar logic families . Most LSI and
VLSI circuits of today are implemented by MOS . However , the increasing
use of MOS technology for LSI and VLSI circuits has introduced new

testing problems , as will be seen later in this chapter .
A fault of a circuit is a physical defect of one or more components . Faults

can be classified as logical or parametric. 'A~ logical fault is one th~t cause~
the logic function of a circuit e1emento(~~" iriputsignalt-o be changed t-'d
some other lo-gicfunctiolii a parametric fault alters the magnitude of a

. " '

circuit parameter , causing a change in some factor such as circuit speed,
current , or voltage .

Circuit malfunctions associated with timing are due mainly to circuit

Introduction to Logic Testing 9

----t)~o-..-
-

z = xz x

Collectorx

(a) Bipolar realization (b) Logic symbol

delays . Those faults that relate to circuit delays such as slow gates are called

delay faults . Usually , delay faults only affect the timing operation of the

circuit , which may cause hazards or critical races .

F ~ ults that are present in some intervals of time and absent in others are

intermittent faults . Faults that are always present and do not occur , disappear

, or change their nature during testing are called permanent faults or

solid faults . Although many intermittent faults eventually become solid ,

the early detection of intermittent faults is very important to the reliable

operation of the circuit . However , there are no reliable means of detecting

their occurrence , since such a fault may disappear when a test is applied . In

this book , we will consider mainly logical and solid faults .

Figure 1. 10 shows an n - p - n transistor implementing an inverter . When

the input x is a high voltage , the output z is a low voltage ; when x is a low

voltage , z is a high voltage . An open collector or base of the transistor would

cause the output z to be permanently high , i .e., stuck at 1 (sa - 1). On the

other hand , a short circuit between the collector and the emitter would

cause z to be permanently low , i .e., stuck at 0 (sa -O). These faults are called

stuck -at faults .

Faults in which two lines are shorted are called bridging faults . The

technology used will determine what effect the bridging will have . Generally

, either high or low will dominate . If two output lines are shorted and

low dominates , both are replac .ed by the AND gate of the two lines , as

shown in figure 1. 11 . This effect is the same as the Wired -AND usually used

in TTL gates . (Figure 1. 12 shows the Wired - AND logic used in TTL gates .)

Figure 1.10
Inverter

10 Logic Testing

x

Y f

9

z

w

x

y
f

9
w

(a) (b)

Figure 1.11

 - f = x- : y.-z:-:-w

w

x

y

z

Figure 1.12
Wired-AND used in TTL gates

AND-type bridging fault

Introduction to Logic Testing 11

x 1 - -f- - ~ - z = -x--:-x-
x 2 - -{- - . , / "' 1 2

I

I ~

(a) Logic symbol N - I' ~ l-\ ,C, ,-/!)f.'\~} tiC IC ' v " ,
V i

DO . " :

f" I " i\ ..-.. .- .. ~C\"' - JY \ - - - Co I ' "

~ ' /1(JO r ~", u -t

r v --::- L ::: } -:Y
/ / \ , ~ I .,7z - .-.!_~ - / ~ ~

CD --- I ! - ~)- C i\ ~i Ji ivl- i. 7 ~.//c;:2'

xl ' I } / .,! i

o-l___----i ~ L.J , "'
" I

@) - ;
I } i I] Jx2 j ,/

!

i I,-I \...~j I 1/ d (~
- ' .-- / . v

(b) MOS realization /[) ,/ ,,' , ~" /O!/I '/
. / ; ! /A{)) :; ; .'~t,::; L.il '--'~/ l ::..; ;; ,-

FIgure 1.13 . ' r ;1 J . ' r ,-, - ~ .. : C "' i "-/
CMOS two-Input NAND gate I ,j / -i ;:/\ 6 "~) liU-- .s VJ } ! / , :;

If high dominates , both of the lines are replaced by the OR gate of the two
lines . The ECL gate has the feature that the OR of the outputs can be

realized simply by tying together these outputs . Hence, in logic circuits

implemented by ECL gates, bridging faults cause the affected signals to be
O Red .

For most practical purposes, logical faults are success fully modeled by
stuck -at faults or bridging faults . However , not all faults can be modeled by
these classical faults . This is illustrated by the following examples. Figure

1.13 shows a CMOS two -input NAND gate with p-MOS and n-MOS

FETs . The output z is a low voltage if and only ifboth inputs Xl and X2 are

high. In figure 1.13, four possible open faults (numbered 1 through 4) are
indicated . The first fault , numbered 1, is caused by an open, or missing , p-

channel xl -input pull -up transistor . Under this fault , when the input Xl is
low and the input X2 is high , the output z becomes an undesired , high -

impedance state and retains the logic value of the previous output state. The
length of time the state is retained , however , is determined by the leakage

current at the node. (Table 1.1 is the truth table for the two-input CMOS
NAND gate for both the fault - free condition and the three faulted

12 Logic Testing

Table 1.1

Truth table for CM OS NAND gate

Xl X2 Z Z Z Z

normal open at CD open at C2) open at Q) or @

0 0 1 1 1 1

0 1 1 Previous state 1 1

1 0 1 1 Previous state 1

1 1 0 0 0 Previous state

conditions.) Consequently, these open faults cause combinational circuits
to become sequential, and thus they cannot be modeled as classical (e.g.,
stuck-at) faults.

Crosspoint faults in programmable logic arrays (PLAs) also cannot be
modeled by the classical faults. Figure 1.14(a) shows an implementation ofa
PLA in MOS technology . PLAs usually realize two -level AND -OR logic

circuits. Figure 1.14(b) shows the two-level AND-OR logic circuit equivalent
to the PLA of figure 1.14(a). A PLA inherently has a device (a diode or a

transistor) at every crosspoint in the arrays, even if it may not be used. The
connection of each device is programmed to realize the desired logic . A
crosspoint fault can be caused in a PLA by an extra or a missing device.
Although most of the crosspoint faults can be modeled by stuck -at faults ,
there still exist some crosspoint faults that cannot be modeled by stuck -at
faults .

Consider an extra device at the crosspoint A shown in figure 1.14(a). In
the absence of a fault , the output realizes the logic function

Z = XIX2 + X1X2X3 .

If a transistor appears at A, the first product term XIX2 will shrink to
X I X2 X3 ' Hence , the faulted function will be

Z = XIX2X3 + XIX2X3 .

This function cannot be caused by any stuck -at fault in the equivalent

AND-OR logic circuit of figure 1.14(b).

1.3 Testing Problems

To ensure the proper operation of a system, we must be able to detect a
fault when one has occurred and to locate it or isolate it to a specific

+~JS ~I'~L- ,'~ J KY' "V./Y'I.-J--L /- /;1......17-.e ..- ,(~ c?;;Z/i/ v '"-"-"

Introduction to Logic Testing

L ri V) j P () 1\\;1+ f ~ \ t . . s

13

 Voo

A - - ,
,

X " ,

3 , .. 1...
I L , ,

I ' ~ -
, ' .

\

I \ ,, . . .
' . ~

0

Xl

0

X2
CIJJ

J 6

z

(a)

(XI J~J +(~ '~j A3)~ b
~ - z.

~~ Aul-f(~"')';I...' Y:!J) +(~ I' ~. ~JXl
X2 ,::,,7.- 1-/-xlx2x3

(b) Equivalent AND-OR logic

Figure 1.14
Programmable logic array

14 Logic Testing

s - a - l

=tf ~)--~~=D ~ c
A

c

(b) Faulty AND gate.

component - preferably an easily replaceable cine. The former procedure is
called fault detection, and the latter is called fault location , fault isolation ,

or fault diagnosis. These tasks are accomplished with tests. A test is a
procedure to detect and/or locate faults . Tests are categorized as fault -
detection tests or fault diagnostic tests. A fault -detection test tells only
whether a circuit is faulty or fault -free; it tells nothing about the identity of a

fault if one is present. A fault diagnostic test provides the location and the
type of a fault and other information . The quantity of information provided
is called the diagnostic resolution of the test; a fault -detection test is a fault
diagnostic test of zero diagnostic resolution .

Logic circuits are tested by applying a sequence of input patterns that

produce erroneous responses when faults are present and then comparing

the responses with the correct (expected) ones. Such an input pattern used
in testing is called a test pattern . In general, a test for a logic circuit consists

of many test patterns . They are referred to as a test set or a test sequence. The
latter term , which means a series of test patterns , is used if the test patterns

must be applied in a specific order . Test patterns , together with the output
responses, are sometimes called test data.

Figure 1.15(a) shows a fault -free AND gate. Figure 1.15(b) shows a faulty
AND gate in which input A is stuck -at-1. The input pattern applied to the
fault -free AND gate has an output value of O. In contrast , the output value
of the faulty AND gate is 1, since the stuck -at-1 fault on A creates the

erroneous response. There is a definite difference between the faulty gate
and the fault -free gate. Therefore , the pattern 01 shown in figure 1.15 is a test

pattern for the A sa - 1 fault .
If there exists only one fault in a circuit , it is called a single fault . If there

exist two or more faults at the same time , then the set of faults is called a

multiple fault . For a circuit with k lines, there are at most 2k possible single

A

B

(a) Fault- free AND gate

Figure 1.15
Test for stuck-at fault

Introduction to Logic Testing 15

L ./-// ' If), I!J~ -' / kxl A B F r':JI ,,-I .s' J /"p LR r '-"J/ I---> .:::.. t=-

o : 1 cE ;==:::O ~ Z Jut J }1'1u/f f?\ul-f-{ -::3k"'I...J/\
x 2 o-_.....~._.~=~=:==1~~~~:::)J----~..]

Figure 1.16 I J
Alo + p)) t~ ef {jl. r~ / tv'ytj

Table 1.2 fJ. ,~ ~ d::tL.A~ c;..--{Ll..c;-
All single stuck faults

Xl X2 z A/O B/O C/O D /O E/OF /O All Bl1 Cl1 dll Ell Fl1

0 0 1 1 1 1 1 1 0 - 0 - 0 1 1 1 1

0 1 1 1 1 1 1 1 0 1 0 1 1 1 1

1 0 0 1 - 1 - 0 0 - 1 0 0 0 0 ~ 1 0 , 1

1 1 1 1 1 - 0 - 0 1 - 0 1 11 1 ~ O 1 , I

~ """'~) ; .:.. J. ~ ..~)v-1-' -~ r-- ~J.L--.,,~-~~, -,,~I/nJ""; I.". / 1 ~ V I; ! ./ !-~~1
. ~ OJ!'"r Z It ' f~-v"I.(.$ tOl..-}\ c)~(;{!)r :5. Cj; /" '/10+ ~ ~::?~7~ UI ~ :AIJ , ~ " I '\ + $ v ~ J"I \ ", \) ~ J '

stuck -at faults . For multiple faults , the number of possible faults increases
. k ..;Z. ' K (;:- 5 'v. A- L... / '~ v J '" ~

dramatIcally to 3 - 1,- sInce anY-line may be fault -free, sa -O, or s-a- 1. A

circuit with 100 lines would contain approximately 5 x 1047 faults . This
would be far too many faults to assume, and hence testing for multiple faults
would be impractical . However , for most approach es the model of a single
stuck -at fault has proved to provide the best practical basis. For example ,
every complete single-fault -detection test set in any internal fanout -free

combinational circuit is known to cover at least 98 percent of all multiple

faults made up of six or fewer faults (Agarwal and Fung 1981).
Since several different faults often may cause a circuit to malfunction in

precisely the same way, it is convenient to group these equivalent faults (or
indistinguishable faults) into equivalence classes. In the circuit shown in
figure 1.16, there are six signal lines (nets); hence, there are at most twelve
possible single stuck -at faults . Table 1.2 illustrates a truth table with
~olumns listing all possible single stuck -at faults and rows indicating all
input patterns , where a line A stuck -at -O fault , for example , is denoted as
A/O. As can be seen from table 1.2, the malfunctions caused by AIO, BIO, EIO,
Dl1 , and F II are all the same, so they are grouped together in a fault
equivalence class. Similarly , CIO, DIO, and Ell are grouped together , as
shown in table 1.3 . A fault is called redundant if its presence causes no

malfunction . In other words , the output function of a circuit with a red un -

16 Logic Testing

Table 1.3

Fault equivalence classes . A

10 z (fault-free), Cj1 f'V~)p./~'o/ ,;;D
11 AjO, BjO, EjO, Dj1 , F j1

12 CjO, DjO, Ej1

13 FjO

14 Aj1

15 Bj1

Table 1.4

Fault table for representative faults
i

Xl X2 11 12 13 14 Is ~' - ; ! -
I , e / - ~ ". !

0 0 X X X ,:) 0) . I~". dO 1 j cJ I ~'-'!/"" ../ -ilA ,X X "" / 1, 11 ,' , ,...
,{ 1/ ; / ! i

1 0 X \ C-;:--.r Y v ,:" ((; ' {..-')
/ /) ..-/~-,::/ ' " :.-./l ..

1 1 x X ,J P'

dant fault is exactly the same as that of the fault -free circuit . In the circuit of
figure 1.16, fault CjI is redundant , as table 1.3 shows.

In fault detection and location , only the faults that are picked out as
representative faults from each fault equivalence class need be considered ,
since any two equivalent faults are indistinguishable from input -output
behavior only . Table 1.4, which is a fault table for five representative faults
of table 1.3, indicates precisely which test pattern will detect each fault .
Finding a fault -detection test set is simply a matter of defining a set of rows ,
each indicating a test pattern , so that each column indicating a fault class

.r:nay have an "x" in one of the rows. For this example we obtain {OO, 10, II }
as a fault -detection test set. A fault diagnostic test set is obtained by defining

a set of rows so that no pair of column patterns corresponding to the rows

may be the same. From table 1.4 we have {OO, 01, 10, II } as the diagnostic
test set . .

The testing of logic circuits is performed in two main stages: generating

test patterns for a circuit under test (the test generation stage) and applying
the test patterns to the circuit (the test application stage). Thus, the generation

of test patterns is important; however, it is very difficult for large (e.g.

Introduction to Logic Testing 17

LSI and VLSI) circuits , so most of the effort of the past 20 years in this field
went into research and development on efficient and economical test-

generation procedures .

The quality of a test (a set or a sequence of test patterns) depends much on
the fault coverage as well as the size or length of the test. The fault coverage

(or test col J'erage) of a test is the fraction of faults that can be detected or
located within the circuit under test. The fault coverage of a given test is
determined by a process called fault simulation , in which every given test

patterns is applied to a fault -free circuit and to each of the given faulty
circuits , each circuit behavior is simulated , and each circuit response is
analyzed to find what faults are detected by the test pattern . Fault simulation

is also used to produce fault dictionaries , in which the information

needed to identify a faulty element or component is gathered .

Summary

The test-generation process includes fault modeling and reduction , test-
pattern generation , fault simulation , fault -coverage evaluation , and the
production ofa fault dictionary . The first step consists of developing a fault

dictionary for the circuit (that is, modeling the faults that are assumed) and
reducing the number of faults in terms of the fault equivalence relation .
Usually , the "single stuck -at fault " model is adopted , and the fault dictionary

is generated directly from the logic -circuit description by arranging the

distinguishable faults for each gate in tabular form . Next , test patterns are

generated to test for the set of faults listed in the fault dictionary . The test
patterns are then simulated against the faulted circuits in the fault dictionary

, and the fault coverage is evaluated from the results of the fault simulation

(which include lists of tested and untested faults). lithe fault coverage
is inadequate , then the process of test-pattern generation and fault simulation

is repeated for the untested faults until an adequate fault coverage is

achieved. Finally , the fault dictionary is completed by specifying enough
information to detect and locate the faults .

To be practical and cost-effective, the above test-generation process is
generally automated in the form of a collection of application software . In
particular , the test-pattern generation and the fault simulation should
interact effectively to give a high level of fault coverage at a low computation

cost. The application of LSI and VLSI requires more efficient automatic
test generation (A TG) systems.

Logic testing is performed in various stages, including factory testing of

chips, boards , and systems and field testing of boards and systems during
periodic maintenance and repair . Usually , fault detection comes first . Ifit is
determined that a fault is present, fault diagnosis is then used to isolate the

faulty node or component for repair . In the testing of LSI and VLSI chips it
is not necessary to locate faulty gates, since the entire chip must be discarded

if any output value is faulty . However , fault diagnosis is required in

the testing of boards and systems, and diagnosis at the system level is very

important in factory testing and in field maintenance . After a fault has been
isolated at the system level, components or individual modules are replaced

until a repair is accomplished .
Testing approach es are distinguished by the techniques used to generate

and process test data , and can be divided into two categories: on-line and

Logic Testing18

 Logic Circuit Description

Fault Modeling and Reduction

Test Pattern Generation

Fault Simulation

Inadequate
Fault Coverage Evaluation

Fault Dictionary Production

Adequate

Figure 1.17

1.4 Testing Schemes

Procedure for test generation

Introduction to Logic Testing 19

off-line . On-line testing is executed during system run time , concurrent with

normal computer operation . Data patterns from normal computation serve
as test patterns , and a failure caused by some fault can be detected by builtin

monitoring circuits . Since testing and normal computation can proceed

concurrently , on-line testing is also called concurrent testing and is effective
against intermittent faults . Off -line testing is executed when the system

under test is off line . In off -line testing , specific test patterns are usually
provided ; data patterns from normal computation cannot serve as test
patterns .

Testing approach es are also divided into external testing and built -in

testing . In external testing the test equipment is external to the system under

test; that is, test patterns are applied by the external tester and the responses
are then evaluated . In built -in testing the test equipment is built into the
system under test. As described below , on-line testing uses built -inmonitoring

circuits to detect a failure caused by some intermittent or solid fault , and

thus it belongs to the category . of built -in testing . Off -line testing encom-
passes both types of testing schemes, external and built -in .

On -line testing schemes are usually implemented by redundancy techniques
: information redundancy and hardware redundancy . Information -

redundancy approach es include such popular coding schemes as parity ,
cyclic redundancy checks, and error -correcting codes; hardware -redundancy

techniques include self-checking circuits at the gate level, duplication
at the module level, and replicated computers at the system level.

The most widely used linear codes are odd and even parity check codes
for single-bit fault detection and Hamming codes for multiple -bit fault
detection . In those error -detecting codes, one or more redundant bits are

simply appended to detect errors . For example , consider a combinational

circuit with n inputs and m outputs . If only k < 2m output values can occur
during normal operation , the occurrence of any of 2m - k unallowable

values indicates a malfunction caused by a fault in the circuit . The output
values that do occur are called code words , and unallowable output values

are called noncode words. Error -detecting codes are usually used to design

hardware that can automatically detect errors in the circuit (figure 1.18).
Self -checking circuits are those circuits in which the occurrence ofa fault

can be recognized only by observing the outputs of the circuit . An important
subclass of self-checking circuits is totally self-checking circuits , defined

as follows . A circuit is fault -secure for a set of faults F if, for any fault in F
and any allowable code input , the output is a noncode word or the correct

(Error detecting code)

Circuit

Under

Test

Checker . Pass / Fail

ndancy

Logic Testing20

I
I
I

Inputs Outputs

Figure 1.18

 I Circuit ,

I Under I
I I

Test

. Reference I

: Circuit : Pass/ Fail

OutputsInputs

Figure 1.19

of faults F if, for any fault f in F, there exists an allowable code input that

detects f (i.e., the resulting output is a noncode word). In other words , the
input set contains at least one test for every fault in the prescribed set. A
totally self-checking circuit is both fault -secure and self-testing for all faults
under consideration . Hence, a totally self-checking circuit can guarantee

that any fault in the circuit cannot cause an error in the output without
detection of the fault .

One of the most effective approach es to on-line testing using hardware

redundancy is dual redundancy; that is, straightforward duplication of the
resource being tested. Figure 1.19 shows this duplication scheme for built -in

On-line testing using information redu

On-line testing using hardware redundancy

code word , never an incorrect code word . In other words , the output of the

faulty circuit cannot be a code word and, at the same time , be different from
the correct output . Thus , as long as the output is a code word , it can safely
be assumed to be correct . On the other hand , a circuit is self-testin.q for a set

I
I
I

Introduction to Logic Testing 21

Reference value

Figure 1.20
General testing scheme

testing . Although full duplication is the upper bound on hardware redundancy
for fault detection and thus requires more hardware than other

hardware -redundancy approach es, the duplication scheme can easily be
adopted at any part of the computer system and at any level within the
computer hierarchy .

In the external-testing approach es, the circuit under test (CUT) is tested
with automatic test equipment (ATE) in which a sequence of test patterns are
applied to the CUT and the responses of the CUT are compared against

reference values (correct responses). Figure 1.20 shows the general scheme
of testing . Test patterns and reference values are produced by either
software - based or hardware - based methods . In the software - based scheme ,

test patterns and correct responses are generated in advance and stored in
memory . Test patterns are produced either manually , by a design or test
engineer, or automatically , by test-generation programs . In contrast , both
test patterns and reference values can be produced each time a CUT is
tested by hardware -implemented algorithms . In these hardware -based
schemes, test patterns are usually generated randomly or pseudorandomly
and simultaneously applied to the CUT and a known good circuit , called a
gold circuit . The output responses of the CUT are then compared with those

of the gold circuit. This type of testing method (figure 1.21) is called random
testing, and in contrast the former software -based testing is called deterministic

testing. Deterministic testing requires costly or time -consuming test
generation and memory to store huge amounts of test data , where as
random testing eliminates the cost and the time requirement of generating
or storing test data . However , random testing has disadvantages : The need

for a gold circuit may be bothersome , and the reliability of the gold circuit is
not guaranteed . Synchronization of the two circuits and fault coverage of
random test patterns may also cause problems .

In the above-mentioned testing schemes, the total responses are com-

Test Circuit
Pattern Under Good/Faulty
Source Test

.22

Figure 1.23
A 16-bit linear feedback shift register (Frohwerk 1977). ~ Copyright 1977 Hewlctt-Packard
Company. Reproduced with permission.

Logic Testing22

Circuit

Under

Test

Random

Pattern Comparator Good/ Faulty

Generator

Gold

Circuit

Figure 1.21
Random testing

Reference value

Figure 1

1 7 9 12 16

From

CUT

Compact testing

Test Circuit
Data

Pattern Under ~ Comparator Good/ Faulty
Compressor

Source Test

Introduction to Logic Testing 23

pared with the correct reference values, which are usually high volumes .
This difficulty of analysis and storage of huge amounts of response data can
be avoided through an approach called compact testing, in which , rather

than the total responses, compressed response data are used for comparison
. Figure 1.22 shows the general scheme for compact testing . The

model of figure 1.22 allows wide variations in the methods for test-pattern
generation and data compression . In a global sense, compact testing
methods may be classified as either deterministic or random in connection

with the techniques used to generate test patterns . The data compressor can
be implemented with simple circuitry , such as counters and linear -feedback

shift registers. Since compact testing requires little test equipment , it is
suited for built -in testing . A widely used method of compact testing is
signature analysis, which compress es the output response through a 16-bit
linear feedback shift register whose contents are called the signature . Figure
1.23 shows a 16-bit linear -feedback shift register .

