
Lazy Functional State Threads : an

abstract

John Launch bury and Simon Peyton Jones

University of Glasgow

G12 8QQ , Scotland

Abstract

Some algorithms make critical internal use of updatable state , even though

their external specification is purely functional . Based on earlier work on

monads , we present a way of securely encapsulating stateful computations

that manipulate multiple , named , mutable objects , in the context of a nonstrict

, purely - functional language .

The security of the encapsulation is assured by the type system , using parametricity

. Intriguingly , this parametricity requires the provision of a (single)

constant with a rank - 2 polymorphic type .

A full version of this paper appears in the Proceedings of the A CM Conference

on Programming Languages Design and Implementation (PLDI) , Orlando ,

June 1994 . .

1 Overview

Purely functional programming languages allow many algorithms to be expressed

very concisely , but there are a few algorithms in which in - place

updatable state seems to playa crucial role . For these algorithms , purely -

functional languages , which lack updatable state , appear to be inherently

inefficient (Ponder , McGeer & Ng [1988]) .

Take , for example , algorithms based on the use of incrementally - modified

hash tables , where lookups are interleaved with the insertion of new items .

Similarly , the union / find algorithm relies for its efficiency on the set representations

being simplified each time the structure is examined . Likewise ,

many graph algorithms require a dynamically changing structure in which

sharing is explicit , so that changes are visible non - locally .

There is , furthermore , one absolutely unavoidable use of state in every functional

program : input / output . The plain fact of the matter is that the whole

purpose of running a program , functional or otherwise , is to make some side

effect on the world - an update - ill - place , if you please . In many programs

4

.

.

Complete referential transparency is maintained . At first it is not
clear what this statement means : how can a stateful computation be

said to be referentially transparent ? To be more precise , a stateful

computation is a state transformer , that is , a function from an initial
state to a final state . It is like a "script " , detailing the actions to
be performed on its input state . Like any other function , it is quite
possible to apply a single stateful computation to more than one input
state .

So, a state transformer is a pure function . But , because we guarantee

that the state is used in a single -threaded way , the final state can
be constructed by modifying the input state in -place . This efficient
implementation respects the purely -functional semantics of the state -

transformer function , so all the usual techniques for reasoning about
functional programs continue to work . Similarly , stateful programs can

be exposed to the full range of program transformations applied by a
compiler , with no special cases or side conditions .

The programmer has complete control over where in -place updates are
used and where they are not . For example , there is no complex analysis
to determine when an array is used in a single -threaded way . Since the
viability of the entire program may be predicated on the use of in -place

updates , the programmer must be confident in , and be able to reason
about , the outcome .

these I/ O effects are rather complex, involving interleaved reads from and
writes to the world state.

We use the term "stateful " to describe computations or algorithms in which
the programmer really does want to manipulate (updatable) state . What
has been lacking until now is a clean way of describing such algorithms in a
functional language - especially a non-strict one - without throwing away
the main virtues of functional languages: independence of order of evaluation
(the Church-Rosser property) , referential transparency, non-strict semantics,
and soon .

In this paper we describe a way to express stateful algorithms in non-strict ,
purely-functional languages. The approach is a development of our earlier
work on monadic I/ O and state encapsulation (Launch bury [1993] ; Pey-
ton Jones & Wadier [1993]) , but with an important technical innovation :
we use parametric polymorphism to achieve safe encapsulation of state . It
turns out that this allows mutable objects to be named without losing safety,
and it also allows input / output to be smoothly integrated with other state
main pulation .

The other important feature of this paper is that it describes a complete
system, and one that is implemented in the Glasgow Haskell compiler and
freely available. The system has the following properties :

5

References

The full paper can be obtained by anonymous FTP from

ftp .dcs .glasgow .ac .uk
pub/ glasgow - fp / tech - reports / FP- 94- 05 :state .ps .Z

. Mutable objects can be named. This ability sounds innocuous enough,
but once an object can be named its use cannot be control led as read-
ily . Yet naming is important . For example, it gives us the ability to
manipulate multiple mutable objects simultaneously.

. Input / output takes its place as a specialised form of stateful computation
. Indeed, the type of I / O-performing computations is an instance

of the (more polymorphic) type of stateful computations . Along with
I/ O comes the ability to call imperative procedures written in other
languages.

. It is possible to encapsulate stateful computations so that they appear
to the rest of the program as pure (stateless) functions which are guaranteed

by the type system to have no interactions whatever with other

computations , whether stateful or otherwise (except via the values of
arguments and results, of course) .

Complete safety is maintained by this encapsulation. A program may
contain an arbitrary number of stateful sub-computations , each simultaneously

active, without concern that a mutable object from one
might be mutated by another .

. Stateful computations can even be performed lazily without losing
safety. For example, suppose that stateful depth-first search of a graph
returns a list of vertices in depth-first order . If the consumer of this

list only evaluates the first few elements of the list , then only enough
of the stateful computation is executed to produce those elements.

J Launch bury [June 1993], "Lazy imperative programming ," in Proc ACM
Sigplan Workshop on State in Programming Languages, Copenhagen
(available as Y A LE Uj D C Sj R R-968, Yale University) , pp46- 56.

SL Peyton Jones & PL Wadier [Jan 1993] , "Imperative functional programming
," in 20th A C M Symposium on Principles of Programming Languages

, Charleston, ACM , 71- 84.

CG Ponder, PC McGeer & A P-C Ng [June 1988] , "Are applicative languages
inefficient ? ," SIGPLAN Notices 23, 135- 139.

