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Introduction

The following story was reported to me. A few
years ago Klaus Hepp gave some lectures in the Brandeis
summer school. At some stage he praised the beauty of
axiomatic field theory. Next day he found the note on the
blackboard:

"Axiom 1: Axiomatic Field Theory is beautiful in an

empty sort of way."

Presumably this note expresses also pretty ac-
curately the feelings of the majority of today's audience
and indeed there is an element of truth in it. Specifically,
after about 18 years of hard efforts, the principal objective
of this enterprise has not yet been achieved. This objective
was to find out whether an adequate framework for the de-
scription of elementary particle physics could be developed
within the conceptual structure provided by the principles
of quantum physics, special relativity theory and locality
(= "Nahwirkungsprinzip'). Of course, from the point of
view of the development of basic physical theory, this ques-
tion has been one of the central themes for the past 35 years
and is by no means a monopoly of axiomatic field theorists.
What distinguishes various groups is not the question itself,
but rather the attitude towards it. There are three major

ideologies:
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1) The answer to the above question will certainly be no.
We need a radical change of our concepts, some brilliant
new idea. It is just as futile to approach elementary parti-
cle physics with the conceptual structure of 1930 as it was
to attack atomic physics within the frame of classical
mechanics. Therefore we should look for daring new ap-
proaches. Some examples: modification of geometry by
assumption of a fundamental length, elimination of concepts
which are far removed from experimental possibilities or,
on the formalistic level, non associative algebra, indefinite

metric in Hilbert spaces, etc.

2) The answer may be yes if we are sufficiently careful.

It is worthwhile to develop a framework which incorporates
the old principles, formulating them precisely, separating
the essential and the peripheral features of traditional
Quantum Field Theory, recognizing the numerous mathe-
matical pitfalls, One should then demonstrate that this
framework is internally consistent and study whether it
leads to any consequences which are in disagreement with

experience.

3) The time is not ripe for any assessment of the funda-
mental principles. The most fruitful task for the theoret-
ician at present is to analyze experiments, looking for
regularities and for phenomenological models which describe

the essential features.
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It is unfortunately in the nature of ideologies that
they tend to crystallize. One has to make a determined
effort to keep the channels of communication between the
different camps open. I think that the organizers of this
summer school had this need in mind when they asked me
to lecture here and therefore I do not feel apologetic for
exposing you to some ideas and problems in axiomatic field

theory.

Our first concern will be with the 'axioms" them-
selves, the formulation of the input assumptions. In the
course of the years there has been some development both
in the direction of simplification by recognizing the essential
elements and in the direction of enriching the structure. Let

me give a brief sketch of this development.

I. Axiomatic Quantum Field Theory in Various Formulations

A. The Simplest Kind of Field Theory

In the years 1953-56 the motivation was provided by
the divergence difficulties of standard Lagrangian field theory
models and the wish to see whether the renormalization pro-
cedures could be welded into 2 mathematically well defined
scheme independent of a perturbation expansion. For this
purpose it seemed adequate to consider the simplest type of

field theory, namely that of a single neutral scalar field A
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describing a single type of particle (of course with inter-
action). The generalization to several fields with more
complicated transformation properties seemed obvious and
straight forward. In laying out the framework one was
guided then by the experience gained from the perturbation
treatment of a Lagrangian field theory keeping those struc-
tural features of the renormalized perturbation solution
which could be precisely expressed mathematically. This

led to the following principal assumptions:

1) Principles of Quantum Physics. Essentially the mathe-

mathical and conceptual structure outlined in the books by
Dirac and von Neumann., It may suffice here to say that the
mathematics deals with a Hilbert space % whose vectors
cdrrespond to physical states; observables are represented
by self adjoint operators acting in % and there are the well
known rules for calculating probabilities for the results of ob-

servations.

2) Poincaré invariance

The Poincaré group (inhomogeneous Lorentz group)
consists of translations in space time and homogeneous Lorentz
transformations. A general element is denoted by (a , /\)
where a 1is a 4-vector of translation, N\ a homogeneous
Lorentz transformation and the notation suggests that /\

is applied first, @ later. We assume that the Poincaré
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group is represented by unitary operators in ”)3/
(a,/\) — (J (a,/\) .

The action of the unitary operator U ( @, /\) ona
vector in % shall have the obvious physical interpre-
tation; i.e., the image vector corresponds to the state
which is prepared by the same intrinsic apparatus as the
original'state but shifted in its space-time placement and
motion by ( a)/\). We shall write U (0.) instead of

U (O.,i) (pure translation) and (A) instead of

U (o, A) (Lorentz transformation),

Actually the situation is slightly more complicated.
One does not need (and in general does not have) a true rep-
resentation of the Poincaré group but rather a representa-
tion of its "covering group.'" This corresponds to the well
known replacement of a Lorentz- matrix /\ by a complex
2 X 2 matrix with determinant 1. The correspondence of
/\ to such 2 matrix o (/\\ is determined only up to
a sign, see [2] [3].

3) The vacuum state and stability

Writing . K
U(a') = Q—‘Ra‘ (L‘)

the infinitesimal generators R, of the translations may

be interpreted as observables. They correspond to the total
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energy and linear momentum of the system. We assume:

a) There is a vector £l i w which is invariant under

au U (0-: /\) . I is the only discrete eigenvector of any
U (a.). It corresponds to the physical vacuum state.

Clearly it has zero energy and momentum.

b) ﬂ is the ground state of the system. Frequently one
makes stronger assumptions on the energy-momentum spec-
trum in order to introduce particles and to exclude the ad-
ditional complications associated with the occurrence of

zero mass particles.

For instance instead of b)

b') The simultaneous spectrum of the operators F;, is
as in Fig. 1. It consists of the single point P',=o

corresponding to the vacuum state, then the hyperboloid

Pz‘: -ml, Po >0 corresponding to the states of

a single particle (mass m) and then the continuum above the

2-particle threshold.

~e

Figure 1.
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4) The Field

It had been recognized very early in the development
of Quantum Electrodynamics that the field at a point cannot
be a proper observable (e.g., the analysis of idealized
measurements of electromagnetic field strengths by Bohr
and Rosenfek%}. One has to consider averages of the field

(denoted in our case by A ) over space-time regions,such as

¢
= Qe |
vT dt Ndi A ) or, in general, weighted averages
ERY;
with smooth weight functions ¥ (3 |

Alf) = gd“x AWK, (1.2)

.In a handwaving way the mathematical nature of the field can
be understood if we have the physical picture that A(x) shall
represent an operation on the physical system at the point X.
One may anticipate then that such an operation must transfer

an unlimited amount of energy-momentum to the system.

To express this expectation more precisely we define

some notation (corresponding to a direct integral decompo-

sition of the Hilbert space with respect to energy-momentum).

Iet | p,”) be a (improper = continuous) basis of state
vectors, where P denotes the total energy-momentum of the
state and the discrete index n is used to distinguish the

states with the same P - A general state may be written

11
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¥ = Z Sdr»(p) \Pn(p) |p,n> , (1.3)

where the 'spectral measure" d y(p) may be chosen

without loss of generality as (I,L{)
app = &% 6% + 08 (p>wnd) +0GABLP4AY
the first term corresponding to the vacuum state the second

to the single particle states and the last to the states above

the 2-particle threshold. The normalization of Y is given

2
(¥, %)= §gaMplﬁ@n (t5)
corresponding to orthogonality relations

{phw Lpmr dp(p) = S,/ 84(;:’-?‘) (1.6)

The integrand in (1.3), i.e., the object

:fp = Zh ¥, (p) p,n (L7)

for fixed P can be considered as a vector in a Hilbert

by

space %P , the metric in a){P being given by
(‘I’P,TPXP = )l; H”h(p)lz IR

We expect now that the matrix elements < P,’ n | Al P*"b

are finite, Infact, we may even assume that the restriction

of A(x\ which maps from %P to %P' is a bounded

operator with a norm NP'P « But even for fixed P

the norm N Pp will not decrease sufficiently for

2
large P' to make N Pp integrable with respect
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to dr( p’ ). In fact as a consequence of covariance
and locality of A (assumptions 5 and 6) one would guess
that for large p'  and fixed P

N2, = Al =g (9
because all states with bounded energy- momentum should
be equivalent in their aspect around a single point X
(since such a state cannot give a singular preferential em-

phasis to any point).

If we define D as the set of states with fast enough
decrease of “ Y \l so that

gdy(p’)dy(p) 1l N 1R < 2

then the matrix elements

(TIAMIEY

will be finite. Thus the field at a point may be regarded as

with both @ and ¥ from D

a bilinear form over the domain ) . Alternatively, if in-
stead of A (x) we take A(ﬂ we get due to (1.1) and

the covariance of A under translations

{pin TA® Lpry = {pin ’lA(o)!p,n‘)?(p -p)
(19
By = Qi o710 6 )

with

13
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I ‘F(xx is very smooth then ?(q\ will have a fast de-
crease for large q In particular, if {: (x) is infinitely
often differentiable with respect to the four coordinates ¥ P
then F (q) will decrease faster than any power in any
direction in q -space. Hence for such € andfor ¥ €D
the vector A(f) ¥ will exist, provided that the growth
of NP/P is bounded by a polynomial, Under these cir-
cumstances the domain D will also be stable under the

application of A@) .

To summarize: The field A at a point may be re-
garded as a bilinear form on the domain D butnotasan
operator. Alternatively, the field averaged with a sufficiently

smooth weight function is an operator on D

Consequences: a) In traditional field theories the
dynamics is given by field equations which involve nonlinear
functions of the field at a point. The above remarks indicate
that it is not at all clear how such nonlinear functions of A(x)
can be defined or, in fact, whether they can be defined at all.
The answer is known for free fields (where we do not need it)
see e.g. 4], [§1, and it has been studied for the re-
normalized perturbation series in some models [61,171,

It has, however, so far not been possible to incorporate a
formulation of a specific dynamical law into the framework

of axiomatic field theory.
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b) The kinematics of traditional field theories, i.e. the
specification of the "degrees of freedom" ,is given by
canonical commutation relations between the field at a fixed
time but at different points in space. For the formulation
of such relations we do not need the field at a point but only

at a sharp time. We must ask therefore whether

A( 04)-{;) = Sd3x o (%) A (1(“%)
is an operator, when @  is a sufficiently smooth function
in 3-dimensional space. The averaging with O provides
a cut-off in spatial momentum transfer but not in energy.
NP'P one sees
?()C’) decreases

15
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fact it is questionable whether the separation between kine-

matics and dynamics makes any sense at all.,

5) Covariance of the Field

The field shall have a simple transformation prop-
erty under the Poincaré group. In the example considered

here it is

U (a,/\') A(A U-|(Q,A) = A()\x f-a) Q.!O)

6) Locality: Einstein's Causality Principle

Whatever the complete physical interpretation of

A(€) may be, one wants to assert that it corresponds to
an observable whose measurement involves only the part of
space-time in which the function F (x\ does not vanish.
This space-time region is called the '"Support of @ I we
accept Einstein's postulate that no physical effect can propa-
gate faster than light then the measurement of A (f) cannot
perturb that of A (3\ whenever the supports of 'F and 9
lie space-like to each other. Under these circumstances

A(F) anda  A( 3\ are compatible observables; the op-
erators A(F) and A (9) should commute:

IA«:} N A(ﬂ\]"O if Supp'F is spacelike to suppS . (I.IB
or symbolically [ A (x\) A (9)]_;0 6. (X’Ej\l)o . Q-“I)
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7) Primitive Causality

Einstein's principle covers only one aspect of caus-
ality, the one which is added when we pass from a non-
relativistic to a relativistic theory. Common to both is the
requirement that the knowledge about the state of a system
which is obtainable by measurements at one time suffices to
determine the state. In view of the comments made under
4) about the field at a sharp time, we should allow finite time
intervals for the measurement. The requirement of primi-
tive causality is then the following: The set of operators

A({:) for all functions § with support in a time inter-
val +-¢€ < X°<t+e should generate a complete system
of observables. This requirement may be mathematically ex-
pressed in another way: If an operator Q commutes with
the A (@) for all functions ‘F with support in a time

interval, then ) is a multiple of the identity operator.

B. Adaptation to More Realistic Situations

From a formalistic point of view this is a.straight
forward matter. The guiding ideas came originally from the

study of free fields (linear field equations).

There one has a very direct connection between the
nature of the field and the types of particles described by the

theory. This connection is at the root of the famous particle-

17
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wave dualism. Its overemphasis has been responsible for
widespread and long lasting misunderstandings about the
role of Quantum Fields. According to this view each field
should be associated with a certain type of particle, The
transformation properties of the field are related to the spin
of the particle; the equal time commutation relations of the
field are determined by the statistics of the particle. Thus
one generalizes the assumptions 5) to ,

5B) The theory deals with several fields ¢e° , the upper
index distinguishing the different fields, the lower index the
components of one field which go over into each other under
Lorentz transformations. For each ( one has a finite
dimensional representati‘on of the homogeneous Lorentz
group by matrices D (A) . The transformation law

of the fieldis ) Z (R
Ule,AY $, 03 U, = 2 D (KD, Thera),
To take care of the occurrence of Fermi statistics
the causality principle 6) is generalized to
6B) If ¢‘ is associated with a Bose particle then one has
[ (f)z(x\ \ 4) L(\pl =0 &r %-Y 5?0&“(& (i.f"ﬁ
if ¢( is associated with a Fermi particle then one has in-

stead
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[#'0,9%) = $adiprdindn —o

Be xey  speckke (1.14)

The requirement (1.14) can be put in accordance with Ein-
stein’s causality principle if one assumes that every ob-
servable contains only even polynomials in the Fermi Fields.
The commutation relations between different fields at space-
like distances are usually assumed to be: all Fermi fields
anticommute with each other, all Bose fields commute, any

Bose field commutes with any Fermi field.

Comments: Replacing 5) and 6) by 5B), 6B)
gives a framework which appears flexible enough to accom-
modate elementary particle phenomenology. The predictive
power derived from the bare framework has so far not been
spectacular but not entirely void either. The three celebrated
successes (all till now in agreement with experience) are the
PCT - theorem, the connection between spin and statistics and
a few quantitative statements about scattering amplitudes
which follow from analytic properties, for instance dispersion
relations for T¥-N scattering. The first two of these suc-
cesses are of a qualitative nature, and it is somewhat discon-
certing that with our present understanding of their roots they

depend absolutely crucially on the detailed assumptions listed

19
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above. Thus these two conclusions disappear if in 6B)
strict locality is replaced by macroscopic locality, They
disappear even if in 5B) one allows fields with an infinite
number of components. These questions will be one of the
principal concerns of this series of lectures., In particular

we shall focus on the problem of statistics.

The framework sketched under B is usually called
the Wightman frame not only because Wightman gave the
most precise mathematical characterization of (most of) the
assumptions, but also because he pointed out one of the most
important methods in analyzing the consequences, namely the

study of the vacuum expectation values of products of fields [30] .
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C. Local Quantum Theory {Field Theory without Fields)

The point of view described under B has some un-
satisfactory features. First, there is the association of
fields with particle types which, though not necessarily tied
to this framework, is nevertheless heuristically in the back-
ground. It is quite clear that if one insists on such an as-
sociation and wants to go beyond a purely phenomenological
description then one is forced to make a sharp distinction
between elementary and composite particles. No satisfactory
criterion (of more than approximative value) for such a dis-
tinction has been given. The opposite point of view, para-
phrased by Chew as '"the democracy of particles' has
grown since the early thirties. It was in particular the
realization that - in spite of the existence of e-decay -
the neutron should not be considered as a composite of a
proton and an electron which supported the idea that the era
of atomistic thinking in physics was over, that the division
of structures into elementary building blocks could be re-
garded only as an approximative model, very successful in
nonrelativistic situations but with no place in high energy
physics. The most emphatic and consistent advocate of this
attitude was Heisenberg who worked hard to develop a theory
involving a minimal number of basic fields. These fields

should then be associated with the fundamental quantum num-
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bers or conservation laws rather than with cbserved particle
types. Although in recent years the possibility of a quark
model of elementary particles has given the atomistic idea a
new lease on life this does not necessarily contradict the
trend towards 'democracy.! If the quarks turn out to be
real and heavy and the models successful then one has an un-
expected extension of the regime in which nonrelativistic ap-
proximations are meaningful but still one is led to a theory
with few fields associated with fundamental quantum numbers

rather than particles.

We may look at the relation between fields and par-
ticles from another angle: the collision theory of particles
in the framework of local field theory. We adopt for the mo-
ment the field theoretic framework sketched above leaving
the detailed physical interpretation of the fields open and keep-

ing only the generic statements

"
{i) the operator ¢ (f) shall represent a physical oper-
ation on the system which can be performed in the space-

time region given by the support of the weight function f,

(ii) the Hilbert space w shall contain (the state vectors of)
all the different single particle states; the fields shall be
complete in this Hilbert space, i.e. there shall be no

operator in % apart from multiples of the identity
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¢
op erator which commutes with the ¢(€)for all
H and f .

One finds then that the identification of those vectors
in ?:f which correspond to arbitrary configurations of in-
coming or outgoing particles is already implied and hence the
S-matrix elements for all possible processes in such a model
are uniquely determined . El] ) 2] See also the exposition
in {13] . In other words it is neither necessary nor possible
to add any further independent assumption concerning the physi-
cal significance of the fields, Their only role is to fix for each
space-time region U the set of operators 9:(0') which cor-
respond to physical operations performable in the region. For
reasons which will be discussed a little later we shall call

F(6) the vtield algebra of the region &/ " Once the cor-

§— F(6) (.15)

is established the theory is defined and its physical content

respondence

fixed. We may consider (1.15) as the intrinsic definition of
the theory and the description by a set of fields as a special
way to parametrize (1.15). Loosely speaking, if we start
from the frame B thfzn ?’/( (?' ) will consist of all functions
of the operators 95‘ (‘F) for all weight functions ’F which
have their support in O' .
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Let me try to explain what I mean by the word ''in-
trinsic"” in this context by an analogy. In geometry we
would consider as intrinsic objects the space and its points.
Now we may introduce coordinates, thus assigning to each
point an n-tuple of numbers, These coordinates are not in-
trinsic because for the same geometry the introduction of
a coordinate system can be done in many different ways; any
choice involves some convention. In a similar way, suppose
we are given the collection (net) of field algebras ?')(d)for
the various regions d . Then the theo_ry is fixed. We may
try to find a system of local fields ¢ ‘63) which generates
the net of field algebras ?/(0') . - such a system ¢ ¢
can be found it may be regarded as a coordinate system'for
the net ? . As in the above analogy the system 75 ¢
is not uniquely determined by the net . There are many
other field systems ¢k: # ”, cooe Whigh lead to the same

net and hence to the same physics.

This non-uniqueness of the choice of a set of fields
within one physical theory has been stressed by H. J. Bor-
chers [14]. Ishall call therefore the collection of all local
fields associated with the same net ?/ a "Borchers
class." It is true that the definition of such a class of ''rela-
tively local" fields used by Borchers is slightly different

from the one I use here but this is a difference in technicalities
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and not in spirit, So let us not worry about it at this stage.
To fix the ideas I want to illustrate the nature of a Borchers
class in an example well known to all of you, the theory of
a free scalar field A . In that case we may define other
"local functions” of /| by the Wick-ordered powers:
h
A= AN
n
We can also obtain local vector fields, e.g.
B, = 12, Al AL QA
or tensor fields
= ¢ d ) .
’B’”’ (’) . EP A(‘) yA()’
ete,

From any one of these fields one generates either
the same local net JF as from the orfginal field A ora
subnet of it,

We have called
ing thereby *-
algebra,
This means
d,, d,
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again belong to f’(@l) . I we have in mind the specific
construction of 517/( 0’) by functions of a set of basic fields
then this statement is obvious. If, on the other hand we

want to start from the physical significance of 3’((0' ) as

the set of all "operations performable in the region & ,
then the statement that () must be a *-algebra is not
quite so evident, It is tied to peculiarities of the general
quantum theoretic description buried in our assumption 1).

I am not too happy about the status of our understanding of
this formalism from operational principles but it would carry

us too far astray if we tried to discuss such questions here,

Some further more technical specifications about the
nature of 5‘/ { ¥4 ) have to be added, For many purposes it
is convenient to consider only bounded operators. This is no
restriction from the physical point of view. Suppose 9 is an
unbounded self adjoint operator and Y a function from the
real numbers to the real numbers which maps the whole real
line on a finite interval so that | 9(§)|¢a foran § .
Then the operator 9(q) is bounded and has a norm

Ne@ll €¢a . If the mapping g-—»g:(g) has a
unique inverse then the measurement of the observable Gl
and that of the observable ?(q) are the same physical
operations. Only the scale of the measured values has been

regauged from § to ?(§) .
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Thus we want to assert that each g’/( O’ ) shall
be a *-algebra of bounded operators, The set of all bounded
operators in a Hilbert space ‘}:{' is denoted by (B(GN ) .
There are several important topologies in the set (E(W) which
have been studied extensively in the mathematical literature.
It turns out that those topologies which appear natural in the
mathematical context also have a rather direct physical sig-
nificance in our discussion. ILet me say some words at this
stage about the relevant mathematical concepts (topologies,
von Neumann rings, C*-algebras, etc.) and the most im-
portant theorems relating to them. I shall collect this ma-
terial in an appendix so that the reader who is familiar with

these mathematical matters can ignore the digression.

For the moment we need only note that 9/(0’) will
be taken to be a von Neumann algebra and that this specifi-
cation is a matter of convenience and choice rather than a

restrictive assumption concerning the physics.

The adaptation of 5B and 6B to this language is
trivial. Instead of 5B we have the simple transformation

law

UCo,A) F(O) Ula, Ay = F (AT +a) (116

meaning that the field algebra of one region is mapped by
the Poincaré operators U ( o, /\) exactly onto the field
algebra of the image region. In the case of 6B we still
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have the somewhat artificial sounding assumption:

Each Fe 31(0’ ) can be uniquely decomposed into
F=F,+F, o)

with Fy and F; from 91/(0') . (The indices B

and F standfor "Bosepart” and "Fermi part”). If FY

and F%® belong to algebras of two regions which are
space-like separated, then

{Fam; Fam] = [F:), F:-l,] =0 (1.19)

LR, T L =0 (113)

Again, if F is an observable then FF’ =0 and, of
course, the product of two Bose type or two Fermi type
operators is of Bose type, the product of a Bose-type with
a Fermi-type operator is of Fermi type.

The unsatisfactory feature of this formulation of the
locality principle does not only lie in its complicated struc-
ture. Letus denote by R (&) the subalgebra of 3‘7(6)
generated by the observables, Thenfor (J; spacelike

to U, and A,eR(Ef), A,eR(ﬁ’,j we must have
[ A; ’ A;,] =0 (I,ZO)

The commutativity for observables is the well known con-
dition for compatibility of their measurement and the com-
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patibility is demanded by Einstein's causality principle.
Let me emphasize again that the assumption (1.20) is not
made in view of cur knowledge about Bose-statistics bt is
an expression of the causality prineiple. This suegests a
namber of questions:

1) Why should we consider a "field algebra™ 91/ which
is essentially larger than the "observakle algelora™ R?

2) While it is clear that for nonobservable elements of ?l/
we need not kave space-like comnmiativity in order to satisfy
the causality principle (as iliusirated by the example f Fermi-
type operators} it is to be expected that the czusality principle
puts some restrictions on the commutation relations of the
"local gperations™ which are not observakles. The relations
(1.18), (1.19) specify one possible commutation structure.
But is this the only possibility? Does causality alone fmply
that there exists only the Bose-Fermi allernative?

We may answer the first question for the moment In
a preliminary, so to speak phenomenoclogical, way. Recall
that we insisted on incorporating in % the siate vectors
of all types of particles. From ecliision theory and the
causality requirement (1.20) for observables i follows that
the observable algebzra cannot comect the vacunm state with
a state of a single Fermi particle. Hence if we resirict our
attention to the observable algebra and if Fermi particles
cccur then% must be decomposable into subspaces ?éf

29
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so that R transforms each Wa’ into itself. In other
words, we must have "superselection rules” [15] 5

the matrix elements of any observable between
vectors from different subspaces Wo,vanish. This brings
us again close to the second question; we should understand
why superselection rules appear and whether we can say

anything about their structure.

To investigate these questions one can start from
two different angles. The first approach would be to realize
that the concept of an 'operation" on the system is more
general than that of an "observable" and that correspondingly
we get less stringent requirements for causally disjoint "op-
erations' than for causally disjoint 'observables.' Since we
shall not follow this approach I shall not try to make the notion
of a '"physical operation" more precise at this stage but re-
fer to [16] in which this concept is partly used. The second
approach, and this is the one we shall take, starts from the
observation that all the physical information of the theory must
already be contained in the net of observable algebras R and
in fact even in the restriction of R to one of the invariant
subspaces Ma‘ , say to the space wo which results by
the application of R on the vacuum state vector. In %
we have an irreducible but still faithful representation of the

observable algebra. A justification of these claims will be
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given a little later. First I want now to formulate the
framework as it results if we focus only on the observable
algebra and its irreducible representation in the '"vacuum

sector" ?5(

» - The assumptions 1), 2), 3) concerning

quantum physics, Poincaré invariance and PP -spectrum
are not changed. We may, however, anticipate that in the
spectrum of P’, we do not necessarily find the mass-
hyperboloids of all relevant particles (because some of

these states may lie in other superselection sectors).

4C. To each double cone K in space-time one has a
von Neumann ring R(K), the algebra of observables

localized in the region K.

Note: For reasonsbecoming apparent later we do not at this
stage consider arbitrary regions of space-time but only
the simplest set of Poincaré covariant, finitely extended

regions, namely double cones.

Instead of 5B we have

°C U (a,A) R(K) U '(a,A) = R(AK+a) | (2]

In order to formulate the primitive causality we need consider
also the algebras of regions which are not double cones, Let
us denote by \/‘ R ; the von Neumann ring generated by all

the rings R‘- , So that one has
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7N/
V:R; = {“Rz} (1.22)
E & is any space-time region then the following definition
suggests dself.
Definition.

R(G’} = V;R(K;) ever él] chg . (’»13)

Note that this introduces no essential additional restriction
cn the relation of the R(K) because, if O is itselfa
double cone then on the right hand sight K also appears so
that in this case the only conseguence is the monctoay re-

guirement

RIKYCRK) # KCK, (124

We can now formmulate a {strengthened} version of the primi-
tive causality assumption.
7C. Let {Kz} be an arbitrary covering of the hase of

a double cone K s

VL R(K) DRK) . (25

Mote that this assumption implies first that (at least for the
simple types of regions considered here) the algebra of the
region is generated by the algebras of an arbitrary set of
covering subregions. This property, called “additivity” is
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suggested by the field theoretic background, For a field 9’/‘
we can decompose 4’“’) into a sum of ¢( {:[) where

the ﬂ have their respective support in the subregions
corresponding to an arbitrarily chosen covering of the sup~
port of ¥ . This decomposition of the smeared out fields
corresponds to the additivity property of the rings. Secondly,
(1.25) demands the hyperbolic propagation character of the
equations of motion. Loosely speaking the Cauchy data on
the base of a double cone determine the quantities every-

where in the double cone.

Another requirement, mentioned before, is

8C. Irreducibility

V RK) =BG o N{RKY}= {1}
Atk (1.26)

Finally there is the Einstein causality which we shall in~
corporate in a somewhat stronger assumption:

€C. Duality (for double cones)
7 .
R(KY = R(K) , (27)
where K’ is the causal complement of K , i.e. the set of
points which are space-like to K

Clearly this assumption is a strengthened version of the
locality postulate since the latter could also have been written

R(K) € R(KY . (1.25)
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Beyond the locality requirement the assumption of duality
implies that the rings R (K) are maximal. If we have a
net of von Neumann rings R(K) satisfying the requirements
1),2),3),4C,5C,ant 1.28 We may ask whether we can finda
richer net R( K)2R(K) still satisfying the mentioned re-
quirements. Now if Q belongs to ﬁ (K) it has to com-
mute at least with R(K’). Hence, if R satisfies (1.27)
then -R(K)= R(K))i.e, then R is already maximal. One
may ask whether conversely maximality also implies duality.
Suppose we want to enrich the net R by adjoining one more
element Q to R(K) for one special K Because of the co-
variance we have to adjoin the element Ua,A) Q U-((o,/\)

to R(AK+a) . There will be a subset SK of Poincaré
transformations for which /\K +a 1is totally spacelike to K
Therefore Q can be adjoined to R(K) if and only if the follow-

ing two requirements are met

/
(i) Q € ‘{R(K')IJ

(ii) IQ) U(O,A) Q U—i(aIA)] =0 -g;r (0,/‘) € S‘K .
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In the case of fields (framework B) Borchers [I14] has
derived the interesting result that it §° ({= 1, N),
is a complete set of local fields and if Cﬁo is another field

(not assumed local) satisfying

I‘#O(x\ , 4);(3)]'-'-'0 for (x-y) space-like

then ¢° itself is local. This so called "transitivity
of locality" suggests that perhaps the requirement (ii) on

Q may follow from (i) under rather general circum-
stances. I this could be shown then we could always enrich
the net R by adjoining elements from R(K’)” until the
resulting net satisfies duality and is then maximal. For the
moment, however, it is not known under what circumstances
(ii) can be inferred from (i) and hence it is not clear whether
the duality assumption is an extra restriction (beyond locality
and maximality). For the net of von Neumann rings arising

in free field theories Araki has shown that duality holds [ I7] .

D. Algebraic Approach

In the early fifties a mathematical fact of seemingly
great importance to quantum field theory was noticed and em-

phasized independently by several authors. Studying the

35
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of freedom ( Qs Pic k= (~e0) it was found that there
are many inequivalent irreducible representations of the

9k » Pk by operators in a (separable) Hilbert space.
The number of such inequivalent representations is not de-
numerable and a complete classification in any constructive
sense seems impossible,*) This is in contrast to the situ-
ation of a finite number of degrees of freedom where there
is essentially one unique equivalence class of irreducible
representations, It was also realized that the many in-
equivalent representations could not be dismissed as patho-
logical. In fact, if 2 Quantum Field Theory could be defined
at all by field equations and kinematical commutation rela-
tions then the selection of the representation space of the
kinematical relations so that it fits with the assumptions
2) and 3) is a problem determined by the dynamics. In
his talk at the Lille Conference 1956 [181 I E. Segal
confronted a rather critical and disbelieving audience with

* For the canonical anticommutation relations this phenomenon
had already been pointed out by J. von Neumann, Comp. Math.

6, 1(1938) but for some reason its relevance for quantum field
theory had not been realized till much later,
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the claim that the representation problem was irrelevant,
that one did not need operators in a Hilbert space but only

an abstract C*-algebra. In a very interesting earlier paper
[191 Segal had studied the mathematical structure of
quantum mechanics and pointed out there that many ques-
tions of physical interest(e.g. the determination of spectral
values) could be answered without reference to a Hilbert
space if one chooses the algebra of observables to be a C*
algebra. The skepticism of the physicists about the possi-
bility of a purely algebraic approach to field theory was due
to the lack of a convincing idea as to how a typical scattering
experiment could be discussed in this frame. Also the physi-
cal significance of the myriads of inequivalent representation
was not understood. But seven years later we realized that

Segal's claim had been essentially correct.

1 give a brief description of the algebraic version of
general quantum physics, i.e., the mathematical and con-
ceptual structure which constitutes assumption 1) in this
language: |
1D) The central mathematical object is a C* algebra®{ .
A state @ is mathematically described by a positive linear
form over O . Every complex valued function on O(
satisfying the two properties (with A,B e O{ and

«,f complex numbers)

37
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w(aA+EB)= xw(A)+§w(B)  (inearity)
o(A*A) 20 (positivity)

is a state.
We may add the normalization convention
w(1) =1
One can immediately distinguish pure states and mixtures
(see appendix). Every element Ce({ induces a linear

transformation of states w —> @), defined by

w, (A) = w(C*AC) (1.29)

Such a transformation maps the pure states into pure states.
w(C*¢)

w(1) :
The correspondence of these mathematical objects to physics

The norm is changed by the factor

is the following. A t"state" represents a statistical ensemble
of physical systems. The norm |lwl|] = w (1) may be
regarded as a measure for the total number of systems in the
ensemble (in arbitrary units, hence usually put equal to 1).
The mixing of states is linearly represented here. For in-
stance w'=Aw +10,  @ith ) ;>0 ) is
the mixture of w, and w, Wwith weights \, , A,

(In the Hilbert space version this corresponds to the mixing

of density matrices, not the superposition of wave functions!).
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The physical significance of the elements of the al-
gebra is a double one. On the one hand, if AeOf is self
adjoint, then A may be regarded as an 'observable" in
the standard sense of this term. K A is regarded in this
role then W (A) is the expectation value of the observable
A in the statew . Secondly, any element of M with norm
less or equal to one (whether self adjoint or not) represents
an 'operation.' By this we mean the change of state pro-
duced if an apparatus acts during a finite amount of time on
the systems constituting the ensemble (59 . The "operation"
may include a selection process by which a certain fraction
of the systems in the original ensemble is rejected by the
apparatus (prototype of an 'operation' is an arrangement of
Nicol prisms and quarter wave plates). The fraction of the
original systems which is transmitted will be called the trans-
ition probability for the state through the apparatus. If Ce€0(
is regarded as an operation then the change of st:;te is given by

W
(1.29) and the transition probability by  —(5 (1) *

Of course the measurement of an '"observable" also
implies an operation'" in the above sense if the measured
systems are available for subsequent further observations.
Such an operation transforms, however, in general pure states
into mixtures and does not coincide with (1.29) except in the

special case when Cisa projection (i.e. C =C* = C2). In
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general, we have the double role of the algebraic elements

and it is useful to keep both roles in mind.

These remarks may suffice to indicate how an ex-
periment may be described in the algebraic frame, without
recourse to Hilbert space. A typical experiment may be
schematized by a source which prepares the initial state and
an analyzing apparatus involving a selection process. The
result of the experiment is then the transition probability of
the initial state through the apparatus. The description of
the source and of the initial state will be done by a combination
of two methods both corresponding to actual experimental prac-
tice. The first is filtering, the second monitoring. In the first,
one uses an "operation" with as small a range as possible on
an entirely unknown original state. In the second, one obtains
information measuring the transition probabilities through a

certain number of monitoring apparatus.

We may now compare with the Hilbert space formu-
lation. There one uses ordinarily an irreducible representa-
tion of the observable algebra O( by operators in a Hilbert
space 9’( . Let us denocte the operator representing the al-
gebraic element A by W (A) . Picking up any vector 19%
we obtain a state on O( by

wg (A) = CF, TAT) . (1.30)
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If we let i’ run through ?\‘ we obtain precisely all

those states which result from one of them by transforma-
tions of the form (1.29) i.e. by application of some op-
eration from O( . We call one such family of states a "super-
selection sector' because, if ‘I’, and \P:. are state vectors
belonging to two unitarily inequivalent irreducible representa-
tions ‘Tf, resp. T, they are so to speak incomparable. A
linear superposition of such vectors is meaningless. E may,
of course, be formally defined in the representation 71, T,
but then it only corresponds to the mixing of the states, not to
a coherent superposition, Thus, existence of unitarily in-
equivalent irreducible representations of N is Synonymous
with ‘existence of superselection sectors. It also means that
there are "pure operations' (i.e. linear transformations of
states mapping pure states into pure states) which are not in-
duced by elements of the observable algebra (not of the form
(1.29) ).

In the example of the algebra generated by an infinite
system of canonical quantities we remarked that theressa tre-
mendously large multitude of inequivalent irreducible repre-
sentations and, correspondingly,an overwhelmingly rich supply
of states, This phenomenon is typical for the nets of local
algebras encountered in field theory. One may ask whether

really all of these representations should be considered or
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whether some additional physical restriction has to be im-
posed to limit the number of superselection sectors which
are regarded as physically relevant. The answer to this
question depends somewhat on the point of view and on a
reasonable balance between considerations of principle and
those of practical nature. From the point of view of prin-
ciple one can say that actually it is impossible to know pre-
cisely which state is prepared by a given source. The avail-
able information is always such that it determines not a state
but a2 so called "weak neighborhood" in state space. This is
a set of states whose common feature is the validity of some
finite set of inequalities

| ) —a;) < ¢ 5 i=12-4N; 70, (1.3)
For instance in monitoring a state one is only able to make
a finite number of measurements (say /\“'")AN ) with a
limited accuracy (c—, RAA ). Any choice of measurements
A. , mean values Q¢ and error limits €; defines one

[4
weak neighborhood in state space.

Theorem [20].

Let T and «rro be two irreducible representations
and @), some vector state of T . If 7 is faithful then

every weak neighborhood of @, contains also a vector state

of
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This means that it is impossible to prepare an en-
semble by a realistic source in such a way that we know in
which superselection sector the corresponding state lies.
The distinction based on unitary inequivalence of repre-
sentations is much too fine to be physically measurable.

We might say that all faithful representations are physically
equivalent. We might select any one of them (or use no
representation at all) in order to discuss a specific experi-

mental set-up.,

On the other hand it is usually very convenient to
simplify the description by an idealization which restricts
the set of states considered (adding some information about
the occurring states which is neither needed in principle nor
available in reality). We shall do this also subsequently and
thereby reduce the number of relevant superselection sectors
to a manageable size and the distinction between them to
physically important quantum numbers. This discussion will

be exemplified below,

Thus far we have described how the assumption 1),
the principles of Quantum Physics are expressed in the al-
gebraic approach. The expression of the other assumptions
is to a large part a straightforward adaptation of the formu-

lations under C .
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For instance, instead of the von Neumann rings
R(K) ,We consider now C*-algebras Ot(K Ywith the obvious
monotony property that K DK, implies O((K'\ > 0((K).
The total algebra of observables is defined as
XK= Vot , (1.32)
where the bar means the completion in the norm topology.

One feature of physical importance, tied to the
definition (1.32)should be stressed. Every element of H
can be approximated by an element from some finite region
K uniformly with respect to all states. Hence M contains
only elements which correspond to still essentially local

quantities, observables which are "quasilocal.” Truly
vglobal” quantities, like (bounded functions of) the total
energy are excluded as unmeasurable, and this is satisfactory
because their measurement would require an infinitely extended
apparatus. In this respect the difference between the norm
topology and the strong or weak operator topologies is crucial.
Take the example of a Poincaré operator U(a,/\) o Itisa
global operation because its effect does not become weaker in
faraway regions of space. The norm of the difference between
U ( a, A\ and any element from any O((K) is always greater
than 1 because, no matter how large K is we can always find
states which are essentially different from the vacuum with re-
spect to measurements outside of K . On such states the effect
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of U( a,A) is very different from that of any A e ({(K),
K, on the other hand, we first pick a state vector ¥ in
the Hilbert space % then we can find a region K large
enough so that with respect to observations in the causal
complement K’ this state and the vacuum state are almost
identical, Then one can findan A €({(K) so that
NUeM-A)F | < €. This means that U(a,A) can
be approximated by local quantities in the strong operator
topology in the vacuum representation.

We have seen that U(a,)\) cannot belong to a.
Hence, in a strictly algebraic formmlation the Poincaré in-
variance cannot be expressed in terms of unitary operators.
Instead we have to each Poincaré transformation (a,\) a
corresponding automorphism ¢l a,A of the algebra ({

(see appendix for an explanation of the term *"automorphism"),

Again we must have the product relation
L 8
and, in fact, now we have this relation really applying to the

oAy 0(“2)\1 = don*/\vaz;AlAz 9

Poincaré group itself, not to the covering group because the
arbitrariness of phase of a state vector qz does not enter
here. The elements of the algebra and the states considered
as positive forms over the algebra are free from this ambi-
guity. The transformation law readsthen

%, 4 (00060) = O{(AK+a) . (1-39)
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From (1.32) we see one reason for the occurrence

of many inequivalent irreducible representations of 0(. .
A state @ over O‘( defines a state over each subalgebra
OL(K) . This is called the restriction of O to ({(K)

or, for brevity, in more physical terms the '"partial state"

of the region K . It will be denoted by @), . Now con-

sider a sequence of mutually space-like regions Kh s
moving to infinity as n-> o . We may prescribe arbi-
trarily a partial state w Ko for each of these regions
and there exists always a total state @ which is the simul-
taneous extension of this collection of partial states to the
algebra O( . (Compare [2!] ). All vector states occurring
in the Hilbert space of one irreducible representation of 0,8
have a common asymptotic behavior for their partial states
m] K, as nN-> 0, In other words for any two
such normalized states we have “ mm\K -wm 1K n->o R
Omitting fine points the proof uses the foﬁowing f::cts: The
two state vectors in question, being associated with the same

irreducible representation v , are related by

3 = q7(c) T vk C e 0.

Since C is quasilocal it cannot change the partial
0}
state far away unless the state ‘P already has correlations
between its partial states in regions which are infinitely far

apart. This is however not possible for a pure state,
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We may formalize this in the following way. Let K g

be a sequence of increasing double cones which exhaust
space-time:

KIH 2 KQ R K,Q = all space-time . (|.3‘”
Take any sequence of elements A g€ o( KD with |]A£U$1,
Then for every fixed C € O we have due to locality

| [e,Ad]}—o .

Since A J] tends to commute with all elements of the algebra,

the representatives 10 ( A 1) in an irreducible representa-
tion approach multiples of the identity operator (by a slight
generalization of Schur's lemma). One has therefore the

"'cluster property"

(%, (4, E)~= (v t) D) (E ) F)

for normalized ‘P, and the first factor is, in fact, even in-
dependent of the direction of the unit vector ‘1’ in the repre-

sentation space. This includes the statement that all vector

47

states in an irreducible representation have the same asymptotic

tail of partial states.

We see therefore how to construct a great variety of in-
equivalent representations of 01 . We just have to choose at
random sequences of partial states for space-like separated

regions moving to infinity and then extend each such sequence
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toatotal state on Ol . H the asymptotic tails of two

such seguences do not coincide we obtain states belonging

to inequivalent representations. Simple examples of such
states are those which describe 2 non-vanishing density of
particles extending to infinity in space. For the purpose of
elementary particle physics it is, however, both legitimate
and convenient to idealize the "cosmology™ by the claim
that all states of interest to us coincide with the vacuum state
asymptotically for observations in far away regions.

For the remzinder of these lectures we shall Himit our
attention to states 0 for which the difference of the partial
states (w-wo) i <’ in the causal complement K 1 of
the double conei(t g%es to zero in norm as )2-7 0 fora
sequence of double cones K  of the type (1.34). Thus, for
any *state of interest” &) and any positive € thereisa
double cone Ke- so that

I (m-w,‘)[g, | <e. (135)

This restriction on the *states of interest” is a very
strong one. Let me point cut that i is, in fact, too strong to
be reasonable in Quantum Electrodynamics because there
Gauss's law asserts that an electric charge located in a finite
region can be determined by means of field strength measure-
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ments on the surface of an arbifrarily large sphere. Hence,

no matter how large we chocse K there is always some
element of OU(K?) for which a state with a Iocalized charge
and the vacuum give markedly different expectation values.

We should really require the asymptlotic coincidence of states
not for their restrictions to the complements K Ll ofa
sequence of increasing finite regions Kg_ s bat the partial
states of finitely extended regions moving out to infinity. Still,
excluding the mmch more difficult case of long range forces from
cur consideration, the restriction (1.35) appears reascmable.

Ansther condition on the states we wish to consider, 2
condition which is not unrelated to (1.35) but not quite 2 conse-
quence of it is the following: all states considered shall lead
(via the GNS-construction) to represeniations in which the
Poincaré astomorphism group ©L ap canbe {continucusly)
implemented by unitary operators {J (o, A) 2nd furthermore
the resulting spectrum shall be contained in the forward cone
(oo negative energies).

With these limitations on the "states of interest" and
some well supported properties of the vacuum representztion*)
one finds that all the representatives we want to consider are
“strongly Iocally equivalent.” This means that for any two

* For iustance that fr(’(o((i(‘))" is a factor of Type ML
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such representations their restrictions to a subalgebra
QUK )or to PL(K) for that matter) are unitarily
equivalent. The set of partial states of a region O/
occurring in any of these representations are identical as
long as OJ has a non-void space-like complement 0' ’ .
The distinction between the surviving superselection sectors
appears only when we consider the total algebra O( . In
particular we have now not only the asymptotic coincidence
of states as demanded by (1.35) but in each superselection
sector of interest and for each region K we can find states
which coincide exactly with- &, on 01 (K/). Such states are
called "exactly localized" in K . If sucha state lies ina
different superselection sector than the vacuum, say it lies
in the sector O , then we may visualize the situation by the
physical picture that the state has a 'charge quantum number
U’ ™ but that this charge is strictly localized within K . It
can be strictly localized in any region, no matter how small,
but it has to sit somewhere. Again we see that this is not
realistic if the charge is necessarily accompanied by an ex~
tended, observable field as in Electrodynamics. Our limita-
tions probably exclude the most interesting case of ''gauge in-
variances of the second khd" and refer only to charge quantum
numbers which are not the sources of fields, to cases in which

only the analogue of gauge transformations of the first kind exist.
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Let me briefly indicate the essential point in the argu-
ment which leads from our limitations on the states of interest
to the strong local equivalence of the corresponding representa-
tions. T ™ and 7r® are two disjoint representations of
a (*algebra € (meaning that no subrepresentation of ("

is unitarily equivalent to any subrepresentation of Tr(l) ) and

(1) 2)

f w'" and w™® are normalized vector states in the re-
spective representations, then " o= w?)| = 2. Thus (1.35)
demands that no representation of interest, when restricted to
a sufficiently far out region K ll , can be disjoined from the
vacuum representation of (O (K;). For factors of Type III
non-disjointness implies unitary equivalence. The assumed
translational covariance allows us to extend

this unitary equivalence to the algebras of

other regions.

With these limitations on the 'states of interest" we
can quickly summarize the assumptions on which the remainder
of these lectures will be based. We can now without loss of
generality identify the local algebras (H(K)with the Von Neumann
algebras R (KY in the vacuum representation (since all "states
of interest’” are normal states on this net of Von Neumann al-
gebras; see Appendix for definition of the term "normal state"),
We can then take over all the structural assumptions concerning'

the net R ( K)as described under C. The question to be asked
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is: do there exist unitarily inequivalent irreducible repre-
sentations Y, of the totalalgebra (H = UH(K) which
are strongly locally equivalent, i.e, for which v (0-(,(1(’ ))
is unitarily equivalent to '“:,(gﬂl('” forevery K. E
so, these representations will be the relevant superselection
sectors for us. We wish to classify them. *

II. Structure of Superselection Rules; Charge Quantum
Numbers; Statistics

The question to be studied here was deseribed at the
end of the last section. Consider a representation MW, ina
Hilbert space ‘#a’ and pick some double cone K . Since
the representations ‘ﬂ’o/ and TV, when restricted to H(K’)
are unitarily equivalent we can find a unitary mapping from

M, to H.. , denotedby V , such that
v, W = (V¥ forall AeO{(K')ana ‘%’e‘%{o
2.4

We may omit the symbol V i we identify the two spaces

7:/0 and Pf (identifying the wctor ¥ with its imageV/ ¢ ).

This identification also makes 77 (A) into an operator from
@(%)which can be expressed in terms of the 1, (o1).

We shall also omit the symbol 7f, because we take the op-

erator algebras T%(O(,{K)) in the vacuum sector as identical

by definition to the (*algebras O{(K). Then (2.1) reads

3 This anelysis wos inibiated by Bohers P1) the ﬁ&u:, sechae is bad me [23,24,26),
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m)=A R ACOLK),
(2.2)
On the other hand, # Be0((K,) and Ac0(K!),

then as soon as K'DK we have

Lo (), m.®] =[A,m®]=0.
Hence by duality
w_(K(K)) C 0L(K) &K DOK. (2.3)

This means first of all that
w (00 col. (@)

Also, M, is afaithful representation and there-
fore preserves the algebraic structure and the norm. The
transition from the vacuum sector to the sector ¢~ can
therefore be described by a *localized endomorphism® 9 o °
In detail this means that the representative 77 (A) may be
considered as the image ?o’(A) of a norm preserving mapping
of the algebra into itself and such that 90, acts like the
identity mapping on ol ( KI) and only reshuffles the elements
of the algebra of the finite region K . K the mapping 95
is onto the whole of O( we callitan automorphism, In general,
however, the image of ¢ may be smaller than 0( . m either
case the endomorphism is called localized in K because it does
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nothing to the elements belonging to the causal complement

’
region K .

Let me summarize this discussion and the resulting
notation. Due to the unitary equivalence of all representa-
tions T (0'( (K’)’ we can identify all representation spaces
with _0)::('0 and as a consequence all operators TV (A) with
operators from n;((}(,). Since we consider now I, as the
defining representation of ({ (K) we omit the symbol 1, .

So any 'n’o, (A) will be identified with some element of o,
namely with Q. (A) , the image of A by the endomorphism
Qs . Of course the identification of M - With 9 , and the

corresponding identification of vy (A) with 0 (A) s not
canonical (=natural) and highly non-unique. I depends on the
arbitrary choice of a reference region K and even beyond that
on the choice of the V in (2.1) which is determined only up
to a unitary operator from ({ (K). Still, any localized endo-
morphism ? will lead from a representation ¥ ) toa
strongly locally equivalent representation, denoted by

D= o (maetail )= (p(a)) )
and any representation of interest can be obtained from the de-
fining representation 7 (0() = ¢{ by an endomorphism
localized in an arbitrarily chosen region K :

'n’-:_’n;o?
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with ?(A} = A for Ae OL(K,).

There is one class of localized automorphisms which
does not lead to a change of sectors: the '"inner'" auto-
morphisms. ILet u4 ( K)be the set of all unitary elements
of (H{(K), then

o (A) = UAU™ with Ve AK) ; Ae Ol @.5)

defines an inner automorphism localized in K. The unitary

U is determined by J, up toa phase factor. One has the

Lemma 2.1.  The representations Tegp, and MoQ,
are unitarily equivalent if and only if 9, =G, S)l

where O‘; is an inner automorphism.

Proof: Omitting as explained before the symbol v, junitary
equivalence means that there exists a unitary Ve B (W‘,)
such that -
0, (A = Vg AV,
We only havé to show that V in fact belongs to 0(_
Since gz and g , are localized in some finite regions we
can choose a K large enough so that it encloses both localiza-

tion regions. Then

LM=g (M =A s Ae0UK).
Hence /€ {M(K’)’s/ = (K) | (o cuality)
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Next we note

Iemma 2.2 i y' and 97, are endomorphisms localized
respectively in the space-like separated double cones K,

and K, then
992 = 525 (Z'é>

Proof: Consider the 7 regions drawn in Figure 2 (for sim-
plicity we draw only the base of the double cones)

Figure 2,

K1 and K2 are the two given, space-like situated regions.
K is arbitrary. We want to test the action of ,$, on 0((K)-
We shift K2 by translation to K4 and K1 by opposite trans-
Iation to K3 till K4 and K3 are space-liketo X . In ad-
dition the cone KS enclosing K1 and K3 will be space-like
to K6 , the cone enclosing K2 and K4 . Let ?3 and 84
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denote the endomorphisms localized respectively in K3 ,
K4 which result by shifting 5), , 92_ by ihe relevant

translations. Due to our covariance assumption the repre-

sentation 17 © 3, is equivalent to ’ﬂ; o9, and
f{'(; 0 ?2_ to 0 ?if Hence by Lemma 2,1 we
have
?3—’:0';5-?4 }?:f:%b?L;
where G, ¢, are inner automorphisms implemented

v * Pu
5 4
by unitary operators U, , Uy which (by duality) belong to

OC(KS_‘) respectively O((KG) . Since K and K, are

space-like to K we have
%304 (A) =A = 9.8, (A) tor e 0U(K).

Thus
T §1 %, f2 (B =0y 0, 0 ¢, (A)

The right hand side is rewritten as

55,35 (0,6 MU, = Uy 5,0 8,5 Mg 0"

= UUs 5,8, (8 00,

since PZ(US) = (_)5. due to the support properties.
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By the same manipulations the left hand side becomes

UsU g0, A U U
But US‘ and U(, commute too. Hence we have (2.6).
We shall now specialize the discussion temporarily to the
case of those sectors which can be reached from the vacuum
sector by localized automorphisms. This allows a simpler
analysis than the more general endomorphic case. We shall
call such sectors therefore '"simple sectors.'" We find then
first of all a classification of simple sectors into Bose-type

and Fermi type according to the following lemma:

Iemma 2.3 Let B" and Xz. be two automorphisms, lead-

ing to the same sector and based on space-like separated
double cones K, , K, . Bylemma (2.1) they are related by
an inner automorphism, i.e. Xz =q X, . One has

then

¥, (U) = tU (2.7)

where the sign depends only on the sector, not on the choice
of ¥, VY,

Sectors for which the + sign holds are called Bose-
type; those for which the - sign holds Fermi type.

Proof: Since \(' and Xz. commute, so do X| and .

But _
3,5 (A) = % (UAU™ = ¥, (0) ¥, (A) ¥, (U™) = G5, 8,00,
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Thus X, g, = G_X‘(u) b/i . By commutativity

G = Tw or YW =e y U (2.9)

where € is a numerical phase factor depending possibly on
X, and b/z . Interchanging the role of X, and X,_
and correspondingly replacing U by U~ , We have
-\ _ - .
Xl (U ) - exz‘xl U . (2'\0
Multiplying (2. 8) and (2. 9) we get
_| —
-y -
LYW = 3 (UEHWY) = €y 4 ey,

(2.10)
By the definition of ¢, and commutativity we have

-l -
X| 6; - 69 .
Thus the left hand side of (2.10) is 1 and we have
-1
€ = € . )
xnxz {z,)’l ‘ @ H
Let us take now a third region Kj , space-like to both

K, and K, , and choose an automorphism ¥5 localized
in Kj3 and leading to the same sector. Then

XJ=6'WXZ=G'X, ¥, = 6,¥

va
with WeO((KuK); Ve 0 (K uK;) s Ue 0L(K oK) .

Also oy 9, =9y and hence we can choose V=WU.

According to the earlier discussion we have

Y' (V) = erl;YB Vv
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But
¥,(0) =¥, (Wo) = ¥, () 5, )= W V) =€ yWU=¢, [V

due to the support properties. Hence

R N A
Repeating this process we see that € ' fz is inde-
pendent of its second argument and therefore by (2. 11) also
of its first argument. It is a fixed number depending only on

the sector. Due to (2.11) its value can only be *1,

To see that the sign appearing in (2.7) has something
to do with Bose - or Fermi - statistics we sketch the re-
lation of this description with the conventional formulation by
means of a field algebra. First it is evident that the set r
of localized automorphisms forms a group, since X, XL

- *
and ¥ ! can be performed within P

The localized inner automorphisms form an invariant sub-
group U since
Yo, V7' = &
) ¥(v

¥ Actually we should restrict attention to those automorphisms
which lead to sectors in which the Poincaré group is implement-
able. This subset of |' has been called Me inRef.[24].
But it is shown in [24] that [, is a group too and possibly
we have Pc = so that we do not bother here to make

the distinction.
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The quotient group A

0} = P/g (:z.l)_)

corresponds by lemma (2.1) as a set to the collection of all
simple sectors. We see that this set has a group structure
and moreover this group is Abelian because if Xl and )/1
arein V' we can always find a Yll in the same equiva-
lence class as Xl which has its support space-like to that
of ¥, (just shifting it by a sufficiently large translation).
Then ¥, and ¥ ll commute due to lemma 2.2. Using an
ad/czitive notation for the multiplication in the Abelian group
O} we see that the sectors can be labeled by generalized
charge quantum numbers &  such that along with O’,

and 0’;_ also o‘,+-6‘1 and -0, occur, Of

course it is not implied that all such linear combinations be
long actually to different sectors; e.g. we might have a re-
lation like -0 = d in which case the chain
would really consist only of two different sectors (a case
usually described by a multiplicative quantum number). Still
we have the typical chains: if the simple sector ¢  contains
a single particle state, then the sector ng~ (with n>1 )
contains the states with ¥ such particles and ~ @ contains

the antiparticle.
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Tet us now turn to the construction of a field algebra
for the set of simple sectors. I shall do this here only for
theAcase of a single additive charge; i.e. the case where

0} is the (additive) group of all posAitive and negative
integers. For the case of a general ‘g/ I refer to [24].
The sectors are now labeled by an integer v running from

—o0 to o0 . We wish to consider all sectors simultane-
ously and take therefore the direct sum of the representations

w, . This‘hniversal”representation T  acts in the

n
Hilbert space

WMo @n)

In N we wish to implement the automorphisms from I

by unitary operators ‘;’ so that

(5 () = ¢y (4)
i ‘P is a general vector in 'ﬁ— we denote its projection on
M, vy ¥() . As before we may consider all 'H" to
be copies of ’H'o and regard P (n) as a vector of "H° ;
then P e M is described by the set of vectors {?(n)}
of ﬂo . To describe the representation 17 (0(.) we pick

an arbitrary reference automorphism X localized say in

'

the region Ko transferring unit charge so that we can reach
n

all sectors by applying powers X, on the vacuum representa-

tion. Then 7V is taken to be
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(D)o = m WED =¥ AEW. G

To understand the notation keep in mind that v, (A)=Y¥,"(A)

is regarded as an operator in 4, andeach (1) asa

vector in ’Ho . We implement the automorphism X,

by a unitary operator \/l acting in fo and defined by
(\/\ Q\) (n) = \-E (nst) ) @.!6\

Correspondingly )5," is implemented by the unitary \]"‘.

One checks that this definition indeed gives

w (37 = V(Y

because according to (2. 16) and (2. 15) we get
(v,”ﬁ-m) VB0 = (AN ) toom) =
S5 REW = (P Y

Anarbitrary Y ¢ 7 is in some equivalence class
modulo ﬂ , which class contains also one of the powers X‘M,
Hence any X can be written as
wm

¥=0,%, (2.7)

and implemented by
.m
= V" . (2.18)

The choice of the unitary ¥ implementing ¥ is again
fixed up to the arbitrary phase in the choice of U (in the.
determination of U from @ ).
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Consider now the commutation relations between two
14
such operators ¥ and 3 “ which are based on space -
like separated regions and lead to the same sector (the cor-
4 Vi
responding automorphisms ¥ , X being equivalent
m
,  » sayto X:
”" /
Then we have ¥’ = 0y ¥" where W now can be
chosentobe W=4%"V¥'"" Lemma (2.3) gives

Y (W)= €W 5 en=2%y,

modulo :J to the same power of ¥

Thus
?/Y//YI-'\F,“ = ¢, \P"YI_.
or
SR RPN S (2.19)
also, one immediately sees that
€= é,m. (2‘20)

Thus the commutativity of space-like based automorphisms
leads to the alternative between commutativity or anticommu-
tativity for the corresponding implementing operators. K we
use these operators in 0}( to generate states ‘Pl_Q ,

¢ €L then the state /W Q)L may be interpreted as
the 'product state’: we have the partial state equal to ‘f’/_f).-
in the one region and the partial state equal to *I»’”__ﬂ__ in
the other region and LL in the space-like complements of
both regions. The sign € determines whether linear

m
combinations of such product state vectors behave like vectors
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in the symmetrized or antisymmetrized direct product space
of the starting sectors. In other words it determines whether
localized states in the sector ‘P'()  are of the Bose type or
of Fermi type.

We still have to define the field algebra 9’/(;<) associ-
ated with the region K , the gauge group gf and its rep-
resentation U (0}) in %  andshow

Iemma 2.4 The gauge invariant part of the field algebra of

a region K is precisely the observable algebra of the region;

w (0t(0) = Fo)nthlop)’ (2:2)

The field algebra 97( K) of the region K  is of course de-

i.e.

fined as the von Neumann ring generated by all the \P imple-
menting automorphisms ¥  which are localized in K
The gauge group, abstractly, is defmjd as the dual group of (%,
Its flements are the characters of (g. ; i.e. functions from

DL} to the compleAx numbers which furnish a one- d’i\mensional
representation of % . In our example, where is the
additive group of integers, Q} is the group of the unit circle in
the complex plane. Writing an ele.ment 9 € OJ, as e‘s
we have the character 3(»1) = o™ | Tpe unitary representa-

tive T( ) in the Hilbert space 7»/' is obviously given by

(UG E) @) = g0 B6) (.29)
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For the proof of lemma (2. 4) and the discussion of the general
case of simple sectors (when the "charge group" H is gen-
erated by several, possibly not independent, elements) see
ref. [24]. X there are several charges then the construction
of the field algebra is not unique, the commutation properties
of operators transferring different types of charge are not in-
trinsically fixed. One finds, however, that one can always
achieve the "normal" commutation relations described in

(1.17), (1.18), (1.19).

Non simple sectors. Endomorphic case.

We have seen that for simple sectors one always has
the Bose-Fermi alternative and an Abelian gauge group. A
more complicated structure results if 0(. admits localized
endomorphisms (for which the image  § (0() is strictly
smaller than Ol ). We denote the set of localized endo-
morphisms (including the automorphisms [ ) by A
(respectively A (K\, if the localization region is specified
tobe K ). Toavoid misunderstandings I should perhaps re-
peat that the term "endomorphism' is used here for a one-
to-one mapping of (Ml into itself, conserving all the c*-
algebraic structure. Perhaps a better term might be "iso-

morphic injection. "
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We begin with some remarks on intertwining operators.

Given P S>’ e A then the operator S 68(%)

is called an intertwining operator from § to SJ’ if
g(A)S =S¢'(A)  Krall Ae 0L @za)

Such intertwining operators exist if the representations ?(0()
and 9’ ( 0‘() are not disjoint. Actually in that case S
belongs to 0(00 where K is the union of the support

regions of 3 and ?' Iet us write

$=1(¢;3;%) G24)
If we have two such triples §| =(95S,, ?.’)
and ,§; = (9, ;S 3’2') we can immediately
construct an intertwining operator from ?‘ fi to Q,'f.; .
One checks that the operator  ¢,(5,) S, =S, g|’ (Sz)
performs this function. Thus one has a cross product of the

triples, defined by

~e

& ( 1 15 \
Sl o S2 = ( ?,?7_ J ?,(S,)S| ') ?; '?1 . (925
This cross product is associative but in general not commutative

~ A N N T < i

$x (¥x8) = (§xEx 5 =SS5, )
If all the 9; have their supports mutually spacelike:md if

the same holds for the 9': then the cross product (2.26) is

commutative. The proof is analogous to that of lemma 2.2.
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Consider now w1 endomorphisms .?“yz)-..,gn
and a permutation P  of the numbers 1,2 wn . The

products 9,8, and ?m) ?F(ﬂ e igp(")
lead to the same sector and hence there is a unitary inter-

twining operator é'? (.?“.‘. ’9“) from 9"..%
to Fpay  $ron
8 S (A) € (9,,,8.) = € 7y 8) Prcy S W.

(2.17)
The relation (2.27) does not yet define €, (9.)1..) P

uniquely but we can find a unique and natural determination

of the €, by comparing them for different sets of argu-

P
ments. Let 9'/, e gw' be any other set of n
endomorphisms with 92’ not disjoint from ¢,

so0 that we have intertwining operators ?i = (?L 3 R ?{),

e ~
Then R % xR, intertwines from  §,-§,,

’

/ . ! - / 7
to ?‘ ees ?" ; eP(?i ’u.‘g“) from ?‘,-..?ﬁ
1 ] : . ]
o 9o $Pm . Denoting for brevity by %,x: KY:
the operator which is the middle piece of the triple ¥ x...x K,
the opergt:)rs € (-y, ,“')S’,.) ?P(‘)X“'Y'Rm)
R, €08+ 0,") both intertwine between §,++§,  and

and Rlxu-xQn‘\x

/ / .
9?(.\ Coe 9%‘\ . One finds

lemma 2.5 It is possible to choose the operators €, (Sg‘;-. 'g"\

in such a way that

(i) Q‘,(?“m, pY =1 whenever all the supports of the
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~§>‘. are mutually space-like.
(i) For any other set ?‘./ and any choice of intertwining

operators f from ? to ~§f‘.l we have

R xRy €08 000 27 = €, (8,0 2R %

Pl ny
(2.2%)
The unitary operators &, ( 2,8 n\ are uniquely de-

termined by these two requirements and they satisfy (2.27).

The proof of this lemma proceeds by a straightforward
computation. An immediate consequence of the lemma (in

particular of the uniqueness of & ¢ ) is the multiplication law

é? (eh‘“)?n\ éQ (?y(q )‘")'?Ptn\3 = €PQ (‘?\ s”')?n\)- qu)

¥ we put all ? equal, a more convenient notation is

&(2,8,,9) = €0 @%)
One then has by (2.29)
n ) (»
es,)(ﬂ e;‘(Q\ = ég)(?Q) , (231)
i.e. the E;h) form a unitary representation of the permu-

tation group of n  elements which is (up to unitary equiva-
lence) characteristic of the sector ?"‘ . Note that é(;) )
intertwines ?" with itself. Hence one might be inclined to
think that € ;,"‘( P) should be trivial. This is however not
so because the €, (9,,", £.) are defined to be A
not for equal ?‘. but for space-like separation of the

supports of the 3);_ and it turns out that the representation

69
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é(;) is one-dimensional ( 6;",( P) = ¥{ ) if and only if

Q is an automorphism. & is an instructive exercise to
check that in this case, putting wn=2 and choosing P
as the transposition <> €, (P) reduces to the sign

factor in (2.7)

The representation may be characterized in

e
terms of the Young tableaux it contains and we may compare
the set of Young tableaux occurring for fixed ? and varying
v . This analysis is most satisfactory if the sector 5’
has an adjoint sector 9* (related to the existence of anti-
particles). Then one finds that associated with ? there
is a number A , depending only on the sector generated by
9, moton § itself. 'X"z Pg is a positive or negative
integer. For positive P? all possible Young tableaux ap-
pear in the sectors ?" for which the number of rows does
not exceed P? . For negative P? one has all Young
tableaux whose number of columns is limited by ‘??l .
The first case is familiar as the para- Bose case of order ?f

the second as the para-Fermi case of order ’7? |

Thus we conclude that a particle which has an anti-
particle and belongs to a non-simple sector is a paraboson or

parafermion of some fixed order.
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III. Parastatistics.

Field theoretic models for the description of strange
statistics (i. e. statistics which are neither of the Bose- or
Fermi-type) have been given by H. S. Green [26] and further
discussed by numerous authors. See e.g. the clear survey by
Greenberg [27]. Here we shall analyse in terms of the con-
cepts developed in section I the physical content of the simplest
example of such a model, the case of a parafermi field of order 2.
I shall sketch only the essential line of argument referring for de-
tails of proofs to [28]. The discussion can be carried through
using only the field quantities at one time, say t= 0. TLorentz
invariance plays no role. The model itself may be described as
follows. Take two Fermifields Y@ and V&  commuting

with each other., The commutation relations are

() X i
[YU ), ‘VU(:})] = § 7 9); I¢° ), “l’ upl =0 e
Ql)

{‘Pw(g), \‘Yu\ (/\3\:\ \"'“) ) , \fu’(;;)-]_:o Gr $#y
62)
Then define the "paraﬁeld" \P as the sum of these two:
b = 4"+ 490 69

and demand that only such quantities which are expressible in

terms of this parafield \P should occur in the theory.
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Before we can analyse the physical content we have to
know what the observable algebras corresponding to various
space regions are. There are several possibilities but the

choice is limited by the following two restrictions:

i) The observable algebra OI(V)of the space region "

shall be a subalgebra of the parafield algebra }; (v\ of

the same region. The latter is the *-algebra generated by the
¥ (£) for al test functions § with supportin VY .

ii) E V| and V, are disjoint, then 0{(V)ana O((V,)

shall commute (locality).

Of course the net of algebras O((V) shall be covariant with
respect to translations and the total algebra 0( is defined as

O'( = UO((VV)i.

The largest algebra satisfying these requirements is the
algebra Ufo , Which consists precisely of all even elements
of ?;P (elements invariant under the substitution ‘l’“*"'}} ).
So O must be contained in (or possibly be equal to ) ot 0 *
Now one remarks that O(o can also be characterized in terms
of the algebra generated by two Fermi fields, ‘#(') , ‘#(l)

with normal commutation relations:

[69@, %], =0, [#7%0,375),25; Ciey). 64
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~
To see this we first embed 3; in a large algebra 7
generated by the "Green components" ' ¢) s \P()')
and one additional element K, (standing for 'Klein trans-

formation"). The relations of the 9 are given in

(3.1), (3.2). The relations involving K2 are
K=K =K
2 i 2 )

(s.s’)
o] =0, [ 4] <o
A~ A - +

It is readily seen that with the definition
uy¥

\y(')(ﬁ) o~ 49(‘\(5\) KL ) \F(I)*(}g < (b (,Q ‘(2_1
G.¢)

) »*
kf(l) (}i\ ': 4’\1\(5') Kl ,J \f(w_)*(é 1 qﬁu-) (;(l Kz

we obtain the r}iormal commutation relations (3.4). The general
element of 9: is of the form F + F'K’L where F
and F' are expressible interms of the ')  For the
elements of 010 F'I is zeroand |  even. Rewriting
such an element in terms of the q)(‘l) and K2 one sees that
K2 drops out because in each monomial the factors K2 can be
shifted to the right using (3.5) and an even power of K2 is the
identity.

73



Rudolph Haag

Let us denote the algebra generated by the two normal
Fermi fields ‘?0) (f_\ (with x rangingin V )by ’:F(\l)

and consider substitutions of the form

© )
¢ (’i) > Z 9c: () (373
« ~
Such a substitution generates an automorphism of r7r; denoted
by (xg as long as the 2 x 2 matrix 9 is unitary. One

finds

Lemma 3.1 0{ R (V) is the subalgebra of ?(V) consist-
ing of precisely those elements which are invariant under the
automorphisms OLg when § runs through S0(2) (real,

orthogonal matrices with determinant +1).

In other words: 0’(0 is the "gauge invariant" part
of 3’ when we take SO(2) as the gauge group (acting on
.?; according to (3.7) ).

Since the observable algebra Ol must be contained
in Olo other possibilities for Ol result if we take a larger
gauge group (y and again define 0L as the gauge invariant
part with respect to this group. We shall just consider one such
example, the case where the gauge group is the largest auto-
morphism group of the form (3. 7)) namely the group U(2). The
resulting observable algebra will be denoted by H 2

Summing up: instead of expressing the observables in

terms of the parafield we can express them also as functions
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of two normal Fermi fields. The characterization of the ob-
servable algebra within this Fermi field algebra }t’/ is best
done by specifying the ''gauge group" 9} under which the
observables are invariant. In our case (starting from a para
fermi field of order 2) the minimal gauge group is SO(2),

leading to the maximal observable algebra (I(, .

Given _'F s 0} and 0( we have the following struc-
ture [23]): The different superselection sectors (families of
states which are of interest) are in one-to-one correspondence
with the "spectrum" of the gauge group. YT 0} is Abelian
we have only Bose- or Fermi statistics. Let us consider from
this point of view the two examples mentioned above and com-

pare the conclusions with the parafield description.

Example 1. 0}‘: SO(}), 0= 0(0.

The gauge group is Abelian. Its spectrum consists of
the integers m=0, t1 , *2,+-- . We thus have just one
ordinary charge quantum number, distinguishing the super-
selection sectors. States of charge m=+i are ob-
tained from the vacuum state vector (). by applying

396 i 909 Note that O () 4. 429
leads to the same sector. The sector m=—1 is reached
from ) by O l}’(‘) or, equally well, by 43("%1 %,

* The "spectrum of 0} " consists of the equivalence classes

of irreducible representations of {y, .

75
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The particles with M=+ are ordinary Fermions.
How does that fit with the parafield description? We have,

according to (3.6)

(
PO = (60 6@ X, 6.5)
The comparison between the two descriptions is simplest if
K, {L=§). Then, according to (3.8) , “PG:) L isa
state with charge M=+ . Suppose g and f are test

functions with far separated supports. Then

Y YO0 = (47G)+:4%)) K, (6@ + 7@K, 2 =
= (#%)+4%G)) (") - %)) 0
is a state with m=0 . Any polynomial of ‘+’ applied to 0.

will produce only states with m=+| and m=0 because in

a product ‘}’ will alternatingly raise or lower the charge, de-
pending on its position. The fact that there are both symmetric
and antisymmetric wave functions allowed for the states gen-
erated from the vacuum by two parafield operators has (in this
example) nothing to do with parastatistics but results from the
fact that the two operators produce different particles (the first
a negatively charged, the second a positively charged one). The

effect of ‘P depends on the position it has within a product.

Example 2. 03: V) ; M= 0, .
We may first note that ({(, is generated by the bilocal

densities
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?(1,5\ —_ 4,(\)*[2()4)(1\(@ + t#(l)*(’f.) 4,(1)(3) (3.‘0

The irreducible representations of U(2) may be labeled by

two quantum numbers (B , T ) with the relation

B+2T = even (3.(0)
B= 0, ¥ 1, *a may be conveniently interpreted as baryon
Vumb o, = O,;i,,’“' as isospin ,

thinking of the theory of nuclei with strict charge independence.

To each allowed pair (B, T ) we have a sector. In a sector

with isospin I each state appears with a multiplicity ( 2T+ t ).
Any vector in the ( 2T+] )-dimensional subspace spanned by

an isospin multiplet gives exactly the same expectation values
over the observable algebra and corresponds therefore to the same
physical state as any other vector in this subspace. With the con-
ventional choice of the three components of isospin (the Pauli
matrices @} and O3 real, 03 purely imaginary) one finds that
the subgroup SO(2) is placed within U(2) in such a way that the
charge quantum number m is related to the second component

of the isospin

I, =am. (3.”)

Applying the parafield algebra on the vacuum we get there-
fore only states with L,= O or Iz = 4 . Theformer

appear if we have an even number of ¥ -factors, which leads to
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an even baryon number; the latter appear for odd B. Ac-
cording to (3.10) even B implies integer 1. and then we can
find in each multiplet a vector with T,=0 . For odd B,

half integer 1. ,We have in each multiplet a state with T, =% .
Hence the restrictionto m=0,1 does not limit the selection

of states. Applying the parafield algebra to ()  we obtain all
relevant states over o , only the multiplicity is changed as
compared to the representation space of the field algebra ?) .
We obtain with }; each state only once instead of the

( QT+1 )-dimensional multiplets. In this second example the
parafield model gives a complete description. The parastatistics
of particles corresponds then to the fact that there is one hidden
parameter (the charge Il ) which is not observable., We see
that in this case the parastatistics may be reduced to ordinary
(Bose-Fermi) statistics if one introduces this hidden degree of
freedom as an additional distinctive quantum number. It appears
that all reasonable parafield models can be reduced in this way to
the Bose-Fermi case [28] although a general theorem to this
effect based on the structure analysis described in section II has

not yet been obtained.
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Mathematical Appendix

The set of all bounded operators acting in a Hilbert

space H is denoted by B(H). There are several topolo-

gies in this set B()¥) which are important in our context.

A topology means that we define what is a "neighborhood" of

an element in the set. Actually it is sufficient here to define

the neighborhoods of the origin., The three most important

topologies in ® () arising in the context of physics are:

a)

b)

Uniform topology. Since an operator Ae ® (”H)

has a finite norm || All , We may define 2 neighbor-
hood of the origin as the set of all Ae (B("H) which
have anormlessthan € . Any ¢ >(Q gives us
one such neighborhood. Convergence of a sequence
An c ®H ) in this topology means that the
“An“/'\m“ < g, forall n,m> N and €,->0.
Such a sequence is called 'uniformly convergent"

or a Cauchy sequence in the norm topology.

Strong topology. We pick an arbitrary vector ¥ ea}‘

and an arbitrary number &€ >0 . The corresponding
neighborhood of the origin, denoted by N (‘E, e)
consists of all A e ® ("H) satisfying

HABH <€
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where now the left hand side is the length of the
vector AL (not the norm of the operator A).
Convergence of a sequence An in this topology
("strong convergence'') means that for every vector

? the sequence of image vectors An{E satisfies
i A,,‘I’-AM‘P I < &y for nmd>N:¢>0.
c) Weak topology. We pick an arbitrary pair of
vectors § FeHand € > 0 and define a cor-
responding (weak) neighborhood ”h (_@'Q;T’-‘e) as the
setof all e ®(Y) satistying | (3, AP)|<e.
Weak convergence of a sequence An means the

convergence of the sequences of matrix elements

(§)AnQ) for all pairs @:,{ .

Example of a strongly convergent sequence which does
not converge uniformly. Take a complete orthonormal basis
?w in ’H and let En by the projector on the subspace
spanned by the first n basis vectors. One easily sees that the
strong limit of the sequence En as n—» o0 is the unit op-
erator (completeness relation). Yet for arbitrarily large n we
still have “ En - Enn " =1, i.e, there is no uniform con-

vergence.

Example of a weakly convergent but not strongly con-

vergent sequence. Take Yn as above and define An by
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Ay Ym = fn +m - This sequence A = converges weakly to

zeroas n —¥ o0  but obviously has no strong limit.

I A and B belong to (B(”}{) and a ,8 arecom-

plex numbers then

aA + BB
A-B A.1)
AY (adjoint of A)

also belong to B(H). A subset of B (%) which is closed

under the three operations (A. 1) is calleda *-algebra of

bounded operators. If in addition it contains the unit operator

and is closed in the strong topology it is called a 'von Neumann
ring." If it is closed in the uniform topology it is called a (con-
crete) C*-algebra. Since the three topologies listed under a),

b) and c) are decreasing in strength we have in general that the
weak closure of a set is larger than the strong closure and this
again larger than the uniform closure. A weakly closed set is
always strongly closed, a strongly closed one is always uniformly
closed. Hence any von Neumann ring is also a C*-algebra but
the converse is not true. It turns out, on the other hand, that for
a *-algebra of bounded operators the weak and the strong closures

coincide. Thus a von Neumann ring is also always weakly closed.
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I S is any subset of @) one defines the "com-
mutant S’ as the set of all operators from @(%) which
commute with every element of S. ILet S* denote the set

of all the adjoint operators of the members of S. One has

a) The commutant of any subset of B(%) which is
closed under the *-operation is a von Neumann ring, i.e.

&Sus*}/is a von Neumann ring.

b) ¥ R is a von Neumann ring, then

R =R" (R" denotes the commutant
of the commutant) .

X /4
c) {S vS } is the smallest von Neumann ring
containing S.

Let us now consider abstract*—algebras. Such an
algebra { consists of elements A, B, ... for which the
three operations (A.1) are defined, satisfying the usual laws.
As in the case of an abstract group the elements now are not
regarded as operators in some space but just as objects which
can be connected by the operations (A.1). It turns out that
under rather general conditions the algebraic structure de-
termines a natural norm H A ” for the elements of the

algebra satisfying
AL = IA¥H = TAREI™2, Jl=WUAL oz

and the inequalities

LA+BIl £ NAI+IBI IABH < HALIBI . (.3)
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If these conditions prevail, then the *-algebra may be equipped
with this natural norm topology and completed in it. It is then
called an abstract C*-algebra.
*
Given an abstract C -algebra m one considers the
@)
"positive linear forms" over it. Denote this set by G'(,* .)
*x B
An element @ from ot assigns to each AGO( a
complex number ) (A) subject to the two conditions
(i)  linearity w («At ﬁB)= «w(A)+ Ew(B) , (A.9)
(i) positivity w (A¥A) 20 (A.5)
The norm of such a form is defined as
loll = s o] (A.6)
bAl=1
One has
ol = wl(l) . (a.7)
The set of positive linear forms is a convex cone i.e.
w=\w +7«7_wL (A.8)

(E))
belongs to 01 * if @, and w, belongand A, ,A,
are positive numbers. A positive linear form & is called
vextremal” if no non-trivial decomposition of the form (A.8) is

possible.

A representation of O(, (by operators in a Hilbert
space OH' ) assigns to each AeO(_ an operator /]r(A) from

83



84

Rudolph Haag

B (%) in such a way that the algebraic relations (A.1) are
conserved. In other words it is an isomorphic mapping from
the abstract C*-algebra to a concrete C*- algebra of operators
(1Y (00, The representation is called faithful if 7 (A}=o0
implies A =0. In this case the norm of the operator (A} is
the same as the C*- norm of the abstract element A. We shall
only consider faithful representations in these lectures. Given
a representation one has immediately a family of positive linear
forms over (U , which are associated with this representation.

Pick any vector ‘¥ in the representation space, then

(A.9)

w, (A , (A. 10)

Let us denote by f;l‘ the family of forms associated with
v

the representation 1 according to (A.10) and by f«

the subset of "vectorial" forms (A.9). The former are the

convex combinations of the latter.

The connection between positive linear forms and repre-

sentations can also be followed in the opposite direction. Given
.f.

an WE€ 0(* one can construct a representation T,  so

that we have a vector ¥ in the representation space giving
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back the form @ by (A.9). This vector ‘I’ is moreover
a "cyclic vector i.e. the vectors ﬂ;o (00 N g are dense
in % . This is achieved by the GNS-construction (the letters
standing for Gelfand, Naimark, Segal). It proceeds as follows:
First note that the algebra is itself a linear space and that an

e 0’(* “ defines a semidefinite scalar product between the
elements of 0{_ by

(3,A) = w(B*A).

To obtain a positive definite scalar product one has to divide
the algebra into equivalence classes modulo the set J which
latter consists of all elements Z ¢ ({ for which w ( Z*Z) =0,
Let us denote the class of A¢C{ by /,Q . This contains all
the elements of ({ which differ from A by an element of the
set J. The set of these classes is a linear space with the

positive definite scalar product
A A
(8,A) = w(B*A) , (A.11)

where one checks that the right hand side is independent of the
choice of the elements B, A in the respective classes ﬁ, K
Thus o /I is a "pre Hilbert space," i.e,, it may be con-
sidered as a dense set of vectors in a Hilbert space % . We
obtain a representation of H by operators in 74’ defining the
operator 1{(A) representing A by

TN B = B (A.12)
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The right hand side involves a choice of B from the class ﬁ
but one checks again that the class of AB does not change when
B varies within one class (the set J is a left ideal of M ). The
cyclic vector 92 giving back the expectation value & cor-
responds to the class of the unit element of 0‘( We have, by
(A. 11) and (A. 12)

(T, mME) = ( f,qr'(A) i) =w(f'A 1): w(A) .

A representation 7 is called irreducible if there is no
invariant subspace in the representation space 74’ . A criterion
for irreducibility is Schur's lemma: 47 is irreducible if and
only if (‘ﬂ' (00) ’ consists only of multiples of the identity.
An equivalent criterion is (q'r (0(.))“: ® ("]4) . The GNS-con-
struction leads to an irreducible representation if and only if the

form () from which the construction starts is extremal.

I 47 is reducible we may consider the restriction of
I} to one of the invariant subspaces. This is called a subrepre-
sentation of Y . One calls two representations disjoint if they
contain no subrepresentations which are unitarily equivalent. A

representation is called 'primary" or a '"factor" if

(w(0d)" n Ge(or)” = {7},

i.e. if the von Neumann algebra generated by the representers
g (()O has no nontrivial center. A form. is called
primary if the GNS-construction starting from it leads to a

primary representation,
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We frequently use the notion of an automorphism or
an endomorphism of a C*-algebra. In each case we mean
a one-to-one mapping carrying Ae Ol to ¢(Ae(
and such that the algebraic structure and the norm ave con-~
served. I the image set 9(00 is equal to 0( , 9
is called an automorphism... If SJ (0() is smaller than

(0 then we call ? an endomorphism.
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