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Introduction

The following story was reported to me. A few

years ago Klaus Hepp gave some lectures in the Brandeis

summer school. At some stage he praised the beauty of

axiomatic field theory . Next day he found the note on the

blackboard:

"Axiom 1: Axiomatic Field Theory is beautiful in an

empty sort of way. "

Presumably this note express es also pretty accurately 

the feelings of the majority of today' s audience

and indeed there is an element of truth in it . Specifically ,

after about 18 years of hard efforts , the principal objective

of this enterprise has not yet been achieved. This objective

was to find out whether an adequate framework for the description 

of elementary particle physics could be developed

within the conceptual structure provided by the principles

of quantum physics, special relativity theory and locality

(= "Nahwirkungsprinzip " ). Of course, from the point of

view of the development of basic physical theory, this question 

has been one of the central themes for the past 35 years

and is by no means a monopoly of axiomatic field theorists .

What distinguish es various groups is not the question itself ,

but rather the attitude towards it . There are three major

ideologies:
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1)

We need a radical change of our concepts ,

new idea .

The answer to the above question will certainly be no.

some brilliant

It is just as futile to approach elementary particle 

physics with the conceptual structure of 1930 as it was

to attack atomic physics within the frame of classical

mechanics . Therefore we should look for daring new ap-

proaches . Some examples : modification of geometry by

assumption of a fundamental length , elimination of concepts

which are far removed from experimental possibilities or ~

on the formalistic level , non associative algebra , indefinite

metric in Hilbert spaces , etc .

2) The answer may be yes if we are sufficiently careful .

It is worthwhile to develop a framework which incorporates

the old principles , formulating them precisely , separating

the essential and the peripheral features of traditional

Quantum Field Theory , recognizing the numerous mathematical 

pitfalls . One should then demonstrate that this

framework is internally consistent and study whether it

leads to any consequences which are in disagreement with

experience .

3) The time is not ripe for any assessment of the fundamental 

principles . The most fruitful task for the theoretician 

at present is to analyze experiments , looking for

regularities and for phenomenological models which describe

the essential features .
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It is unfortunately in the nature of ideologies that

they tend to crystallize . One has to make a determined

effort to keep the channels of communication between the

different camps open . I think that the organizers of this

summer school had this need in mind when they asl :ed me

to lecture here and therefore I do not feel apologetic for

exposing you to some ideas and problems in axiomatic field

theory .

Our first concern will be with the " axioms " themselves

, the formulation of the input assumptions . In the

course of the years there has been some development both

in the direction of simplification by recognizing the essential

elements and in the direction of enriching the structure . Let

me give a brief sketch of this development .

I . Axiomatic Quantum Field Theory in Various Formulations

A . The Simplest Kind of Field Theory

In the years 1953 - 56 the motivation was provided by

the divergence difficulties of standard ragrangian field theory

models and the wish to see whether the renormalization procedures 

could be welded into a mathematically well defined

scheme independent of a perturbation expansion . For this

purpose it seemed adequate to consider the simplest type of

field theory , namely that of a single neutral scalar field A
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describing a single type of particle (of course with interaction

). The generalization to several fields with more

complicated transformation properties seemed obvious and

straight forward . In laying out the framework one was

guided then by the experience gained from the perturbation

treatment of a Lagrangian field theory keeping those structural 

features of the re normal  ized perturbation solution

which could be precisely expressed mathematically . This

led to the following principal assumptions :

1) Principles of Quantum Physics . Essentially the mathe -

mathical and conceptual structure outlined in the books by

Dirac and von Neumann . It may suffice here to say that the

mathematics deals with a Hilbert space <j:f whose vectors
correspond to physical states ; observables are represented

by self adjoint operators acting in if and there are the well
known rules for calculating probabilities for the results of observations

.

2) Poincare invariance

The Poincare group (inhomogeneous Lorentz group )

consists of translations in space time and homogeneous Lorentz

transformations. A general element is denoted by ((tJA )
where a. is a 4- vector of translation , 1\ a homogeneous

Lorentz transformation and the notation suggests that / \

is applied first , a. later . We assume that the Poincare
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0;:1group is represented by unitary operators in

( a ) / \ ) ~ U ( a , l \ ) .

The action of the unitary operator U ( (L, A ) on a
vector in ~ shall have the obvious physical interpre-

tation ; i . e . , the image vector corresponds to the state

which is prepared by the same intrinsic apparatus as the

original 'state but shifted in its space - time placement and

motion by (a )I\) . We shall write U  (L) instead of

U (a) 1) (pure translation) and U (1\) instead of
U (0) A) (Lorentz transformation).

Actually the situation is slightly more complicated .

One does not need (and in general does not have ) a true representation 

of the Poincare group but rather a representation 

of its " covering group . " This corresponds to the well

known replacement of a Lorentz- matrix A by a complex

2 x 2 matrix with determinant 1 . The correspondence of

! \ to such a matrix ~ (!\ ) is determined only up to

a sign, see [ 2J . [ 3 ] .

3) The vacuum state and stability

Writing . p p
U (Ct) '=. e, - " f Cl (1.1)

the infinitesimal generators ~ of the translations may
be interpreted as observables . They correspond to the total
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Figure 1.
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4) The Field

It had been recognized very early in the development

of Quantum Electrodynamics that the field at a point cannot

be a proper observable (e. g. ~ the analysis of idealized

measurements of electromagnetic field strengths by Bohr

and R O Senfel~ J. One has to consider averages of the field

(denoted in our case by A ) over space- time regions ~such asT

~ ~dt. ~d'" A (x) or, in general, weighted averages
with smooth weight functions t l )() )

A ( f ) -= S dit~ A (~) t (,,) . (t.2)

.In a handwaving way the mathematical nature of the field can

be understood if we have the physical picture that A (x) shall

represent an operation on the physical system at the point x .

One may anticipate then that such an operation must transfer

an unlimited amount of energy- momentum to the system.

To express this expectation more precisely we define

some notation (corresponding to a direct integral decomposition 

of the Hilbert space with respect to energy- momentum).

Let \ p )/1) be a (improper = continuous) basis of state

vectors , where p denotes the total energy- momentum of the

state and the discrete index n is used to distinguish the

states with the same p . A general state may be written



will not decrease sufficiently for
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~ sd~(f  'l'",(p) ' P.11) Ct.3)'I' -

1

where the    " spectral measure " dp cp) may be chosen

(1.1.f)

a* p f hL\( p) + e (po) & ( p2 ~t11]..) + {1(p) eC- r'--4to'")} ,

the first term corresponding to the vacuum state )the second

to the single particle states , and the last to the states above

the 2- particle threshold . The normalization of "l ' is given

by

without loss of generality as

d~(p) :.

~ SdpCp) \ ~11 (p) \ 2-

bh/h

\ p>n)

(tirs)

(1.6)

(t.7)

( f' , '1' ) ::
corresponding to orthogonality relations

&Z+ (}"-p)<p',I1/ t p)h) d~(r)
-

The integrand in (1. 3), i . e. , the object

I 'f t1 (p)..,can be considered as a vector in a Hilbert
f -='t'- ---- .- - -

,
(tr) tp)"

for fixed

being given byspace the metric in '}f ~"-
If.,(p)t-

are finite .

of A (x) is a bounded

operator with a norm

the norm N p / p

large pi to make

integrable with respect
~N p' f:>



be equivalent in their aspect around a single point X

(since such a state cannot give a singular preferential em-

If we defineD as the set of states with fast enough

Observables and Fields 13

phasis to any point ).

decrease of \I ' f" \1 'f> so that
~dp(p/)dp(p) "fp /ll~, Np/p II ' f~\)

then the matrix: elements
< ~ )

< <P \ A ()() \ " ) with both ~ and ~ from D

will be finite . Thus the field at a point may be regarded as

a bilinear form over the domainD . Alternatively, if instead 

of A ( x) we take A (f ) we get due to (1. 1) and

the covariance of A under translations

< pi) t1' 1 A ( f') , f )h} ':.

IV (' 4-
t (~) : . ) d ~

~< p/')t1" A (0) 'pJt1) f (p/_p)( '.'1)with .
e -( ~')(. f (~) .

to d~ ( t" ) . In fact as a consequence of covariance
and locality of A (assumptions 5 and 6) one would guess

that for large p I and fixed p

N ~I ~ i} A ()() . flII . , ':; ~(t' / 2, ) (\~&)pp P
because all states with bounded energy-momentum should
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If f ()( ) is very smooth then

crease for large 9

fE:DHence for such

will exist , provided

by a polynomial .

will also

will decrease faster than any power in any

f and for

that the growth

Under these cir -

be stable under the:1)

D
field theories the

dynamics is given by field equations which involve nonlinear

functions of the field at a point . The above remarks indicate

that it is not at all clear how such nonlinear functions of A (x)

can be defined or , in fact , whether they can be defined at all .

The answer is known for free fields (where we do not need it )

see e. g. II.fJ , ISJ ) and it has been studied for the re-

normalized perturbation series in some models [ 61 , t71 .

It. has , however , so far not been possible to incorporate a

formulation of a specific dynamical law into the framework

of axiomatic field theory .

in 9 - space .

ACt . ) ' : tJ

Np / p is bounded

cumstances the domain

application of A ( of ) .

To summarize : The field A at a point may be regarded 

as a bilinear form on the domainD but not as an

operator . Alternatively , the field averaged with a sufficiently

smooth weight function is an operator on

Consequence ~ : a ) In traditional



b) The kinematics of traditional field theories , i . e. the

specification of the " degrees of freedom " . is given by

canonical commutation relations between the field at a fixed

time but at different points in space . For the formulation
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a cut- off in spatial momentum transfer but not in energy.Np'r~ ()C ').) decreasesone sees

of such relations we do not need the field at a point but only

at a sharp time . We must ask therefore whether

A (O"')-t) -= Sd1x O"(~) A (~) i )
is an operator , when ~ is a sufficiently smooth function

in 3- dimensional space . The averaging with 0" provides
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Whatever the complete physical interpretation of

A(.f:) may be, one wants to assert that it corresponds to

an observable whose measurement involves only the part of

space-time in which the function t ()(.) does not vanish.

This space-time region is called the "Support of .p ." If we

accept Einstein' s postulate that no physical effect can propa-

gate faster than light then the measurement of A (f ) cannot

perturb that of A (j ) whenever the supports of t and 9
lie space- like to each other. Under these circumstances

A(f ) and A (~) are compatible observables; the op-

erators A(f ) and A (9) should commute:

[ A(f ) ') A (j) ] -=o if suppf is spacelike to sUP Pj ) (I.I~
or symbolically , . . '2. I

[ AC '() A ('J)] -= 0 .fb(' (~- ~) >0 . Q.11 )

fact it is questionable whether the separation between kine -

matics and dynamics makes any sense at all .

5 ) Covariance of the Field

The field shall have a simple transformation prop -

erty under the Poincar ~ group . In the example considered

here it is I

U ( a . ) I \ ~ A ( x } U - ( 0 . . ) , , ) - = A C  Ax ta . ) ~ . ' o )
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7) Primitive Causality

Einstein ' s principle covers only one aspect of causality

, the one which is added when we pass from a non -

relativistic to a relativistic theory . Common to both is the

requirement that the knowled !?;e about the state of a system

which is obtainable by measurements at one time suffices to

determine the state . In view of the comments made under

4) about the field at a sharp time , we should allow finite time

intervals for the measurement . The requirement of primitive 

causality is then the following : The set of operators

A (f ) for all functions f with support in a time interval 

- tE < XO < --1:+ E should generate a complete system

of observables . This requirement may be mathematically expressed 

in another way : If an operator Q commutes with

the A C. f ) for all functions f with support in a time

interval , then Q is a multiple of the identity operator .

B . Adaptation to More Realistic Situations-

From a formalistic point of view this is a straight

forward matter . The guiding ideas came originally from the

study of free fields (linear field equations ) .

There one has a very direct connection between the

nature of the field and the types of particles described by the

theory . This connection is at the root of the famous particle -
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stead

wave dualism . Its overemphasis has been responsible for

widespread and long lasting misunderstandings about the

role of Quantum Fields . According to this view each field

should be associated with a certain type of particle . The

transformation properties of the field are related to the spin

of the particle ; the equal time commutation relations of the

field are determined by the statistics of the particle . Thus

one generalizes the assumptions 5) to ,

5B) The theory deals with several fields ~ ,," , the upper
index distinguishing the different fields , the lower index the

components of one field which go over into each other under
.

Lorentz transformations . For each (. one has a finite

dimensional representation of the homogeneous Lorentz.

group by matricesD (. ( 1\ ) . The transformation law

of the field is ' , ,1":>-'" ~ Q ~ 7

U ( a. j / \ ) ~ (,( x) U - 'Ca. >f\) ' : L 'DO(.n.-( " - ') ~ ( ( Ax +a.) .(> ~ ) \J a-

To take care of the occurrence of Fermi statistics

the causality principle 6) is generalized to.

6B) If <j) ( is associated with a Bose particle then one has
. w

[ ~ (Cx) , ~ t ' ~) 1 :. 0 tDr -X- \,3 src ( tke. 6 . 11)

if il is associated with a Fermi particle then one has in -
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-=0

l \.1~)-hr )'.- ~ Sf(l(tl;ke.
The requirement (1. 14) can be put in accordance with Ein -

stein ' s causality principle if one assumes that every observable 

contains only even polynomials in the Fermi Fields .

The commutation relations between different fields at spacelike 

distances are usually assumed to be : all Fer .mi fields

anticommute with each other , all Bose fields commute , any

Bose field commutes with any Fermi field .

Comments : Replacing 5) and 6) by 5B), 6B)

gives a framework which appears flexible enough to accommodate 

elementary particle phenomenology . The predictive

power derived from the bare framework has so far not been

spectacular but not entirely void either . The three celebrated

success es (all till now in agreement with experience ) are the

PCT - theorem , the connection between spin and statistics and

a few quantitative statements about scattering amplitudes

which follow from analytic properties , for instance dispersion

relations for 'Tr' - N scattering . The first two of these suc-

cesses are of a qualitative nature , and it is somewhat disconcerting 

that with our present understanding of their roots they

depend absolutely crucially on the detailed assumptions listed

. . . . " ..
[ 4> t ()<.) ) ~ ((lj) ] -= f ((~) ~ (tj) 1- ~ Lj) t i.L~)+



Thusabove . these two conclusions disappear if in 6B )

strict locality is replaced by macroscopic locality . They

disappear even if in 5B ) one allows fields with an infinite

number of components . These questions will be one of the

principal concerns of this series of lectures . In " particular

we shall focus on the problem of statistics .

The framework sketched under B is usually called

the Wightman frame not only because Wightman gave the

most precise mathematical characterization of ( most of ) the

assumptions , but also because he pointed out one of the most

important methods in analyzing the consequences , namely the

study of the vacuum expectation values of products of fields

20 Rudolph Haag
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bers or conservation laws rather than with observed particle

typeso Although in recent years the possibility of a quark

model of elementary particles has given the atomistic idea a

new lease on life this does not necessarily contradict the

trend towards " democracy 0" If the quarks turn out to be

real and heavy and the models successful then one has an unexpected 

extension of the regime in which nonre1ativistic approximations 

are meaningful but still one is led to a theory

with few fields associated with fundamental quantum numbers

rather than particle  so

We ~ ay look at the relation between fields and particles 

from another angle : the collision theory of particles

in the framework of local field theory . We adopt for the moment 

the field theoretic framework sketched above leaving

the detailed physical interpretation of the fields open and keeping 

only the generic statements
#

(i) the operator 1 Iff) shall represent a physical operation 
on the system which can be performed in the space-

time region given by the support of the weight function t )

(ii) the Hilbert space ~ shall contain (the state vectors of)
all the dilierent single particle states ; the fields shall be

complete in this Hilbert space , io eo there shall be no

operator in ?: f apart from multiples of the identity
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.

C 'p erator which commutes with the ~ (; ) fOr all

: and f .

One finds then that the identification of those vectors

in ; : I which correspond to arbitrary configurations of in -

coming or outgoing particles is already implied and hence the

S - matrix elements for all possible process  es in such a model

are uniquely determined . HI ] } [ ~ ] See also the exposition

in [ 13 ] . In other words it is neither necessary nor possible

to add any further independent assumption concerning the physi -

cal significance of the fields . Their only role is to fix for each

space - time region ( J the set of operators ' 1 ( ( J ) which cor -

respond to physical operations performable in the region . For

reasons which will be discussed a little later we shall call

' Ji ' ( ( 1 ) the " field algebra of the region tY . " Once the cor -

respondence q7: " " .

( f ~ . 1' ( 0 ' ) 6 . JS-- )

is established the theory is defined and its physical content

fixe do We may consider ( 1015 ) as the intrinsic definition of

the theory and the description by a set of fields as a specia . l

way to parametrize ( 1015 ) 0 Loosely speaking ~ if we start

from the frame B then l ' ( rJ ) will consist of all functions.

of the operators p , ( f ) for all weight functions - f which

have their support in ( j .
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Let me try to explain what I mean by the word " intrinsic

" in this context by an analogyo In geometry we

would consider as intrinsic objects the space and its pointso

Now we may introduce coordinates , thus assigning to each

point an n- tuple of numberso These coordinates are not intrinsic 

because for the same geometry the introduction of

a coordinate system can be done in many different ways ;

choice involves some conventiono

the various regions

try to find a system of local fields

the net of field algebras 1 ((1) . If such a system

can be found it may be regarded as a coordinate system for

the net 1 . As in the above analogy the system j "

is not uniquely determined by the net 1 . There are many

k / 11. IIother field systems A . 00 0 which lead to the same' f ) J \

net and hence to the same physicso

This non- uniqueness of the choice of a set of fields

within ~ physical theory has been stressed by Ho J 0 Bor -

chers [ Itt ] . I shall call therefore the collection of all local

fields associated with the same net 1 a " Borchers

classo " It is true that the definition of such a class of " relatively 

local " fields used by Borchers is slightly different

from the one I use here but this is a difference in technicalities
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and not in spirito So let us not worry about it at this stage .

To fix the ideas I want to illustrate the nature of a Borchers

class in an example well known to all of you , the theory of

a free scalar field A . In that case we may define other

" local functions " of A by the Wick - ordered powers :

t1

= : A ( x:) :

e . g .

We have called

ing thereby

algebra,
This means

do"

and Fields 25

A Lx).,
We can also obtain local vector fields ,

Ef ( , , ) = : df AC . ) d ) l Alx : ) ~ iA ( ~ ) :

or tensor fields

' B ( ~ ) = : , d Al ~ ) aiA { ~ ) :

1 " ) 1 f '

etc .

From anyone of these fields one generates either

the same local net 4], ' as from the original field A or a

subnet of it .

* -

a., ,
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If we have in mind the specific
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In the case of 6B we still
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1((1) shall

The set of all bounded

61:f is denoted by (B (CJf) .

(1.16)

U(a-l /\ ) exactly onto the field  the Poincar ~ operators

algebra of the image region .

 Thus we want to assert that each

be a * - algebra of bounded operators .

operators in a Hilbert space

There

have been studio

It turn ~. out that those topologies whic

mathe matica

nificance in our discussion .

stage about the relevant mathematical

von Neumann rings , C* - algebras ,

portant theorems relating to them .

terial in an appendix

these mathematical

are several important topologies in the set(P;{~ ) which

led extensively in the mathematical literature .

h appear natural in the

I context also have a rather direct physical sig -

Let me say some words at this

concepts (topologies ,

etc . ) and the most im -

I shall collect this ma -

so that the reader who is familiar with

matters can ignore the digression .

For the moment we need only note that .11 (j) will
be taken to be a von Neumann algebra and that this specifi -

cation is a matter of convenience and choice rather than a

restrictive assumption concerning the physics .

The adaptation of 5B and 6B to this language is

trivial . Instead of 5B we have the simple transformation

law

U (a.) A) 'J' ((1) U-(~", ) :: .1 (/\(f+ a.)
meaning that the field algebra of one region is mapped by



"Fermi

regions

(The indices B

part " ). If

which are

~ o

The commutativity for observables is the well known condition 

for compatibility of their measurement and the com-

28 Rudolph Haag

F Fp + FF'

F F from

" Bose part "

be long to a Ig e bras

space- like separated , then

F (f)e

U,J1)
--

iffY) .with F B and

and F stand for

and Ftl )

F(J)and

of two

r:']( F~I)F~::1) ]
F(;1.) ]F +

r
- ' \ ~

(I~IS)= 0-
, )

EO)F (1.1'1)= 0,

[ A. ) A:1,] V.1O)

have the somewhat artificial sounding assumption:

Each F Eo . 1( t:f) can be uniquely decomposed into

Again , if F is an o ~ ervable then F F : . 0 and , of

course , the product of two Bose type or two Fermi type

opera - tors is of Bose type , the product of a Bose - type with

a Fermi - type operator is of Fermi type .

The unsatisfactory feature of this formu  Iation of the

locality principle does not only lie in its complicated structure

. ut us denote by R ( & ) the su1 : : a Igebra of 1 ( fJ )

generated by the observables . Then for tr , spacelike

to ff " and A . fR ( ~ ) , A ; LE - R ( Eh } we must have
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so that Rtransforms each ~cr" into itseH. In other
words, we must have "supers election rules" [ 15] )

the matrix elements of any observable between
vectors from different subspaces ! to"" vanish. This brings
us again close to the second question; we should understand
~ superselection rules appear and whether we can say
anything about their structure.

To investigate these questions one can start from
two different angles. The first approach would be to realize
that the concept of an "operation" on the system is more
general than that of an "observable" and that correspondingly
we get less stringent requirements for causally disjoint "operations

" than for causally disjoint "observables." Since we
shall not follow this approach I shall not try to make the notion
of a "physical operation" more precise at this stage but refer 

to rl6J in which this concept is partly used. The second
approach, and this is the one we shall take, starts from the
observation that all the physical information of the theory must
already be contained in the net of observable algebras Rand
in fact even in the restriction of R to one of the invariant
subspaces ~cr" , say to the space W 0 which results by
the application of R on the vacuum state vector. In 'PI.
we have an irreducible but still faithful representation of the
observable algebra. A justification of these claims will be
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given a little later 0 First I want now to formulate the

framework as it results if we focus only on the observable

algebra and its irreducible representation in the " vacuum

sector" 110' The assumptions 1), 2), 3) concerning

quantum physics~ Poincar~ invariance and ' P p - spectrum
are not changed . We may ~ however , anticipate that in the

spectrum of P r we do not necessarily find the mass -

hyperboloids of ~ relevant particles (because some of

these states may lie in other supers election sectors ).

4C. To each double cone K in space - time one has a

von Neumann ring RCK) , the algebra of observables

localized in the region K .

Note : For reaso ~ becoming apparent later we do not at this

stage consider arbitrary regions of space - time but only

the simplest set of Poincare covariant , finitely extended

regions , namely double cones .

Instead of 5B we have

5C U(a..A) R(K) U-'(Cl.A) = R (!\K+a.) . ~.'JO

In order to formulate the primitive causality we need consider

also the algebras of regions which are not double cones . Let

us denote by ~ R i the von Neumann ring generated by all
the rings R , , so that one has
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space- time : regioo then the following definition

itself.

l~ote t~ this intrccfur.ces

mthe

dooble

tliat m

relation

Corle then on the right band s igbt

this case the ooly mono{(mr yconsequence

qairemmt
R (K,) C R (KJ.) if K. C ~

version primi -(str ~ ~ ~ned)

tivecausality assumption.

"lC~ Let { K-} 00 an arbitrary cove Ting of the liG.se of,
a double cooe K )

the;n V... R ( K~) :> R ( K) ,c. ,

1tJr" ~  -.. ~ ~ 1. ; "", ~ ~ 1f' O Z' t imp ~; ~ ....~' tore UJ;.:I;4.. UUD as '''' ~ Wu ' ~ ~

simp Ie types of regions coos ider ed

region is generated by the algebras

coverings ~ bregions - This properly

32

{nR;}"V..R-, t (1..:1,1.)-

(1,13)R {(f) V R(K.).. . t'fwJI-

00

R(K)(If fue

U~14)

citheWe can nOW formtl Ia-te a

V.2f)

first tia : ( at least for the

oore ) the algebra of the

d an arbitrary set of

, , called ' radditlvit  T ~
is

essential

be' Cat1 Se,

.

restriction

itself a

appea . rs gO

re -

If ( } is any

suggests

Definition .

I < ~ c cr
,

ad ~ iti ~ l

iferis

y K also

is the
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8C. Irrechtcibility

6C.

Q~17)
K'where is i . e. the set of

R(K') C RCK)' (I,li )

Finally there is the Einstein causality which we shall incorporate 

in a somewhat stronger assumption :

Dua~ (for double cones)
R(K) ' = R (K/)

Clearly this assumption is a strengthened version of the

locality postulate since the latter could also have been written

 suggested by the field theoretic background . For a field ~

we can decompose <f { f ) into a sum of ~ ( + i ) where

the fi have their respective support in the subregions

corresponding to an arbitrarily chosen covering of the sup -

port of f - This decomposition of the smeared out fields

correspon ~ to the additivity property of the rings - Secondly ,

( 1 - 25 ) demands the hyperoolic propagation character of the

equations of motion . . l Dosely speaking the Cauchy cttta on

the mse of a double cone determine the quantities every -

where in the double cone .

Another requirement , mentioned before , is

V R ( K ) = ~ ( ~ ) cr Of  R ( K ) ' } : { Ai ~ .

iltK ( 1; 26 )
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element Q R (K) for one special K

variance we have to adjoin the element U\Gt-,A) Q U~ J;\)

to R ( AK-ta.) . There will be a subset SK of Poincare

transformations for which AK + a. is totally space like to K

Therefore Q can be adjoined to R (K ) if and only if the following 

two requirements are met

(i ) Q f: { R ( K ') ~ I

(ii) lQ)U((l})QU-(~IA)J=O -ror- (Ola)E5~.

 Beyond the locality requirement the assumption of duality

implies that the rings R ( K ) are maximal . If we have a

net of von Neumann rings RCK ) satisfying the requirements

1) tl ) . 3 ) . ~ t ) SC , b " 1. 28 we may ask whether we can find a

richer net R ( K ) JR ( K ) still satisfying the mentioned re -

quirementso Now if Q belongs to R ( K ) it has to commute 

at least with R ( K ~ . Hence ~ if R satisfies ( 1027 )

then R ( K ) = R tK ) io eo then R is already maximal . One

may ask whether conversely maximality also implies duality .

Suppose we want to enrich the net R by adjoining one more

to Because of the co -
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In the case of fields (framework B ) Borchers fltf ] has
,

derived the interesting result that if <1> ') ( l ':: 1, "" , N) I
is a complete set of local fields and if ~ 0 is another field
(not assumed local ) satisfying

L 1 Q(~) ) ~ ~(Ij) J.:; 0 for (x-y) space-like

then ~o itself is local. This so called !'transitivity
of locality " suggests that perhaps the requirement (ii ) on

Q may follow from (i ) under rather general circumstances
. If this could be shown then we could always enrich

the net R by adjoining elements from R(K/)' until the

resulting net satisfies duality and is then maximal . For the

moment , however , it is not known under what circumstances

(ii ) can be iriuncl from (i ) and hence it is not clear whether

the duality assumption is an extra restriction (beyond locality

and maximality ). For the net of von Neumann rings arising

in free field theories Araki has shown that duality holds r I1J .

Do Algebraic Approach

In the early fifties a mathematical fact of seemingly

great importance to quantum field theory was noticed and emphasized 

independently by several authors . Studying the

canonical commutation relations for an infinite system of degrees
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of freedom ( qk' PI<; k= ' ,'" cO) it was fo\.ll1d that there

are many inequivalent irreducible representations of the

~K ) PI< by operators in a (separable) Hilbert space.

The number of such inequivalent representations is not de-

numerable and a complete classification in any constructive

sense seems impossible . * ) This is in contrast to the situ-

ation of a finite number of degrees of freedom where there

is essentially one \.ll1ique equivalence class of irreducible

representations . It was also realized that the many in-

equivalent representations could not be dismissed as patho-

logical . In fact , if a Quantum Field Theory could be defined

at all by field equations and ldnematical commutation rela -

tions then the selection of the representation space of the

ldnematical relations so that it fits with the assumptions

2) and 3) is a problem determin,ed by the dynamics. In

his talk at the Lille Conference 1956 II i ] YE . Segal

confronted a rather critical and disbelieving audience with

* For the canonical anticommutation relations this phenomenon

had already been pointed out by J . von Neumann, Compo : Math.

~, 1 (1938) but for some reason its relevance for quantum field

theory had not been realized till much later .



the claim that the representation problem was irrelevant ,

that one did not need operators in a Hilbert space but only

an abstract C* - algebra . In a very interesting earlier paper

[ 1'1] Segal had studied the mathematical structure of

quantum mechanics and pointed out there that many ques-

tions of physical intere .st '(e. g. the determination of spectral

values ) could be answered without reference to a Hilbert

space if one chooses the algebra of observables to be a C*

algebra . The skepticism of the physicists about the possibility 

of a purely algebraic approach to field theory was due

to the lack of a convincing idea as to how a typical scattering

experiment could be discussed in this frame . Also the physical 

significance of the myriads of inequivalent representation

was not understood . But seven years later we realized that

Segal f s claim had been essentially correct .

I give a brief description of the algebraic version of

general quantum physics , i . e. , the mathematical and conceptual 

structure which constitutes assumption 1) in this

language :

1, D) The central mathematical object is a c * algebra 0( .

A state (.I.) is mathematically described by a positive linear

form over at . Every complex valued function on Q(.

satisfying and

complex numbers )

Observables and Fields 37

the two properties (with A )B c Q(

~ , ~
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w (do A+ ~ B) = ~lJ.)(A)+ ~ ~(B)

~ CA* A) ~ 0

(linearity )

(pas it iv ity )

is a state .

We may add the normalization convention

w ( 1 ) : . 1

One can immediately distinguish pure states and mixtures

( see appendix ) o Every element CEO ( induces a linear

transformation of states ( . I . ) ~ GJc defined by

Wc ; ( A ) . = = ( ) J ( C ~ AC ) . ( 1 . 2 ' 1 )

Such a transformation maps the pure states into pure states .

. wCC * " C )

The norm 18 changed by the factor - CJ. ) ( 1 ) - .

The correspondence of these mathematical objects to physics

is the following . A " state " represents a statistical ensemble

of physical systems . The norm II w \ } - = ~ ( . 1 ) may be

regarded as a measure for the total number of systems in the

ensemble ( in arbitrary units , hence usually put equal to 1 ) .

The mixing of states is linearly represented here . For in -

stance w ' = A , w , + A2 w , - ( with A , ) A : J. ' > 0 ) is

the mixture of W , and ~ J . with weights A , , A ; z . .

( In the Hilbert space version this corresponds to the mixing

of density matrices , not the superposition of wave functions 1 ) .
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The physical significance of the elements of the algebra 
is a double one. On the one hand, if A E 0( is self

adjoint, then A may be regarded as an "observable" in
the standard sense of this term. If A is regarded in this
role then c.J (A) is the expectation value of the observable
A in the state~. Secondly, any element of Ol with norm
less or equal to one (whether self adjoint or not) represents
an "operation." By this we mean the change of state produced 

if an apparatus acts during a finite amount of time on
the systems constituting the ensemble Ct:) . The "operation"
may include a selection process by which a certain fraction
of the systems in the original ensemble is rejected by the
apparatus (prototype of an "operation" is an arrangement of
Nicol prisms and quarter wave plates). The fraction of the
original systems which is transmitted will be called the transition 

probability for the state through the apparatus. If CEO(
is regarded as an operation then the change of state is given by Aj(C*C)(1.29) and the transition probability by -~ (1) - .

Of course the measurement of an "observable" also
implies an "operation" in the above sense if the measured
systems are available for subsequent further observations.
Such an operation transforms, however, in general pure states
into mixtures and does not coincide with (1.29) except in the
special case when C is a projection (i. e. C::: c* = C2). In
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general , we have the double role of the algebraic elements

and it is useful to keep both roles in mind .

These remarks may suffice to indicate how an experiment 

may be described in the algebraic frame , without

recourse to Hilbert space . A typical experiment may be

schematized by a source which prepares the initial state and

an analyzing apparatus involving a selection process . The

result of the experiment is then the transition probability of

the initial state through the apparatus . The description of

the source and of the initial state will be done by a combination

of two methods both corresponding to actual experimental practice

. The first is filtering , the second monitoring . In the first ,

one uses an " operation " with as small a range as possible on

an entirely unknown original state . Tn the second , one obtains

information measuring the transition probabilities through a

certain number of monitoring apparatus .

We may now compare with the Hilbert space formulation

. There one uses ordinarily an irreducible representation 

of the o~ ervable algebra 0 { by operators in a Hilbert

space ? f . Let us denote tl1e operator representing the algebraic 

element A by 11 ( A ) . Picking up any vector ff : )f

we obtain a state on 0 ( by

CAJ, f ( A ) = < PJ 1r' ( A ) P ) . (1,30)
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If we let ' ] I run through o; t we obtain precisely all

those states which result from one of them by transformations 

of the form ( 1 . 29 ) i . e . by application of some operation 

from O { . We call one such family of states a f ' super -

selection sector " because , if -' 1' , and ' ! ' ~ are state vectors

belonging to two unitarily inequivalent irreducible representations 

1 ( . resp . ; (2 they are so to speak incomparable . A

linear superposition of such vectors is meaningless . n: may ,

of course , be formally defined in the representation 1ft $ ~

but then it only correspondq to the mixing of the states , not to

a coherent superposition . Thus , existence of unitarily inequivalent 

irreducible representations of ( } ( is synonymous

with 'existence of supers election sectors . n: also means that

there are " pure operations " (1. e . linear transformations of

states mapping pure states into pure states ) which are not induced 

by elements of the observable algebra (not of the form

( 1. 29 ) ) .

In the example of the algebra generated by an infinite

system of canonical quantities we remarked that there is atremendously 

large multitude of inequivalent irreducible representations 

and , correspondingly , an overwhelmingly rich supply

of states . This phenomenon is typical for the nets of local

algebras encountered in field theory . One may ask whether

really all of these representations should be considered or
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whether some additional physical restriction has to be imposed 

to limit the number of superselection sectors which

are regarded as physically relevant . The answer to this

question depends somewhat on the point of view and on a

reasonable balance between considerations of principle and

those of practical nature . From the point of view of principle 

one can say that actually it is impossible to know precisely 

which state is prepared by a given source . The available 

information is always such that it determines not a state

but a so called " weak neighborhood " in state space . This is

a set of states whose common feature is the validity of some

finite set of inequalities

, w ( A , ) - a.., \ < fiji := 1, J..) . . .~Nj t:i > O . ( 1. 3b

For instance in monitoring a state one is only able to make

a finite number of measurements (say AI . . . ALl ) with a) ) ...

limited accuracy ( E-, ) . ~~, f:N ) o Any choice of measurements

A , , mean values Q, and error limits E, defines ~

weak neighborhood in state spaceo

Theorem r ~ ) .

Let ' it and 11"0 be two irreducible representations

and (1)0 some vector state of 1(0 . If 11" is faithful then

every weak neighborhood of tJJo contains also a vector state

of 11' .
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This means that it is impossible to prepare an ensemble 

by a realistic source in such a way that we know in

which superselection sector the corresponding state lieso

The distinction oosed on unitary inequivalence of representations 

is much too fine to be physically measurableo

We might say that all faithful representations are physically

equivalent . We might select anyone of them (or use no

representation at all ) in order to discuss a specific experimental 

set-up .

On the other hand it is usually very convenient to

simp ! ify the description by an idealization which restricts

the set of states considered (adding some information about

the occurring states which is neither needed in principle nor

available in reality ). We shall do this also subsequently and

thereby reduce the number of relevant superselection sectors

to a manageable size and the distinction between them to

physically important quant~m numbers . This discussion will

be exemplified below 0

Thus far we have described how the assumption 1),

the principles of Quantum Physics are expressed in the al -

gebraic approacho The expression of the other assumptions

is to a large part a straightforward acttptation of the formulations 

under C .
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For instance , instead of the von Neumann rings

R ( K ) , we consider now C * - algebras at ( f <) with the obvious

monotony property that K , : ) 1<. 2 implies O! ( K ,) : ) O ( KJ.) '

The total algebra of ob3ervables is defined as

Ot : : U . O ( CK ) ( I , 3J . )
K

where tile lnr means tile completion in the norm topology.

One feature of physical importance, tied to the

definition (1. 32) .)should be stressed. Every element of 0(.
can be approximated by an element from some finite region

K uniformly with respect to all states. Hence 0< contah1s

only elements which correspond to ~t!!! essentially local

quantities, ob; ervables which are "quasilocal. " Truly

"glom I" quantities, like (bounded functions of) the total

energy are excluded as unmeasurable, and this is satisfactory

recause their measurement would require an infinitely extended

apparatus. In this respect the difference between the norm

topology and the strong or weak operator topologies is crucial.

Take the example of a Poincar~ operator U ( n.)A) . It is a

glom! operation because its effect does not become weaker in

faraway regions of space. The norm of the difference between

U ( a.)!\) and any element from any O (K) is always greater

than 1 recause, no matter how large K is we can always find

states whicl1 are essentially different from the vacuum with re-

spect to measurements outside of K . On such states the effect
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and, in fact , now we have this relation really applying to the
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(i.   -0.. ", (1" AJ. - ~ (J.t-!\ ,a2.)A,A2.. ,

Poincar ~ groop itself , not to the covering group because the

arbitrariness of phase of a state vector ~ does not enter

here . The elements of the algebra and the states considered

as positive forms over the algebra are free from this ambiguity

. The transformation law rea  Gthen

~a.JA (0( (K)) -= O{ (AK+a;.) , (1,33)

of U ( ~ ) " ) is very different from that of any A E: O( CK) .

If , on the other hand , we first pick a state vector ' ! ' in

the HUoort space O) f 0 then we can fh1d a region K large

enough so that with respect to observations in the causal

complement } ( I this state and the vacuum state -are almost

identical . Then one can fh1d an A eO { CK ' so that

\ \ ( \ J ( ~ ) - A) -f \ \ <. ~ . This means that U ( n , A ) can

00 approximated by local quantities in the strong operator

topology in the vacuum representation .

We have seen that U { ai  A ) cannot belong to 0 ( .

Hence , in a strictly algebraic formulation the Poincar ~ in -

variance cannot 00 expressed in terms of unitary operators .

Instead we have to each Poincar ~ transformation ( 0. , 1\ ) a

corresponding automorphism ti (1., 1\ of the algebra 0 (

(see appendix for an explanation of the term " automorphism " ) .

Again we must have the product relation
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" partial state "

Now con -

K ~ ,

We may prescribe arbi -

for each of these regions

W which is the simul -

(Compare L~I] ). All vector states occurring

From (1. 32) we see one reason for the occurrence

of many inequivalent irreducible representations of at .

A state ~ over 0{ defines a state over each subalgebra

O{ CK) . This is called the restriction of 0{ to Ot{J<)

or, for brevity , in more physical terms the

of the region K . It will be denoteq by wI/-< .

sider a sequence of mutually space- like regions

moving to infinity as tl .~ cx:> .

trarily a partial state (J.) I K 11
and there exists always a total state

taneous extension of this collection of partial states to the

algebra 0( .

in the Hilbert space of one irreducible representation of at

have a common asymptotic behavior for their partial states

fA)) K., as n -:.,. 00 . In other words for any two

such normalized states we have 1\ CJ.)(\)\ t< - uJ2:) \K \\~ o .r\ I h
Omitting fine points the proof uses the following facts :

'Tl'

0{E: .

two state vectors in question ,

irreducible representation

' 1 ' ( ; 2 . ) = IJ ( ( C ) t ( l )

Since C is quasilocal it cannot change the partial

, "v ( I )

state far away unless the state I . already has correlations

between its partial states in regions which are infinitely far

aparto This is however not possible for a pure state .
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We may formalize thiS in the following way. Let K 1.
be a seql1;ence of increasing double cones which exhaust
space-time:
K 1.+,::J K i ; "" K 1 = all space-time. (1.31)
Take any sequence of elements At f 0((1<; ) with I I At U~1.
Then for every fixed C f: at we have due to locality

II [ C)Ait] II~ o .

Since A 1 tends to commute with all elements of the algebra,
the representatives "(( (A 1) in an irreducible representation 

approach multiples of the identity operator (by a slight
generalization of Schur's lemma). One has therefore the
"cluster property"

( '1' ) 1r' (ai C) p ) ~ (f ) I rlA,q,} T) (\f~ 1r(() T.)
for normalized f , and the first factor is , in fact , even independent 

of the direction of the unit vector f in the representation 

space . This includes the statement that all vector

states in an irreducible representation have the same asymptotic

tail of partial states .

We see therefore how to construct a great variety of inequivalent 

representations of at . We just have to choose at

random sequences of partial states for space - like separated

regions moving to infinity and then extend each such sequence



This restriction 00. the ffstates of interest " is a very

str ~ me . 1 1 me P<:Jint out that it is , in fact , too strong to

00 reasooa.ble in ~ nhtm Electrodynamics because there

Gauss  s law asserts that an electric marge located in a finite

region can be determined by means of field strength measure -
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(1_35'))) (W-Uo'o) I , 1\kE:-
<. l?: .

to a total state 00. Oi - If the asymptotic tails of two

such sequences do not coincide we obtain states oolonging

to inequivalent represmtatfoos - Simple examples of such

states are thooe ~ de:scribe a D Otl- vanishing densUy of

particles extending to infinity in sp2ce - For the purpose of

elementary particle physics it is , hm: ever , 00th legitimate

and convenient to i !!~ -1ize the 1I1IC()Smology 1I by the claim

tfiat all states of initerest to us coincide with the VaC1mm state

asymptotically for oh' 5ervaticns in far away regions -

For the re Jm. inder of these lectures we shall limit our

attention . to states ~ for which the difference of the partials

- btes ~ - f,.)o) I ,, ' in the causal complement K ~ of

V' .t .1
the double cooe f\ t goes to zero in norm as ~ -, . cO for a

se-quence of OOuble C( me,sKI . of the type (1. 34)- TJms, for

any ~I!state of interestll ~ {JJ and any ~ itive E there is a

~ ble cone K 6- so that
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m. ents 00 the surface of an arbitrarily large sphere. Hence,

no matter bow large we choose K there is abila J' S ~~

element of at ( KI' ) for which a state with a Ioca.lized c!:lar'ge

and the vactnlm give markedly different expectatioo. values.

We should really require the asympfutic comcidence of states
I

not for their restrictions to the complements K .t d a

sequence of increasing finite regioo.s K t , rot the p3rlja;1

states cf finitely extended r ~ ..s moving oot to i I Ufinity $ S~

excluding the imich more difficnll case c.f loog r3.!Jg"e forces from

cur con.sidera~ the resuiction (1. ~5) appecars reasooahle~

Another condition on the states we wish to conscider, a

coo.diticn which is not tmre1ated to (1~ 35) but not quite a. consequence 

of it is the following : all states considered shall lead

(via the GNS- ronstructlon ) to represematioos in which the

p () in air ~ atlta morphism gr onp rL CL,A can be (Cooti mE OU S 1 y )

implemented by tmit: lry opera-furs U ( el." J\ ) and furthermore

the resulting spectrum sball be contained in the forward cone

(no negative energies).

With these limitatio ITS 00 the 1!1!s: tates of mterest' 1! and

some well St1pported properties of the ' V2cuwn representation * )

one finds that aU the representatives we want to conside:r are

!I!strongly locally equivalent.. !' This !!L-~-!r.S that for any two
-- -

:4: For instance that ~ (0( j ())11 is afaclor of Type III..
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Let me briefly indicate the essential point in the argument 

which leads from our limitations on the states of interest

to the strong local equivalence of the corresponding representations

. If ' 1( ( 1) and ' 1( ( 2) are two disjoint representations of

a C ~- algebra e ( meaning that no subrepresentation of -71" CI)

is unitarily equivalent to any subrepresentation of n (2.) and

if W ( I) and w (1-) are normalized vector states in the respective 

representations , then l ' lJJ( I} - ~ tzJ )l ;:: 2 . Thus ( 1 . 35 )

demands that no representation of interest , when restricted to
I

a sufficiently far out region K .! ' can be disjoined from the

vacuum representation of 0 { ( K ; ) . For factors of Type III

non - disjointness implies unitary equivalence . The assumed

translational covariance allows us to extend

this unitary equivalence to the algebras of

other regions .

With these limitations on the " states of interest " we

can quickly summarize the assumptions on which the remainder

of these lectures will be based . We can now without loss of

generality identify the local algebras ( ; t ( K ) with the Von Neumann

algebras R ( K ) in the vacuum representation ( since all " states

of interest ' ! are normal states on this net of Von Neumann algebras

; see Appendix for definition of the term ' !normal state ! ' ) .

We can then take over all the structural assumptions concerning

the net R ( K ) as described under C . The question to be asked
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is : do there exist mrltarlly inequivalent irreducible repre --

sentations 11' a' of the total algebra at =: U 0( (I<) which

are strongly locally equivalent, i . e. for which ' n" a' lO( (J('  

is unitarily equivalent to ~ ( 0( (K1 ) for every K . If

50, these representations will be the relevant 5uperselection
*"

sectors for us. We wish to classify them~

n. Structure of Superselection Rules ; Charge Quantum-
Numoors ; Statistics

The question to be studied here was described at the

end of the last section . Consider a representation 1( a' in a

Hilbert space 11 a" and pick some dooble cone K . Since

the representations 1ffJ' and '1(0 when restricted to 0< (K' )
are Wlita.rily equivalent we can find a unitary mapping from

U 0 to U u' ' denoted by V , such that

V'n'o {A)P = 1T'a"lA) V ' f for all AfO{(K'}and 'I'~?lo.
(2*1)

We may omit the symbol V if we identify the two spaces

110 and 11 0"" (identifying & ~ ,. '1' with its image V 'l ).
This identification also makes 'I T' D' (A) into an operator from

tB(~ )which can be expressed in terms of the ~ (O( ) .
We shall also omit the symool 11'0 because we take the operator 

algebras ~ (O({f()) in the vacuum sector as ide!!tic~1
by definition to the e*-algebras Ol (1<). Then (2.1) reatS-

~ '1\,;$ .,.~ s ~ ;n;f:i.1..t~ ~ ~ blJj&( ' ...., . ~ iS~ " [2J,2.f.U].
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1(0- (A) '=: A for all A E: o-c. (K/) .
(2,2)

On the other hand, if B ~O( (1<,) and A E: O{ (K; ' )
then as soon as k' , ::> K we have

[ rr(~ (A) , 11'0"' ( :B) 1 -= [ A , 1fd' ( ' B)] ::;; 0 ,

Hence by duality

1T0-' ( 0< ( K,) ) C 0( ( K ,) t ... K , :J K . ( 2.3)

This means first of all that

1r' a"" ( 0( ) (, ~ . ll .~)

Also , """'a' " is a faithful representation and therefore 

preserves the algebraic structure and the norm . The

transition from the vacuum sector to the sector (j'" can

therefore be descriood by a fflocalized endomorphismff 90"'" .

In detail this means that the representative 1((1' lA) may be

considered as the image ~o- (A) of a norm preserving mapping

of the algebra ~ itself and such that ~d' acts like the

identity mapping on 0{ ( K) and only reshuffles the elements

of the algebra of the finite region K . If the mapping ~ r
is ~ the whole of 0( we call it an ~ morph:i.sm. In general,

however, the image of ~ may be smaller than (J{ . In either

case the endomorphism is called localized in K because it does
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nothing to the elements belonging to the causal complement
I

region k' 0

Let me summarize this discussion and the resulting

notationo Due to the unitary equivalence of all representa -

tions 'Tt' <T ( ~ ( K ' )) we can identify all representation spaces

With ?fo and as a consequence all operators .7(0- (A) with

operators from ~ (O( ) . Since we consider now '1' to as the

defining representation of 0( lK ) we omit the symbol 'fTo .

So any 1l'<r ( A) will be identified with some element of 0(, ,

namely with ~ v ( A) , the image of A by the endomorphism

~ 0- . Of course the identification of U d'" with Wo and the

corresponding identification of 1fT' q- ( A) with ~ ()" (A) is not
canonical (=natural ) and highly non- uniqueo It depends on the

arbitrary choice of a reference region K and even beyond that

on the choice of the V in (2. 1) which is determined only up

to a unitary operator from 0( ( K) . Still , any localized endo-

morphism ~ will lead from a representation '11' ~) to a
strongly locally equivalent representation , denoted by

11' (2) ; 1't' (I)O ~ (in detail 1t' l2~ ) ~ 1f11 ( ~ (A)) )
and any representation of interest can be obtained from the de-

fining representation ~ (O( ) := cI' l by an endomorphism
localized in an arbitrarily chosen region K' :

1r = ~ o ~
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for A (;: at (K') .~ (A) Awith -

There is one class of localized automorphisms which

does not lead to a change of sectors : the " inner " auto-

morphisms . Let ~ ( K ) be the set of all unitary element3

of 0{ ( K ) , then

~ ( A ) :: U A 0 - 1 wi~ U f: ~ (K) ; A f (J( e . 5*)

defines an inner automorphism localized in K . The unitary

U is determined by (J'" u up to a phase factor . One has the

Lemma 2. 1. The representations .~ 0 ~I and  0 0 ~2.

are unitarily equivalent if and only if ~;2. -;: I Tv ~,

where ~ is an inner automorphism .u

Proof : Omitting as explained before the symbol 1( unitary0 )

equivalence means that there exists a unitary V E:. ( 8 (0):10)

such that

~2 ( A) =- \ j ~I ( A) V - I .

We only have to show that V in fact belongs to at

and ~ t are localized in some finite regions we
K large enough so that it encloses both localiza-
Then

~t (A) for A E 0{ (K" ) .

(by duality )
I

Since

can choose a

tion regions .

~2.

~2( A) =. A

V E: \0{(K')1'

-

at (K)Hence =



Kl and ~ are the two given , space - like situated regions .

K is arbitrary . We want to test the action of 1ft ~ ' : 2. on OC ( K ) .

We shift ~ by translation to K4 and Kl by C \ Jposite translation 

to ~ till K 4 and ~ are space - like to K . In addition 

the cone Ks enclosing Kl and ~ will be space - like

to K6 ' the cone enclosing K2 and K4 . Let Y3 and ~ Jf
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  Next we note

Lemma 2. ~ If Sj' , and ~ 1- are endomorphisms localized
respectively in the space-like separated double cones K,
and K'2- then

-\' , ~ '2- = ~ 2 ~ , (z " )

. .. - - - ~ - ' "

" ,

Figure 2.

R~ : Consider the 7 regions drawn in Figure 2 (for simplicity 

we draw only the oo.se of the double cones)
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- I-

since due to the support properties .

denote the endomorphisms localized respectively in K3 '

K4 which result by shifting -5', , -S>2- by 1:he relevant
translations. Due to our covariance assumption the representation 

.~ 0 ~ I is equivalent to ~ b f "3 and

~ O~"2- to ~ () 9"st Hence by Lemma 2. 1 we
have

' ("j =. o-v~ ~ I j Yif ::: ~ 6 rs>:z- ;

where % , ~ are inner automorphisms implemented'.j 6
by unitary operators U." U 6 which (by duality) belong to

0{ (Ks-) respectively 0( ( ; (6) . Since K3 and K4 are
space- like to K we have

~3 ?i (A) = A ':: ~'f~-i (A) for A E a( ( }( ) .

Thus

~ ~I ~ ~2 ( A) =- ~ ()2 <J-:v .0 (A)5" b b ) S- 11 .

The right hand side is rewrittf':n as

0-:;6 ~2 ( U 5 ~I (A) U 5- ') =. Ut ~J. (Us) ~.:2. ~I (A} ~"J. (U; ')U; '
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lead -

By the same manipulations the left hand side becomes

Us u & ~ I ~ 2 . ( A ) U6 - 1 U ; I .

But U , and U , commute too . Hence we have ( 2 . 6 ) .

We shall now specialize the discussion temporarily to the

case of those sectors which can be reached from the vacuum

sector by localized automorphisms . This allows a simpler

analysis than the more general endomorphic case . We shall

call such sectors therefore " simple sectors . " We find then

first of all a classification of simple sectors into Bose - type

and Fermi type according to the following lemma :

Lemm ~ 2 . 3 Let  , and t2 . be two automorphisms ,

ing to the same sector and based on space - like separated

double cones K I ' K 2 . . By Ie mma ( 2 . 1 ) they ~ Ytla . ted . by

an inner automorphism , i . e .  J . = % ~ I . One has

then

' il ( U ) = : t . U ( : : 1 . 1 )

where the sign depends only on the sector , not on the choice

of ~ " " " I ) . . .

Sectors for which the + sign holds are called Bose -

those for which the - sign holds Fermi type .

R . ! - ~ : Since ' ( I and ~ 2 . commute , so do ~ I and ~ .

But

~ I ~ ( A ) : . ~ I ( U A V . I ) ' : ~ I ( v ) ' 5 , ( A ) ' t , ( U - ' ) ' ; ~ ICV ) ~ I ( A ) .

type ;
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Thus

<: r - =
I.J

where E

and

59

U'i (v) ~,l, ~

(J'i, (u)

-

By commutativity#

~I(U) ':, ~'tY U (2.g)II 2.or

0',
is a numerical phase factor depending possibly on

' If z. . Interchanging the role of ~ , and i ~

and correspondingly replacing U by U - I ) we have

~ J. ( U - i ) = f 3'1. . "II U - I . (.2.'/)

Multiplying (2 . 8 ) and (2 . 9 ) we get

( - I I )
il ( U ) ~ 2 ( U - i} : . ~ , U ~ I ' 61, ( U- ) = fil  Ii ;. E: ~ ." I '

(2 . /0 )
and commutativity we have

and we have

(~.I j)
space- like to both

c
: . < .

y localized

V:.WU,
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But

'6',tv) ::"D'. (WI.)) :: "6'I(W) '~,(V)::: W'f.(V) -:: ft"i~WV~E~.(l.V
Hencedue to the support properties .

E - E
'I. ) t ~ -  , ) 01-

Repeating this process we see that is inde-

It is a fixed number depending only on

ii .

~ i, }~
pendent of its second argument and therefore by (2. 11) also

of its first argument .

the sector . Due to (2. 11) its value can only be

To see that the sign appearing in (2. 7) has something

to do with Bose - or Fermi - statistics we sketch the relation 

of this description with the co ~ventional formulation by

means of a field algebra . First it is evident that the set r

of localizedautomorphismsforms a group, since ~I  2,.

v - I r *and () can be performed within .

The localized inner automorphisms form an invariant subgroup 
tj since

i <j u   - , =. (5-' 't (I.) .

' "

Actually we should restrict attention to those automorphisms

which lead to sectol S in which the Poincare group is implementable

. This subset of r has been called r c in Ref . ( 2.~] .

But it is shown in [ 24J that r c is a group too and possibly

we have r c :. r so that we do not bother here to make
the distinction .



corresponds by lemma (2. 1) as a set to the collection of all

simple sectors . We see that this set has a group structure

and moreover this group is Abelian because if ~I and i '2.

are in P we can always find a 'f2' in the same equivalence 

class as ' t). which has its support space- like to that

of i , (just shifting it by a sufficiently large translation ).

Then ';(1 and "51' commute due to lemma 2. 2. Using an
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A

~ =~
The quotient group

(;),.11.)

additive notation for the multiplication in the Abelian group
A

t} we see that the sectors can be labeled by generalized
charge quantum numbers cj such that along with ~

and ~ also ~ to ~ and - 0-. occur. Of
course it is not implied that all such linear combinations belong 

actually to different sectors ; e . g . we might have a relation 

like - 0- = a- in which case the chain

would really consist only of two different sectors (a case

usually described by a multiplicative quantum number ). Still

we have the typical chains : if the simple sector cr contains

a single particle state , then the sector ncr (with )1 > I )

contains the states with t1 such particles and - ( j contains

the antiparticle .



Let us now turn to the construction of a field algebra
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for the set of simple sectors . I shall do this here only for

the case of a single additive charge ; i . e. the case where1\

<i J' is the (additive ) group of all positive and negativeA

integers . For the case of a general ~ I refer to [ 24] .

The sectors are now labeled by an integer 'r1 running from

- 00" to 00 . We wish to consider all sectors simultaneously 

and take therefore the direct sum of the representations

'Tr' ~ . This '~ iversaillrepresentation 1r acts in the

Hilbert space

dJ.:f ;: r if t1 . (2./3)
G)

In '}:,J- we wish to implement the automorphisms from r

by unitary operators t so that



( 11' { A) f ) (~) '=. 1r '~ (A) ' Itn ) : ~ ~ ( A) f ( 'I'\) . ~ . ' 5)

To understand the notation keep in mind that -7t"Y1 ( A) ;. ' t ,n ( A)

is regarded as an operator in ~ D and each ' 1 ( r1) as a

vector in ' No . We implement the automorphism ""6,

by a unitary operator V , acting in ~ and defined by

( V , ~ ) ( n) -:: ~ ( 'nt \) . ~ . I (,)

Correspondingly ~ ,I'\ is implemented by the unitary ' 4," .

One checks that this definition indeed gives
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It'( ( ~ Ivr\ tA)) -= V 1M "\r' (A \ \j ,-t't
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Consider now the commutation relations between two
I II

such operators f and y which are based on space-

like separated regions and lead to the same sector (the cor-
.I II

responding automorphisms "l{ , i being equivalent

modulo ~ to the same power of 0' . ' say to ~. rn .
V II " I

Then we have 0 -= ~ lJ where "t.J now can be

chosen to be W = \.jJ'1 i ' l - ~ Lemma (2. 3) gives

 ' (w ) :: tmW j Em = :t 1 .
Thus

tIt II ' f I - I f I - I = t.rn t II f / - I
or

f / ~ " :: tr7) ~ l Itl ; (Jilt})

also, one immediately sees that

G W'" = f ,rn, (.:>,20 )
Thus the commutativity of space- like based automorphisms

leads to the alternative between commutativity or anticommu-

tativity for the corresponding implementing operators. If we

use these operators in W to generate states ~ 'JL ,
\.l) " ll . \ I..' \lJ II f"\ . d, then the state T T -il - may be mterprete as

the "product state" : we have the partial state equal to 'fJ' JL

in the one region and the partial state equal to ~ /. JL in

the other region and JL in the space- like complements of

both regions. The sign Et Y) determines whether linear
combinations of such product state vectors behave like vectors
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in the symmetrized or antisymmetrized direct product space

of the starting sectors 0 In other words it determines whether

localized states in the sector If ' -n- are of the Bose type or

of Fermi type.

We still have to define the field algebra . 1' <K ) associated 

with the region K , the gauge group Of and its representation 

11 (~ ) in 4)f' and show

Lemma 2. 4 The gauge invariant part of the field algebra of

a region K is precisely the observable algebra of the region ;

i . e.

1( (ot (K)) = 1(K) nU(~)I (.1,11)
The field algebra 1 (K) of the region K is of course defined 

as the von Neumann ring generated by all the t imp le-

menting automorphisms ~ which are localized in K .
A

The gauge group, ahstractly , is defin~ d as the dual group of OJ-

Its : lements are the characters of OJ ; i . e. functions from
Dt to the complex numbers which furnish a one- dimensional
J A 1\

representation of &J- . In our example, where ~ is the

additive group of integers , OJ is the group of the unit circle i~

the complex p~ ne. Writing an ele~ ent d f. ~ as t ' h

we have the character 8 (n) :;. e '" ~ . The unitary representative 
- U (~) in the Hilbert space W is obviously given by

(U (d) f ) in ) ~ J (,,) ' P (",) . ~ ..2;l.)
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For the proof of lemma ( 2 . 4 ) and the discussion of the general
' "

case of simple sectors (when the " charge group " OJ is generated 

by several , possibly not independent , elements ) see

ref . [ 24 ] . If there are several charges then the construction

of the field algebra is not unique , the commutation properties

of operators transferring different types of charge are not intrinsically 

fixed . One finds , however , that one can always

achieve the " normal " commutation relations described in

( 1 . 17 ) , ( 1 . 18 ) , ( 1 . 19 ) .

Non simple sectors . Endomorphic case .

We have seen that for simple sectors one always has

the Bose - Fermi alternative and an Abelian gauge group . A

more complicated structure results if at admits localized

endomorphisms (for which the image g ( Oi ) is strictly

smaller than Of ) . We denote the set of localized en do -

morphisms ( including the automorphisms r ) by / 1

(respectively fl ( K ) if the localization region is specified

to be K ) . To avoid misunderstandings I should perhaps repeat 

that the term " endomorphism " is used here for a one -

to - one mapping of at into itself , conserving all the C * -

algebraic structure . Perhaps a better term might be " iso -

morphic injection . "



intertwining operator from

the same holds for the

commutative .
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We begin with some remarks on intertwining operators .

Given f ' ~ / t / J then the operatorS E <B ( o} /( )

is called an \
. " 0

"
"

ifY to

.tcr .:1.11 A c 0( ,~(A) S =S~/(A) €.23)

~' (ac) sand

belongs to

regions of

Q<CK)

,...,
S

where K is the union of the support

Let us write
,

~and

If we have two such triples

and S 2. -= l ~":1. ~ 1.

s ~ ~ ,)
5,:: (fl,; s,~<{:)')

~.2~)( )

    we can immediately
I I

~ / ~ '2. .

J

~11'2. to

~, ($').) ), -= ), ~,' (S2-)

. ) I ,)~Ils). S I () ~, ~'). . (.1.25)

f2 .

construct an intertwining operator from

One checks that the operator

performs this function . Thus one has a cross product of the

triples , defined by

xS2 = - ( f . ~ 2.

V
J

?

.

)

~I)( f'2,)( .~~. ~.2~)
This cross product is associative but in general not commutative

I \ J ~ ) IN N , \ "' : "( ~ x : ~ = " " ~ )(. S ) ~ S ~ ' :=,.'J.. ' 3 , 2 .

. I --

~ i have their supports mutually spacelike and if

~ , then the cross product ( 2 . 26 ) is

The proof is analogous to that of lemma 2 . 2 .

" "

s ,
x

If all the

~(Q()Such intertwining operators exist if the representations

are not disjoint . Actually in that case

.

~



Consider now V1 endomorphisms -S>. ) f ' 2. \

and a permutation ' P of the numbers 1 , 2 , " " ~ . The

products f I ~ 2 . I . . 5J il and ~ ru ) ~ r ( ~ ) I . . ~ P ( Yt )

lead to the same sector and hence there is a unitary intertwining 

operator from ~ t ' . . ~ . ,

to
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Epl~I)'" )~V))
9p(,),..qp(.,)
0 '" 0 (A) t (~) I ~YI p ' )

.

.

"',~n) -=. f1(PI)"J~I'\)~p(I)"'~V(~)tA).(2027)
~p (~I)II.).p Il)The relation (2. 27) does not yet define

uniquely but we can find a unique and natural determination

of the f p by comparing them for different sets of argu -
I (

ments . Let ~ I ) " ' ) ~V) be any other set of ~

endomorphismswith S?, ' not disjoint from ~i

""' . I)so that we have intertwining operators "K', :: ( fi j ':R'<. ., ~~ .
" ' " " ; oJ

Then ~ ")( ' . I x. ~ intertwines from Si , , , !I
, 11 JI Jt1

to ~,' t.. f~' ; E: f' l ~i/)" 'J~: ) from ~,I" . y~'

to 9 ~(,) ... ~ 'P(~) . Denoting for brevity by f,)( ... X ~t1
the operator which is the middle piece of the triple

the Operators E (.p .,. 'J ) '   x " "i ' R and R x ...xR x
"p JI) )In PC,) lIt,,) I t1- \

,cRnf:p(f:," ')~I'\/) both intertwine between ~I~.. t.., and
Q I . . . 0 ' ) . One findsJ P( I) ) f (WI

Le ~ ma 2 . 5 It is poss ible to choose the operators

in such a way that

(i ) ::: 1 whenever all the supports of the

Ep(.I?I;"'~~)

~f ('?I)"')~" )

..... ......'f ",. .. ~ f?",I
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-fj; are mutually space- like .

-?'
~

(ii ) For any other set and any choice of intertwining
I

we haveoperators r . from O. to .r:.., Jt J,

f.' , )( " ' x. K' r\ Et ( ~: ) " ' )f ~/ ) = Ep ( -9I )" 'J ",) --gff,)~ ... ')(.' RPl") '
( 2.2~)

The unitary operators f p ( '$ I ) 1" "I Y n ) are uniquely de-

termined by these two requirements and they satisfy (2 . 27 ) .

The proof of this lemma proceeds by a straightforward

computation . An immediate consequence of the lemma (in

particular of the uniqueness of E- V ) is the multiplication law

t: f (~IiI ' ~~n) EQ ( ~ f'(I) , " " ~ ' (")) -= fPQ ( f \ \ \ I ' )~)1) ' V ,Zq)

If we put all .y~ equal , a more convenient notation is

E'r ( ~ ) ~ I " ' ) Y) = f ~)\) ( ~) . ~ .30)

One then has by (2 . 29 )

E; ) ( P) E~~) ( Q) = f. ~ ) ( PQ) ) ( 2 . 31)

i . e . the E ~~) form a unitary representation of the permutation 

group of n elements which is ( up to unitary equivalence

) characteristic of the sector ~ ~ . Note that E~) ( P)

intertwines )I ~ with itself . Hence one might be inclined to

think that E ~~) ( p) should be trivial . This is however not

so because the E- f ( f{1 ) " ' ) Sf> ~ ) are defined to be .1.

not for equal Y l but for space - like separation of the

supports of the y ~ and it turns out that the representation
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llI . Parastatistics .

The model itself may be described as

tt4

rl,~i) t.lJ(~) "JL T (x\ I l~\ =D' i::',1-",t -"t + )
~.,)

.(;;1"'" i :;l:. j .
~.2)

@.3)

f

 Field theoretic models for the description of strange

statistics (i . e. statistics which are neither of the Bose- or

Fermi - type) have been given by H. S. Green [ 26] and further

discussed by numerous authors. See e. g. the clear survey by

Greenberg [ 27] . Here we shall analyse in terms of the concepts 

developed in section I the physical content of the simplest

example of such a model, the case of a parafermi field of order 2.

I shall sketch only the essential line of argument referring for details 

of proofs to [ 28] . The discussion can be carried through

using only the field quantities at one time , say t = O. Lorentz

invarian ~e plays no role .

follows . Take two Fermi fields ' jJU) and commuting

with each other . The commutation relations are

[. (l) * (i) ] 3t (~) . f (1 ) + = ~' (~-~) ;

r , ti, ) tj \ 1 [ 1.\.1 li } * U) 1l ' f ( i , i (-1) _ :: 1 (~ ) \f' (., ) J_ ':'"O

Then define the "parafield " t as the sum of these two:

I'll l\) (,)
T (x) ::: + l ~) -t t (~,-- .... ...

and demand that only such quantities which are expressible in

terms of this parafield should occur in the theory .
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�

Ol - .

The largest algebra satisfying these requirements is the

algebra Oio , which consists precisely of all ~ elements

of ' F p (el '3ments invariant under the substitution t ~ - t ).

So at must be contained in (or possibly be equal to ) Oio .

Now one remarks that 0( 0 can also be characterized in terms
Jt., (/) ~ (2.)

of the algebra generated by two Fermi fields , ; , j

with normal commutation relations :

r ~(~) (j) J [ (~) ~ U) ~) ( r3 ;\L't' (~lr (~) +':.0) t (~))T t':).J t=J~j ~ (f-;j). ~.~J

v 0( ,,)

Before we can analyse the physical content we have to

know what the observable algebras corresponding to various

space regions are . There are several possibilities but the

choice is limited by the following two restrictions :

i) The observable algebra O( (V) of the space region V

shall be a suoolgebra of the parafield algebra 1; CV) of
the same region . The latter is the * - algebra generated by the

t (f ) for all test functions f ' with support in V .

ii) If V, and V}. are disjoint, then (}((V,) and O( Vt.)
shall commute (locality ) .

Of course the net of algebras 0( (,,) shall be covariant with
respect to translations and the total algebra at is defined as



It is readily seen that with the definition

 The general

where F

F or the

Rewriting

one sees that

can be

is the

elements
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.-
t - ~

.
. . . . . .

J
' " " " " " ~ t

~To see this we first embed

generated by the " Green co

and one additional element

formation " ) .

(3 . 1) , (3 . 2 ) .

- I

J(J.

in a large algebra

t (,I) ,
for

are

-

(~.~)

[1("2. I ~ U)(~] - -= 0 "> r2. I ~(1)(~J+ .: 0 .

t (I)(~)
. . , .

If (z) (;.<.)
, . . .

"*'
~(I) (~)

-
' : :

~.,)
'f (1.-) ~l i.\

. -

we obtain the normal commutation relations (3. 4).
" ' "

element of ' ; is of the form F + r '1(1-
and F I are expressible in terms of the ' ft ~)

of ()( F I is zero and F even.
0

such an element in terms of the and~ \() K2

identity .

'Klein transare 

given in

K2 drops out because in each monomial the factors K2

shifted to the right using ( 3 . 5 ) and an even power of K2

1
- 3 1 - 3

:
: J " : : J "

C
D
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Let us denote the algebra generated by the two normal

Fermi fields ~t~) (~, (with ~ ranging in V ) by ' f (V)
and consider substitutions of the form

~t~) \ ' " (K1 :\
'1' (~ ~ ' -7 91( ~ 4: (~) . ~Il J

Such a substitution generates an automorphism of ' F denoted

by ~ j as long as the 2 x 2 matrix 9 is unitary. One
finds

Lemma 3. 1 0(0 (Y) is the subalgebra of 1CV) consisting 
of precisely those elements which are invariant under the

automorphisms ~ 5 when 5 run S through SO(2) (real,
orthogonal matrices with determinant +1).

In other words: O{ O is the "gauge invariant" part

of ~ when we take 80(2) as the gauge group (acting on

-11' according to (3. 7) ).

Since the observable algebra OL must be contained

in 0( 0 other possibilities for at: result if we take a larger

gauge group ~ and again define at as the gauge invariant
part with respect to this group. We shall just consider one such

example, the case where the gauge group is the largest automorphism 

group of the form (3. 7), namely the group U(2). The

resulting observable algebra will be denoted by 0' ( J. .

Summmg up: instead of expressmg tile observables m

terms of the parafield we can express them also as functions



Observables and Fields 75

of two normal Fermi fields. The characterization of the observable 

algebra within this Fermi field algebra '};' is best

done by specifying the "gauge group" OJ under which the
observables are invariant. In our case (starting from a para

fermi field of order 2) the minimal gauge group is 80(2),

leading to the maximal observable algebra 0( 0 '

Given 1' , ~ and or: we have the following structure 
[ 23) : The different superselection sectors (families of

states which are of interest) are in one-to-one correspondence
*

with the "spectrum" of the gauge group. If OJ is Abelian
we have only Bose- or Fermi statistics. Let us consider from

this point of view the two examples mentioned above and compare 

the conclusions with the parafield description.

Example 1. l}i ":: 50b); 0{ -: Of .~ct 0
The gauge group is Abelian. Its spectrum consists of

the integers /)1'=0, t. , , to? , . . , . We thus have just one

ordinary charge quantum number, distinguishing the superselection 

sectors. States of charge .11 '::' + , are obtained 

from the vacuum state vector . fL by applying

c} (\)(f) .!- i cp(z) (.n Note that ~(i)* (f) +~<t>(Z}~(4
leads to the same sector. The sector M=- I is reached

from . il by 4' (1)- , it' (1-) or, equally well, by <p(I>*-~ 4(~* .

* The "spectrum of OJ- " consists of the equivalence classes

of irreducible representations of 0( .
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are ordinary Fermions .

We have,

(~.'6)t ~) ( 4>(\)({) *" ~ 4'(L-}(f)) "17.-

The particles with .'11 :=. : t I

How does that fit with the parafield description ?

according to (3. 6)

The comparison between the two descriptions is simplest if

K2.iL ~ Q . Then, according to (3.8) I f (f.) R is a

state with charge 1)1 = .t ' . Suppose ~ and f are test
functions with far separated supports . Then

'Y(~) t (f )Sl. =  p(I)(~)+iq(L)(8)) K~  j>(I)(.t)ti4 >(2)C.f)} !(1. ..fl :::.

=- (4>(II(a) + i q(l)(~)) (ct>(II(.f) - i <t> (2.~{f)) ~
is a state with t11 ~o . Any polynomial of t applied to JL
will produce only states with /)1\ = + / and /r1-=O because in

a product t will alternatingly raise or lower the charge, depending 
on its position. The fact that there are both symmetric

and antisymmetric wave functions allowed for the states generated 

from the vacuum by two parafield operators has (in this

example ) nothing to do with parastatistics but results from the

fact that the two operators produce different particles (the first

a negatively charged , the second a positively charged one). The

effect of ~ depends on the position it has within a product .

E~mple 2. ~= 0(2) ; (1L-= (1-(J. .
We may first note that (}(.1. is generated by the bUocal

dens ities
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fj(~. '.::1.) = <t>l')~(~) <\>(1)(-1) .+ ~(l)-X{~ ~(}.)l~) (~.i)
The irreducible representations of U(2) may be labeled by

two quantum numbers ( B

' Bt2T = even.

B = 0, "!: 1, 2- 2 may be conveniently interpreted as baryon

\1,,~b W, L = 01 1 , I> .. . ~$ iso, i., ,

, I ) with the relation

(3,10)

thinking of the theory of nuclei with strict charge independence .

To each allowed pair ( ' B , I ) we have a sector . In a sector

with isospin I each state appears with a multiplicity ( .2.I + 1 ).

Any vector in the ( 1'1..... j )- dimensional subspace spanned by

an isospin multiplet gives exactly the same expectation values

over the observable algebra and corresponds therefore to the same

physical state as any other vector in this subspace . With the conventional 

choice of the three components of isospin (the Pauli

matrices ~ and cr 3 real , ~ purely imaginary ) one finds that

the subgroup 80 (2) is placed within U(2) in such a way that the

charge quantum number /it is related to the second component

of the isospin - )T2 . - :l hl . (3. II

Applying the parafield algebra on the vacuum we get therefore 

only states with T .1. =- 0 or T2 -:.- i . The former

appear if we have an even number of 'f.J -factors , which leads to
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an even baryon number ; the latter appear for odd B . According 

to (3. 10) even B implies integer I . and then we can

find in each multiplet a vector with Ie ?:' o . For odd B ,

half integer I I we have in each multiplet a state with T2. :: :i #

Hence the restriction to .'11 := 0 J I does not limit the selection

of states . Applying the parafield algebra to ...o.. we obtain all

relevant states over 0( , only the multiplicity is changed as

compared to the representation space of the field algebra 1 .

We obtain with ~ each state only once instead of the

( 2I ..... i )- dimensional multiplets . In this second example the

parafield model gives a complete description . The parastatistics

of particles corresponds then to the fact that there is one hidden

parameter (the charge LJ . ) which is not observable . We see

that in this case the parastatistics may be reduced to ordinary

(Bose- Fermi ) statistics if one introduces this hidden degree of

freedom as an additional distinctive quantum number . It appears

that all reasonable parafield models can be reduced in this way to

the Bose- Fermi case ( 28] although a general theorem to this

effect based on the structure analysis described in section II has

not yet been obtained .
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Mathematical Appendix

The set of ~ bounded operators acting in a Hilbert

space 94 is denoted by ( B ( ? J ) . There are several topologies 

in this set 113( 1 / ) which are important in our context .

A topology means that we define what is a " neighborhood " of

an element in the set . Actually it is sufficient here to define

the neighborhoods of the origin . The three most important

topologies in t ' B ( W ) arising in the context of physics are :

a ) Uniform topologyo Since an operator A E CB ( ~ )

has a finite norm ) \ \ A II ) we may define aneighbor -

hood of the origin as the set of all A E ( B (C7jt) which

have a norm less than E . Any r:: > 0 gives us

one such neighborhood . Convergence of a sequence

A r1 E ~ ( d) J ) in this topology means that the

\ \ A ~ - Am \ \ < EN for all n , m > N and EN ~ 0 .

Such a sequence is called " uniformly convergent "

or a Cauchy sequence in the norm topology .

b ) Strong topology . We pick an arbitrary vector ~ t : ~

and an arbitrary number Eo > o . The corresponding

neighborhood of the origin , denoted by t ?f1 ( f e: ),

consists of all A E < B t " U ) satisfying

1\ A 2 \ \ < E
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c)

( <1") A" ~ ) for all pairs ~ , f .

vergence .

Example of a strongly convergent sequence which does

not converge uniformly . Take a complete orthonormal basis

f ~ in ~ and let En by the projector on the subs pace
spanned by the first n basis vectors . One easily sees that the

strong limit of the sequence E as n ~ 00 is the unit op -
n

erator (completeness relation ). Yet for arbitrarily large n we

still have \lE - E 11 = l ' i . e. there is no uniform conn. "..

Example of a wealdy convergent but not strongly convergent 

sequence . Take ~ n as above and define An by

where now the left hand side is the length of the

vector A 'f. (not the norm of the operator A ).

Convergence of a sequence A in this topology
n

(" strong convergence " ) means that for every vector

f the sequence of image vectors An '"-E $atisfies

\\ AY) I' - A Jt I f )J :.c:: cN .\;(' ~,)t1) N j'fN~ O.

Weak topol ~ yo We pick an arbitrary pair of

vectors '<I ~ ~ ~ and E > 0 and define acor-
I

responding (weak) neighborhood ?t (~ .f . E:) as the
J J

set of all A (' IS (~) satisfying r ( ! J A~) ' .<, e.
Weak convergence of a sequence A means the

n

convergence of the sequences of matrix elements
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This sequence

but obviously

belong to

A converges weakly ton

has no strong limit .

and a , {:3 are com -ffi (d){)B

~ fm ::: fn + m .

zero as n ~ oD

If A and

plex numbers then

a A + {3B

A . B (A . 1)
*

A (adjoint of A )

also belong to <1'1(' )/) . A subset of tB (I}/) which is closed
*

under the three operations ( A. 1) is called a - algebra of

bounded operators . If in addition it contains the unit operator

and is closed in the strong topology it is called a " von Neumann

ring . " 'If it is closed in the uniform topology it is called a (con-
*

crete ) C -algebra. Since the three topologies listed under a),

b) and c) are decreasing in strength we have in general that the

weak closure of a set is larger than the strong closure and this

again larger than the uniform closure . A weakly closed set is

always strongly closed , a strongly closed one is always uniformly
*

closed . Hence any von Neumann ring is also a C - algebra but

the converse is not true . It turns out , on the other hand , that for

*

a - algebra of bounded operators the weak and the strong closures

coincide . Thus a von Neumann ring is also always weakly closed .
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(i> [sJ,J ) one defines the " com-

denote the set

On e has

(8(11) which is
i . e .

(R" denotes the commutant
of the commutant ) .

R = R"

( ~ 7 II1)1.  Jcontaining

1\ A II

:: II A A"* Ir y~.)!IAII -= JIA* II '\~A/1:: Ia-\ 11 All (A. 2)

and the inequalities

IIAB" ~ !l A I I I I S" .II A+ B II ~ 'i A I I +fl'Bll (A.3)

  If S is any subset of

mutantS ' as the set of all operators from rB (IIJI) which
*

commute with every element of S . Let S

of all the adjoint operators of the members of S .

a ) The commutant of any subset of

closed under the * - operation is a von Neumann ring ,

( * 2'
1 Su$ J is a von Neumann ring .

b) If R is a von Neumann ring , then

c) is the smallest yon Neumann ring
S.

Let us now consider abstract * - algebras . Such an

algebra at consists of elements A , B, . . . for which the

three operations (A . 1) are defined, satisfying the usual laws .

As in the case of an abstract group the elements now are not

regarded as operators in some space but just as objects which

can be connected by the operations (A . 1). It turns out that

under rather general conditions the algebraic structure determines 

a natural norm for the elements of the

algebra satisfying
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a

If these conditions prevail , then the * - algebra may be equipped

with this natural norm topology and completed in it . It is then

*

called .an abstract C - algebra .

Given an abstract C * - algebra at one considers the

" positive linear forms " over it . Denote this set by O( . * ~ )

M * (;-) AAn element 6. ) from U \.. assigns to each G at

complex number ~ ( A ) subject to the two conditions

( i ) linearity UJ ( o( A + ~ ' B) = cc. t A J(A ) + p GII( B ) )

( ii ) positivity (A) ( A "* A ) ~ 0

The norm of such a form is defined as

~'v'P \ 6)(A) \
UAII:: I

(A. 6)n~ it -

One has

i\ [10) 1\ ': w t 1) . (A. 7)

The set of positive linear forms is a convex cone i . e .

lk) ::. AI ()JI + ALl.UL (A. 8)
/'1.1* (+) '\

belongs to V \. if (;(.), and (;.)2. belong and 1 , , " 1.-

are positive numbers . A positive linear form bJ is called

" extremal " if no non- trivial decomposition of the form (A . 8) is

possible .

A representation of at (by operators in a Hilbert

space U ) assigns to each A (-0(. an operator //riA) from

(A. 4)

(A. 5)
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(A. 9)

i "

( ~ 1r(A))~6)i (A) (A. 10)

Let us denote by 1 ' 1( the family of forms associated with

the representation 11' " according to (A . 10 ) and by f 't'1' (

the subset of " vectorial " forms (A . 9 ) . The former are the

convex combinations of the latter .

an

that we have a vector "1'

~ (d}f) in such a way that the algebraic relations (A. ! ) are

conserved. In other words it is an isomorphic mapping from
* *

the abstract C -algebra to a concrete C - algebra of operators

fr' ( at). The representation is called faithful if rrr (A \ .:. 0

implies A = o. In this case the norm of the operator 1r (A) is
*

the same as the C - norm of the abstract element A. We shall

only conSider faithful representationb in these lectures. Given

a representation one has immediately a family of positive linear

forms over at. , which are associated with this representation.

Pick any vector ' fl in the representation space, then

The connection between positive linear forms and repre -

sentations can also be followed in the opposite directiono Given

~ (+)

( )J f : at one can construct a representation 1r ' ~ so

in the representation space giving
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back the form UJ by (A . 9)0 This vector ' f is moreover

a " cyclic vector " ) i . e . the vectors ~ ( 0-{ ) p are dense

in ~ . This is achieved by the GNS - construction (the letters

standing for Gelfand , Naimark , Segal ) . It proceeds as follows :

First note that the algebra is itself a linear space and that an

WE- 0(* (to) defines a semidefinite scalar product between the
elements of at by

the algebra into equivalence classes modulo the set J which

w (:t;'*l )-: o.

positive definite scalar product

(B)A) :: ~("B~A) (AD 11)\

whefe

choice of the elements

Thus is a

' A5~ (A. 12)-

at IJ

(] )A) :::: (A.1("B*A) .
a positive definite scalar product one has to divide

latter consists of all elements ~ f : 0 ( for which

Let us denote the class of At at by A . This contains all

the elements of OC which differ from A by an element of the

set J . The set of these classes is a linear space with the

one checks that the right hand side is independent of the

' " 1 \

B , A . in the respective classes B , A .

" pre Hilbert space , " i . e . , it may be considered 

as a dense set of vectors in a Hilbert space ~ . We

obtain a representation of 0 { by operators in df . f defining the

operator 1 ( A ) representing A by

71 ' ( A )
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cor -

We have, by

(  ) 'f/(A)f ) :.

. A

The right hand side involves a choice of B from the class B

but one checks again that the class of AB does not change when

B varies within one class ( the set J is a left ideal of at ) . The

cyclic vector ~ giving back the expectation value ( JJ

responds to the class of the unit element of

( A . 11 ) and ( A . 12 )

A representation rr( is called irreducible if there is no
invariant subspace in the representation space ff- . A criterion
for irreducibility is Schur's lemma: III is irreducible if and

only if (if( l (J()) I consists only of multiples of the identity.
An equivalent criterion is ( 11 ( at)) Ii::: <B (0fJ) . The GNS- construction 

leads to an irreducible representation if and only if the
form ~ from which the construction starts is extremal.

If 1r is reducible we may consider the restriction of
11" to one of the invariant subspaces. This is called a subrepresentation 

of 11' . One calls two representations disjoint if they
contain no subrepresentations which are unitarily equivalent. A
representation is called "primary" or a "factor" if

(If( (C'() ) II () ~ (ot))1 -= t  ail )
i. e. if the von Neumann algebra generated by the representers
If((Q() has no nontrivial center. A form. (U is called
primary if the GNS- construction starting from it leads to a
primary representation.
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