1 Learning and Soft Computing: Rationale, Motivations, Needs, Basics

Since the late 1980s there has been an explosion in research activity in neural
networks (NNs), support vector machines (SVMs), and fuzzy logic (FL) systems.
Together with new algorithms and statements of fundamental principles there has
been an increase in real-world applications. Today, these areas are mature to the
point where successful applications are reported across a range of fields. Examples of
applications in diverse fields are given in section 1.1.

These three modeling tools complement one other. NNs and SVMs are paradigms
of learning tools. They recover underlying dependencies between the given inputs and
outputs by using training data sets. After training, both NNs and SVMs represent
high-dimensional nonlinear functions. They are mathematical models obtained in
an experimental way. If there are no data (examples, patterns, observations, or mea-
surements), there will be no learning, and consequently no modeling by NNs and
SVMs can take place.

However, one can still model the causal relations (also known as functions) be-
tween some variables provided one has an understanding about the system or process
under investigation. This is the purpose of fuzzy logic. It is a tool for embedding
existing structured human knowledge into mathematical models. If one has neither
prior knowledge nor measurements, it may be difficult to believe that the problem at
hand may be solved easily. This is by all accounts a very hopeless situation indeed.
This book does not cover cases where both measurements and prior knowledge are
lacking. However, even when faced with a modeling problem without either experi-
mental data or knowledge, one is not entirely lost because there is an old scientific
solution: if one cannot solve the problem posed, one poses another problem. In this
book, problems are not reformulated. Rather, the text demonstrates how various
real-world (conceptual or practical) tasks can be solved by learning from experimen-
tal data or by embedding structured human knowledge into mathematical models.

This chapter describes some typical nonlinear and high-dimensional problems
from various fields in which soft models have been successfully applied. The range of
problems that can be solved by using soft modeling approaches is wide, but all the
problems belong to two major groups: pattern recognition (classification) tasks or
functional approximation (regression) tasks. In this way, soft models can be looked
at as being nonlinear extensions to classic linear regression and classification. This is
how these standard statistical problems are introduced in section 1.4. Having a sound
understanding of the concepts, performance, and limitations of linear statistical
models is good preparation for understanding nonlinear modeling tools.

NNs and SVMs solve regression and classification problems by changing parame-
ters that control how they learn as they cycle through training data. These parame-
ters, usually called weights, influence how well the trained model performs. In order

2 Chapter 1. Learning and Soft Computing

to measure the model’s performance one must define some measure of goodness of
the model. In mathematical terms, one should define some suitable norm. Here the
cost or error (or risk) functional E is used, which expresses a dependency between an
error measure and the weights, E = E(w).

Unfortunately, as mentioned in section 1.3, genuine soft models are nonlinear
approximators in the sense that an error functional £ = E(w) (the norm or measure
of model goodness) depends nonlinearly upon weights that are the very subjects of
learning. This means that the error hypersurface is generally not a convex func-
tion with guaranteed minimum. Therefore, a search after the best set of parameters
(weights) that will ensure the best performance of the model falls into the category of
nonlinear optimization problems.

As is well known, there is no general optimization method for nonlinear learning
tasks. Section 1.3 introduces possibly the simplest to understand and the easiest to
use: the gradient method. Despite being simple, the first-order gradient learning
algorithm (also known as the error backpropagation algorithm) was the first learning
procedure that made a key breakthrough in training multilayer neural networks. But
this simplicity has a price: the learning procedure is too long and does not guarantee
finding the best set of weights for a given NN structure. (Some improvements are
discussed in chapter 8). It should be stressed that the only difference between NNs
and SVMs is in how these models learn. After the learning phase, NNs and SVMs are
essentially the same.

1.1 Examples of Applications in Diverse Fields

Soft computing, which comprises fuzzy logic modeling and the theory and applica-
tion of the (statistical) learning techniques embedded in SVMs and NN, is still in an
early stage of development. Nevertheless, many research institutions, industries, and
commercial firms have already started to apply these novel tools successfully to many
diverse types of real-world problems. Practically no area of human activity is left
untouched by NNs, SVMs, or fuzzy logic models. The most important applications
include

« Pattern (visual, sound, olfactory, tactile) recognition (i.e., classification)
+ Time series forecasting (financial, weather, engineering time series)

+ Diagnostics (e.g., in medicine or engineering)

+ Robotics (control, navigation, coordination, object recognition)

+ Process control (nonlinear and multivariable control of chemical plants, power
stations, vehicles or missiles)

1.1. Examples of Applications in Diverse Fields 3

+ Optimization (combinatorial problems like resource scheduling, routing)

- Signal processing, speech and word recognition

+ Machine vision (inspection in manufacturing, check reader, face recognition, target
recognition)

- Financial forecasting (interest rates, stock indices, currencies)

- Financial services (credit worthiness, forecasting, data mining, data segmentation),
services for trade (segmentation of customer data)

In certain application areas, such as speech and word recognition, NNs, FL models,
or SVMs outperform conventional statistical methods. In other fields, such as specific
areas in robotics and financial services, they show promising application in real-
world situations.

Because of various shortcomings of both neural networks and fuzzy logic models
and the advantages of combining them with other technologies, hybrid and modular
solutions are becoming popular. In addition, complex real-world problems require
more complex solutions than a single network (or a one-sided approach) can provide.
The generic soft computing approach also supports the design of solutions to a wide
range of complex problems. They include satellite image classification, advanced data
analysis, optical character recognition, sales forecasting, traffic forecasting, and credit
approval prediction.

The theoretical foundations, mathematics, and software techniques applied are
common for all these different areas. This book describes the common fundamental
principles and underlying concepts of statistical learning, neural networks, and fuzzy
logic modeling as well as some of the differences between them.

A natural and direct connection exists between soft computing models (NN,
SVMs, and FL models) and classical statistics. The models presented here can be
viewed as nonlinear extensions of linear regression and classification methods, tools,
and approaches. However, introducing nonlinearities (i.e., nonlinear dependence of
the approximating models upon model parameters) increases the complexity of the
learning tools dramatically. Learning usually means nonlinear optimization, which
becomes the most important task to solve in machine learning theory. This book
deals with the various nonlinear optimization techniques in the framework of learn-
ing from experimental data.

Before considering some popular and successful applications of NN models, it may
be interesting to look at the wide range of problems that classical (linear) statistics
attempted to solve. More details on these and many others, may be found in the
standard statistical literature (e.g., Anderson 1958; Johnson and Wichern 1982).

4 Chapter 1. Learning and Soft Computing

- Effects of drugs on sleeping time
+ Pulmonary function modeling by measuring oxygen consumption
+ Comparison of head lengths and breadths of brothers

+ Classification of the Brahman, Artisan, and Korwa groups based on physical
measurements

+ Classification of two species of flies using data on biting flies
- Battery-failure data dependence and regression

+ Financial and market analyses (bankruptcy, stock market prediction, bonds, goods
transportation cost data, production cost data)

+ Study of love and marriage using data on the relationships and feelings of couples

+ Air pollution data classification, college test scores classification and prediction,
crude oil consumption modeling, degree of relation among 11 languages.

This is only a short list, but it shows the wide diversity of problems to which linear
statistics has been successfully applied. In many instances, linear models perform
well. In fact, whenever there are linear (or slightly nonlinear) dependencies in regres-
sion problems or when separation functions between the classes are (closely) linear,
one can obtain very good results by applying conventional statistical tools.

Today, equipped with powerful computing techniques and high-performance
sensors and actuators, we want to solve much more complex (highly nonlinear and
high-dimensional) problems. However, this is even more risky endeavor than solving
a variety of classical linear problems; this book introduces the reader to the very
challenging and promising field of nonlinear classification and regression based on
learning from experimental data. In addition, it presents, as a third constituent of soft
computing, fuzzy logic modeling as a tool for embedding structured human knowl-
edge into workable algorithms.

To begin, it may be helpful to look at a few successful developments and applica-
tions of neural networks and fuzzy logic paradigms. The success of these applications
spurred widespread acceptance of these novel and powerful nonlinear modeling
techniques. This short review is far from conclusive. It discusses only a few of the
important supervised learning NN models as well as some early pioneering applica-
tions of FL. models in solving practical problems.

The construction of the first learning machine, called the perceptron, by F. Rosen-
blatt in late 1960s is certainly a milestone in the history of NNs (see chapter 3). This
was the first model of a machine that learns from experimental data, and this is
when mathematical analysis of learning from data began. The early perceptron was
designed for solving pattern recognition problems, that is, classification tasks.

1.1. Examples of Applications in Diverse Fields 5

At the same time, a philosophy of statistical learning theory was being developed by
V. Vapnik and A. Chervonenkis (1968). Unlike the experimental approach of Rosen-
blatt, their work formulated essential theoretical concepts: Vapnik-Chervonenkis
entropy and the Vapnik-Chervonenkis dimension, which in 1974 resulted in a novel
inductive principle called structural risk minimization. At this early stage, these tools
were also applied to classification problems (see chapter 2).

Concurrently, B. Widrow and M. Hoff developed the first adaptive learning rule
for solving linear regression problems: the least mean square (LMS) learning rule,
also known as the delta learning rule (see chapter 3). It was a rule for training a
(neural) processing unit called the adaline (adaptive linear neuron) for adaptive signal
filtering and adaptive equalization. Hence, this linear neuron was performing linear
regression tasks.

By the mid-1980s a lot of progress had been made in developing specialized hard-
ware and software for solving real-life problems without the relevant theoretical
concepts being applied to the (mostly experimental) supervised learning machines.
(Many unsupervised learning algorithms and approaches were also developed during
that period.) Then, about that time, a breakthrough in learning from data and in
neural network development came when several authors (Le Cun 1985; Parker 1985;
Rumelhart, Hinton, and Williams 1986) independently proposed a gradient method,
called error backpropagation, for training hidden layer weights (see section 4.1).

Independently, continuing their research in the field of statistical learning theory,
Vapnik and Chervonenkis found the necessary and sufficient conditions for consis-
tency of the empirical risk minimization inductive principle in 1989. In this way, all
the theory needed for powerful learning networks was established, and in the early
1990s Vapnik and his coworkers developed support vector machines aimed at solving
nonlinear classification and regression problems (see chapter 2).

A lot of effort was devoted in the late 1980s to developing so-called regularization
networks, also known as radial basis function networks (Powell 1987; Broomhead
and Lowe 1988; Poggio and Girosi 1989 and later). These networks have firm theo-
retical roots in Tikhonov’s regularization theory (see chapter 5). A few well-known
and successful applications are described here. The common feature of all the
models (functions or machines) in these applications is that they learn complex, high-
dimensional, nonlinear functional dependencies between given input and output vari-
ables from training data.

One of the first successful applications was the NETtalk project (Sejnowski and
Rosenberg 1987), aimed at training a neural network to pronounce English text
consisting of seven consecutive characters from written text, presented in a moving
window that gradually scanned the text. Seven letters were chosen because linguistic

6 Chapter 1. Learning and Soft Computing

studies have shown that the influence of the fourth and fifth distant letters on the
pronunciation of the middle character is statistically small. To simplify the problem
of speech synthesis, the NETtalk network recognized only 29 valid characters: the 26
alphabetic characters from A to Z and the comma, period, and space. No distinction
was made between upper and lower case, and all characters that were not one of
these 29 were ignored. Thus, the input was a 7 x 29 = 203-dimensional vector. The
desired output was a phoneme code to be directed to a speech generator giving the
pronunciation of the letter at the center of the input window. The network had 26
output units, each forming one of the 26 codes for the phoneme sound generation
commands. The NETtalk network is an error backpropagation model having one
hidden layer with 80 processing units (neurons). For the approach taken in this book,
it is important to realize that such a structure represents a highly nonlinear map-
ping from a 203-dimensional space into a 26-dimensional space (i.e., NETtalk is an
R0, Rj26 mapping). The neural network was trained on 1,024 words and achieved
intelligible speech after 10 training epochs and 95% accuracy after 50 epochs. (An
epoch is a sweep through all the training data.)

Gorman and Sejnowski (1988) trained the same kind of multilayer perceptron to
distinguish between reflected sonar signals from two kinds of objects lying at the
bottom of the sea: rocks and metal cylinders. The input signal was the frequency
spectrum (Fourier transform) of the reflected sonar signal. The network had 60 input
units and 2 output neurons—one for rocks and one for cylinders. Note that this is a
one-out-of-two classification (pattern recognition) problem. They varied the number
of hidden layer (HL) neurons from zero (when an NN is without a hidden layer) to
24. Without any HL unit, the network achieved about 8§0% correct performance on
training data. With two HL units, the network reached almost 100% accuracy on
every training trial. There was no visible improvement in the results on increasing the
number of HL units from 12 to 24. After training, the network was tested on new,
previously unseen, data; with 12 HL neurons, it achieved about 85% correct classifi-
cation. We are here particularly interested in mathematical side of the problem being
solved. Therefore, note that the sonar signals recognition network performed a highly
nonlinear mapping from a 60-dimensional space into a 2-dimensional space (an
RO — R? mapping).

Pomerlau (1989) reported results on designing an NN-based car driver within the
framework of the ALVINN (autonomous land vehicle in a neural network) project.
The ALVINN network took road images from a camera (30 x 32 pixel image) and a
laser range finder (8 x 32 pixel image) as inputs. Its output was a direction of the
vehicle in order to follow the road. There were 29 neurons in a single hidden layer
and 46 neurons in the output layer. Thus, the input vector was 1216-dimensional,

1.1. Examples of Applications in Diverse Fields 7

and ALVINN represented a nonlinear functional mapping from a 1216-dimensional
space into a 46-dimensional space (an R'*'® — R* mapping).

Handwritten character recognition is certainly one of the most interesting areas in
which NNs have found wide application. One of the first reported applications is due
to Le Cun and his colleagues (1989). The network input was a 16 x 16 array (i.e., a
256-dimensional vector) that received a pixel image of a particular handwritten digit
scaled to a standard size. This signal was fed forward through three hidden layers to
the output layer, which comprised ten output units, each signifying one of the digits
0-9. There were 64 neurons in the first HL, 16 in the second, and 30 in the third. The
network used 9,300 ZIP codes (numerical postal codes). Approximately one quarter
(2,000) was used for the test, and it was not seen during the training. This network,
named LeNetl, was trained by error backpropagation. The error on the test set was
5.1%. It is interesting that this handwritten character recognition problem became a
benchmark for various NN and SVM models. Recently, competitive results were
reported by applying SVM with polynomial kernel functions, which achieved accu-
racy of 4% on test data. In the meantime, Le Cun and his colleagues developed
LeNet5, which performed better than both of the previous models. Details of com-
parative results with other models can be found in Vapnik (1998). From the mathe-
matical point of view, LeNetl represented a nonlinear functional mapping from a
256-dimensional space into a 10-dimensional space (an R, R0 mapping).

These four early applications are only a few of the thousands now existing in many
fields of human endeavor. An important point to note about all these applications is
that the models all learn high-dimensional nonlinear mappings from training data
that are usually sparse. This is the world of learning from data networks (models,
functions, and machines), where, at the moment, no better alternatives exist.

A brief history of fuzzy logic and its applications follows. Fuzzy logic was first
proposed by L. A. Zadeh in 1965. He elaborated on his ideas in a 1973 paper, which
introduced the concept of linguistic variables, or fuzzy sets. Assilian and Mamdani
were the first to implement fuzzy logic rules, for controlling a steam generator, in
1974. The first industrial application followed soon after: implementing fuzzy control
in a cement kiln built in Denmark in 1975. Interestingly, at this early stage fuzzy
systems were ignored in the country of their theoretical origins, the United States.
One explanation is that people associated FL models and approaches with artificial
intelligence, expert systems, and knowledge-based engineering, which at that point
had not lived up to expectations. Such early (and erroneous) associations resulted in a
lack of credibility for FL in U.S. industrial firms.

In Japan, without such prejudice, interest in fuzzy systems was much stronger. This
might have been part of the so-called “invented here” syndrome, in which innova-

8 Chapter 1. Learning and Soft Computing

tive ideas supposedly get more attention if they come from far away. In any case,
Hitachi’s first simulations, in 1985, demonstrated the superiority of fuzzy control
systems for the Sendai railway. Within two years, fuzzy systems had been adopted to
control accelerating, braking, and stopping of Sendai trains.

Another event helped promote interest in fuzzy systems in Japan. During an inter-
national meeting in 1987 in Tokyo, T. Yamakawa demonstrated the use of fuzzy
control in an “inverted pendulum’ experiment. This is a classic benchmark problem
in controlling a nonlinear unstable system. He implemented a set of simple dedicated
fuzzy logic chips for solving this nonlinear control task.

Following such demonstrations of FL models’ capabilities, fuzzy systems were
built into many Japanese consumer goods. Matsushita vacuum cleaners used four-bit
FL controllers to adjust suction power according to dust sensor information. Hitachi
washing machines implemented fuzzy controllers in load-weight, fabric-mix, and dirt
sensors to automatically set the wash cycle for the best use of power, water, and
detergent. Canon developed an auto-focusing camera that used a charge-coupled
device to measure the clarity of the image in six regions of its field of view and with
the information provided to determine if the image was in focus. The dedicated FL
chip also tracked the rate of change of lens movement during focusing and controlled
its speed to prevent overshoot. The camera’s fuzzy control system used 12 inputs: six
to obtain the current clarity data provided by the charge-coupled device and six to
measure the rate of change of lens movement. The output was the position of the
lens. The fuzzy control system used 13 rules and required 1.1 kilobytes of memory.
However, for obvious reasons, the camera was not advertised as a “fuzzy’ camera.
Instead, the adjective “smart” was used, which (because of the application of smart
fuzzy rules) this camera certainly was.

Another example of a consumer product incorporating fuzzy controllers is an
industrial air conditioner designed by Mitsubishi that used 25 heating rules and 25
cooling rules. A temperature sensor provided input, and fuzzy controller outputs
were fed to an inverter, a compressor valve, and a fan motor. According to Mitsubishi,
compared to the previous design, the fuzzy controller heated and cooled five times
faster, reduced power consumption by one quarter, increased temperature stability by
a factor of two, and used fewer sensors.

Following the first successful applications, many others were reported in fields
like character and handwriting recognition, optical fuzzy systems, robotics, voice-
controlled helicopter flight, control of flow of powders in film manufacture, and ele-
vator systems.

Work on fuzzy systems also proceeded in Europe and the United States, although
not with the same enthusiasm as in Japan. In Europe, at the same time as FL was

1.2. Basic Tools of Soft Computing 9

introduced for control purposes, H. Zimmermann and his coworkers found it useful
in modeling human decision processes. However, they realized that the classical FL
proposed by Zadeh was insufficient for modeling complex human decision processes,
and they developed extensions, such as compensatory aggregation operators. As
an immediate result of this, INFORM Corporation introduced a decision support
system for banks in 1986.

The list of large European companies that started fuzzy logic task forces includes
SGS-Thompson of France and Italy as well as Klockner-Moeler, Siemens, and
Daimler-Benz of Germany. SGS-Thompson invested $20 million in a fuzzy logic task
force in Catania, Italy. This project primarily targeted FL hardware. Siemens started
an FL task force at its central R&D facility in Munich. This task force emphasized
expanding FL theory as well as supporting applications. The Siemens applications
included washing machines, vacuum cleaners, automatic transmission systems, engine
idle-speed controllers, traffic controllers, paper-processing systems, and H2-leakage
diagnosis systems. A survey done in 1994 identified a total of 684 applications of
fuzzy logic in Europe that were classified into four categories: industrial automation
(44%), decision support and data analysis (30%), embedded control (19%), and pro-
cess control (7%).

The Environmental Protection Agency in the United States has investigated fuzzy
control for energy-efficient motors, and NASA has studied fuzzy control for auto-
mated space docking: simulations show that a fuzzy control system can greatly reduce
fuel consumption. Firms such as Boeing, General Motors, Allen-Bradley, Chrysler,
Eaton, and Whirlpool have worked on fuzzy logic for use in low-power refrigerators,
improved automotive transmissions, and energy-efficient electric motors.

Research and development is continuing apace in fuzzy software design, fuzzy
expert systems, and integration of fuzzy logic with neural networks in so-called neu-
rofuzzy or fuzzyneuro systems. These issues are discussed in more detail later in the
book.

1.2 Basic Tools of Soft Computing: Neural Networks, Fuzzy Logic Systems, and
Support Vector Machines

In recent years, neural networks, fuzzy logic models, and support vector machines
have been used in many different fields. This section primarily discusses NNs and FL
models. SVMs are discussed in depth in chapter 2. However, because of a very high
degree of resemblance between NNs and SVMs, almost all comments about the rep-
resentational properties of NNs can also be applied to SVMs. Unlike their repre-

10 Chapter 1. Learning and Soft Computing

sentational capabilities, the learning stages of these two modeling tools are different.
Chapters 2, 3, and 4 clarify the differences.

NNs and FL models are modeling tools. They perform in the same way after the
learning stage of NNs or the embedding of human knowledge about some specific
task of FL is finished. They are two sides of the same coin. Whether the more
appropriate tool for solving a given problem is an NN or an FL model depends upon
the availability of previous knowledge about the system to be modeled and the
amount of measured process data.

The classical NN and FL system paradigms lie at the two extreme poles of system
modeling (see table 1.1). At the NN pole there is a black box design situation in
which the process is entirely unknown but there are examples (measurements,
records, observations, samples, data pairs). At the other pole (the FL model) the
solution to the problem is known, that is, structured human knowledge (experience,
expertise, heuristics) about the process exists. Then there is a white box situation. In
short, the less previous knowledge exists, the more likely it is that an NN, not an FL,
approach will be used to attempt a solution. The more knowledge available, the more
suitable the problem will be for the application of fuzzy logic modeling. On the whole,
both tools are aimed at solving pattern recognition (classification) and regression
(multivariate function approximation) tasks.

For example, when they are applied in a system control area or the digital signal
processing field, neural networks can be regarded as a nonlinear identification tool.
This is the closest connection with a standard and well-developed field of estimation
or identification of linear control systems. In fact, if the problem at hand is a linear
one, an NN would degenerate into a single linear neuron, and in this case the weights
of the neuron would correspond to the parameters of the plant’s discrete transfer
function G(z) (see example 3.6). When applied to stock market predictions (see sec-
tion 7.2) the approach will be the same as for linear dynamics identification, but the
network will become a more complex structure. The underlying dependencies (if
there are any) are usually far from being linear, and linear assumptions can no longer
stand. A new, hidden layer of neurons will have to be added. In this way, the network
can model nonlinear functions. This design step leads to a tremendous increase in
modeling capacity, but there is a price: a nonlinear kind of learning will have to be
performed, and this is generally not an easy task. However, this is the point where the
world of neural networks and support vector machines begins.

In order to avoid too high (or too low) expectations for these new concepts of
computing, particularly after they have been connected with intelligence, it might be
useful to list some advantages and disadvantages that have been claimed for NNs
and FL models (see tables 1.2 and 1.3). Because of the wide range of applications of

1.2. Basic Tools of Soft Computing 11

Table 1.1
Neural Networks, Support Vector Machines, and Fuzzy Logic Modeling as Examples of Modeling
Approaches at Extreme Poles

Neural Networks and Support Vector Machines Fuzzy Logic Models

e ")@

Black Box White Box

No previous knowledge, but there are measure- Structured knowledge (experience, expertise, or
ments, observations, records, i.e., data pairs heuristics). No data required. IF-THEN rules are
{x;,d;} are known. Weights V and W are the most typical examples of structured
unknown. knowledge.

X1

Example: Controlling the distance between two
cars:

d R1: IF the speed is low AND the distance is
small, THEN the force on brake should be
small.

R2: IF the speed is medium AND the distance
is small, THEN the force on brake should be
big.

R3: IF the speed is high AND the distance is
small, THEN the force on brake should be very
dy big.

27
<7
AN
VLY
- :

X3

Behind NNs and SVMs stands the idea of learning ~ Behind FL stands the idea of embedding human
from the training data. knowledge into workable algorithms.

In many instances, we do have both some knowledge and some data.

This is the most common gray box situation covered by the paradigm of neuro-fuzzy or fuzzy-neuro
models.

If we do not have any prior knowledge and we do not have any measurements (by all accounts, a very
hopeless situation indeed), it may be hard to expect or believe that the problem at hand may be approached
and solved easily. This is a no-color box situation.

12

Table 1.2

Chapter 1. Learning and Soft Computing

Some Advantages of Neural Networks and Fuzzy Logic Models

Neural Networks

Fuzzy Logic Models

Have the property of learning from the data,
mimicking human learning ability

Can approximate any multivariate nonlinear
function

Do not require deep understanding of the process
or the problem being studied

Are robust to the presence of noisy data

Have parallel structure and can be easily
implemented in hardware

Same NN can cover broad and different classes of
tasks

Are an efficient tool for embedding human
(structured) knowledge into useful algorithms
Can approximate any multivariate nonlinear
function

Are applicable when mathematical model is
unknown or impossible to obtain

Operate successfully under a lack of precise sensor
information

Are useful at the higher levels of hierarchical
control systems

Are appropriate tool in generic decision-making
process

Table 1.3

Some Disadvantages of Neural Networks and Fuzzy Logic Models

Neural Networks

Fuzzy Logic Models

Need extremely long training or learning time
(problems with local minima or multiple solutions)
with little hope for many real-time applications.

Do not uncover basic internal relations of physical
variables, and do not increase our knowledge about
the process.

Are prone to bad generalizations (with large
number of weights, tendency to overfit the data;
poor performance on previously unseen data during
the test phase).

Little or no guidance is offered about NN structure

or optimization procedure, or the type of NN to
use for a particular problem.

Human solutions to the problem must exist, and
this knowledge must be structured. Experts may
have problems structuring the knowledge.

Experts sway between extreme poles: too much
aware in field of expertise, or tending to hide their
knowledge.

Number of rules increases exponentially with
increase in the number of inputs and number of
fuzzy subsets per input variable.

Learning (changing membership functions’ shapes
and positions, or rules) is highly constrained;
typically more complex than with NN.

1.2. Basic Tools of Soft Computing 13

these modeling tools, it is hard to prove or disprove these claims and counterclaims.
Only a part of the answers will be found in this book. It is certain that everyone
working with NNs, SVMs, and FL models will form their own opinions about these
claims. However, the growing number of companies and products employing NNs
and FL models and the increasing number of new neural network and fuzzy com-
puting theories and paradigms show that despite the still many open questions NN,
SVMs, and FL models are already well-established engineering tools and are becom-
ing a common computational means for solving many real-life tasks and problems.

1.2.1 Basics of Neural Networks

Artificial neural networks are software or hardware models inspired by the structure
and behavior of biological neurons and the nervous system, but after this point of
inspiration all resemblance to biologyical systems ceases.

There are about 50 different types of neural networks in use today. This book
describes and discusses feedforward NNs with supervised learning. This section deals
with the representational capabilities of NNs. It shows what NNs can model and how
they can represent some specific underlying functions that generated training data.
Chapters 3, 4, and 5 describe the problem of learning—how the best set of weights,
which enables an NN to be a universal approximator, can be calculated (learned) by
using these training data. Chapter 2 discusses much broader issues of statistical
learning theory and in that framework presents support vector machines as approx-
imating models with a powerful modeling capacity.

Feedforward neural networks are the models used most often for solving nonlinear
classification and regression tasks by learning from data. In addition, feedforward
NNs are mathematically very close, and sometimes even equivalent, to fuzzy logic
models. Both NN and FL approximation techniques can be given graphical repre-
sentation, which can be called a neural network or a fuzzy logic model. With such a
representation of NN or FL tools, nothing new is added to approximation theory,
but from the point of view of implementation (primarily in the sense of parallel and
massive computing) this graphical representation is a desirable property.

There is a strong mathematical basis for developing NNs in the form of the famous
Kolmogorov theorem (1957). This theorem encouraged many researchers but is still a
source of controversy (see Girosi and Poggio 1989; Kurkova 1991). The Kolmogorov
theorem states,

Given any continuous function 1 [0, 1]" — R"™, f(x) =y, f can be implemented
exactly by a network with n neurons (fan-out nodes) in an input layer, (2n + 1)
neurons in the hidden layer, and m processing units (neurons) in the output layer.

14 Chapter 1. Learning and Soft Computing

However, the proof of this important theorem is not constructive in the sense that it
cannot be used for network design. This is the reason this book pursues the standard
constructive approaches developed in the framework of NNs or SVMs.

Artificial neural networks are composed of many computing units popularly (but
perhaps misleadingly) called neurons. The strength of the connection, or link, between
two neurons is called the weight. The values of the weights are true network parame-
ters and the subjects of the learning procedure in NNs. Depending upon the problem,
they have different physical meanings, and sometimes it is hard to find any physical
meaning at all. Their geometrical meaning is much clearer. The weights define the
positions and shapes of basis functions in neural network and fuzzy logic models.

The neurons are typically organized into layers in which all the neurons usually
possess the same activation functions (AFs). The genuine neural networks are those
with an input layer and at least two layers of neurons—a hidden layer (HL), and an
output layer (OL)—provided that the HL neurons have nonlinear and differentiable
AFs. Note that such an NN has two layers of adjustable weights that are typically
organized as the elements of the weights matrices V and W. The matrix V is the
matrix of the hidden layer weights and the matrix W comprises the output layer
weights. For a single OL neuron, W degenerates into a weights vector w.

The nonlinear activation functions in the hidden layer neurons enable the neural
network to be a universal approximator. Thus the nonlinearity of the AFs solves
the problems of representation. The differentiability of the HL neurons’ AFs makes
possible the solution of nonlinear learning. (Today, using random optimization al-
gorithms like the genetic algorithm, one may also think of learning HL weights in
cases where the AFs of the hidden layer neurons are not differentiable. Fuzzy logic
models are the most typical networks having nondifferentiable activation functions.)

Here, the input layer is not treated as a layer of neural processing units. The input
units are merely fan-out nodes. Generally, there will not be any processing in the
input layer, and although in its graphical representation it looks like a layer, the input
layer is not a layer of neurons. Rather, it is an input vector, eventually augmented
with a bias term, whose components will be fed to the next (hidden or output) layer
of neural processing units. The OL neurons may be linear ones (for regression types
of problems), or they can have sigmoidal activation functions (for classification or
pattern recognition tasks). For NN-based adaptive control schemes or for (financial)
times series analyses, OL neurons are typically linear units. An elementary (but
powerful) feedforward neural network is shown in figure 1.1. This is a graphical
representation of the approximation scheme (1.1):

J
o(x, V,w,b) = F(x,V,w,b) = > wa;(v/x + b)), (1.1)
=1

j=

1.2. Basic Tools of Soft Computing 15

where o; stands for sigmoidal activation functions. This network is called a multilayer
perceptron (see chapters 3 and 4). J corresponds to the number of HL neurons. By
explicitly writing o = o(x, V,w,b) we deliberately stress the fact that the output from
an NN depends upon the weights (unknown before learning) contained in V, w, and
b. Input vector x, bias weights vector b, HL weights matrix V, and OL weights vector
w are as follows:

X=[x x» ... x,,]T. (1.2)
U11 P /5 A))

V= Uj1 cee Ui o Uip | (13)
U1 P 5 (A V))

b= b ... b (1.4)

w=1[w wy ... Wy Wi T (1.5)

At this point, a few comments may be needed. Figure 1.1 represents a general
structure of multilayer perceptrons, radial basis function (RBF) networks, and
SVMs. In the case of a multilayer perceptron, x,, will be the constant term equal to
1, called bias. The bias weights vector b can simply be integrated into an HL weights
matrix V as its last column. After such concatenation, (1.1) can be simplified to
o = w'a(Vx).? For RBF networks, x,,; = 0, meaning that there is no bias input.
However, it can be used in an OL (see chapter 5).

For both multilayer perceptrons and RBF networks, the HL bias term may be
used but is not generally needed. The HL activation functions shown in figure 1.1 are
sigmoidal, indicating that this particular network represents a multilayer perceptron.
However, the structures of multilayer perceptrons, RBF networks, and fuzzy logic
models are the same or very similar. The basic distinction between sigmoidal and
radial basis function networks is how the input to each particular neuron is calculated
(see (1.6) and (1.7) and fig. 1.2).

The basic computation that takes place in an NN is very simple. After a specific
input vector is presented to the network, the input signals to all HL neurons u; are
computed either as scalar (dot or inner) products between the weights vectors v; and
x (for a linear or sigmoidal AF) or as Euclidean distances between the centers ¢; of
the RBF and x (for RBF activation functions). A radial basis AF is typically para-
meterized by two sets of parameters: the center ¢, which defines its position, and a
second set of parameters that determines the shape (width or form) of an RBF. In the

16 Chapter 1. Learning and Soft Computing

X1

Xi

Xpe1 = 1
+1 i

Figure 1.1

Feedforward neural network that can approximate any " — %' nonlinear mapping.

case of a one-dimensional Gaussian function this second set of parameters is the
standard deviation ¢. (Do not confuse the standard deviation ¢ with the sigmoidal
activation function ¢ given in (1.1) and shown in HL neurons in fig. 1.1.) In the case
of a multivariate input vector x the parameters that define the shape of the hyper-
Gaussian function are elements of a covariance matrix . To put it simply, the ratios
of HL bias weights and other HL weights of sigmoidal activation functions loosely
correspond to the centers of RBF functions, whereas weights v;, which define the
slope of sigmoidal functions with respect to each input variable, correspond to the
width parameter of the RBF. Thus, the inputs to the HL neurons for sigmoidal AFs
are given as

uj:vrx, j=1,...,J, (1.6)
and for RBF activation functions the distances are calculated as

=Vix—¢) (x=¢), u=f(ro0). (1.7)

In the case of three-dimensional input, when x = [x1, X2, x3] Tande = [e1, €2, ¢3] T the
Euclidean distance r; can be readily calculated as

rp= \/(x —¢) (x—¢) = \/(x1 —c) H (m—e) (- e)t (1.8)

1.2. Basic Tools of Soft Computing 17

Figure 1.2

Formation of the input signal u to the neuron’s activation function. Top, sigmoidal type activation function;
input to the neuron is a scalar product u = w’x. Bottom, RBF type activation function; input to the neuron
is a distance r between x and the RBF center ¢ (r = ||x — ¢||), r depending on parameters of the shape or
width of the RBF. For a Gaussian function, the covariance matrix X contains the shape parameters.

The output from each HL neuron depends on the type of activation function used.
The most common activation functions in multilayer perceptrons are the squashing
sigmoidal functions: the unipolar logistic function (1.9) and the bipolar sigmoidal, or
tangent hyperbolic, function (1.10). These two AFs and their corresponding deriva-
tives are presented in figure 4.3.

1
_ 1.
¢ I +et (1.9)
u 2

Figure 1.2 shows the basic difference in forming the input signals u to the AFs of the
multilayer perceptron and an RBF neuron.

All three powerful nonlinear modeling tools—a multilayer perceptron, an RBF
network, and an SVM—have the same structure. Thus, their representational capa-
bilities are the same or very similar after successful training. All three models learn
from a set of training data and try to be as good as possible in modeling typically
sparse and noisy data pairs in high-dimensional space. (Note that none of the three
adjectives used eases our learning from data task.) The output from these models is a
hypersurface® in an R” x R” space, where 7 is the dimension of the input space and

18 Chapter 1. Learning and Soft Computing

Table 1.4
Basic Models and Their Error (Risk) Functions

Multilayer Perceptron Radial Basis Function Network Support Vector Machine

P P P
E=Y(di—f(xsw)’ E=Y (d—f(x,W)’+A|Pf|> E=Y"(di—/(xuW)’+ Q(hn)
P N e’ P N e’ N—— N e’ N— —

- i=1 . g .
Closeness to data Closeness to data Smoothness Closeness to data Capacity of a machine

m is the dimension of the output space. In trying to find the best model, one should
be able to measure the accuracy or performance of the model. To do that one typi-
cally uses some measure of goodness, performance, or quality (see section 1.3).

This is where the basic difference between the three models lies. Each uses a dif-
ferent norm (error, risk, or cost function) that measures the goodness of the model,
and the optimization of the different measures results in different models. The appli-
cation of different norms also leads to different learning (optimization) procedures.
This is one of the core issues in this book. Table 1.4 tabulates the basic norms (risk or
error functionals) applied in developing the three basic networks.

1.2.2 Basics of Fuzzy Logic Modeling

Fuzzy logic lies at the opposite pole of system modeling with respect to the NN
and SVM methods. It is a white box approach (see table 1.1) in the sense that it is
assumed that there is already human knowledge about a solution. Therefore, the
modeled system is known (i.e., white). On the application level, FL can be considered
an efficient tool for embedding structured human knowledge into useful algorithms.
It is a precious engineering tool developed to do a good job of trading off precision
and significance. In this respect, FL models do what human beings have been doing
for a very long time. As in human reasoning and inference, the truth of any state-
ment, measurement, or observation is a matter of degree. This degree is expressed
through the membership functions that quantify (measure) a degree of belonging of
some (crisp) input to given fuzzy subsets.

The field of fuzzy logic is very broad and covers many mathematical and logical
concepts underlying the applications in various fields. The basics of these conceptual
foundations are described in chapter 6. In particular, the chapter presents the funda-
mental concepts of crisp and fuzzy sets, introduces basic logical operators of con-
junction (AND), disjunction (OR), and implication (IF-THEN) within the realm of
fuzzy logic (namely, T-norms and 7-conorms), and discusses the equivalence of NNs
and FL models. (However, a deep systematic exposition of the theoretical issues is
outside the scope of this book.) Furthermore, fuzzy additive models (FAMs) are
introduced, which are universal approximators in the sense that they can approxi-

1.2. Basic Tools of Soft Computing 19

A\
A 4

Figure 1.3
Two different nonlinear R' x R' functions (mappings) to be modeled by a fuzzy additive model.

mate any multivariate nonlinear function on a compact domain to any degree of
accuracy. This means that FAMs are dense in the space of continuous functions, and
they share this very powerful property with NNs and SVMs.

This section discusses how FAMs approximate any (not analytically but verbally
or linguistically) known functional dependency. A FAM is composed of a set of rules
in the form of IF-THEN statements that express human knowledge about functional
behavior. Suppose we want to model the two functions shown in figure 1.3. It is easy
to model verbally the functional dependencies shown in figure 1.3. Both models
would contain at least three IF-THEN rules. Using fewer rules would decrease the
approximation accuracy, and using more rules would increase precision at the cost of
more required computation time. This is the classical soft computing dilemma—a
trade-off between imprecision and uncertainty on the one hand and low solution cost,
tractability, and robustness on the other. The appropriate rules for the functions in
figure 1.3 are as follows:

Left Graph Right Graph

IF x is low, THEN y is high. IF x is low, THEN y is high.

IF x is medium, THEN y is low. IF x is medium, THEN y is medium.
IF x is high, THEN y is high. IF x is high, THEN y is low.

These rules define three large rectangular patches that cover the functions. They are
shown in figure 1.4 together with two possible approximators for each function.
Note that human beings do not (or only rarely) think in terms of nonlinear func-
tions. We do not try to “draw these functions in our mind” or try to “see” them
as geometrical artifacts. In general, we do not process geometrical figures, curves,
surfaces, or hypersurfaces while performing tasks or expressing our knowledge. In
addition, our expertise in or understanding of some functional dependencies is very

20 Chapter 1. Learning and Soft Computing

.

v

Figure 1.4
Two different functions (solid lines in both graphs) covered by three patches produced by IF-THEN rules
and modeled by two possible approximators (dashed and dotted curves).

often not a structured piece of knowledge at all. We typically perform very complex
tasks without being able to express how are we executing them. The curious reader
should try, for example, to explain to a colleague in the form of IF-THEN rules how
he is riding a bike, recognizing numerals, or surfing.

There are many steps, both heuristic and mathematical, between knowledge or
expertise and a final fuzzy model. After all the design steps and computation have
been completed, this final model is a very precisely defined nonlinear function. By
choosing the complexity of the rule basis, one can control the precision of the fuzzy
model and trade that off against solution costs. Thus, one first defines the most rele-
vant input and output variables for a problem. In fuzzy logic terms, one must define
the universes of discourse, i.e., the domains and the ranges of relevant variables.
Then one specifies what is low, medium, high, positive, zero, hot, cold, and so on, in a
given task. In fuzzy logic terms, one defines the fuzzy membership functions (fuzzy
subsets or attributes) for the chosen input and output variables. Then one structures
the knowledge in the form of IF-THEN rules, that is, fuzzy rules (one establishes the
rule basis). The final stage is to perform the numerical part—applying some infer-
ence algorithm (e.g., SUM-PROD, MAX-MIN, SUM-MIN)—and to defuzzify the
resulting (usually not-normal) fuzzy subsets. The last two steps are crisp and precise
mathematical operations. 4 soft part in these calculations is the choice of member-
ship functions as well as appropriate inference and defuzzification mechanisms.
Again, there is a trade-off between simple and fast algorithms having low computa-
tional costs and the desired accuracy. Thus, the final approximating function depends
upon many design decisions (only two out of many possible fuzzy approximators are
shown in fig. 1.4). The design decisions include the number, shapes, and placements

1.2. Basic Tools of Soft Computing 21

of the input and output membership functions, the inference mechanism applied, and
the defuzzification method used.

Let us demonstrate the fuzzy modeling of a simple one-dimensional mapping
y=x2 —3<x<0. Choose four fuzzy membership functions (fuzzy subsets or

attributes) for input and output variables as follows:

Input Variables Output Variables

For —3 < x < =2, x is very negative. For 4 < y < 10, y is large.
For —3 < x < —1, x is slightly negative. For 1 <y <9,y is medium.
For —2 < x < 0, x is nearly zero. For 0 <y <4, yis small.

For —1 < x < 0, x is very nearly zero. For 0 < y < 1, y is very small.

These fuzzy membership functions are shown in figure 1.5. The rule basis for a fuzzy
inference in the form of four IF-THEN rules is

R;: IF x is very negative (VN), THEN y is large (L).

Ry: IF x is slightly negative (SN), THEN y is medium (M).
Rs: IF x is nearly zero (NZ), THEN y is small (S).

Ry4: IF x is very nearly zero (VNZ), THEN y is very small (VS).

If one is not satisfied with the precision achieved, one should define more rules.
This will be accomplished by a finer granulation (applying smaller patches) that can
be realized by defining more membership functions. The fuzzy approximation that
follows from a model with seven rules is shown in figure 1.6. The seven fuzzy mem-
bership functions (fuzzy subsets or attributes) for inputs and outputs, as well as the
corresponding rule basis, are defined as follows:

Input Variables Output Variables

For —3.0 < x < —2.5, x is extremely far from For 6.25 <y <9, y is very large.
zero.

For —3.0 < x < —2.0, x is very far from zero. For 4 <y <9, y is quite large.
For —2.5 < x < —1.5, x is quite far from zero. For 2.25 <y < 6.25, y is large.
For —2.0 < x < —1.0, x is far from zero. For 1 <y <4,y is medium.

For —1.5 < x < —0.5, x is nearly zero. For 0.25 <y < 2.25, y is small.
For —1.0 < x < 0, x is very nearly zero. For 0 < y < 1, y is quite small.

For —0.5 < x < 0, x is extremely close to zero. For 0 < y < 0.25, y is very small.

22 Chapter 1. Learning and Soft Computing

Membership functions x Membership functions y
VN SN NZ VNZ V§S M L
14 1
0.8 0.8
0.6 0.6 |
u u
04 t 04}
02 t 0.2
X y
0 0
-4 -2 0 0 5 10
A Fuzzy approximation using four rules

— y:XQ,for—3<x<0

—— Approximating curve

O L L I L n
-3 -2.5 -2 -1.5 -1 -0.5 0

Figure 1.5
Modeling a one-dimensional mapping y = x? by a fuzzy model with four rules.

1.2. Basic Tools of Soft Computing 23

4 Membership functions x Membership functions y

1 1

0.8 0.8

0.6 0.6

u u
0.4 0.4
0.2 0.2
X y
0 > 0
-4 -2 0 0 5 10
y
10t Fuzzy approximation using seven rules
8 -
[y=x2,for—3<x<0
6 — Approximating curve
4t
2 9
X
0 : : : : : —p
-3 -2.5 -2 -1.5 -1 -0.5 0
Figure 1.6

Modeling a one-dimensional mapping y = x? by a fuzzy model with seven rules.

Ry: [IF x is extremely far from zero, THEN y is very large.

Ry: IF x is very far from zero, THEN y is quite large.
Ris: IF x is quite far from zero, THEN y is large.

Ry4: IF x is far from zero, THEN y is medium.
Rs: IF x is nearly zero, THEN y is small.

Re¢: IF x is very nearly zero, THEN y is quite small.

Ry: IF x is extremely close to zero, THEN y is very small

24 Chapter 1. Learning and Soft Computing

The fuzzy approximating function that results from a fuzzy additive model with
seven rules is indistinguishable from an original and known functional dependency.
Recall, however, that structured human knowledge is typically in the form of the
(linguistically expressed) rule basis, not in the form of any mathematical expression.
If one knew the mathematical expression, there would not be a need for designing a
fuzzy model. One could simply use this known dependency in a crisp analytical form.

The fuzzy additive model can be represented graphically by a network like the one
shown in figure 1.1. Section 6.2 discusses such structural equivalence. The resem-
blance, which follows from mild assumptions, can be readily seen in figure 6.25. The
input membership functions of a FAM correspond to the HL activation (basis)
functions in NNs, and the centers of the FAM’s output membership functions are
equivalent to the OL weights in an NN or SVM model.

1.3 Basic Mathematics of Soft Computing

The fields of learning from data and soft computing are mathematically well-founded
disciplines. They are composed of several classical mathematics areas, shown as a
“flower of learning and soft computing” in figure 1.7. One could say that both
learning and soft computing are nothing but value-added applied mathematics and
statistics, although this statement may be valid for many other fields as well. This
book arose from a desire to show how the different areas depicted in figure 1.7, nicely
connected, compose the powerful fields of learning from data and soft computing.

Figure 1.7
A “flower of learning and soft computing” and its basic mathematical constituents.

1.3. Basic Mathematics of Soft Computing 25

Here, value-added primarily means modern computer-based applications of stan-
dard and novel mathematical and statistical techniques. The statistical learning
theory is presented in chapter 2, and fuzzy logic is the subject of chapter 6.

Two aspects of models (networks, machines, or mathematical functions) are ana-
lyzed here: what can these models represent, and how do we make them represent
what we want them to? The first is the problem of representation, discussed in section
1.3.1. The second is the problem of learning, which boils down to some standard or
novel nonlinear optimization techniques. Learning is the basic subject of this book,
and it is analyzed in detail throughout. However, an elementary presentation of the
need for, and the origins of, nonlinear optimization (learning or training) tools is
given in section 1.3.2.

More specifically, section 1.3.1 presents the basics of classical and modern
approaches to the approximation of multivariate functions, and section 1.3.2 intro-
duces nonlinear optimization. Section 1.4 discusses the basics of classical statistical
theory of regression and classification. Chapter 2 is devoted to the theoretically
challenging area of support vector machines, which implement structural risk mini-
mization, which is in turn developed within the framework of a new statistical
learning theory. SVMs are also aimed at solving classification and regression prob-
lems, but unlike the theoretical approaches mentioned in section 1.4, which are based
on known probability distributions, SVMs are the first mathematical models that do
not assume any specific probability distributions and that learn from experimental
data. Thus, sections 1.3 and 1.4 and chapter 2 roughly cover the basic theoretical
constituents of the “learning from data’ paradigm.

1.3.1 Approximation of Multivariate Functions

This section provides an elementary introduction to approximation theory. It also
presents the basics of the theoretical interpolation/approximation* abilities of soft
computing models: neural networks, support vector machines, and fuzzy logic
models.

The classic one-dimensional problem is the approximation of a real continuous
function f(x) by an approximating function f,(x,w) having a fixed finite number of
parameters w; that are entries of a weights vector w. (Later, V and W are used to
denote matrices of hidden layer weights and output layer weights, respectively.) The
basic problems in this book are somewhat different. One rarely tries to approximate
some continuous univariate f(x) or multivariate f(x) function. The typical engineer-
ing problem to be solved is the interpolation or approximation of a set of P sparse
and noisy training data points. However, to clarify the standard learning from data

26 Chapter 1. Learning and Soft Computing

problem, classical issues from approximation theory are considered first. This section
roughly follows Rice (1964) and Mason and Parks (1995).

Two major items in an approximation problem are the type of approximating
function applied and the measure of goodness® of an approximation. This is also
known as the question of choosing form and norm.

The choice of approximating function (form) is more important than the choice of
a measure of goodness, that is, a distance function or norm that measures the dis-
tance between f'and f,. Unfortunately, there is no theoretical method of determining
which out of many possible approximating functions will yield the best approxima-
tion. On the other hand, there are fortunately only a few feasible candidate functions
in use or under investigation today. The most popular functions are tangent hyper-
bolic, a few radial basis functions (notably Gaussians and multiquadrics), polyno-
mial functions, and three standard membership functions applied in fuzzy models
(triangle, trapezoidal, and singleton). These functions are called activation, basis, and
membership functions in multilayer perceptrons; radial basis function (RBF) or reg-
ularization networks, and fuzzy logic models. These models are, together with sup-
port vector machines, the most popular soft modeling and learning functions. Their
mathematical forms follow.

A multilayer perceptron is a representative of nonlinear basis function expansion
(approximation):

o= f,(x,w,V) Zwlgplxv (1.11)

where ¢;(x,v;) is a set of given functions (usually sigmoidal functions such as the
logistic function or tangent hyperbolic—see (2.6) and chapter 3), o is the output from
a model, and N is the number of hidden layer neurons. Both the output layer’s
weights w; and the entries of the hidden layer weights vector v are free parameters
that are subjects of learning.

An RBF network is a representative of a linear basis function expansion:

0= f,(x,w) = ngo, (1.12)

where ¢;(x) is a fixed (chosen in advance) set of radial basis functions (e.g.,
Gaussians, splines, multiquadrics). Note that when the basis functions ¢;(x) are not
fixed, that is, when their positions ¢; and shape parameters X are also subjects of
learning (p; = ¢;(x, ¢;, X;)), RBF networks become nonlinear approximation schemes.
(See chapter 5 for a more detailed discussion of RBF networks.)

1.3. Basic Mathematics of Soft Computing 27

A fuzzy logic model, like an RBF network, can be a representative of a linear or
nonlinear basis function expansion:

M=

G(X7 C[)V,‘
, (1.13)
G(X, ci)

Il
-

i

o=y=f,(x,¢r1) =

=

i=1

where N is the number of rules, r is the rules, and basis functions G(x,¢;) are the
input membership functions (attributes or fuzzy subsets) centered at ¢; (see (2.7) and
section 6.1).

In addition to these models, two classic one-dimensional approximation schemes
are considered: a set of algebraic polynomials

n
f.(x) = Z wix! = wo 4+ wix 4+ wax? + wix® + 4wy x4 wx” (1.14)
=0

and a truncated Fourier series
f.(x) = ap + ay sin(x) + by cos(x) + ay sin(2x) + by cos(2x) + - -
+ a, sin(nx) + b, cos(nx). (1.15)

All but the first approximation scheme here are linear approximations. However, all
given models are aimed at creating nonlinear approximating functions. Thus, the
adjective linear is used because the parameters (w, a;, b;, and r;) that are subjects
of learning enter linearly into the approximating functions. In other words, the
approximation depends linearly upon weights that are the subjects of learning. This
very important property of linear models leads to quadratic (convex) optimization
problems with guaranteed global minimums when the L, norm is used.

The second major question to be answered is the choice of norm (the distance
between the data and the approximating function f,(x,w)). This choice is less
important than the choice of form f,(x,w). If f,(x,w) is compatible with an under-
lying function f(x) that produced the training data points, then almost any reason-
able measure will lead to an acceptable approximation to f(x). If f,(x,w) is not
compatible with f(x), none of the norms can improve bad approximations to f(x).
However, in many practical situations one norm of approximation is naturally pre-
ferred over another.

The norm of approximation is a measure of how well a specific approximation
fa(x) of the given form matches the given set of noisy data. Norms are (positive)
scalars used as measures of error, length, size, distance, and so on, depending on

28 Chapter 1. Learning and Soft Computing

context. Here a norm usually represents an error. The most common mathematical
class of norms in the case of a measured discrete data set is the L, (Holder) norm.
The L, norm is a p-norm of an error vector e given as

» 1/p
lell, = lld = fa(x, W[, = [|d —of|, = <Z i — 0f|”> : (1.16)
i=1

where P indicates the size of the training data set, that is, the number of training data
pairs, and d and o stand for P-dimensional vectors of desired and actual outputs
of the neural network. Note that (1.16) is strictly valid for an R¢ — R! mapping,
or for an NN with a single output layer neuron. For more OL neurons, a norm
would be defined as a proper matrix norm. Assuming that the unknown underly-
ing function f(x) is given on a discrete data set containing P measurements

f(x1), f(x2),..., f(xp), the standard L, norms in use are defined as
P

Li: ||/ = flli = Z |f(xi) — fo(xi)] (absolute value) (1.17)
P

Ly |f = fulla =D (1) = fux)*)'”* (Euclidean norm) (1.18)

1

Ly: ||f — full, =max|f(x;) — f,(x)] (Chebyshev, uniform, or
' infinity norm) (1.19)

The norms used during an optimization of the models are not only standard L,
norms. Usually rather more complex mathematical structures are applied in the form
of cost or error functions that enforce the closeness to training data (most typically
measured by an L, or L; norm) and that measure some other property of an
approximating function (e.g., smoothness, model complexity, weights magnitude).
These norms (actually variously defined functionals that do not possess the strict
mathematical properties required for norms) are typically composed of two parts.
The first component is usually a standard L, (or L;) norm, and the second is some
penalization term (see table 1.4 and equations (2.26)—(2.28)). Vapnik’s e-insensitive
loss function (norm), which is particularly useful for regression problems, is intro-
duced in chapter 2.

The Chebyshev (or uniform) norm is an L, norm called an infinity norm by virtue
of the identity

m (1|7 + [x2]” + - 4 |x,[7) /7 = max |x,]. (1.20)
pP— L I<i<P

1.3. Basic Mathematics of Soft Computing 29

The choice of the appropriate norm or a measure of the approximation’s goodness
depends primarily on the data and on the simplicity of approximation and opti-
mization algorithms available. The L, norm is the best one for data corrupted with
normally distributed (Gaussian) noise. In this case, it is known that the estimated
parameters or weights obtained in L, norm correspond to the maximum-likelihood
estimates. The L; norm is much better than the Euclidean norm for data that have
outliers because the L; norm tends to ignore such data. The Chebyshev norm is ideal
in the case of exact data with errors in a uniform distribution.

In many fields, particularly in signal processing and system identification and
control, the L, or Euclidean norm is almost universally used, for two reasons. First,
the assumption about the Gaussian character of the noise in a control systems envi-
ronment is an acceptable and reasonable one. Second, the L, norm is mathematically
simple and tractable.

Very often, a measure of goodness or closeness of approximation used during a
learning stage does not satisfy (1.17)—(1.19) or other known properties of norms,
and hence is not a norm. For example, the most common deviation from a “pure”
L, norm is the use of the sum of error squares as a standard cost function in NN
learning. The sum of error squares is the measure derived from the norm (it is a
slightly changed version of a Euclidean norm without square root operation), but its
minimization is equivalent to the minimization of the L, norm from which it is
derived.

Now that the concepts of form (type of function used to approximate data) and
norm (measure of closeness of approximation) have been introduced, a natural
question is, what is the best approximation? Of course, in order to achieve better
approximations, the approximants will generally have to be of higher and higher
degree. An increase in degree, usually leads to overfitting, however. This problem is
discussed in detail throughout the book.

Given the set S, of approximating functions (say, polynomials of sixth order, or
NNs with six HL neurons, or fuzzy models with six rules, n = 6), is there among the
elements of S, (among all possible polynomials of sixth order, or NNs with six HL
neurons, or fuzzy models with six rules) one that is closer to given data points f(x;),
i =1, P, than any other element (function, model, network) of S,? If there is, it is
known as the best approximation to f(x).

Note, however, that the best approximation property depends upon the norm
applied. Change the norm (the criterion of closeness of approximation) and the best
approximation will change. Generally, the best approximation in the L, norm is not
the same as the best approximation in the L, norm (p # ¢). This is shown in the
following one-dimensional continuous example (see also problems 1.8 and 1.9).

30 Chapter 1. Learning and Soft Computing

Example 1.1 Approximate y = x* over [0, 1] by a straight line f,(x) so that

1
J (x* — f£.(x))* dx is minimum,
0

[t nepas | (w; s i

max |x* — £,(x)| is minimum.
0<x<l1

Note that y = x* is given as a continuous function, not as a set of discrete points.
Therefore, it is appropriate here to use norms defined over an interval that apply an
integral operator instead of equations (1.17)—(1.19), which comprise a summing op-
erator. Three different best approximations (solutions) corresponding to the given
cost functions (norms) are

f.(x) = 4?)6 - é (solid line in fig. 1.8),

S4x 16
fu(x) = 5—5x — <3 (dashed linc in fig. 1.8),

f,(x) =x—0.236 (dotted line in fig. 1.8). me
,V1 ‘t
0.8+
0.6}
0.4}
0.2}

0

-02(%

-0.4

Figure 1.8
Best least square (solid), penalized least square (dashed), and uniform (dotted) linear approximations to x*
on [0, 1].

1.3. Basic Mathematics of Soft Computing 31

The best approximation is unique for all strict norms, that is, for 1 < p < oo. Thus,
the best approximation with an L, norm is unique, but this property is not, for
example, shared with L; and L, norms. For more on the problem of a norm’s
uniqueness, see the related problems in the problems section of this chapter.

Before examining the approximation properties of models used in this book, one
can consider some basic shortcomings of classical approximation schemes. His-
torically, there are two standard approximators: algebraic and trigonometric poly-
nomials. The interested reader should consult the vast literature on the theory of
approximation to find discussions on the existence and uniqueness of a solution, the
best approximation calculation and its asymptotic properties, and the like. Here we
start with polynomial approximators of a one-dimensional function given by discrete
data. In trying to learn about the underlying dependency between inputs and outputs
we are concerned with the error at all points in the range, not only at the sampled
training data. Example 1.2 shows the deficiency of polynomial approximations. They
behave badly in the proximity of domain boundaries even though they are perfect
interpolators of given training data points.

Example 1.2 Approximate function f(x) = 1/(1+ 25x?) defined over the range
[-1,+1] and sampled at 21 equidistant points x;, i = 1,21, (i.e., P =21) by poly-
nomials of twelfth, sixteenth, and twentieth orders.

For this particular function (see fig. 1.9) it is found that for any point x # x;, where
|x| > 0.75, the error | f,(x) — f(x)| of the approximation increases without bound as

25 T f
! [
2} ! |
; ! 20th order (dashed-dotted) I
y Sr ll 16th order (dashed) }polynomial !]
. |
L S A> I 1
! [
05 i I
| N
0 FA= e
1 -\
[\ -
—-05 :"' \I \'/ \“1
_'1 " L n
-1 -0.5 0 0.5 1
X
Figure 1.9

Polynomial approximations of a function 1/(1 + 25x2).

32 Chapter 1. Learning and Soft Computing

the order of the approximating polynomials n increases. This is true even though
f.(x;) = f(x;) when the order of polynomial n = P — 1, where P is the number of
training data. In this example f,(x;) = f(x;) for a twentieth-order polynomial, which
means that both L; and L, norms are equal to zero, wrongly suggesting perfect
errorless approximation over the whole domain of input variable x. |

When considering an error over a whole range, a more satisfactory objective is to
make the maximum error as small as possible. This is the minimax or Chebyshev type
of approximation where the error is defined by (1.19) and the function f,(x) is chosen
so that L, is minimized. It is in this context that the Chebyshev polynomials have
found wide application.

There are also many other polynomials, notably a class of orthogonal polynomials,
that can be used for approximations. All of them have similar deficiencies in the sense
that as the number of training points P increases, the approximation improves near
the center of the interval but shows pronounced oscillatory behavior at the ends of
the interval.

Another popular classical approximation scheme involves rational functions (the
ratio of two polynomials) given as

S owixt
Sl wov) =5 —. (1.21)
v;ix!

These functions are much more flexible, but they are nonlinear approximators (with
respect to the denominator weights v;) and learning of the weights v; is not an easy
task. They are of historical significance but are not used as basis functions in this
book.

Both the polynomials and trigonometric sums have similar disadvantages in that
they cannot take sharp bends followed by relatively flat behavior. Both functions are
defined over the whole domain (i.e., they are globally acting activation functions),
and they generally vary gently. Such characteristics can be circumvented by increas-
ing the degree of these functions, but this has as a consequence wild behavior of the
approximator close to boundaries (see fig. 1.9).

The best candidates for approximating functions that naturally originate from
polynomials are the piecewise polynomial functions, the most popular being various
spline functions. The spline functions are special cases of RBF functions; they are
derived in chapter 5. They are defined by dividing the domain of the input variable
into several intervals by a set of points called joints or knots. The approximating

1.3. Basic Mathematics of Soft Computing 33

function is then a polynomial of specified degree between the knots. The approxi-
mation is linear for prespecified and fixed knots. However, the whole approximating
scheme is nonlinear when the positions of knots are subjects of learning. The learning
of knot positions, being a nonlinear optimization problem, is complex and generally
not an easy task.

It is interesting to note that in the univariate case (for one-dimensional inputs)
algebraic polynomials, trigonometric polynomials, and splines all have the property
of providing a unique interpolation on a set of distinct points equal in number to the
number of approximation parameters (weights). However, in the multivariate case it
is not usually possible to guarantee a unique interpolant for these basis functions, and
hence a best approximation is not necessarily unique. Problem 1.11 deals with the
uniqueness of a polynomial approximation in a bivariate case. However, it deliber-
ately emphasizes a kind of pathological case. It is important to be aware of possible
pitfalls, but there are some very nice results in applying polynomials in support vec-
tor machines (see chapter 2) that exploit their properties. At the same time, RBFs
uniquely interpolate any set of data on a distinct input set of training data points.
This is but one of nice properties of RBF networks (RBF approximation models).

Figure 1.10 shows an interpolation of six (P = 6) random data points using a
polynomial of fifth order. A perfect interpolation is achieved because the Vander-
monde matrix X in (1.22) is nonsingular. (These matrices often occur in polynomial
approximations, signal processing, and error-correcting codes.) However, this matrix

12

10' /H\

Figure 1.10
Interpolation and approximation polynomials of fifth order (dashed) and third order (dotted) to six highly
noise-contaminated data points obtained by sampling the straight line (solid).

34 Chapter 1. Learning and Soft Computing

is notorious. Even for modest sizes of P, it is very ill conditioned (its determinant is
very small), and solutions may be subject to severe numerical difficulties. The inter-
polation curve (dashed) is a solution of a linear system of equations, and it is a
(unique) least-squares solution, as is the approximation curve (dotted). The latter is,
however, a third-order polynomial approximation curve. It is also the best approxi-
mation in the least-squares sense but no longer passes through the training data
points.

An interpolating solution results from solving the following system of linear equa-
tions:

1 2 3 4 5 :
Wo + WIX; + WaX; + W3X] 4+ waX; + wsx; =y, i=1,6,

which can be expressed in a matrix form as

I xi xp xj xf Xxj wo "
1 x x% xg’ xg x25 w1 Vs
Xw—y = I x; x% xg x% xi wa| || (1.22)
I x4 x5 x5 x5 X3 w3 Va
1 xs x2 x3 x¥ x32||ws Vs
1 xs xg xg xg xg|lws| | V]

In this case, input vector x=[0 1 2 3 4 S]T and output vector y=
[1.83 0.69 1.03 126 8.03 4.45]". A nonsingular Vandermonde matrix X is

0 0 O 0 0

1 1 1 1 1

2 4 8 16 32

3 9 27 81 243
4 16 64 256 1024
5 25 125 625 3125

—_ = e = =

The solution vector w to (1.22) that ensures an interpolation is
w=Xly=[-10.84 1857 —11.60 299 —0.26 1.83]".

An approximating solution using a polynomial of third order (shown in fig. 1.10 as
a dotted curve) is obtained by solving the following overdetermined system of six
equations in four unknowns:

wo + Wlxl-1 + sziz + W3xi3 =y, i=1,6,

1.3. Basic Mathematics of Soft Computing

or in matrix form,

—_ e = = =
(O S B S R

0 0|
1 1

4 8

9 27
16 64
25 125

%)
Wi
W2
w3

[1.83]

0.69
1.03
1.26
8.03

| 4.45

35

(1.23)

The best solution, a weights vector w, that results from an approximation in the least

squares sense is obtained as follows:

w=Xfy=[-517 296 —036 225",

where X denotes the pseudoinversion of a rectangular matrix X.

The same set of training data points is interpolated by using /inear splines and cubic

splines; the interpolating curves are shown in figure 1.11.

The fifth column in a matrix X belonging to linear splines in (1.24) corresponds
to the linear spline centered at x = 4 (thick dotted spline). Matrix X is also called a
design matrix. The interpolation functions that are obtained by using spline functions
as shown in figure 1.11 belong to radial basis functions network models. Chapter 5

12t

10+

Linear splines interpolation

Cubic splines interpolation

/ matrix G. Other linear splines are
"‘/L\\\shown as thin dashed lines.

%

\
\
~

N

Figure 1.11

Interpolation by linear and cubic splines. Training data set is the same as in figure 1.10. Fifth linear spline

corresponds to fifth column of a matrix X given in (1.24).

36 Chapter 1. Learning and Soft Computing

discusses these networks, also known as regularization networks. Chapter 5 also
presents the origins of the linear and cubic splines applied here.

Corresponding systems of linear equations for both interpolations in matrix form
and solution vectors w are as follows.

For linear splines,

01 2 3 4 5][w [1.83]
1 01 2 3 4||wm 0.69
210 1 2 3||ws 1.03
Xw; = = . 1.24
WLEYZ 3 0 1 001 2] | w 1.26 (1.24)
4 3 21 0 1]]ws 8.03
5 4 3 21 0f[ws]| [445
For cubic splines,
0 1 8 27 64 1251 [w] [1.83]
1 0 1 8 27 64 ||wm 0.69
8 1 0 1 8 27| |ws 1.03
Xwe = = . 1.25
We=Y= 197 8 1 0 1 8 ||w 1.26 (1.25)
64 27 8 1 0 1 Ws 8.03
(125 64 27 8 1 0 ||ws| [445

The solution vectors are
w, =[0.06 0.74 —0.057 327 -5.17 2.4163]T.
we=1[0.59 —1.66 2.55 —443 339 -0.9165] T

As long as the dimensionality of input vectors is not too high, many classical
approximation tools may be appropriate for modeling training data points. However,
in modern soft computing, the dimensionality of input vectors is very high; it may
go to dozens of thousands. In such high-dimensional spaces, data are sparse, and
modeling underlying dependencies is a formidable task. NNs, SVMs, and FL models
are appropriate tools for such tasks. Their theoretical interpolation and approxima-
tion capacities are briefly discussed here. Chapters 2—6 treat these issues in more
detail.

Both NNs and FL models are universal approximators in the sense that they can
approximate any function to any degree of accuracy provided that there are enough
hidden layer neurons or rules. The same can also be stated for SVMs. Without any

1.3. Basic Mathematics of Soft Computing 37

doubt, such powerful approximating faculties are the foundation of, and theoretical
justification for, the wide application of NNs and FL models.

Following are the classic Weierstrass theorem for the approximation by poly-
nomials; the Cybenko-Hornik-Funahashi theorem (Cybenko 1989; Hornik, Stinch-
combe, and White 1989; Funahashi 1989), which states identical abilities of sigmoidal
functions; and the theorem for universal approximation properties using the Gaussian
(radial basis) activation functions.

CLASSICAL WEIERSTRASS THEOREM ~ The set Py, ») of all polynomials
p(x) = Z wix/ (1.26)
=0

is dense in C[a, b]. In other words, given f € Cla, b] and ¢ > 0, there is a polynomial p
for which

|p(x) — f(x)] <& forall x € [a,b].

CYBENKO-HORNIK-FUNAHASHI THEOREM Let ¢ be any sigmoidal function and I; the
d-dimensional cube [0, 1]%. Then the finite sum of the form

A= o x+) (1.27)
—1

J

is dense in C[l,]. In other words, given f € C[I;] and & > 0, there is a sum f,(x) for
which

If,(x) — f(x)| <¢& forallxel,,

where w;, v, and b; represent OL weights, HL weights, and bias weights of the hidden
layer, respectively.

THEOREM FOR THE DENSITY OF GAUSSIAN FUNCTIONS Let G be a Gaussian function
and I, the d-dimensional cube [0, l]d. Then the finite sum of the form

£109=3 wG(x—) (1.28)
j=1

is dense in C[I;]. In other words, given f € C[I;] and ¢ > 0, there is a sum f,(x) for
which

|7, (x) — f(x)] <& forall xely,

38 Chapter 1. Learning and Soft Computing

where w; and ¢; represent OL weights and centers of HL multivariate Gaussian
functions, respectively.’

The same results of universal approximation properties exist for fuzzy models, too.
Results of this type can also be stated for many other different functions (notably
trigonometric polynomials and various kernel functions). They are very common in
approximation theory and hold under very weak assumptions. Density in the space
of continuous functions is a necessary condition that every approximation scheme
should satisfy.

However, the types of problems in this book are slightly different. In diverse tasks
where NNs and SVMs are successfully applied, the problem is usually not one of
approximating some continuous univariate f(x) or multivariate f(x) function over
some interval. The typical engineering problem involves the interpolation or approxi-
mation of sets of P sparse and noisy training data points.

The NNs or SVMs will have to model the mapping of a finite training data set of P
n-dimensional input training patterns x to the corresponding P m-dimensional output
(desired or target) patterns y. (These y are denoted by d during the training, where d
stands for desired.) In other words, these models should model the dependency (or the
underlying function, i.e., the hypersurface) f: R" — R". In the case of classification,
the problem is to find the discriminant hyperfunctions that separate m classes in an n-
dimensional space. The learning (adaptation, training phase) of our models corre-
sponds to the linear or nonlinear optimization of a fitting procedure based on
knowledge of the training data pairs. This is a task of hypersurface fitting in the
generally high-dimensional space R"” ® R"”'. RBF networks have a nice property that
they can interpolate any set of P data points. The same is also true for fuzzy logic
models, support vector machines, or multilayer perceptrons, and this powerful prop-
erty is the basis for the existence of these novel modeling tools.

To interpolate the data means that the interpolating function f,(x,) must pass
through each particular point in R" ® R"™ space. Thus, an interpolating problem is
stated as follows:

Given is a set of P measured (observed) data: X = {x,,d,,p =1,..., P} consisting
of the input pattern vectors x € R” and output desired responses or targets d € R™.
An interpolating function is such that

Joxp)=dp, p=1,... P (1.29)

Note that an interpolating function is required to pass through each desired point d,.
Thus, the cost or error function (norm) E that measures the quality of modeling (at
this point, we use the sum of error squares) in the case of interpolation must be equal

1.3. Basic Mathematics of Soft Computing 39

to zero
P P
E=Y"e=>"[d,— f,(x)]>=0. (1.30)
p=1 p=1

Strictly speaking, an interpolating function f,(x,) and therefore the error function E,
are parameterized by approximation coefficients here called weights, and a more
proper notation for these two functions would be f,(x,w,v) and E(x,w,v). Weights
w and v are typically a network’s output layer weights and hidden layer weights,
respectively. Writing this dependency explicitly stresses the fact that the weights will
be subjected to an optimization procedure that should result in a good f, and a small
E. (Generally, weights are organized in matrices W and V.)

Note that in order to interpolate data set X, the RBF network, for example, should
have exactly P neurons in a hidden layer. Work with NNs typically involves sets
of hundreds of thousands of patterns (measurements), which means that the size of
such an interpolating network would have to be large. The numerical processing of
matrices of such high order is very intractable. There is another important reason
why the idea of data interpolation is usually not a good one. Real data are corrupted
by noise, and interpolation of noisy data leads to the problem of overfitting. What we
basically want NNs to do is to model the underlying function (dependency) and to
filter out the noise contained in the training data. There are many different techniques
for doing this, and some of these approaches are presented later. Chapter 2 is devoted
to this problem of matching the complexity of a training data set to the capacity of an
approximating model. The approach presented there also results in models with
fewer processing units (HL neurons) than there are training patterns.

The number of neurons in a hidden layer and the parameters that define the shapes
of these HL activation (basis) functions are the most important design parameters
with respect to the approximation abilities of neural networks. Recall that both the
number of input components (features) and the number of output neurons are in
general determined by the very nature of the problem. At the same time, the number
of HL neurons, which primarily determines the real representation power of a neural
network and its generalization capacity, is a free parameter. In the case of general
nonlinear regression performed by an NN, the main task is to model the underlying
function between the given inputs and outputs and to filter out the disturbances
contained in the noisy training data set. Similar statements can be made for pattern
recognition (classification) problems. In the SVM field, one can say that the model
complexity (capacity) should match the data complexity during training. Model ca-
pacity is most often controlled by the number of neurons in the hidden layer. In

40 Chapter 1. Learning and Soft Computing

changing the number of HL nodes, two extreme solutions should be avoided: filtering
out the underlying function (not enough HL neurons) and modeling the noise or
overfitting the data (too many HL neurons). Therefore, there is a need to comment
on appropriate measures of model quality.

In the theory of learning from data, the problems of measuring the model’s per-
formance are solved by using different approaches and inductive principles. Applying
some simple norm, for instance, any L, norm, is usually not good enough. Perfect
performance on training data does not guarantee good performance on previously
unseen inputs (see example 1.3). Various techniques aimed at resolving the trade-off
between performance on training data and performance on previously unseen data
are in use today. The concept of simultaneous minimization of a bias and a variance,
known as the bias-variance dilemma, originated from the field of mathematical sta-
tistics (see chapter 4). Girosi analyzed the concepts of an approximation error and
an estimation error (see section 2.3). Finally, in the field of SVMs one applies the
structural risk minimization principle, which controls both the empirical risk and a
confidence interval at the same time. In all three approaches, one tries to keep both
components of an overall error or risk as low as possible. All these measures of the
approximation performance of a model are similar in spirit but originate from dif-
ferent inductive principles, and they cannot be made equivalent.

One more classical statistical tool for resolving the trade-off between the perfor-
mance on training data and the complexity of a model is the cross-validation tech-
nique. The basic idea of the cross-validation is founded on the fact that good results
on the training data do not ensure good generalization capability. Generalization
refers to the capacity of a neural network to give correct answers on previously unseen
data. This set of previously unseen data is called a fest set or validation set of pat-
terns. The standard procedure to obtain this particular data set is to take out a part
(say, one quarter) of all measured data, which will not be used during training but in
the validation or test phase only. The higher the noise level in the data and the more
complex the underlying function to be modeled, the larger the test set should be.
Thus, in the cross-validation procedure the performance of the network is measured
on the test or validation data set, ensuring the good generalization property of a
neural network.

Example 1.3 demonstrates some basic phenomena during modeling of a noisy data
set. It clearly shows why the idea of interpolation is not very sound.

Example 1.3 The dependency (plant or system to be identified) between two vari-
ables is given by y = x + sin(2x). Interpolate and approximate these data by an RBF
network having Gaussian basis functions by using a highly corrupted training data
set (25% Gaussian noise with zero mean) containing 36 measured patterns (x,d).

1.3. Basic Mathematics of Soft Computing 41

6

5

4

3t

2,

1k

4 —4

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
X X

Figure 1.12

Modeling of noisy data by an RBF (regularization) network with Gaussian basis functions. Left, inter-
polation and overfitting of noisy data (36 hidden layer neurons). Right, approximation and smoothing of
noisy data (8 hidden layer neurons). Underlying function (dashed) is y = x + sin(2x). Number of training
patterns (crosses) P = 36.

Figure 1.12 shows the interpolation and the approximation solutions. Clearly,
during the optimization of the network’s size, one of the smoothing parameters is the
number of HL neurons that should be small enough to filter out the noise and large
enough to model the underlying function. This simple example of a one-dimensional
mapping may serve as a good illustration of overfitting. It is clear that perfect per-
formance on a training data set does not guarantee a good model (see left graph,
where the interpolating function passes through the training data). The same phe-
nomena will be observed while fitting multivariate hypersurfaces.]

In order to avoid overfitting, one must relax an interpolation requirement like
(1.29) while fitting noisy data and instead do an approximation of the training data
set that can be expressed as

f.(x,) =d,, p=1,... P (1.31)

In the case of approximation, the error or cost function is not required as £ = 0. The
requirement is only that the error function

E= Zeﬁ = Z[dp _fa(xp)]z

42 Chapter 1. Learning and Soft Computing

be small and the noise be filtered out as much as possible. Thus, approximation is
related to interpolation but with the relaxed condition that an approximant f,(x,)
does not have to go through all the training data points. Instead, it should approach
the data set points as closely as possible, trying to minimize some measure of the
error or disagreement between the approximated point f,(x,) and the desired value d.
These two concepts of curve fitting are readily seen in figure 1.12. In real technical
applications the data set is usually colored or polluted with noise, and it is better to
use approximation because it is a kind of smooth fit of noisy data. If one forces an
approximating function to pass each noisy data point, one will easily get a model
with high variance and poor generalization.

The interpolation and the approximation in example 1.3 were done by an RBF
neural network as given in (1.28), with 36 and 8 neurons in the hidden layer, respec-
tively. Gaussian functions (HL activation functions here) were placed symmetrically
along the x-axis, each having the same standard deviation ¢ equal to double the dis-
tance between two adjacent centers. With such a choice of o, a nice overlapping of
the basis (activation) functions was obtained. Note that both parameters (centers c¢;
and standard deviations ;) of Gaussian bells were fixed during the calculation of the
best output layer weights w;. (In terms of NNs and FL models, the hidden layer
weights and parameters that define positions and shapes of membership functions,
respectively, were fixed or frozen during the fitting procedure.) In this way, such
learning was the problem of linear approximation because the parameters w; enter
linearly into the expression for the approximating function f,(x). In other words,
approximation error e(w) depends linearly upon the parameters (here the OL weights
w;). Note that in this example the approximation function f,(x) represents physically
the output from the single OL neuron, and the approximation error for a pth data
pair (x,,d,) can be written as

ey, =ey(W) =dy, — f,(xp,W) =d, —0(x,,W). (1.32)

Generally, x will be the (n 4 1)-dimensional vector x. When approximation error e
depends linearly upon the weights, the error function E(w), defined as the sum of
error squares, is a hyperparaboloidal bowl with a guaranteed single (global) mini-
mum. The weights vector w*, which gives the minimal point E.;,, = E(w*), is the
required solution, and in this case the approximating function f,(x) from (1.28) or
(1.33) has a property of best approximation. Note that despite the fact that this
approximation problem is linear, the approximating function f,(x) is nonlinear,
resulting from the summation of weighted nonlinear basis function ¢;.

A variety of basis functions for approximation are available for use in NNs or FL
models. (In the NN area, basis functions are typically called activation functions, and

1.3. Basic Mathematics of Soft Computing 43

in the field of FL models, the most common names are membership functions, pos-
sibility distributions, attributes, fuzzy subsets, or degree-of-belonging functions.) The
basic linear approximation scheme, as given by (1.12)—(1.15), can be rewritten as

N
Jax) =Y wigy(x), (1.33)
i=1

where N is the number of HL neurons, and x is an n-dimensional input vector.
Equation (1.33) represents an R” — R' mapping, and f,(x) is a hypersurface in an
(n + 1)-dimensional space.

In the learning stage of a linear parameters model the weights w; are calculated
knowing training patterns {x;,d;}, i = 1, P, and equation (1.33) is rewritten in the
following matrix form for learning purposes:

dy pi(x1) e(x1) e en(x1) w1
d» p1(x2) @(x2) o pn(x2) || w2

d=Xw= | | = : : : : N (1.34)
dp 1 (Xp) @a(xp) o on(Xp)] LWN

where P is the number of training data pairs, and N is the number of neurons. Typi-
cally, P > N, meaning that X is a rectangular matrix and the solution vector w
substituted in (1.33) produces an approximating hypersurface. When P = N,
matrix X is square and f,(X) is an interpolating function passing through each
training data point. It is assumed that none of the training data points coincide, i.e.,
X, #X;, i=1,P, j=1,P, i # j. In this case, and when P = N, a design matrix
X is nonsingular.
The solution weights vector w is obtained from

w=X"d, (1.35)

where X' denotes pseudoinversion of a design matrix X. The solution (1.35) is the
least-squares solution. For P = N, X* = X~!. Elements of a design matrix X are
the values (scalars) of a basis function ¢;(x) evaluated at the measured values x; of
the independent variable. The measured values of the dependent variable y, i.e., an
unknown function f(x), are the elements of a desired vector d. Note that for an
R" — R mapping, a design matrix X is always a (P x N) array, independently of
the dimensionality 7 of an input vector x. When P > N, the system of linear equa-
tions (1.33) has more equations than unknowns (it is overdetermined). Equation
(1.23) is an example of such an overdetermined system. An important and widely

44 Chapter 1. Learning and Soft Computing

used method for solving overdetermined linear equation systems is the method of
least squares (see a solution to (1.23) and (1.34)). Its application leads to relatively
simple computations, and in many applications it can be motivated by statistical
arguments.

Unlike the previous linear approximations, the one given in (1.27) represents a
nonlinear multivariate approximation (now x is a vector and not a scalar):

fa(x) = Z wioi (v X+ b;), (1.36)
i=1

where o; typically denotes sigmoidal, (S-shaped) functions. (Note that biases b; can
be substituted into the corresponding weights vector v; as the last or the first entries
and are not necessarily expressed separately. Thus, bias b is meant whenever weights
vector v is used). As before, f,(x) is a nonlinear function, and its characteristic as a
nonlinear approximation results from the fact that f,(x) is no longer the weighted
sum of fixed basis functions. The positions and the shapes of basis functions o,
defined as HL weights vectors v; (and biases b;), are also the subjects of the opti-
mization procedure. The approximating function f,(x) and the error function E
depend now on two sets of weights: linearly upon the OL weights vector w and non-
linearly upon the HL weights matrix V, where the rows of V are weights vectors v;. If
one wants to stress this fact, one may write these dependencies explicitly f,(x,w, V)
and E(w,V). Now, the problem of finding the best set of weights is a nonlinear
optimization problem, which is much more complex than the linear one. Basically,
the optimization, or searching for the weights that result in the smallest error func-
tion E(w,V), will now be a lengthy iterative procedure that does not guarantee
finding the global minimum. This problem is discussed in section 1.3.2 to show the
need for, and the origins of, nonlinear optimization. Chapter 8 is devoted to the
methods of nonlinear optimization, and these questions are discussed in detail there.

1.3.2 Nonlinear Error Surface and Optimization

Most of the complex, very sophisticated art of learning from data is the art of opti-
mization. It is the second stage in building soft computing models, after decisions
have been made about what form—approximating function, model, network type, or
machine—to use. In this second stage, one first decides what is to be optimized, i.e.
what norm should be used. There are many possible cost or error (risk) functionals
that can be applied (see (2.26)—(2.28)). Then optimization aimed at finding the best
weights to minimize the chosen norm or function can begin.

1.3. Basic Mathematics of Soft Computing 45

The previous section is devoted mostly to the problem of representation of our
models. Here we present the origin of, and need for, a classic nonlinear optimization
that is a basic learning tool. Nonlinear optimization is not the only tool currently
used for training (learning, adapting, adjusting, or tuning) parameters of soft com-
puting models. Several versions of massive search techniques are also in use, the most
popular being genetic algorithms and evolutionary computing. But nonlinear opti-
mization is still an important tool. From the material in this section the reader can
understand why it was needed in the field of learning from data and how it came to
be adopted for this purpose. Here a classic gradient algorithm is introduced without
technicalities or detailed analysis. Chapter 8 is devoted to various nonlinear opti-
mization techniques and discusses a few relevant algorithms in detail.

There are two, in general high-dimensional, spaces analyzed in the representational
and learning parts of a model. Broadly speaking, the representational problem ana-
lyzes differences between two hypersurfaces in a (x,y) hyperspace, one being the
approximated unknown function f(x) given by sampled data pairs, and the other the
approximating function f,(x). Both f(x) and f,(x) lie over an n-dimensional space
of input variable x. During learning phase, however, it is more important to analyze
an error hypersurface E(w) that, unlike f,(x), lies over the weight space. Specifi-
cally, we follow how E(w) changes (typically, how it decreases) with a change of
weights vector w. Both representational and learning space are introduced in exam-
ple 1.4.

Example 1.4 The functional dependency between two variables is given by y = 2x.
A training data set contains 21 measured patterns (x,d) sampled without noise.
Approximate these data pairs by a linear model y, = w;x and show three different
approximations for w; = 0,2, and 4 as well as the dependency E(w;) graphically.

This example is a very simple one-dimensional learning problem that allows visu-
alization of both a modeled function y(x) and a cost function E(w;). Here E(w;) is
derived from an L, norm. It is a sum of error squares. (Note that the graphical pre-
sentation of E(w) would not have been possible with a simple quadratic function
y(x) = wo + wix + wox? for approximation. E(w) in this case would be a hypersur-
face lying over a three-dimensional weight space, i.c., it would have been a hyper-
surface in a four-dimensional space.) The right graph in figure 1.13, showing
functional dependency E(w;), is relevant for a learning phase. All learning is about
finding the optimal weight wi* where the minimum?® of a function E(w;) occurs.
Even in this simple one-dimensional problem, the character of a quadratic curve
E(w) is the same for all linear in parameters models. Hence, this low-dimensional

46 Chapter 1. Learning and Soft Computing

Output variable y E(wy)
4 T T T

3} Data are shown as circles o.

=16 3r E(w,) is a sum of error squares.

2} Three different approximations ////
are shown as straight lines. >~

O ——— — — —
x,=0
—1+t
—2 7/ Ew=4)= e =147
7 i=l i
-3t yA4x j
z Input variable x
-1 -0.5 0 0.5 1
Figure 1.13

Modeling 21 data points obtained by sampling a straight line y = 2x without noise. Three models are
shown: a perfect interpolant when w; = 2, and two (bad) approximating lines with w; = 0 and w; = 4 that
have the same sum of error squares. Number of training patterns P = 21.

example is an appropriate representative of all sum of error squares cost functions
P2
E(wi) =X im1 €/ .

E(w;,w,) is a paraboloidal bowl when there are two weights to be learned and a
paraboloidal hyperbowl for more than two weights. (See equations (3.45)—(3.48) of a
quadratic hyperbowl that are obtained for a general linear neuron with n-dimensional
input vector.) However, in all three cases, that is, for n = 1,2 and n > 2, an impor-
tant and desirable fact related to the learning task is that there is a single guaranteed
global minimum E,,;,(w). Therefore, there is no risk of ending the learning in some
local minimum, which is always a suboptimal solution.

In example 1.4, there is an interpolation for w; = 2, and the minimum E(w; = 2)
= 0. It is always like that for all interpolating hypersurfaces f,(x). However, as al-
ready mentioned, the goal is not to interpolate data points. Thus, in the case of an
approximating hypersurface f,(x) this minimal error Ey,(w) > 0. Usually one is
more interested in finding an optimal w* that produces a minimum E,;, = E(w*)
than in knowing the exact value of this minimum.

Unfortunately, genuine soft models are nonlinear approximators in the sense that
an error function (a norm or measure of model goodness) depends nonlinearly upon
weights that are the subjects of learning. Thus, the error hypersurface is no longer a
convex function, and a search for the best set of parameters (weights) that will ensure
the best performance of the model is now a much harder and uncertain task than the

Wy

1.3. Basic Mathematics of Soft Computing 47

search for a quadratic (convex) error function like the one in the right graph of figure
1.13.

Example 1.5 introduces a nonlinear nonconvex error surface. Again, for the sake
of visualization, the example is low-dimensional. In fact, there are two weights only.
It is clear that an error surface E(w;,w;) depending on two weights is the last one
that can be seen. No others of higher order can be visualized.

Example 1.5 Find a Fourier series model of the underlying functional dependency
y = 2.5 sin(1.5x). That the function is a sine is known, but its frequency and ampli-
tude are unknown. Hence, using a training data set {x,d}, system can be modeled
with an NN model consisting of a single HL neuron (with a sine as an activation
function) and a single linear OL neuron as given in figure 1.14.

Note that the NN shown in figure 1.14 is actually a graphical representation of a
standard sine function y = w; sin(w;x). This figure could also be seen as a truncated
Fourier series with a single term only.

There is a very important difference between classic Fourier series modeling and
the NN modeling here, even when the activation functions are trigonometric. When
sine and cosine functions are applied as basis functions in NN models, the goal is
to learn both frequencies and amplitudes. Unlike in this nonlinear learning task, in
classical Fourier series modeling one seeks to calculate amplitudes only. The fre-
quencies are preselected as integer multiples of some user-selected base frequency.
Therefore, because the frequencies are known, classical Fourier series learning is a
linear problem.

The problem in this example is complex primarily because the error surface is
nonconvex (see fig. 1.15). This is also a nice example of why and how the concepts of
function, model, network, or machine are equivalent. A function y = w, sin(w;x) is
shown as a network in figure 1.14, which is actually a model of this function. At the
same time, this artifact is a machine that, as all machines do, processes (transforms) a

HL

wi upgr\ wa

Figure 1.14

Neural network for modeling a data set obtained by sampling a function y = 2.5 sin(1.5x) without noise.
Amplitude 4 = 2.5 and frequency @ = 1.5 are unknown to the model. The weights w; and w, that repre-
sent these two parameters should be learned from a training data set.

48 Chapter 1. Learning and Soft Computing

The cost function E dependency upon A (dashed) and w (solid)

250 T
Nonconvex dependency Quadratic, i.e., convex
pon « for a fixed A=2.5. dependency upon |A for

200 A 1

! afixed w=15|.
N
\\ /
150 1
100 1
50 1
/
//Weights w,=A; Wy =|w
0 .
-2 0 2 4 6 8
Cost function E = E(A, o)
Global minimum £, = 0'at"
600")
400"
\\\\\\\\ \\\ : l“
NS
200 SRR
T \\‘§<0‘“\\ T
0l -
6 4 " .
Frequency @ 0 5 -5
Figure 1.15

Dependence of an error function E(w;, w») upon weights while learning from training data sampled from a

function y = 2.5 sin(1.5x).

1.3. Basic Mathematics of Soft Computing 49

given input into some desirable product. Here, a given input is x, and a product is an
output of the network o that “equals” (models) an underlying function y for correct
values of the weights w; and w,. Here, after a successful learning stage, the weights
have very definite meanings: wy is a frequency w, and w, corresponds to amplitude A.
In this particular case, they are not just numbers.

Now, the error e can readily be expressed in terms of the weights as

e(w)=d—o0=d— w;sin(wx). (1.37)

There is an obvious linear dependence upon weight w, and a nonlinear relation with
respect to weight wy. This nonlinear relation comes from the fact that error e “‘sees”
the weight w; through the nonlinear sine function. The dependence of the cost func-
tion E(wi,w2) =137 ¢? on the weights is shown in figure 1.15. Note that an error
function E(w;,w,) is not an explicit function of input variable x. E(w;, w,) is a scalar
value calculated for given weights wy and w; over all training data points, that is, for
all values of input variable x.

Note in figure 1.15 a detail relevant to learning: the error surface is no longer a
convex function and with a standard gradient method for optimization, the training
outcome is very uncertain. This means that besides ending in a global minimum the
learning can get stuck at some local minima. In the top graph of figure 1.15, there are
five local minima and one global minimum for a fixed value of amplitude 4 = 2.5,
and a learning outcome is highly uncertain. Thus, even for known amplitude, learn-
ing of unknown frequency from a given training data set may have a very unsatis-
factory outcome. Note that in a general high-dimensional (N > 2) case, E(w) is a
hilly hypersurface that cannot be visualized. There are many valleys (local minima),
and it is difficult to control the optimization process.]

One of the first, simplest, and most popular methods for finding the optimal
weights vector w* where either the global or local minimum of an error function
E(w) occurs is an iterative method based on the principle of going downhill to the
lowest point of an error surface. This is the idea of the method of steepest descent, or
gradient method. This basic method is introduced after example 1.6, which sheds
more light on the origins of the nonlinear characteristics of an error cost function.

However, in considering the gradient-based learning algorithm, one should keep in
mind the weakness of going downhill to find the lowest point of the error surface.
Unless by chance one starts on the slope over the global minimum, one is unlikely to
find the lowest point of a given hypersurface. All that can be done in the general case
with plenty of local minima is to start at a number of random (or somehow well-
chosen) initial places, then go downbhill until there is no lower place to go, each time
finding a local minimum. Then, from all the found local minima, one selects the

50 Chapter 1. Learning and Soft Computing

lowest and takes the corresponding weights vector w as the best one, knowing that
better local minima or the global minimum may have been missed.

Example 1.6 Consider a simple neural network having one neuron with a bipolar
sigmoidal activation function as shown in figure 1.16. The activation function is

2

0= 1+ e—(wix+wz) - (138)

Assume the following learning task: using a training data set {x,d}, learn the
weights so that the network models the underlying unknown bipolar sigmoidal
function

2

y

Note that (1.38) is a standard representative of S-shaped functions o; given in
(1.36). The solution is clear because the underlying function between the input x and
the output y is known. However, for this network, the underlying function (1.39) is
unknown, and the optimal weights of the neuron wiyp = @, and waep = b should be
found by using the training data set.

At this point, however, we are more interested in an error function whose mini-
mum should evidently be at the point (@, b) in the weights’ plane. Again use as an
error function the sum of error squares

P 2
2
_ 2 _
E(wi,wa) = E e, = E [dp - <1 o) lﬂ , (1.40)

p=1 p=1

where P is the number of patterns or data pairs used in training. As in (1.37), an error
at some training data pair e, is nonlinear. Here, it is nonlinear in terms of both
unknown weights.

Figure 1.16
Simple neural network with a single neuron.

1.3. Basic Mathematics of Soft Computing

E(w) (solid) Error function E(w) of one single weight w,
30

Quadratic

approxi- a=0.15

mation 25 | |

(dashed) |

|

0
-0.5 0 05 1 15 2 25 3 35 4
w;y represents the slope of the sigmoidal neuron without bias

E(w) (solid) Error function E(w) of one single weight w,
25
Quadratic
approxi-
mation

(dashed)2®

0
-0.5 0 0.5 1 1.5 2 25 3 3.5 4
w; represents the slope of the sigmoidal neuron without bias

Figure 1.17
Nonlinear error curve and its quadratic approximation.

52 Chapter 1. Learning and Soft Computing

Error function E(w,, w,) of a single sigmoidal neuron E(w= const,w,)
E(w,w,) 90\

804
70N
60~
504
404
304

a = —0.5 (slope of the target function)
Weight w, b = 0.25 (shift of the target function is 0.5)
(related to

the shift)y -2 OJZ

T T I
0 05 1 15 2
Weight w, (related to the slope)

The cuts of the error surface E(w,, w,)

-2 -15 -1 -05 0 05 1 15 2
Weight w, (weight w, is constant for each curve)

Figure 1.18
Nonlinear error surface and its cuts as the error curves for constant wy.

1.3. Basic Mathematics of Soft Computing 53

It is easy to see in figure 1.17 that even in this simple example the actual shape of a
nonlinear error curve E(wy, w,) is both nonquadratic and nonconvex. To make the
analysis even simpler, model the sigmoidal function with » = 0 first. Then w, = 0,
and E = E(w). This one-dimensional function shows the nonlinear character of E as
well as the character of the quadratic approximation of E in the neighborhood of its
minimum. (The quadratic approximation of an error function is a common assump-
tion in proximity to a minimum. This can readily be seen in fig. 1.17). The figure also
shows that the shape of E depends on the value of a (slope of the sigmoidal function
to be approximated).

In this particular case, the error function FE is a curve over the weight w; that has a
single minimum exactly at w; = a. There is no saddle point, and all convergent iter-
ative schemes for optimization, starting from any initial random weight wyo, will end
up at this stationary point w; = a. Note that the shape of E, as well as its quadratic
approximation, depends on the slope @ of an approximated function. The smaller the
slope a, the steeper the quadratic approximation will be. Expressed in mathematical
terms, the curvature at w; = a, represented in a Hessian matrix® of second derivatives
of E with respect to the weight, increases with the decrease of a. In this special case,
when an error depends on a single weight only, that is, £ = E(w;), the Hessian
matrix is a (1, 1) matrix, or a scalar. The same is true for the gradient of this one-
dimensional error function. It is a scalar at any given point. Also note that a qua-
dratic approximation to an error function E(w;) in proximity to an optimal weight
value wopc = a may be seen as a good one.

Now, consider the case where the single neuron is to model the same sigmoidal
function y, but with b # 0. This enables the function y from (1.39) to shift along
the x-axis. The complexity of the problem increases dramatically. The error function
E = E(wy,w;) becomes a surface over the (wj,w;) plane. The gradient and the
Hessian of E are no longer scalars but a (2,1) column vector and a (2,2) matrix,
respectively.

Let us analyze the error surface E(w,w;) of the single neuron trying to model
function (1.39), as shown in figure 1.18. The error surface in fig 1.18 has the form of a
nicely designed driver’s seat, and from the viewpoint of optimization is still a very
desirable shape in the sense that there is only one minimum, which can be easily
reached starting from almost any initial random point. |

Now, we take up the oldest, and possibly the most utilized, nonlinear optimization
algorithm: the gradient-based learning method. It is this method that is a foundation
of the most popular learning method in the neural networks field, the error back-
propagation method, which is discussed in detail in section 4.1.

54 Chapter 1. Learning and Soft Computing

A gradient of an error function E(w) is a column vector of partial derivatives with
respect to each of the n parameters in w:

_O0E [0E OE dET"

=VE - = |— — ...
g =VE(W) ow owy 0wy ow,

(1.41)

An important property of a gradient vector is that its local direction is always the
direction of steepest ascent. Therefore, the negative gradient shows the direction of
steepest descent. The gradient changes its direction locally (from point to point) on
the error hypersurface because the slope of this surface changes. Hence, if one is able
to follow the direction of the local negative gradient, one should be led to a local
minimum. Since all the nearby negative gradient paths lead to the same local mini-
mum, it is not necessary to follow the negative gradient exactly.

The method of steepest descent exploits the negative gradient direction. It is an
iterative method. Given the current point w;, the next point w;; is obtained by a one-
dimensional search in the direction of —g(w;) (the gradient vector is evaluated at the
current point w;):

Wirl = W; — 1,8(W;). (1.42)

The initial point w; is (randomly or more or less cleverly) chosen, and the learning
rate 7; is determined by a linear search procedure or experimentally defined. The
gradient method is very popular, but there are many ways it can be improved (see
section 4.1 and chapter 8). The basic difficulties in applying it are, first, that it will
always find a local minimum only, and second, that even though a one-dimensional
search begins in the best direction, the direction of steepest descent is a local rather
than a global property. Hence, frequent changes (calculations) of direction are often
necessary, making the gradient method very inefficient for many problems.

Both these difficulties are readily seen in figure 1.19. Starting from a point A4 it is
unlikely that an optimization, following gradient directions, can end up in the global
minimum. Negative gradient vectors evaluated at points 4, B, C, D, and E are along
the gradient directions 44*, BB*, CC*, DD* and EE*. Thus the error function E(w)
decreases at the fastest rate in direction A4* at point 4 but not at point B. The
direction of the fastest decrease at point B is BB*, but this is not a steepest descent at
point C, and so on.

In applying the first-order gradient method, convergence can be very slow, and
many modifications have been proposed over the years to improve its speed. In the
first-order methods only the first derivative of the error function, namely, the gradient
VE(w), is used. The most common improvement is including in the algorithm the

1.3. Basic Mathematics of Soft Computing 55

Local minimum
N
A

Figure 1.19
Contours of a nonlinear error surface E(w;,w>) and steepest descent minimization.

second derivatives (i.e., Hessian matrix) that define the curvature of the function.
This leads to a second-order Newton-Raphson method and to various quasi-Newton
procedures (see section 4.1 and chapter 8).

The most troublesome parts of an error hypersurface are long, thin, curving
valleys. In such valleys, the successive steps oscillate back and forth across the valley.
For such elongated valleys the eigenvalues ratio Amax/Amin Of the corresponding
Hessian matrix is much larger than 1. For such an area, using a Hessian matrix may
greatly improve the convergence.

In applying the steepest descent method given by (1.42), the following question
immediately arises: How large a step should be taken in the direction —g(w;) from
one current point to the next. From (1.42) it is clear that a learning rate 5, determines
the length of a step. A more important question is whether the choice of a learning
rate #; can make the whole gradient descent procedure an unstable process. On a one-
dimensional quadratic error surface as shown in figure 1.20, the graphs clearly indi-
cate that training diverges for learning rates 17 > 277,.

For a quadratic one-dimensional error curve E(w;) the optimal learning rate can
readily be calculated, and one can follow this calculation in figure 1.21. From (1.42),
and when a learning rate is fixed (; = #), it follows that the weight change at the ith
iteration step is

Awy =19

ow |,

(1.43)

56

Chapter 1. Learning and Soft Computing

\ /
\ / /
/ /
/ /
// //
/ N/
»W »W
77 < Hopt 77 = opt Hopt < 7 < 21]opt 77> 270pt
Figure 1.20

Gradient descent for a one-dimensional quadratic error surface E(w;) and the influence of learning rate #

size on the convergence of a steepest descent approach.

EA

oF
ow,

Awy;

\

a5
aw, "

Figure 1.21

Scheme for the calculation of an optimal learning rate 7, for a one-dimensional quadratic error surface

E(wy).

1.3. Basic Mathematics of Soft Computing 57

For a quadratic error surface one can exploit that
O’E
ow?

0E

Wi = owr (1.44)

)
i i

and combining (1.43) and (1.44), one obtains

-1
0’E
Hopt = <—2> . (1.45)

Py
owy;

One reaches a minimum in a single step using this learning rate, but one must calcu-
late a second derivative that is a scalar for an error function E(w;). When there are
two or more (say, N) unknown weights, an error function is a hypersurface E(w),
and one must calculate the corresponding (N, N) symmetric Hessian matrix, defined
as

[PE(w) PEw) Ew)
611/12 oW1 0wy ow10wy
’E(w) *E(w) o ?E(w)
H(w) = | dwpow, w3 oWy 0wy (1.46)
PE(w) 0’E(w) ?E(w)
OWnOw| OwyOw, w3,

The symmetry of H(w) follows from the fact that cross partial derivatives are inde-
pendent of the order of differentiation:
PE(w) *E(w)

= ; ,j=1,2,...,N.
ow;0w; Ow;ow; ok

Note that E(w) is a scalar and that on a general hypersurface both gradient g = g(w)
and Hessian matrix H = H(w), that is, they depend on w (they are local properties)
and do change over the domain space R".

Gradient descent in N dimensions can be viewed as N independent one-
dimensional gradient descents along the eigenvectors of the Hessian. Convergence is
obtained for # < 2/Amax, Where Amax is the largest eigenvalue of the Hessian. The
optimal learning rate in N dimensions 7, that yields the fastest convergence in the
direction of highest curvature is 7, = 1/Amax-

Note that in a one-dimensional case the optimal learning rate is inversely propor-
tional to a second derivative of an error function. It is known that this derivative is a

58 Chapter 1. Learning and Soft Computing

Lowest value £ L(est)
on this gradient "

- Lowest value £/ (es)
on this gradient
7

Figure 1.22
Gradient descent on a two-dimensional nonquadratic error surface £(w1, w2). An optimal learning rate 77,
defines a minimum along the current negative gradient line.

measure of a curvature of a function. Equation (1.45) points to an interesting rule:
the closer to a minimum, the higher the curvature and the smaller the learning rate
must be. The maximum allowable learning rate for a one-dimensional quadratic
error curve is

Mmax = 2770pt' (1 47)

For learning rates higher than #,,,, training does not converge (see fig. 1.20). In a
general case, the error surface is not quadratic, and the previous considerations only
indicate that there are constraints on the learning rate. They also show why # should
decrease while approaching a (usually local) minimum of an error surface.

For a nonquadratic error surface (see figure 1.22), calculation of a Hessian at each
step may be very time-consuming, and an optimal learning rate is found by a one-
dimensional search as follows. The negative gradient at the ith step is perpendicular
to the local contour curve and points in the direction of steepest descent. The best
strategy is then to search along this direction for a local minimum. To do this, step
forward applying equal-sized steps until three points are found, and calculate the
corresponding values of the error functions. (A stricter presentation of Powell’s qua-
dratic interpolation method can be found in the literature.) Now use a quadratic
approximation and estimate the minimum along a current gradient direction Ep ().

1.3. Basic Mathematics of Soft Computing 59

For a quadratic surface, this minimum estimate Ej g is exact. For a nonquadratic
error surface, it is an approximation of a minimum E; only, but there is a little point
in being very accurate because on a given slope above some (local) minimum of
Ein(w), gradients at all points are nearly all directed toward this particular mini-
mum. (Note the differences between the minimum of a nonconvex error surface
Ein(w), the minimum along a current gradient direction E, and the minimum esti-
mate along a current gradient direction Ej (o))

At this minimum estimate point Ey (), the current gradient line is tangent to the
local level curve. Hence, at this point the new gradient is perpendicular to the current
gradient, and the next search direction is orthogonal to the present one (see right
graph in fig. 1.22). Repeating this search pattern obtains a local or, more desirable, a
global minimum E;,(w) of the error function surface. Note that this procedure
evaluates the error function E(w) frequently but avoids frequent evaluation of the
gradient.

Such gradient descent learning stops when a given stopping criterion is met. There
are many different rules for stopping (see section 4.3.5).

The algorithm of a steepest descent is as follows:

1. Initialize some suitable starting point w; (chosen at random or based on previous
knowledge) and perform gradient descent at the ith iteration step (i = 2, K, where K
denotes the iteration step when the stopping criterion is met; K is not known in
advance) as in the following steps.

2. Compute the negative gradient in each j direction (j = 1, N, where N denotes the
number of weights)

0E
—gi=VE(w);=—|.
Jt J awj .
3. Step forward (applying equal-sized steps) until three points (a current point wj, a
middle point w; — bg;;, and a last point w; — cgj;) are found. Evaluate the error
function for these three points. (For a nonquadratic surface, the middle point should
have the lowest of the three values of the error function.)

4. Use quadratic approximation in each j direction with Powell’s quadratic interpo-
lation method to find the optimal learning rate

1 (B2 = A)E,+ (2 — a*)Ey + (a® — bP)E,
Tlopt = 3 < (b—c)E, + (c—a)Ey + (a — b)E,)

where s is a step length, a =0, b =, ¢ =25, E, = E(w; — agji), E» = E(w; — bgji),
and E, = E(w; — cgji). (See fig. 1.23.)

60 Chapter 1. Learning and Soft Computing

AL
E.
E,
Eb
wj
W W= ot &ji Wi~ bgi - cgji
Figure 1.23

Quadratic interpolation about the middle point for a calculation of an optimal learning rate 7, that
defines a minimum E(w;) along the current negative gradient line.

5. Estimate the minimum along the current gradient direction for each j

O0E
Wi = Wi — Nt =—— -
Jit1 Ji opt A

" owj,
6. Evaluate error function E(w,.;), and if the stopping criterion is met, stop opti-
mization; if not, return to step 2. In virtue of (1.45) as the iterations progress, we are
closer to some local minimum, and it will usually be necessary to decrease the search
step s, which will result in a smaller optimal learning rate 7,,y.

Note that the steepest descent shown in figure 1.19 was not performed by applying
the optimal learning rate. Had 7, been used, the first descent would have ended up
near point D. All sliding along the nonquadratic surface shown in figure 1.19 was
done using 7 < 7y

A major shortcoming of the gradient method is that no account is taken of the
second derivatives of E(w), and yet the curvature of the function (which determines
its behavior near the minimum) depends on these derivatives. There are many methods
that partly overcome this disadvantage (see section 4.1 and chapter 8). At the same
time, despite these shortcomings, the gradient descent method made a breakthrough
in learning in neural networks in the late 1980s, and as mentioned, it is the founda-
tion of the popular error backpropagation algorithm.

This concludes the basic introduction to approximation problems and the descrip-
tion of the need for nonlinear optimization tools in learning from data. Section 1.4
introduces the basics of classical regression and classification approaches that are
based on known probability distributions. In this way, the reader will more easily be
able to follow the learning from data methods when nothing or very little is known
about the underlying dependency.

1.4. Learning and Statistical Approaches to Regression and Classification 61

1.4 Learning and Statistical Approaches to Regression and Classification

There are many theories and definitions of what learning is, but the objective here
is to consider how artificial systems, mathematical models, or generally, machines
learn. Thus, in the framework of this book, a sound view may be that learning is
inferring functional dependencies (regularities) from a set of training examples (data
pairs, patterns, samples, measurements, observations, records).

In supervised learning, a set of training data pairs typically contains the inputs x;
and the desired outputs y; = d;. (A system’s outputs y; that are used in the training
phase are also called desired values. Therefore, when referring to the training stage,
this book alternatively uses both notations, y; and d;, where d; stands for desired.)
There are many different ways and various learning algorithms to extract underlying
regularities between inputs and outputs. Successful learning ends in the values of
some parameters of a learning machine!® that capture these inherent dependencies.
For a multilayer perceptron NN, these parameters are usually called the hidden and
output layer weights. For a fuzzy logic model, they are the rules, as well as the
parameters that describe the positions and shapes of the fuzzy subsets. And for a
polynomial classifier, these parameters are the coefficients of a polynomial.

The choice of a particular type of learning machine depends on the kind of prob-
lem to be solved. They can be machines that learn system dependencies in order to
predict future outcomes from observed data. For example, in control applications,
signal processing, and financial markets, learning machines are used to predict
various signals and stock prices based on past performance. In the case of optical
character recognition and for other recognition tasks, learning machines are used to
recognize (predict) particular alphabetic, numeric, or symbolic characters based on
the data obtained by scanning a piece of paper. These examples involve predictions
of two different types of outcome: continuous variables in control applications, signal
processing, and stock markets, and categorical variables (class labels) in optical
character or pattern recognition.

The prediction of continuous variables is known as regression, and the prediction
of categorical variables is known as classification. Because of their utmost practical
importance, this book takes up only regression and classification models. The third
important problem in statistics, density estimation, is not the subject of investigation
here. The basics of standard statistical techniques of regression and classification are
presented first to aid in the understanding of inferring by using data. Traditionally,
by using training patterns, mechanical fitting of the prespecified line, curve, plane,
surface, or hypersurface solved these kinds of learning tasks. Here, these estimation
problems are approached by using neural networks, fuzzy logic models, or support

62 Chapter 1. Learning and Soft Computing

vector machines. Thus, sections 1.4.1 and 1.4.2, about the basic and classical theories
of regression and classification, may give sound insights on learning from data
problems.

1.4.1 Regression

The elementary presentation of regression is given using a two-dimensional case. In
this way, vital concepts can be shown graphically, which should ease understanding
of the true nature of the problem. Conceptually nothing changes in multivariate cases
with higher dimensional inputs and outputs, but they cannot be visualized with the
relevant hypercurves or hypersurfaces. First, a theoretical regression curve is defined
that will later serve as a model for understanding the empirical regression curve.!!
The short definition for this curve states that the theoretical regression curve is (a
graph of) the mean of a conditional probability-density function P(y|x).

A geometrical insight into the theory of regression may be the easiest way to intro-
duce the concepts that follow. In the two-dimensional case (where only two random
variables are involved) the general joint probability-density function'? P(x,y) can be
thought of as a surface z = P(x, y) over the (x,y) plane. If this surface is intersected
by a plane x = x;, we obtain a curve z = P(x;,y) over the line x = x; in the (x,y)
plane. The ordinates z of this curve are proportional to the conditional probability-
density of y given x = x;. If x has the fixed value x;, then along the line x = x; in the
(x,y) plane the mean (expected or average) value of y will determine a point whose
ordinate is denoted by u,,,. As different values of x are selected, different mean
points along the corresponding vertical lines will be obtained. Hence, the ordinate
My, of the mean point in the (x,y) plane is a function of the value of x; selected. In
other words, u depends upon x, u# = u(x). The locus of all mean points will be the
graph of p,,. This curve is called the regression curve of y on x. Figure 1.24 indicates
the geometry of the typically nonlinear regression curve for a general density distri-
bution (i.e., for the general joint probability-density function P(x,y)). Note that the
surface P(x,y) is not shown in this figure. Also, the meaning of the graph in figure
1.24 is that the peak of the conditional probability-density function P(y | x) indicates
that the most likely value of y given x; is u,),,. Analytically, the derivation of the
regression curve is presented as follows.

Let x and y be random variables with a joint probability-density function P(x,y).
If this function is continuous in y, then the conditional probability-density function of
y with respect to fixed x can be written as

P(x,) P(x,y)

TR T

(1.48)

1.4. Learning and Statistical Approaches to Regression and Classification 63

P(ylx)

=

Figure 1.24
Geometry of the typical regression curve for a general density distribution.

where P(x) represents the marginal probability-density function P(x) = f;: P(x,y)dy.
By using this function the regression curve is defined as the expectation of y for any
value of x

—+00 P d
gy = = PP V) dy

| P0) Plx) (1.49)

= E(y]x) = J yP(ylx)dy =

—0
This function (1.49) is the regression curve of y on x. It can be easily shown that this
regression curve gives the best estimation of y in the mean squared error sense. Note
that there is no restriction on function x,,. Depending upon the joint probability-
density function P(x,y), this function belongs to a certain class, for example, the
class of all linear functions or the class of all functions of a given algebraic or trigo-
nometric polynomial form, and so on. Example 1.7 gives a simple illustration of how
(1.49) applies.

Example 1.7 The joint probability-density function P(x, y) is given as

2—-x—-y, 0<x<1l,0<y<1
0 elsewhere '

P ={

Find the regression curve of y on x.

In order to find w,,, first find the marginal probability-density function

+00

1
P(x,y)dy:JO(Z—x—y)dy:——x.

P(x) = J :

—o0

64 Chapter 1. Learning and Soft Computing

Joint and conditional probability-density function

Figure 1.25
The joint probability-density function P(x,y) =2 —x —y, the corresponding conditional probability-
density function P(y|x) = (2 —x —y)/(1.5 — x), and the regression function (curve) s,

From (1.49),
iuy|x :IE(_}/|X)
S yPoy)dy P 2-x—y
a P(x) _Joy(3/2)—xd
1 o
RS GRS =

Thus, the regression curve is the hyperbola. The joint probability-density function
P(x,y), the conditional probability-density function P(y | x), and the regression curve
My« are shown in figure 1.25. [|

Example 1.8 shows that the regression function for jointly normally distributed
variables is linear, that is, a straight line. This is an interesting property that was
heavily exploited in statistics. Linear regression and correlation analysis, which are

1.4. Learning and Statistical Approaches to Regression and Classification 65

closely related, are both very developed and widely used in diverse fields. The expla-
nation for such broad application of these theories lies in the remarkable fact that
under certain circumstances the probability distribution of the sum of independent
random variables, each having an arbitrary (not necessarily normal) distribution,
tends toward a normal probability distribution as the number of variables in the sum
tends toward infinity. In statistics, this statement, together with the conditions under
which the result can be proved, is known as the central limit theorem. These condi-
tions are rarely tested in practice, but the empirically observed facts are that a joint
probability-density function of a great many random variables closely approximates
a normal distribution. The reason for the widespread occurrence of normal joint
probability-density functions for random variables is certainly stated in the central
limit theorem and in the fact that superposition may be common in nature.

Before proceeding to the next example remember that the joint probability-density
function for two independent variables is P(x,y) = P(x)P(y). If both variables are
normally distributed, it follows that the normal bivariate (two-dimensional) joint
probability-density function for independent random variables x and y is

P(x,y) = P(x)P(y) = 2mlxo_y exp (—% [(x ax"xy + <y ;y” yﬂ) : (1.50)

If the variables x and y are not independently distributed, it is necessary to modify
(1.50) to take into account the relationship between x and y. This is done in (1.51) by
introducing a cross-product term in the exponent of (1.50). The linear correlation
coefficient p of this term is defined as p = oy, /0.0y, Where oy, oy, and o, are the
covariance and variances in directions x and y, respectively. p is equal to zero when x
and y are independent, and equal to +1 or —1 when these two variables are deter-
ministically connected. Equation (1.51) is defined for —1 < p < +1. For p = +1,
(1.51) does not have any sense. Note that the correlation coefficient p is defined for
the linear dependence between two random variables, and it is a measure of the
strength of this linear relationship. Thus, p = 0 does not imply that two variables are
not closely related. It implies only that these variables are not linearly related. For
nonlinearly depending variables, the linear correlation coefficient p as previously
defined is equal to zero (p = 0).

Note also that the statistical functional relationships between two (or more) vari-
ables in general, and the correlation coefficient p in particular, are completely devoid
of any cause-and-effect implications. For example, if one regresses (correlates) the
size of a person’s left hand (dependent variable y) to the size of her right hand
(independent variable x), one will find that these two variables are highly correlated.
But this does not mean that the size of a person’s right hand causes a person’s left

66 Chapter 1. Learning and Soft Computing

hand to be large or small. Similarly, one can try to find the correlation between the
death rate due to heart attack (infarction) and the kind of sports activity of a player
at the moment of death. One will eventually find that the death rate while playing
bowls or chess (low physical activity) is much higher than while taking part in boxing,
soccer, or a triathlon (high physical activity). Despite this correlation, the conclusion
that one is more likely to suffer heart attack while playing bowls, cards, or chess is
wrong, for there is no direct cause-effect relationship between the correlated events of
suffering an infarction and taking part in certain sports activities. It is far more likely
that, typically, senior citizens are more involved in playing bowls and the cause of
death is their age in the first instance. In short, note that two or more variables can be
highly correlated without causation being implied.

Example 1.8 Consider two random variables that possess a bivariate normal joint
probability-density function

ool x| (52 (5292 (52)])

2noy0,4/(1 = p?)

P(X,y) =
(1.51)

Show that both the marginal (P(x),P(y)) and the conditional (P(y|x),P(x|y))
probability-density functions are normal distributions. Show that the curve of regres-
sion is linear.

The marginal probability-density function is defined as P(x) = f@f P(x,y)dy,
where P(x,y) is defined in (1.51). Simplify this integration by changing the variables
tou = (x—u.)/oxand v = (y — p,/0y). Then dy = o), dv and

-
Px)y=——+—— exp| —=————<(u” — 2puv + v°) | dv.
(%) ot T), P 2(1—/}2)(p)
Adding and subtracting p>u® to the exponent in order to complete the square in v
gives

_exp(—(u?/2)) (" I SRR I
P(x)_27mx\/l—p2),[oc exp(2(1_/)2)(pu) >d

_exp(—(u?/2)) Jw

— exp(~(z*/2) dz,

—0o0

1.4. Learning and Statistical Approaches to Regression and Classification 67

where

z:% and dv=+/1-p2dz.

—p

Substituting back the value of u in terms of x and inserting the value 2z for this
familiar integral, P(x) finally reduces to

ol L (=t 2)
w200

The corresponding result for P(y) follows from symmetry, and (1.52) shows that the
marginal distributions (probability-density functions) of a joint normal distribution
are normal. Note that if one sets p equal to zero in (1.51), this equation reduces to
(1.50), which is the joint normal distribution for two independent normal variables.
Thus, if two normal variables are uncorrelated, they are independently distributed.
Note, however, that from the preceding discussion of correlation, it should be clear
that the lack of a linear correlation does not imply a lack of dependence (relation-
ship) of every (notably nonlinear) kind between two, or more, variables.

For regression problems, the conditional probability distribution is of utmost
importance, and in the case of the joint normal distribution it possesses interesting
properties. In order to find P(y|x), use the definition (1.48) as well as the substitu-
tions u and v given previously, which yields

(1.52)

exp(— ﬁ (u? = 2puv + vz)>

2no.0,4/ (1 — p?)
exp(—(u’/2))
V2no,

P(ylx) =

- exp(z(ll_pz) (v = 2puw +p2u2)>
V2ra,\/(1 - p?)

2
1 v — pu
P\ T2 <(1_/72)>

- \/2_7[0'}’ (1 7/)2)

68 Chapter 1. Learning and Soft Computing

Expressing u and v in terms of the original variables x and y and, in order to stress a
dependence of y on the selected value of x, denoting y as y., the last expression
reduces to

g, 2
| (Ve iy =P (=)
exp| —= L

2 (I=p?)

\/E”y (1—p?)

In order to find the regression curve), defined in (1.49) as the expectation |, =
E(y|x), note that x is the fixed variable in (1.53), and that this equation represents
the normal density function for y.. Hence, for given x, the mean of (1.53) is the sum
of the second and third terms in the numerator of the exponent in (1.53). According
to the definition of the regression curve, being the locus of the means of a conditional
probability-density, the regression curve of y on x when x and y are jointly normally
distributed is the straight line whose equation is

P(y|x) = (1.53)

ag
X

By symmetry a similar result holds for x and y interchanged, that is, for the curve of
regression of x on y. The fact that the regression curve of two normally distributed
variables is a straight line helps to justify the frequent use of linear regression models
because variables that are approximately normally distributed are encountered
frequently.]

1.4.2 Classification

The standard statistical techniques for solving classification tasks cover the broad
fields of pattern recognition and decision-making problems. Many artificial systems
perform classification tasks: speech or character recognition systems, fault detection
systems, readers of magnetic-strip codes on credit cards, readers of UPC bar codes,
various alarm systems, and so on. In all these different systems the classifier is faced
with different observations (measurements, records, patterns) that should be assigned
meaning (class or category). Classification or pattern recognition is inferring meaning
(category, class) from observations.

There are two basic stages in designing a classifier: the training phase and the test
(generalization or application) phase. The most general schemes of these two stages
are shown in figure 1.26.

1.4. Learning and Statistical Approaches to Regression and Classification

Observation
feature vector
X
Xy
x=
X1
X

Figure 1.26

Data preprocessing and features extraction

=

Feature
vector and
class labels
X1
Xy
x=| .
xn—]
- xn -
W,
0]
Q= .dz
LD ax
Classifier

Q = f(x, W)

69

Classifier
design
procedure

: W= g(x, Qd)

Class labels
W,
(0]
2
Q= .
wK

Classification’s training phase (fop) and test (application) phase (bottom). The training phase, or classifier
design, ends up in a set of parameters W that define the disjoint class regions.

70 Chapter 1. Learning and Soft Computing

During the training phase the classifier is given training patterns comprised of
selected training feature vectors x and desired class labels Q. The result of the train-
ing phase is the set of classifier’s parameters that are called weights W here. These
weights define the general discriminant functions that form the class boundaries
between disjoint class or category regions. These class boundaries are points, curves,
surfaces, and hypersurfaces in the case of one-, two-, three-, and higher-dimensional
feature space, respectively. In the test phase, or later in applications, the classifier
recognizes (classifies) the inputs in the form of (previously unseen) measured feature
vectors X.

Figure 1.26 indicates that classification is a very broad field. Human beings typi-
cally process visual, sound, tactile, olfactory, and taste signals. In science and engi-
neering the goal is to understand and classify these and many other signals, notably
different geometrical (shape and size) and temporal (time-dependent) signals. In order
to do this the pattern recognition system should solve three basic problems: sensing
desired variables, extracting relevant features, and based on these features, perform-
ing classification. While the first and second parts are highly problem-dependent,
the classification procedure is a more or less general approach. Depending upon the
specific problem to be solved, measurement (recording, observation) and features
extraction would be done by different sensing devices: thermocouples, manometers,
accelerometers, cameras, microphones, or other sensors. Today, using A/D conver-
ters, all these different signals would be transformed into digital form, and the
relevant features would be extracted. It is clear that this preprocessing part is highly
problem-dependent. A good features extractor for geometrical shape recognition
would be of no use for speech recognition tasks or for fingerprint identification.

At the same time, the classification part is a more general tool. A pattern classifier
deals with features and partitions (tessellates, carves up) the feature space into line
segments, areas, volumes, and hypervolumes, called decision regions, in the case of
one-, two-, three-, or higher-dimensional features, respectively. All feature vectors
belonging to the same class are ideally assigned to the same category in a decision
region. Decision regions are often single nonoverlapping volumes or hypervolumes.
However, decision regions of the same class may also be disjoint, consisting of two or
more nontouching regions.

Only the basics of the statistical approach to the problem of feature pattern clas-
sification are presented here. The objects are feature vectors x; and class labels w;.
The features extraction procedure is taken for granted in the hope that the ideal fea-
tures extractor would produce the same feature vector x for each pattern in the same
class and different feature vectors for patterns in different classes. In practice, because
of the probabilistic nature of the recognition tasks, one must deal with stochastic

1.4. Learning and Statistical Approaches to Regression and Classification 71

(noisy) signals. Therefore, even in the case of pattern signals belonging to the same
category, there will be different inputs to the features extractor that will always pro-
duce different feature vectors x, but, one hopes that the within-class variability is
small relative to the between-class variability. In this section, the fundamentals of the
Bayesian approach for classifying the handwritten numerals 1 and 0 are presented
first. This is a simple yet important task of two-class (binary) classification (or
dichotomization). This procedure is then generalized for multifeature and multiclass
pattern classification. Despite being simple, these binary decision problems illustrate
most of the concepts that underlie all decision theory.

There are many different but related criteria for designing classification decision
rules. The six most frequently used decision criteria are maximum likelihood, Neyman-
Pearson, probability-of-(classification)error, min-max, maximum-a-posteriori (MAP),
known also as the Bayes’ decision criterion, and finally, the Bayes’ risk decision cri-
terion. This book cannot cover all these approaches, and it concentrates on the Bayes’
rule-based criteria only. We start with a seventh criterion, maximum-a-priori, in
order to gradually introduce the reader to the MAP or Bayes’ classification rule. The
interested reader can check the following claims regarding the relationships among
these criteria:

+ The probability-of-(classification)-error decision criterion is equivalent to the MAP
(Bayes’) decision criterion; this is shown later in detail.

« For the same prior probabilities, P(w1) = P(w,), the maximum likelihood decision
criterion is equivalent to the probability-of-(classification)-error decision criterion,
that is, to the MAP (Bayes’) decision criterion.

- For the same conditional probability-densities, P(x | ®;) = P(x|w,), the maximum-
a-priori criterion is equivalent to the MAP (Bayes’) decision criterion.

+ The Neyman-Pearson criterion is identical in form (which is actually a test of like-
lihood ratio against a threshold) to the maximum likelihood criterion. They differ in
the values of thresholds and, when the threshold is equal to unity, the N-P criterion is
equivalent to the maximum likelihood criterion.

+ The Bayes’ risk decision criterion represents a generalization of the probability-of-
(classification)-error decision criterion, and for a 0-1 loss function these two classifi-
cation methods are equivalent. This is shown later.

After the Bayes’ (MAP) classification rule has been introduced, the subsequent
sections examine an important concept in decision making: a cost or loss regarding a
given classification. This leads to the classification schemes that minimize some risk
function. This approach is important in all applications where misclassification of

72 Chapter 1. Learning and Soft Computing

some classes is very costly (e.g., in medical or fault diagnosis and in investment
decisions, but also in regression and standard classification problems where the risk
would measure some error or discrepancy regarding desired values or misclassifica-
tion of data).

Finally, the concepts of discriminant functions are introduced and an important
class of problems is analyzed: classification of normally distributed classes that gen-
erally have quadratic decision boundaries. A more detailed treatment of these topics
may be found in Cios, Pedrycz, and Swiniarski (1998, ch. 4) and in Schiirmann (1996)
as well as in classical volumes on decision and estimation (Melsa and Cohn 1978) or
on classification (Duda and Hart 1973). The development here roughly follows Cios
et al. and Melsa and Cohn.

Bayesian Classification in the Case of Two Classes The Bayesian approach to clas-
sification assumes that the problem of pattern classification can be expressed in
probabilistic terms and that the a priori probabilities P(w;) and the conditional
probability-density functions P(x |w;), i = 1,2, of feature pattern vectors are known.
As is the case in regression, this initial assumption will generally not be fulfilled in
practice. Nevertheless, a sound understanding of the classical Bayesian approach is
fundamental to grasping basic concepts about learning from training data sets with-
out knowledge of any probability distribution.

Assume recognition of two handwritten numerals (or any characters): 1 and 0. In
the experiment, the optical device is supplied with typical samples (on, say, a 16 x 16
grid), as shown in figure 1.27. The 0’s generally cover a larger total area of the grid
than do the 1’s, and the total area covered by the numeral is chosen as a suitable
feature in this example.

The task here is to devise an algorithm for the classification of handwritten char-
acters into two distinct classes: 1’s and 0’s. Assume that the characters emerge in

256

256
Feature x, = Z} v, =8
-

Featurex, =), v, =4
i=1

Figure 1.27
Typical samples for a two-class recognition with pattern vectors v; and features x;.

1.4. Learning and Statistical Approaches to Regression and Classification 73

random sequence but that each can be only a 1 or a 0. In statistical terms, a state of
nature (or class space) Q, an emerged character, has only two distinct states—either it
is “al1” or “a 0

Q= {o,m} = {“a 1”,“a 0”}. (1.55)

Q is a random variable taking two distinct values, @, for a 1 and w; for a 0. w; can be
assigned a numerical coding, for example, w; =1 (or 0, or —1, or any), and w; =0
(or —1, or 1, or any). Note that a numeral is perceived as an object, an image, or a
pattern. This pattern will then be analyzed considering its features. (There is a single
feature, xp, for this two-class task at the moment. In the next section, on multiclass
classification, a second feature is introduced and the feature space becomes two-
dimensional.) Since characters emerge in a random way, Q is a random variable. So
are the features, and the whole task is described in probabilistic terms.

The goal of the Bayesian method is to classify objects statistically in such a way as
to minimize the probability of their misclassification. The classification ability of new
patterns will depend on prior statistical information gathered from previously seen
randomly appearing objects. In particular, such classification depends upon prior (a
priori) probabilities P(w;) and on conditional probability-density functions P(x|w;),
i =1,2. The prior probability P(w;) corresponds to the fraction n,, of 1’s in the total
number of characters N. Therefore, the prior probabilities can be defined as

He,)

P(wi):W, i=1,2. (1.56)
Thus, P(w;) denotes the unconditional probability function that an object belongs to
class w;, without the help of any other information about this object in the form of
feature measurements. A prior probability P(w;) represents prior knowledge (in
probabilistic terms) of how likely it is that the pattern belonging to class i may appear
even before its actual materialization. Thus, for example, if one knew from prior
experiments that there are four times more 1’s than 0’s in the strings of numerals
under observation, one would have P(w;) = 0.8 and P(w,) = 0.2. Note that the sum
of prior probabilities is equal to 1:

> Plw)=1. (1.57)

i=1

Bayesian Classification Based on Prior Probabilities Only Let us start classifying
under the most restricted assumption first. Suppose that the optical device is out of
order and there is no information about feature x of a materialized numeral. Thus,

74 Chapter 1. Learning and Soft Computing

the only available statistical knowledge of the character strings to be classified is the
prior probabilities P(w;) = 0.8 and P(w;) =0.2. It is difficult to believe that the
classification will be very good with so little knowledge, but let us try to establish a
decision strategy that should lead to the smallest misclassification error. The best and
natural decision now is to assign the next character to the class having the higher
prior probability. Therefore, with only the prior probabilities P(w;) and P(w>)
known, the decision rule would be

Assign a character to
class w; if P(w;) > P(wy), orto (1.58)
class wy, if P(wy) > P(wy).

If P(w;) = P(wy), both classes are equally likely, and either decision would be
correct.

The task is to minimize the probability of a classification error, which can be
expressed as

P(w;y) if we decide Q = w,

1.59
P(w;) if we decide Q = ws. (1.59)

P(classification error) = {
Thus, selecting a class with a bigger prior probability gives a smaller probability of
classification error. If one chooses class w; in this example without seeing any fea-
tures, the probability of misclassification is P(w;) = 0.2. This is the best classification
strategy with so little information— P(w;) only—about the objects to be classified.

Frankly, one would never attempt to solve real-life classification problems with so
little knowledge, and typical problems are those with available features.

Bayesian Classification Based on Prior Probabilities and Features 1t is clear that
by including information on the total area covered by a numeral in the problem of
classifying 1’s and 0’s, one can increase classification accuracy and consequently
minimize the number of misclassified characters. Note that characters are stochastic
images. Each person writes differently and writes the same characters differently each
time. Thus, a feature x (the total area of a grid covered by a character) takes ran-
dom values. This is a continuous variable over a given range, and experimentally by
extracting features from 500 samples of each character, discrete class-conditional
probability-density functions in the form of two histograms are obtained, as shown in
figure 1.28. If the number of samples is increased to infinity, these discrete distri-
bution densities converge into two continuous class-conditional probability-density
Sfunctions P(x|w;), as shown in figure 1.28. P(x|w;) can also be called the data

1.4. Learning and Statistical Approaches to Regression and Classification 75

P(x|ew)
160
No. of samples P(x|w) of I’s P(x|w,) of 0’s
140 y
120 [0.6
100 [
80 [0.4
60 _\
40 0.2
20 [
0 { X1
0 2 4 ¢ 8 10
Qye—1eo——),
Figure 1.28

Typical histograms (left ordinate) and class-conditional probability-density functions P(x|w;) (right ordi-
nate) for two-class recognition with a single feature x;. The decision boundary, shown as a point x; = 6, is
valid for equal prior probabilities P(w;) = P(wz) = 0.5.

generator’s conditional probability-density functions or the likelihood of class w; with
respect to the value x of a feature variable.

The probability distributions presented in figure 1.28 are fairly similar, but
depending on the state of nature (the specific data generation mechanism), they can
be rather different. The probability-density

P(x|w;), i=12, (1.60)

is the probability-density function for a value of a random feature variable x given
that the pattern belongs to a class w;. The conditional probability-density functions
P(x|w;) and P(x|w,) represent distributions of variability of a total area of the
image covered by a 1 and a 0. These areas are thought to be different, and P(x|w;)
and P(x | w,) may capture this difference in the case of 1’s and 0’s. Thus, information
about this particular feature will presumably help in classifying these two numerals.
Remember that the joint probability-density function P(w;, x) is the probability-
density that a pattern is in a class w; and has a feature variable value x. Recall also
that the conditional probability function P(w;|x) denotes the probability (and not
probability-density) that the pattern class is w; given that the measured value of the
feature variable is x. The probability P(w; | x) is also called the posterior (a posteriori)
probability, and its value depends on the a posteriori fact that a feature variable has a

76 Chapter 1. Learning and Soft Computing

concrete value x. Because P(w; | x) is the probability function,

2

> Plowi|x)=1. (1.61)

i=1
Now, use the relations

P(w;, x) = P(w; | x)P(x), i=1,2,
(1.62)
P(w;,x) = P(x|w;)P(w;), i=1,2,

where P(x) denotes the unconditional probability-density function for a feature vari-
able x

2
P(x) = Z P(x|w;)P(w;) = P(x|w;)P(w;) + P(x|w2)P(wy). (1.63)
=1

The posterior probability P(w; | x) is sought for classifying the handwritten char-
acters into corresponding classes. From equations (1.62) this probability can be
expressed in the form of a Bayes’ rule

P(wix):W’ i=12 (1.64)
or
P(x| i) P(w;) P(x| ;) P(w;)
Helo = N : (1.65)
= Plx @) Play) | ToDPl@D) + Pl) Plen)

i=1

The probability-density function P(x) only scales the previous expressions, ensuring
in this way that the sum of posterior probabilities is 1 (P(w; | x) + P(wy |x) = 1).
The practicability of these Bayes’ rules lies in the fact that the conditional probability
function P(w; | x) can be calculated using P(x | w;) and P(cw;), which can be estimated
from data much more easily than P(w; | x) itself. Equipped with (1.65) and having the
feature measurement x while knowing probabilities P(w;) and P(x|w;), one can cal-
culate P(w;|x). Having the posterior probabilities P(w;|x), one can formulate the
following classification decision rule based on both prior probability and observed
features:

Assign a character to a class w; having the larger value of the posterior conditional
probability P(w; | x) for a given feature x.

1.4. Learning and Statistical Approaches to Regression and Classification 77

This is called the Bayes’ classification rule, and it is the best classification rule for
minimizing the probability of misclassification. In other words, this rule is the best
one for minimizing the probability of classification error. In the case of two-class
handwritten character recognition, for a given numeral with observed feature x, the
conditional probability of the classification error is

P(wy|x) if we decide Q = wy,

P(classification error | x) = { (1.66)

P(w; | x) if we decide Q = ws.
Note that for equal prior probabilities P(w;) = P(w;), the decision depends solely on
the class-conditional probability-density functions P(x|w;), and the character is
assigned to the class having the bigger P(x|w;). Thus, in this classification task,
having P(w;) = P(w,) = 0.5, the decision boundary in figure 1.28 is at the inter-
secting point (x = 6) of the two class-conditional probability-density functions. (In
the case of a one-dimensional feature, the decision regions are line segments, and the
decision boundary is a point.)

Analyzing many differently written 1’s and 0’s will yield different feature values x,
and it is important to see whether the Bayes’ classification rule minimizes the average
probability of error, because it should perform well for all possible patterns. This
averaging is given by

+0o0
P(classification error) = J P(classification error, x) dx

—+00
= J P(classification error | x) P(x) dx (1.67)

Clearly, if the classification rule as given by (1.66) minimizes the probability of mis-
classification for each x, then the average probability of error given by (1.67) will also
be minimized. Thus, the Bayes’ rule minimizes the average probability of a classifi-
cation error. In the case of two-class classification,

P(classification error | x) = min(P(w | x), P(wz | x)). (1.68)

Using Bayes’ rule (1.64),

(1.69)

P(classification error | x) = min (P(x @) Pler) Plx] wz)P(wz)).

Pix) 7 P

Note that P(x) is not relevant for the final decision. It is a scaling only, and in the
case of two-class decisions the Bayes’ classification rule becomes

78 Chapter 1. Learning and Soft Computing

Decide

class w; if P(x|wi)P(w;) > P(x|w)P(w,), 170
class wy, if P(x|wy)P(wz) > P(x|wi)P(wy). (1.702)

By making such a decision the probability of a classification error and consequently
the average probability of a classification error will be minimized. One obtains another
common form of this rule by using the likelihood ratio A(x) = P(x|w1)/P(x|wy):

Decide
. P(x | wl) P(a)z)
classw; if A(x) = > ,
: 0= B)~ Plan)
(1.70b)
) P(x|w1) Plws)
classw, if A(x)= < .
? (=% x|wy) ~ Plan)
The decision rule given by (1.70b) can also be rewritten as
) P(COQ)
Alx) 2 . 1.70c
) o Plan) ()

For equal prior probabilities, a threshold of likelihood ratio is equal to 1, and this
rule becomes identical to the maximum likelihood decision criterion.

A good practical point about this rule is that both the prior probabilities P(w;) and
the class-conditional probability-density functions P(x|w;) can be more easily esti-
mated from data than the posterior probability P(w;|x) on which the whole rule is
based.

General Bayesian Classification Real pattern recognition problems today often
involve patterns belonging to more than two classes and high-dimensional fea-
ture vectors. In the case of handwritten numerals there are ten different classes, and
using a single feature as in the previous case of two-class classification, it would be
relatively difficult to separate all ten numbers reliably. Suppose that in addition to
the 1I’s and 0’s, one wants to classify the handwritten number 8, as shown in figure
1.29.

Now, the single feature x; (the total area covered by the character) is insufficient to
classify all three numbers, since the 0’s and the 8’s seem to cover almost the same
total grid area. Defining another feature x, as the sum of the areas of the character
on the diagonal grid cells and combining these two features in the two-dimensional
feature vector may suffice for the classification of all three numerals.

1.4. Learning and Statistical Approaches to Regression and Classification 79

X2
8

8 88 Xy +2x,=1.5

8 88888 8

1111 11
11111 1 1 1 X1

v

Figure 1.29
Left, typical sample of a handwritten number 8 on a 16 x 16 grid. Right, the decision regions and decision
boundaries for a three-class character (1, 0, and 8) recognition problem.

Figure 1.29 depicts the positions of the training patterns in two-dimensional feature
space. Despite its simplicity, this problem involves all the relevant concepts for solv-
ing problems with higher-dimensional feature vectors and more than three classes. By
means of this introductory multifeature and multiclass example, the theory of classi-
fication is developed in general terms and later applied to cases involving normal or
Gaussian distributions.

The two straight lines shown in figure 1.29 are the decision boundary functions that
divide the feature space into disjoint decision regions. The latter can be readily asso-
ciated with three given classes. The shaded area is a so-called indecision region in this
problem, and the patterns falling in this region would be not assigned to any class.

When objects belong to more classes (say k, and for numerals & = 10), we have

Q=A{w,w,..., o} (1.71)

Now, Bayes’ classification rule will be similar to the rule for two classes. In the case
of multiclass and multifeature tasks, P(w;) denotes the prior probability that the
given pattern belongs to a class w;, and it corresponds to the fraction of characters
in an ith class. The class-conditional probability-density function is denoted for
all k classes by P(x|w;) and the joint probability-density function by P(w;,X),
i=1,...,k. P(w;x) is the probability-density that a pattern is in class w; and has a
feature vector value x. The conditional probability function P(w; |x) is the posterior
probability that a pattern belongs to a class w; given that the observed value of a
feature is x, and

> Pwi]x) = 1. (1.72)

i=1

80 Chapter 1. Learning and Soft Computing

As in the two-class case the prior and posterior probabilities are connected by

P(w;,x) = P(w; | x)P(x), i=1,2,...k,

(1.73)
P(w;,x) = P(x| w;)P(w;), i=1,2,...,k,
where P(x) is the unconditional probability-density function for a feature vector x:

k
P(x) =Y P(x|w)P(ay)
i=1

= P(x|w)P(w) + P(x| @) P(ws) + - -+ + P(x| o) P(wy). (1.74)

From (1.73) follows Bayes’ theorem for a multifeature and multiclass case

Plonx) = PELOIHOD g (175)
or

ey Px|w)Po) P(x| ;) P(w;)
e 5 Plx| 0)P(o) PRI Plon) s PPl

Now, for a multifeature and multiclass case, Bayes’ classification rule can be gener-
alized as follows:

Assign a pattern to a class w; having the largest value of the posterior conditional
probability P(w;|x) for a given feature x.

In other words, assign a given pattern with an observed feature vector x to a class w;
when

P(w; | x) > P(w;|x), J=12,..k, i#]. (1.77)

Within the framework of learning from data it is much easier to estimate prior
probability and class-conditional probability-density functions than the posterior
probability itself. Therefore, a Bayes’ classification rule (1.77) for a multifeature and
multiclass case should be expressed as follows:

For a given feature vector x, decide class w; if
P(x|w;)P(w;) > P(x|w;)P(wj), J=12,. .k, i#]. (1.78)

This final expression was obtained by using (1.75) after neglecting a scaling factor
P(x). Again, Bayes’ classification rule is best for minimizing classification error.

1.4. Learning and Statistical Approaches to Regression and Classification 81

P
A P(xlon)P(e1) 4 P(x|w1)P(w1)

P(x|mn)P(a)

o
K
.

..

Figure 1.30

Bayes’ classification rule for three classes may result in three single nonoverlapping decision regions (left)
or in three nonoverlapping disjoint decision regions consisting of two (or generally more) nontouching
regions (right). Other configurations of decision regions are possible, too.

Figure 1.30 illustrates (1.78) for three classes and, for the sake of clarity, only a single
feature.

Statistical Classification Minimizing Risk For problems containing uncertainties,
decisions are seldom based on probabilities alone. In most cases, one must be aware
of the consequences (namely, the errors, potential profits or losses, penalties, or re-
wards involved). Thus, there is a need for combining probabilities and consequences,
and for this reason, the concepts of cost or loss, and of risk (defined as expected loss)
are introduced here. This is important in all decision-making processes. Introducing
the minimization criterion involving potential loss into a classification decision made
for a given true state of nature (for a given feature vector x) acknowledges the fact
that misclassification of classes in some areas may be more costly than in others. The
loss function can be very different in various applications, and its form depends upon
the nature of the problem. Before considering the theory involving loss and risk
functions, let us first study them inductively in example 1.9.

Example 1.9 Eleven boiler units in a plant are operating at different pressures.
Three are operating at 101 bar, two at 102 bar, and others at 103, 105, 107, 110, 111,
and 112 bar. A single process computer is, with the help of specific boiler pressure
sensors (manometers), randomly reading the corresponding pressures, and the last
eleven recorded samples are (101, 112, 101, 102, 107, 103, 105, 110, 102, 101, 111
bar). The pressures in the various boilers are mutually independent. In order to check
a young engineer’s understanding of this process and its random characteristics, his
superior asks him to predict the next manometer reading under three different deci-

82 Chapter 1. Learning and Soft Computing

sion scenarios (/ stands for a loss (function), r denotes a reward, and f designates
a fine):

1. A reward of $10 (/ = r = +10) if the next reading is exactly the one he predicts,
and a fine of $1 (/ = f = —1) if a different pressure is measured

2. A reward of $10 (/ = r = 410) if the next reading is exactly the one he predicts,
and a fine equal in dollars to the size of his prediction error (/ = f = —|e|)

3. A reward of $10 (/ = r = +10) if the next reading is exactly the one he predicts,
and a fine equal in dollars to the square of his prediction error (/ = f = —(e?))

The engineer needs to make a good decision because there are penalties for being
wrong. His boss knows that if there were no penalty for being wrong or rewards for
being right or close, nothing would be at stake and the engineer might just as well
predict manometer readings of 50, 103.4, or 210.5 even though he knows that there
will be no such readings. Therefore, in each case, the engineer should select the best
possible decision to maximize expected profit (or to minimize expected loss).

Note that the different character of the loss functions in this example will lead
to different decisions. In case 1, there is no reward for coming close to the correct
manometer reading, so the size of the decision error does not matter. In case 2, the
loss is proportional to the size of the error, and in case 3, the loss increases with the
square of the error. (Note that the last fine resembles the sum-of-error-squares cost
function.) What should the engineer decide in order to maximize expected profit?

In the first case, if he predicts a manometer reading of 101 (the mode, or most fre-
quent observation, of the eleven samples), he stands to make $10 with a probability
of 3/11 and to lose $1 with a probability of 8/11. Now, his expected profit (EP)'? is
EP = l; 10 1 8 _ $2
Z ipi = 10—+ (=)ﬁ = Pz

It can be easily verified that this is the best possible prediction given the loss func-
tions / = 10 and / = —1 for a right and a wrong decision, respectively. Checking, for
example, the prediction of 103 bar, one finds that EP = $0. Note in this example that
regardless of the value of the specific loss, the prediction of 101 bar will always be the
best one, ensuring maximal profit or minimal loss. So, for example, if a correct pre-
diction were rewarded by $1 and a bad one fined by $10, the expected profit would be
negative:

=97,

EP = Zl,p,—l— 10)1E

1.4. Learning and Statistical Approaches to Regression and Classification 83

denoting the expected loss of $7. Now, if the engineer predicts a reading of 103, the
expected loss (or risk) is 1/11 — 10(10/11) = $9, and for a predicted reading of 102
the expected loss is $8. Hence, the expected loss is again the smallest when 101 bar is
predicted, given that the fine does not depend on the size of the estimation error.
Note also that other predictions like 102.5 or 108 bar would now entail a certain loss
of $10. (Recall that the manometers can display only the integer values of the oper-
ating boiler pressures, and none is operating at these two pressures.) Thus, when
there is no reward for coming close to some characteristics of the sample, the best
decision is to use the mode, or the most frequent measurement.

In the second case, when the fine is proportional to the possible error, / = f = —|e],
it is the median (103 bar here) that maximizes the expected profit. Thus, if the engi-
neer predicts that the next displayed reading will be 103, the fine will be $2, $1, $2,
$4, %7, $8, or $9, depending on whether the reading is 101, 102, 105, 107, 110, 111, or
112, and the expected profit is

11
3.2 S TR B S
EP=Y lpi=-22 12410~ 24— —7——8——9—=_$2.55.
;p TR TR TS TR VRN TR TR VR

In other words, in this second case, the best decision cannot make any profit but
would only entail the least possible loss of $2.55. If the reward were $38, the maximal
expected profit would be $0. Again, regardless of the reward assigned to the decision,
the best possible prediction, given that the fine is proportional to the size of the pre-
diction error, is a median (103 bar).

The expected fine or loss would be greater for any number other than the median.
For instance, if the engineer predicts that the next reading will be 105, the mean of
the eleven possible readings, the fine will be $4, $3, $2, $2, $5, $6, or $7, depending
on whether the reading is 101, 102, 103, 107, 110, 111, or 112, and the expected
profit is

2 1 1 1 1
5

11

1 1

EP:ZIipi:—4%—3——2—4—10——2— ——7—=-$2.73.
i=1

1 11 1 "1 1 1 1

Case 3 describes the scenario when the fine increases quadratically (rapidly) with
the size of the error. This leads naturally to the method of least squares, which plays a
very important role in statistical theory. It is easy to verify that for such a loss func-
tion the best possible prediction is the mean, 105, of the eleven sample manometer
readings. The engineer finds that the fine will be $16, $9, $4, $4, $25, $36, or $49,
depending on whether the reading is 101, 102, 103, 107, 110, 111, or 112, and the

84 Chapter 1. Learning and Soft Computing

expected profit is

11
34,2 1 11 1 1 1
EP=Y lipj=—16" 9" —4— +10— —4— 25— —36— —49 — = —$12.10.
;l’p’ R T TR TR T TR RN TR TR

Again, in this third predicted scenario the best decision, to predict the mean, cannot
make any profit but would only entail the least expected loss of $12.10, given the
reward of only $10 for the correct prediction. It is left to the reader to verify this
claim by calculating the expected profit (or loss) for any other possible decision. Note
that, in the case when the fine increases quadratically with the size of the error, the
expected profit is $0 only if the reward is $143.

The final decision (or simply a result) depends on the loss function used. As men-
tioned in section 1.3, the best solution depends upon the norm applied. Problems 1.8
and 1.9 illustrate this important observation in a nice graphical way.

The last two scenarios indicate that the reward defined by the engineer’s superior
is not very generous. But one can hope that using the correct prediction strategy—
mode, median, and mean are the best decisions to maximize expected profit given
various loss functions—will benefit the engineer more in his future professional life
than his superior’s present financial offer. [|

Now, these questions of the best decisions in classification tasks while minimizing
risk (expected loss) can be set into a more general framework. First, define a loss
function

L;; = L(decision class; | true class;) (1.79)

as a cost or penalty for assigning a pattern to a class w; when a true class is w;. In the
case of an [-class classification problem, define an / x / loss matrix L as

Lll L12 oo Ll/
Lyy Ly ... Ly

L=| T (1.80)
Ln Lp ... Ly

A loss matrix L, or the selection of the Lj, is highly problem-dependent. At this
point, selecting specific penalties or rewards is less important than understanding the
concept of risk that originates from decision theory while combining probabilities
with consequences (penalties or rewards). Recall that until now the best decision
strategy was based only on the posterior probability P(w; | x), and using Bayes’ rule,

1.4. Learning and Statistical Approaches to Regression and Classification 85

P(w; | x) was expressed in terms of the prior probability P(w;) and a class-conditional
probability-density P(x | w;). Now, using the posterior probability P(w;|x) in a simi-
lar way as previously, one can define the conditional risk, or expected (average)
conditional loss, associated with a decision that the observed pattern belongs to class
w; when in fact it belongs to a class w;, i = 1,2,...,[;i #J:

! !
R(w; |x) = Z L(decision class; | true class;) P(w; | X) = Z L;iP(w;|x). (1.81)
=1 =1
Thus, the conditional risk of making a decision w;, R; = R(w; |X), is defined as the
expectation of loss that is, through the use of P(w; | x), conditioned on the realization
x of a feature vector. Hence, the best decision now should be a classification decision
w; that minimizes the conditional risk R;, j = 1,2,...,/. The overall risk is defined as
the expected loss associated with a given classification decision and is considered for
all possible realizations x of an n-dimensional feature vector from a feature vector
space Ry:

/
R= J Ridx = J R(w; | x)dx = J Z L;iP(w;|x)dx, (1.82)
Ry Ry Ry o

where the integral is calculated over an entire feature vector space Ry.

The overall risk R is used as a classification criterion for the risk minimization
while making a classification decision. The integral in (1.82) will be minimized if a
classification decision ®; minimizes the conditional risk R(w; |x) for each realization
x of a feature vector.

This is a generalization of the Bayes’ rule for minimization of a classification error
(1.67), but here the minimization is of an overall risk R, or an expected loss. For this
general classification problem we have the following Bayes’ procedure and classifi-
cation rule:

For a given feature vector x evaluate all conditional risks

/

R(w;|x) =Y LiP(w;|x)

i=1

for all possible classes w;, and choose a class (make a decision) ; for which the
conditional risk R(w; |x) is minimal:

R(wj|x) < R(og|x), k=1,2,....1, k #]. (1.83)

86 Chapter 1. Learning and Soft Computing

Such classification decisions guarantee that the overall risk R will be minimal. This
minimal overall risk is called Bayes’ risk.
The last equation can be rewritten as

/
> LiP(w;|x) < ZLk, (wix), k=1,2,...1 k+#j (1.84)

i=1
and using Bayes’ rule, (1.64),

P(x| o) P(w;)
(wi|x) = T,

can be written as

/
P |wl wl X‘wl) (CO,)
ZLJI X ZLMT7 k

i=1

1,2,....1, k #]. (1.85)

Canceling the positive scaling factor P(x) on both sides of this inequality yields the
final practical form of Bayes’ classification rule, which minimizes overall (Bayes’)
risk.

Choose a class (make a decision) w; for which

/

/
ZL]',‘P(X ‘ w,)P(w,) < ZL/”‘P(X ‘ CO,‘)P(CO,’), k

i=1 i=1

1,2,...,1, k #]. (1.86)

For binary classification decision problems, Bayes’ risk criterion (1.86) is given as
follows. Let L; be the loss (cost) of making decision w; when w; is true. Then for the
binary classification problem there are four possible losses:

L = loss (cost) of deciding w; when, given x, w is true,
Ly, = loss (cost) of deciding w; when, given x, w; is true,
L, = loss (cost) of deciding w, when, given x, w is true,
(cost)

Ly, = loss (cost) of deciding w, when, given X, w; is true,

or

_ [Lu le}
Ly Lxn]

1.4. Learning and Statistical Approaches to Regression and Classification 87

Note that there is nothing strange in associating a loss or cost with a correct decision.
One can often set L} = Ly = 0, but there will also be very common problems when
both the correct and the wrong decisions are associated with certain costs. The Bayes’
risk criterion will result in a (classification) decision when the expected loss or risk is
minimal.

The risk (expected or average loss) that should be minimized is

a)1|X ZL], Cl),‘X L]]P(O)]|X)—|—L12P(CO2|X),

Cl)2|X ZLQ, w,\x L21P(w1 |X)+L22P(CD2|X),

or
R = R(w |x) + R(w; | x)
= L11P(CO1 |X) + L]zP(COQ |X) + L21P(601 ‘X) + LzzP(wz |X) (187)

The Bayes’ risk formulation can be viewed as a generalization of a maximum-a-
posteriori (MAP), or probability-of-error, decision criterion as given by (1.67). To
show that, (1.67) can be rewritten as

+0o0
P(classification error) = J P(classification error | x) P(x) dx

— o0

+c0
= J (P(wi | x) + P(wz | X)) P(x) dX.
— 00

Clearly, by minimizing the probability of misclassification for each x (as the classifi-
cation rule given by (1.66) requires), the average probability of error given by (1.67)
(and by the preceding equation) will also be minimized.

At the same time, by assigning the losses L;; = Ly, = 0and L, = Ly; = 1, the risk
(1.87) becomes

R:0~P(C()1|X)+1'P(CO2|X)+1'P(CO1|X)+0'P(602|X):P(CO1|X)+P(C()2|X),

and this is exactly the argument of the preceding integral. In other words, by mini-
mizing a risk, given a zero-one loss function, the average probability of classification
error is also minimized.

Thus, for a zero-one loss function, a classification (decision) by minimizing risk
is identical to the Bayes’ (maximum-a-posteriori) classification decision criterion

88 Chapter 1. Learning and Soft Computing

that minimizes the average (expected) probability of classification error. Note that
in dichotomization (two classes only or binary) tasks, as long as L; = 0, that is,
Ly; = Ly = 0, the risk minimization criterion can be nicely expressed in a known
form of a likelihood ratio

2 Ly P(w)
z
wy Loy P(wy)

A(x) . (1.88)
Hence, whenever the likelihood ratio A(x) = P(x|w;)/P(x|w,) is larger than the
product of the two ratios on the right-hand side of (1.88), the decision will be class 1.
The last expression follows from (1.86), or after applying Bayes’ theorem (1.64) in
(1.87). Note that the costs Lj> and L,; do not necessarily have to be equal to 1 now.
Also, both the MAP (Bayes’ decision criterion) and the maximum likelihood crite-
rion are just special cases of the risk minimization criterion (1.88). Namely, the MAP
rule follows when L, = Ly; = 1, and the maximum likelihood criterion results when
L]z = L21 =1and P(a)l) = P(a)z).

Finally, note that in more general multiclass problems, the zero-one loss matrix L
(1.80) is given as

0 1 1
L=|. . . | (1.89)
11 0

Decision Regions and Discriminant Functions Pattern recognition systems perform
multiclass, multifeature classification regardless of the type of decision rule applied.
Recall that there are various decision rules that, depending on information about the
patterns available, may be applied. Six different rules were listed at the beginning of
section 1.4.2, and both the Bayes’ rule for minimizing the average probability of error
and the Bayes’ rule for minimizing risk have been studied in more detail.

A pattern classifier assigns the feature vectors x to one of a number of possible
classes w;, i € {1,2,...,/}, and in this way partitions feature space into line segments,
areas, volumes, and hypervolumes, which are decision regions R, Ry, ..., R;, in the
case of one-, two-, three-, or higher-dimensional features, respectively. All feature
vectors belonging to the same class are ideally assigned to the same category in a
decision region. The decision regions R; are often single nonoverlapping volumes or
hypervolumes, and decision regions of the same class may also be disjoint, consisting
of two or more nontouching regions (see fig. 1.30). The boundaries between adja-
cent regions are called decision boundaries because classification decisions change

1.4. Learning and Statistical Approaches to Regression and Classification 89

Class-conditional probability-density functions o
/g‘ 1 s
X084y
20.6 -
S 044
T 0.24-
) ‘ R K :
. 0 ::: :\ “\\\3\\‘“& 0 | 10
y ‘
R X
Figure 1.31

Class-conditional probability-density functions (leftr) and decision regions R; and decision boundaries
(right) for three classes result in three single nonoverlapping decision regions.

across boundaries. These class boundaries are points, straight lines or curves, planes
or surfaces, and hyperplanes or hypersurfaces in the case of one-, two-, three- and
higher-dimensional feature space, respectively. In the case of straight lines, planes,
and hyperplanes, the decision boundaries are linear.

Figure 1.31 shows three class-conditional probability-density functions (likelihood
functions) as well as the partitioning of two-dimensional feature space into three
separated decision areas. The likelihood functions are three normal distributions with
equal covariance matrices and centers at (2, 2), (8, 2) and (2, 8). Because of the equal
covariance matrices, the three decision boundaries are straight lines (why this is so is
explained later). In the case of three- and higher-dimensional feature space, the deci-
sion regions are volumes and hypervolumes, respectively, and visualization is no
longer possible. Nevertheless, the classification decision procedures and the underly-
ing theories are the same. The optimal classification strategy will most typically be
the one that minimizes the probability of classification error, and the latter will be
minimized if, for P(x|w;)P(w;) > P(Xx|w1)P(ws), X is chosen to be in the region R;.

More generally, classification decisions based on feature vector x may be stated
using a set of explicitly defined discriminant functions

di(x), i=1,2,...,1, (1.90)

90 Chapter 1. Learning and Soft Computing

Discriminant for a di(x)
» class 4 v
Class
selector
S Class
Discriminant for a da(X)
X > b class 2 v @
—>
MAX
) Discriminant for a di(x)
class

Figure 1.32
Discriminant classifier for multiclass pattern recognition.

where each discriminant is associated with a particular recognized class w;, i =
1,2,...,1.

The discriminant type of classifier (i.e., the classifier designed using the discrimi-
nant functions) assigns a pattern with feature vector x to a class w; for which the
corresponding discriminant value d; is the largest:

di(x) > di(x), foralli=1,2,...,1, i#j. (1.91)

Such a discriminant classifier can be designed as a system comprising a set of / dis-
criminants d;(x), i = 1,2,...,l, associated with each class w;, i =1,2,...,/, along
with a module that selects the largest-value discriminant as a recognized class (see
fig. 1.32).

Note that the classification is based on the largest discriminant function dj(x)
regardless how the corresponding discriminant functions are defined. Therefore, any
monotonic function of a discriminant function f(d(x)) will provide identical classi-
fication because of the fact that for the monotonic function f(-), the maximal d;(x)
gives rise to the maximal f(d;(x)). It may be useful to understand this basic property
of discriminant functions. If some d;(x), i = 1,...,/, are the discriminant functions
for a given classifier, so also are the functions In d;(x), d;(x) + C, or Cd;(x) for any
class-independent constant C. This is widely explored in classification theory by using
the natural logarithmic function In d(x) as a discriminant function. Thus, in the case
of a Bayes’ classifier, instead of

dl'(X) = P(CU, ‘ X) = P(X | C()l)P(CO,)

1.4. Learning and Statistical Approaches to Regression and Classification 91

the natural logarithm of P(w;|x) is used as a discriminant function, that is, the dis-
criminant function is defined as

di(x) =In P(w; | x) = In(P(x| w;)P(w;))
=In P(x|w;) + In P(w;), i=1,2,...,L (1.92)

Discriminant functions define the decision boundaries that separate decision regions.
Decision boundaries between neighboring regions R; and R; are obtained by equal-
izing the corresponding discriminant functions:

d/(x) = d(x). (1.93)

These boundaries between the decision regions are the points, lines or curves, planes
or surfaces, and hyperplanes or hypersurfaces in the case of one-, two-, three-, and
higher-dimensional feature vectors, respectively.

Depending upon the criteria for choosing which classification decision rule to
apply, the discriminant function may be

di(x) = P(w;]x) in the case of Bayes’ (MAP) classification, (1.94a)
di(x) = P(x|w;) in the case of maximum likelihood classification, (1.94b)
di(x) = P(w;) in the case of maximume-a-priori classification, (1.94¢)
di(x) = —R(w;|x) in the case of Bayes’ minimal risk classification, (1.94d)

i=1,2,...,1.

Many other (not necessarily probabilistic) discriminant functions may also be defined.
Note the minus sign in the last definition of the discriminant function, which denotes
that the maximal value of the discriminant function d;(x) corresponds to the minimal
conditional risk R(w; | X).

In the case of two-class or binary classification (dichotomization), instead of two
discriminants d; (x) and d»(x) applied separately, typically a dichotomizer is applied,
defined as

d(x) = dy (x) — do(x). (1.95)

A dichotomizer (1.95) calculates a value of a single discriminant function d(x) and
assigns a class according to the sign of this value. When d,(x) is larger than d(x),
d(x) > 0 and a pattern x will be assigned to class 1, otherwise it is assigned to class 2.
Thus, for Bayes’ rule-based discriminant functions (1.94a), the dichotomizer for a
binary classification is given as

92 Chapter 1. Learning and Soft Computing

d(X) = P(w1 |X) — P(w2 |X) = P(X | wl)P(wl) — P(X ‘ wz)P(a)z).
Accordingly, the decision boundary between two classes is defined by
di(x) =dy(x) orby d(x)=0. (1.96)

Checking the geometrical meaning of (1.96) in the right graph in figure 1.33 for two-
dimensional features, one sees that the separating function, or the decision boundary,
is the intersecting curve (surface or hypersurface for three- and higher-dimensional
features, respectively) between the dichotomizer d(x) and the feature plane. Another
useful form of the dichotomizer that uses a Bayes’ (MAP) classification decision cri-
terion can be obtained from (1.92) as follows:

d(x) =In P(w; |x) — In P(wy |x) = In(P(x|w;)P(w1)) — In(P(x | w2) P(w7))
= (In P(x|w;) +1n P(w;)) — (In P(x|w2) + In P(wy)),

Pxfen) iy

A0 =10 B w) T)

(1.97)
For a given feature vector x, a dichotomizer d(x) calculates a single value and assigns
a class based on the sign of this value. In other words, because d(x) is calculated as
the difference d)(x) — d2(x), when d(x) > 0 the pattern is assigned to class w; and
when d(x) < 0 the pattern is assigned to class w;.

The next section takes up discriminant functions for normally distributed classes,
which are very common. Solving classification tasks involving Gaussian examples
can yield very useful closed-form expressions for calculating decision boundaries.

Discriminant Functions for Classification of Normally Distributed Classes In the case
of normally distributed classes (Gaussian classes) discriminant functions are qua-
dratic. These become linear (straight lines, planes, and hyperplanes for two-, three-
and n-dimensional feature vectors, respectively) when the covariance matrices of
corresponding classes are equal. The quadratic and linear classifiers belong to the
group of parametric classifiers because they are defined in terms of Gaussian distri-
bution parameters—mean vectors p; and covariance matrices X;.

Let us start with the simplest case of a binary classification problem in a one-
dimensional feature space when two classes are generated by two Gaussian proba-
bility functions having the same variances o7 = o5 = ¢~ but different means x; # 1,
(see fig. 1.28, a classification of 1’s and 0’s). In this case, the class-conditional

1.4. Learning and Statistical Approaches to Regression and Classification 93

probability-density functions P(x | w;) are given as

L (xon)
o)

) X|@2) =)
vV 2no; (rfw2) \/2—7502

eXP<—l oA 2)
d(x) =In P(x|w1)+1n P<w1>:ln 22 0 +In P(wl),

P(x|m?) P(ws) 1 /x —)2 P(ws)

(-5 (7)
o
or
2,2
L) B~ K P(on)

d(x) = P e In Plon)’ (1.98)

Hence, for a one-dimensional feature vector, given equal variances of normal class-
conditional probability-density functions P(x | @;), the dichotomizer is linear (straight
line). The decision boundary as defined by (1.96) or by d(x) = 0, is the point

2
P
X :)ul +Iu2 o In (CO])

T T " P (1.99)

Note that in the equiprobable case when P(w;) = P(w,), the decision boundary is
a point xpp in the middle of the class centers xpp = (¢; + 1,)/2. Otherwise, the
decision boundary point xpp is closer to the center of the less probable class. So, for
example, if P(w;) > P(wy), then |py, — xpg| < |y — xps|.

In the case of the multiclass classification problem in an n-dimensional feature
space'* when classes are generated according to Gaussian distributions with different
covariance matrices Xy # X, # --- # X; and different means p; # p, # --- # p;, the
class-conditional probability-density function P(x | w;) is described by

1 1 Tl) .
Px|wj) =——F—5exp| —z(x—m) & (x—n) |, i=1,2. 1.100
<l = o p(~ 3w "5 x) (1.100)

Now x and p; are (n, 1) vectors and the covariance matrices X; are square and sym-
metric (n,n) matrices. |X| denotes the determinant of the covariance matrix. In the
most general case for normally distributed classes, the discriminant function defined
as d(x) =In P(w|x) = In P(x|w)P(w) becomes

94 Chapter 1. Learning and Soft Computing

1 1 _ .
d[(x) = IHW eXp<—§(X—ul-)TEi I(X—ui)> +1n P(C()l‘)7 1= 1,2,...,[7

or after expanding the logarithm,

1 1
di(x) =) In|%;| _E(X —n) T (x—p) —g In(27) + In P(w;), i=1,2,...,1
(1.101)

The constant term #n In(27)/2 is equal for all classes (i.e., it cannot change the classi-
fication), and consequently it can be eliminated in what results as a quadratic dis-
criminant function,

1 1
di(x) = 5 In|x| —E(x—pi)TZfl(X—u,») +In P(w;), i=1,2,...,0 (1.102)

Decision boundaries (separation hypersurfaces) between classes i and j are the hyper-
quadratic functions in n-dimensional feature space (e.g., hyperspheres, hyperellipsoids,
hyperparaboloids) for which d;(x) = d;(x). The specific form of discriminant func-
tions and of decision boundaries is determined by the characteristics of covariance
matrices.

The second term in (1.102) is the Mahalanobis distance, which calculates the dis-
tance between the feature vector x and the mean vector p;. Recall that for correlated
features, covariance matrices X; are nondiagonal symmetric matrices for which off-
diagonal elements g} # 0, i=1,...,1, j=1,....1, i #].

The quadratic discriminant function is the most general discriminant in the case of
normally distributed classes, and decisions are based on the Bayes’ decision rule that
minimizes the probability of error or the probability of misclassification. This is also
known as the minimum error rate classifier.

The classification decision algorithm based on the quadratic Bayes’ discriminants
is now the following:

1. For given classes (feature vectors x), calculate the mean vectors and the covari-
ance matrices.

2. Compute the values of the quadratic discriminant functions (1.102) for each class.
3. Select a class w; for which d;(x) = max(d;(x)), i=1,2,...,1

Example 1.10 illustrates how equation (1.102) applies to the calculation of quadratic

discriminant functions. The computation of decision boundaries between two classes
in the case of the two-dimensional feature vector X is also shown.

1.4. Learning and Statistical Approaches to Regression and Classification 95

Example 1.10 Feature vectors x of two classes are generated by Gaussian distribu-
tions having parameters (covariance matrices X; and means ;) as follows:

10 0
T = 7.
! [0 0.25} H [0]

0.25 0 0
%, = =[]
=% =[]

Find the discriminant functions and decision boundaries. Classes are equiprobable
(P(w;) = P(w) = P). (Recall that the covariance matrices are diagonal when the
features are statistically independent. The geometrical consequence of this fact can be
seen in figure 1.34, where the principal axes of the contours of the Gaussian class
densities are parallel to the feature axes.)

Quadratic discriminant functions for two given classes are defined by (1.102). The
constant and the class-independent term In P(w;) can be ignored, and the two dis-
criminants are obtained as

soo=—sm ([LI] (][0

1 1 0_ X1 5 5
=0.693 — 3 X1 x9] =0.693 — 0.5(x7 + 4x3),
X2

o=y ([0 L5 ()LD

1 4 0 X1 5 5
= 0.693 — 5[, (x2—2)][] [] =0.693 — 0.5(4x2 + (x2 — 2)°).

0 I||x-2

Both discriminant functions and the dichotomizing discriminant function are shown
in figure 1.33.

The decision boundary, or separation line, in the feature plane follows from
d(x) =di(x) —dr(x) =0 as

d(x) = di(x) — dr(x) = 1.5x — 1.5x3 — 2x, +2 = 0.

Note that the decision regions in the feature plane, shown in figure 1.34, are non-
overlapping patches. The decision region for class 2 comprises two disjoint areas. It is
not surprising that region R, is disjoint. This can be seen in figure 1.33, and it also

96 Chapter 1. Learning and Soft Computing

Quadratic discriminant functions

-6 -5 Feature x4

Quadratic dichotomizing function

d(xj =0
' Separation
curve

Feature X —10-5

Feature xq

Figure 1.33

Classification of two Gaussian classes with different covariance matrices X; # X,. Top, quadratic discrimi-
nant functions d; (x) and d» (X). Bottom, quadratic dichotomizing discriminant function d(x) = d; (x) — d»(x).
The decision boundary (separation curve) d(x) = dj(Xx) — d»(x) = 0 in the right graph is the intersection
curve between the dichotomizer d(x) and the feature plane. Note that the decision regions in the feature
plane are nonoverlapping parts of the feature plane, but the decision region for class 2 comprises two dis-
joint areas.

1.4. Learning and Statistical Approaches to Regression and Classification 97

X1

»
v Lt

R Decjsion boundary, or

P(x\(u.l.)" "

separation curve

—4
-5 0 5

Figure 1.34

Quadratic decision boundary (separation curve) d(x) = d;(x) — d»(x) = 0 for two Gaussian classes with
different covariance matrices X; # X,. This decision boundary is obtained by the intersection of the
dichotomizing discriminant function d(x) and the feature plane. Note that the decision region for class 2
comprises two disjoint areas.

follows from these considerations: the prior probabilities are equal, and the decision
rule, being the minimum error rate classifier, chooses the class whose likelihood
function P(x|w) is larger. Since the variance in the x, direction is larger for class
2 than for class 1, the class-conditional probability-density function (likelihood)
P(x|w,) is actually larger than P(x|w;) for most of the lower half-plane in figure
1.34, despite the fact that all these points are closer (in the sense of the Euclidean
distance) to the mean of class 1. The quadratic separation function shown in figure
1.34 is obtained from d(x) = 0. All points in the feature plane for which d(x) < 0
belong to class 1, and when d(x) > 0 the specific pattern belongs to class 2. This can
be readily checked analytically as well as in figures 1.33 and 1.34.
There are two simpler, widely used discriminant functions, or decision rules, that
under certain assumptions follow from the quadratic discriminant function (1.102).
|

Linear Discriminant Function for Equal Covariance Matrices When the covariance
matrices for all classes are equal (X; =X, 7= 1,2,...,/) so is the first term in (1.102)
equal for all classes, and being class-independent, it can be dropped from (1.102),
yielding a discriminant of the form

d,-(x):—%(x—ui)TZi’l(xfui)+lnP(a),»), i=12,...,L (1.103)

98 Chapter 1. Learning and Soft Computing

This discriminant function is linear, which can be readily seen from the expansion

1) (T T T B
5 (=) "B (x =) = 5 xTET X - oxTE gy — oI o

The quadratic term x7X 'x is class-independent and can be dropped from this
expansion. Furthermore, since the covariance matrix is symmetric, so is its inversion
and, x"E7 'y, = p X~ 'x. This results in a set of linear discriminant functions

1
di(x) =p/Z7'x - zpiT):flu,» +1n P(w;), i=1,2,...,1L (1.104)

The classification decision algorithm for normally distributed classes having the
same covariance matrix X is now the following:

1. For given classes (feature vectors x), calculate the mean vectors and the covari-
ance matrix X.
2. Compute the values of the linear discriminant functions (1.104) for each class.
3. Select a class w; for which d;(x) = max(d;(x)), i =1,2,..., L

Decision boundaries corresponding to d;(x) = d;(x) are hyperplanes. In the case of
a two-dimensional feature vector x, these boundaries are straight lines in a feature
plane. Linear discriminant functions and linear boundaries are closely related to

neural network models (see chapter 3). Here the linear discriminant functions are
presented in the “neural” form

di(x) = wl'x + wj, (1.105)

where

1

1
wli=pTE™" and wy = —Ell,-TE_llli +In P(w;).
The decision boundary between classes €; and €; in neural form is given as a
hyperplane,
di(x) — d;(x) = wx + w0 =0, (1.106)
where

P(w;)
P(wj)

, 1 _ _
w=(p - ujT)Z ' and wyo = —z(uir): n, — ujTE 1uj) +1In

1.4. Learning and Statistical Approaches to Regression and Classification 99

It is straightforward to show that in the case of a one-dimensional feature vector x,
equation (1.99), which defines the separation point, follows from (1.106). In the case
of two feature patterns, (1.106) represents straight lines. Example 1.11 shows this.

Example 1.11 Figure 1.31 depicts the classification of three normally distributed
classes that result in three linear separation lines and in the tessellation (partition) of
a two-dimensional feature space (plane) into three separated decision regions. The
likelihood functions of the three normal distributions have equal covariance matrices
X =1, and centers (means) at (2,2), (8,2), and (2,8). Check the validity of the right
graph in figure 1.31 by applying (1.105) and (1.106) for the equiprobable classes.

Having identity covariance matrices and equiprobable classes (meaning that the
last terms In P(w;) in (1.105) can be eliminated), three linear discriminant functions
(planes) that follow from (1.105) are

di(x) :ijX+Wi0 :lliTX_%ll,'Tlli, i= 172737
or

di (X) =2x1 4+ 2x, — 4, dz(X) = 8x1 + 2x, — 34, d3(X) = 2x1 + 8xp, — 34.

Linear discriminant functions

80_‘“"""3""" .

Feature x, 2 2 Feature x

Figure 1.35

Linear discriminant functions (decision planes d;(x) in the case of two-dimensional features) for three
Gaussian classes with the same covariance matrix X = I, as in figure 1.31. Three corresponding decision
boundaries obtained as the planes’ intersections divide the feature plane into three single nonoverlapping
decision regions. (The two visible separation lines, d, and d;3, are depicted as solid straight lines.

100 Chapter 1. Learning and Soft Computing

Similarly, the decision boundaries or the separation lines that follow from (1.106) are

dip(x) =di(x) —dr(x) = =6x;+30=0, or x; =35,
di3(x) =di(x) —ds(x) = =6x,+30=0, or x;=35,
d23(X) = dz(X) — d3(X) = 6X1 — 6XZ = 07 or Xp; = Xj.

Three discriminant planes d;(x), i = 1,2,3, together with the two visible decision
boundary lines that separate given classes, are shown in figure 1.35. (All three sepa-
ration lines are shown in the right graph in figure 1.31.)]

Minimum Mahalanobis Distance and Euclidean Distance Classifiers Two particular
cases for the classification of normally distributed (Gaussian) classes follow after
applying several additional assumptions regarding their class distribution properties.
If there are equal covariance matrices for all classes (X; =X, i = 1,2,...,/) and also
equal prior probabilities for all classes (P(w;) = P(w) = P), then the second term on
the right-hand side of (1.103) can be eliminated. Additionally, being class-independent,
the constant 1/2 can be neglected, and this results in the following discriminant
functions:

di(x) = —(x—p) T (x—p,), i=12,...,1L (1.107)

Thus, classification based on the maximization of these discriminants will assign a
given pattern with a feature vector x to a class wy, for which the Mahalanobis dis-
tance (x —) 7' (x — ;) of x to the mean vector p, is the smallest. Note that
because of the minus sign in (1.107), minimization of the Mahalanobis distance cor-
responds to maximization of the discriminant function d(x). In other words, a pattern
will be assigned to the closest class center p, in the Mahalanobis sense. Note also that
the Mahalanobis distance is relevant for correlated features, or when the off-diagonal
elements of the covariance matrix X are not equal to zero (or when X is not a diago-
nal matrix, ie., when oy #0,i=1,....0, j=1,....1 i #}).

The classifier (1.107) is called a minimum Mahalanobis distance classifier. In the
same way as (1.104), the Mahalanobis distance classifier can be given in linear form
as

di(x) =p/ T x = 1pTx "t i=1,2,...,1 (1.108)

Applying an even more restrictive assumption for the equiprobable classes (P(w;) =
P(w) = P), namely, assuming that the covariance matrices for all classes are not
only equal but are also diagonal matrices, meaning that the features are statisti-
cally independent (X; = £ = ¢°I,, i = 1,2,...,]), one obtains the simple discriminant
functions

1.4. Learning and Statistical Approaches to Regression and Classification 101

T 2
X—N X— L X— W .
d,-(x):—(>02()|l g ” =—|x—pm|* i=1,2,...,. (1.109)

The class-independent coefficient variance o2

classifier design.

Thus (1.109) represents the minimum Euclidean distance classifier because the dis-
criminants (1.109) will assign a given pattern with a feature vector x to a class wy for
which the Euclidean distance |x — p,|| of x to the mean vector p, is the smallest. As
in the preceding case of a nondiagonal covariance matrix, and because of the minus
sign, the minimal Euclidean distance will result in a maximal value for the discrim-
inant function d&;(x), as given in (1.109). In other words, a minimum (Euclidean)
distance classifier assigns a pattern with feature x to the closest class center .

A linear form of the minimum distance classifier (neglecting a class-independent
variance ¢?) is given as

is neglected in the final stage of the

di(x) =p/x—ipp;, i=1,2,...,L (1.110)

The algorithm for both the Mahalanobis and the Euclidean distance classifiers is
the following. The mean vectors for all classes p;, i =1,2,...,/, a feature vector x,
and a covariance matrix X are given.

1. Calculate the values of the corresponding distances between x and means p; for all
classes. The Mahalanobis distance for correlated classes is

D=(x—p) T x—p), ¥ nondiagonal.

The Euclidean distance for statistically independent classes is

D = ||x — pl, ¥ diagonal.

2. Assign the pattern to the class wy for which the distance D is minimal.

Both of these minimum distance classifiers are minimum error rate classifiers. In
other words, for given assumptions, they are the Bayes’ minimal probability of an
error classifier. Furthermore, for both classifiers the mean vectors p;, i = 1,...,/, act
as templates or prototypes for [classes. By measuring the distances between each new
pattern x and these centers, each new feature vector x is matched to these templates.
Hence, both the Mahalanobis and the Euclidean distance classifiers belong to the
group of template matching classifiers.

Template matching is a classic, natural approach to pattern classification. Typi-
cally, noise-free versions of patterns are used as templates or as the means of
the corresponding classes. To classify a previously unseen and noisy pattern, simply
compare it to given templates (means) and assign the pattern to the closest template

102 Chapter 1. Learning and Soft Computing

(mean, center). Template matching works well when the variations within a class are
due to additive noise. But there are many other possible noises in classification and
decision-making problems. For instance, regarding geometrically distorted patterns,
some common distortions of feature vectors are translation, rotation, shearing,
warping, expansion, contraction, and occlusion. For such patterns, more sophisti-
cated techniques must be used. However, these are outside the scope of this book.

Limitations and Deficiencies of the Classical Bayesian Approach Almost all the
methods and techniques presented in the preceding sections have a serious practical
limitation. In order to apply the most general Bayes’ minimum cost or minimum risk
procedure (and related approaches) practically everything about the underlying ana-
lyzed process must be known. This includes the priors P(w;) and the class-conditional
probability-densities (or likelihoods) P(x|w;) as well as the costs of making errors
L(w;j|®;). The fact that pattern recognition and regression problems are of random
character and therefore expressed in probabilistic terms does not make the task
simpler.

Suppose one wants to perform fault detection in engineering or in medical diag-
nosis. One must know how probable the different faults or symptoms (classes) are a
priori (P(w;) are required). In other words, the prior probability of a system under
investigation to experience different faults must be known. This is an intricate prob-
lem because very often it is difficult to distinguish priors P(w;) from class-conditional
probability-densities P(x | w;). One remedy is to use decision rules that do not contain
priors (or to ignore them). The maximum likelihood classification rule is such a rule.
Similarly, in regression, other approaches that require fewer assumptions can be
tried, such as Markov estimators or the method of least squares.

The amount of assumed initial knowledge available on the process under inves-
tigation decreases in the following order: for the Bayes’ procedure one should know
everything; for the maximum likelihood approach one should know the class-
conditional probability-density functions (likelihoods); for the Markov techniques in
regression problems one should know the covariance matrix of noise; and for the
least squares method one need only assume that random processes can be approxi-
mated sufficiently by the model chosen. But even in such a series of simplifications
one must either know some distribution characteristics in advance or estimate the
means, covariance matrices, or likelihoods (class-conditional probability densities) by
using training patterns.

However, there are practical problems with density estimation approaches. To
implement even the simplest Euclidean minimum distance classifier, one must know
the mean vectors (centers or templates) p;, i = 1,...,/, for all the classes. For this

Problems 103

approach it is assumed that the underlying data-generating distribution is a Gaussian
one, that the features are not correlated, and that the covariance matrices are equal.
(This is too many assumptions for the simplest possible method.) To take into
account eventually correlated features, or in considering the effects of scaling and
linear transformation of data for which the Euclidean metric is not appropriate, the
Mahalanobis metric should be used. However, in order to implement a minimum
Mahalanobis distance classifier, both the mean vectors and the covariance matrices
must be known. Recall that all that is typically available is training data and even-
tually some previous knowledge. Usually, this means estimating all these parameters
from examples of patterns to be classified or regressed.

Yet this is exactly what both statistical learning theory (represented by support
vector machines) and neural networks are trying to avoid. This book follows the
approach of bypassing or dodging density estimation methods. Therefore, there is
no explicit presentation of how to learn means, covariance matrices, or any other
statistics from training data patterns. Instead, the discussion concerns SVM and NN
tools that provide novel techniques for acquiring knowledge from training data
(patterns, records, measurements, observations, examples, samples).

However, it should be stressed that the preceding approaches (which in pattern
recognition problems most often result in quadratic or linear discriminant functions,
decision boundaries and regions, and in regression problems result in linear approx-
imating functions) still are and will remain very good theoretical and practical tools if
the mentioned assumptions are valid. Very often, in modern real-world applications,
many of these postulates are satisfied only approximately. However, even when these
assumptions are not totally sound, quadratic and linear discriminants have shown
acceptable performance as classifiers, as have linear approximators in regression
problems. Because of their simple (linear or quadratic) structure, these techniques do
not overfit the training data set, and for many regression tasks they may be good
starting points or good first estimates of regression hyperplanes. In classification, they
may indicate the structure of complex decision regions that are typically hyper-
volumes in n-dimensional space of features.

Problems

L1 Letx=[-2 1J",y=[-3 1J",v=4 -3 2", w=[5 6 —-1]".

T T
X X
a. Compute Xy and —yx.
xTx xTx
b. Calculate a unit vector u in the direction of v.

c. Are vectors v and w orthogonal?

104 Chapter 1. Learning and Soft Computing

1.2. Calculate the L, L, and L, norms of the following vectors:
a.x=[-2 1 3 27,

b.y=[-3 1]".

c.v=[4 -3 2.

d w=[-5 -6 -1 -3 =35

3. X1,X2, .-, Xn X u . ix X 1
1.3. Let x1, x, ..., x, be fixed numbers. The Vandermonde matrix X is
i 2 n—2 n—1"
1 x Xy -oXx X
2 n—2 n—1
1 x Xy e X5 X3
X =
2 n—2 n—1
| X1 Xl X
2 -2 -1
R x; x/! X,
wvend=|dy d» ... |7, suppose that w € satisfies Xw = d, and define the
Givend = [d; d)", that w € R" satisfies Xw = d, and define th

polynomial

y(x) =wo +wix + Wax2 4 - 4wy XL

a. Show that y(x;)=d,...,y(x,) =d, (i.e., that the polynomial y(x) passes
through each training data point).

b. Show that when Xxj,x,...,x, are distinct, the columns of X are linearly
independent.
c. Prove that if xj,x,,...,x, are distinct numbers and d is an arbitrary vector,

then there is an interpolating polynomial of degree <n — 1 for all pairs (x;,d),
(XQ, dz), ey (xn, dn)

1.4. For the training data pairs (1,2), (2,1), (5,10) find

a. the interpolating polynomial of second order,

b. the best least squares approximating straight line.

1.5. Compute L., and L, norms for the function f(x) = (1 +x)~' on the interval
[0, 1]. (See hint in problem 1.6b.)

1.6. Find the best approximating straight lines to the curve y = ¢* such that

a. the L, (Euclidean) norm of the error function on the discrete set x =
[-1 —0.5 0 0.5 1]isassmall as possible,

Problems 105

b. the L, (Euclidean) norm of the error function on the interval [—1, 1] is as small
as possible. (Hint: Use fab |E(w)|? dw for the L, (Euclidean) norm of the continuous
error function on the interval [a, b].)

1.7. Figure P1.1 shows the unit sphere of the L, norm in R

a. Draw unit spheres of L, norms for p = 0.5,1,10, and co. Comment on the geo-
metrical meaning of these spheres.

b. Draw unit spheres of L, norms for p = 1,2, and o in R

1.8. Consider vector x in R’ shown in figures P1.2a and P1.2b. Find the best
approximation to x in a subspace SL (a straight line) in

a. L norm,

b. L, norm,

c. L, norm.

Draw your result and comment on the equality or difference of the best approxima-
tions in given norms.

Figure P1.1
Graph for problem 1.7.

AX2 SL AX2
o o SL
X _ 0
o =45 S, o <45°
I‘ ;xl) ;xl
(a) (b)
Figure P1.2

Graphs for problem 1.8.

106 Chapter 1. Learning and Soft Computing

AX2

Figure P1.3
Graph for problem 1.9.

Figure P1.4
Graph for problem 1.10.

1.9. For a given vector x find a subspace (a straight line SL) of R? for which the best
approximations to x in SL, in L; and L, norms, are equal. Comment on the best
approximation in L., norm in this straight line. (See figure P1.3.)

1.10. Consider four measurement points given in figure P1.4. Find the weights
corresponding to four linear splines that ensure an interpolating (piecewise linear)
curve y,(x).

1.11. It was shown that there is a unique polynomial interpolant for a one-dimen-
sional input x (i.e., when y = y(x)). There is no theorem about a unique polynomial
interpolation for an R" — R' mapping (n > 1) (i.e., for y = y(x)). Check whether
four given points in figures P1.5a and P 1.5b can be uniquely interpolated by a
bilinear polynomial y, = w; + wyx| + wixy + waxx,. Training data pairs are given
as

Problems 107

2

N

-1 1

PR

(a) (b)

Figure P1.5
Graphs for problem 1.11.
Figure 1.5a Figure 1.5b
d dy ds dy d dy ds dy
1 -1 -1 1 1 0 -1 0
1 1 -1 -1 0 1 0 -1

(Hint: For both problems write down a system of four equations in four unknowns
and check whether there is a unique solution.)

1.12. Many phenomena are subject to seasonal fluctuations (e.g., plant growth,
monthly sales of products, airline ticket sales). To model such periodic problems, the
preferred approximating scheme is

. 27x
Ya = Wo + WX+ wy sIn ——.
12
a. Show this model graphically as a network.
b. Give the design matrix X.
c. Is the approximation problem linear?
1.13. (a) Expand a function f(x) about x in a Taylor series, and show this expan-

sion graphically as a (“neural”) network, retaining the first three terms only. An input
to the network is Ax, and the output is Af.

(b) Show as a network a Taylor expansion of a function ¥, retaining the first four
terms only.

108 Chapter 1. Learning and Soft Computing

1.14. Determine the gradient vector and the Hessian matrix for each error function

E(w):
() E(W) 3WlW2 + 4o,
(b) E(w) = w,? +1In wywy.
(c) E(W) =wi+ w3 +wi.

(d) E(w) = In(w? + wiwy + w3).

1.15. The gradient path for minimizing the elliptic paraboloid E(w) = w? + 2w3 is
wa = ew?. Both the level curves (contours) and the gradient path are shown in figure
P1.6. Show that the gradient path is orthogonal to the level curves. (Hint: Use the
fact that if the curves are orthogonal, then their normal vectors are also orthogonal.)

1.16. Show that the optimal learning rate 7,, for minimizing the quadratic error
function

wlQ%w

wiQ3w|;

(Hint: Express the value of the error function at step i 4+ 1, and minimize this ex-
pression with respect to learning rate 5. Use that for quadratic forms Q = Q)

E(w) =0.5wTQw is 7, = —

1.17. Perform two iterations of the optimal gradient algorithm to find the minimum
of E(w) = 2w} + 2wywy + 5w3. The starting point is wo = [2 — 2]”. Draw the con-
tours, and show your learning path graphically. Check the orthogonality of gradient
vectors at the initial point and at the next one. (Hint: Express E(w) in matrix form,
and use the expression for 7, from problem 1.16.)

1.18. Which of the four given functions in figure P1.7 are probability-density func-
tions? (Hint: Use that [*” P(x)dx = 1.)

w2
The gradient minimizing path Error surfacg contogrs
wy = eCW‘IZ V\ E(W) =wyt 2W2
S 4

< —

wi

7

Graph for problem 1.15.

Problems 109

AP“ (x) Pp(x) P.(x) P;(x)
1 0.5 05> 1
R Ry Ry
0 2 | 2 4 \ 4 \ 1
Figure P1.7

Graphs for problem 1.18.

P()
1/3

Ve

()3 P—

2

Figure P1.8
Graph for problem 1.19.

1.19. Consider a continuous variable that can take on values on the interval from 2
to 5. Its probability-density function is shown in figure P1.8. (This is called the uni-
form density.) What is the probability that the random variable will take on a value

a) between 3 and 4,

b) less than 2.8,

c) greater than 4.3,

d) between 2.6 and 4.4?

1.20. The three graphs in figures P1.9a, P1.9b, and P1.9¢ show uniform, normal, and

triangular probability-density functions, respectively. Find the constants C; for each
function.

1.21. A random variable x is defined by its probability-density function

g —x/(C+2) x> 0’
P(x)=< 8
0 otherwise.

a) Calculate constant C and comment on the results.
2

X

¢) Calculate the probability P(—1 < x < 2).

b) Find a mean z, and a variance o

110 Chapter 1. Learning and Soft Computing

Py(x)

o) P

1

‘ & &

-1 5 u -2 3
P C, -l=sx=<5 Pr)=C -%(X;”f) {C1x+C2 -2<x<3
()= 0 otherwise e 70 otherwise
(a) (b) (©

Figure P1.9
Graphs for problem 1.20.

1.22. Let x and y have the joint probability-density function

5 O0<x<y<l],
0 otherwise.

P = {

a) Find the marginal and conditional probability-density functions P(x), P(y), and
P(x,y).

b) Find the regression function x = f(y) (i.e., find the conditional mean of x given
¥ =)

1.23. Consider two random variables defined as |x| <4 and 0 <y <2 — 0.5|x|. Let
them have a joint probability-density function

C over the sample space,
H&ﬁ={ plesp

0 elsewhere.

a) Draw the joint probability-density function.
b) Find C.
¢) Are random variables x and y independent?

d) Calculate a correlation coefficient p.

1.24. The joint probability-density function of two variables is given as

P(xy)_{q x=0,y>0,x>+y> <1,
’ 0 elsewhere.

a) Draw the sample space.
b) Find g.

Problems 111

c) Calculate the marginal probability-density function P(x).
2

d) Find a mean u, and a variance o2.

Hint:

1
Va? — x2dx = 3 (x\/aZ —x2+d? arcsing)

5 1
X a2—x2dx:—§ (a® — x%)?

2
x*Va? - xtdx = —% v (az—x2)3+%(xv a—x*+a’ arcsinf)
a

1.25. Let two random variables be defined by the joint probability-density function

k 0<x<1,1<x+4+y<2,
P(x,y) = { : g

0 otherwise.
a) Draw the graph of P(x,y).

b
c
d

~

Calculate k, P(x), and P(y).
Find u,, u,, 0.y = E{xy}, 03, and o;.

=

Are x and y dependent variables? Are they correlated?
1.26. Consider two random variables having the joint probability-density function

x+y O0<x<1,0<y<1,
0 elsewhere.

P(x,y) = {

Find the correlation coefficient p of x and y.

1.27. The joint probability-density function P(x,y) is given as

P(va):{%xy 0<x<20<y<uy,
0 otherwise.

a) Draw the sample space in an (x, y) plane.

b) Find the marginal probability-density functions P(x) and P(y).
1.28. Find the equation of a regression curve s, =y =f (x) in problem 1.27.

1.29. A theoretical correlation coefficient is defined as p = gy, /00,. Apply this
expression to example 1.7 and find p.

112 Chapter 1. Learning and Soft Computing

L L,
M(‘ ! Jl ! !

F

Figure P1.10
Graph for problem 1.30.

1.30. A beam in figure P1.10 is subjected to two random loads L; and L,, which
are statistically independent with means and standard deviations y,, g1, and y,, o,
respectively. Are the shear force F' and bending moment M correlated? Find the
correlation coefficient. For o1 = 05, is there no correlation at all? Are F and M
just correlated, or are they highly correlated? Are they causally related? (Hint:
F=L + L, M=IL,+2IL,. Find the means and standard deviations of force and
moment, calculate the correlation coefficient, and discuss your result.)

1.31. The probability-density function P(x) of a multivariate n-dimensional Gauss-

ian distribution is given by

P(x) = exp(—~0.5(x —) = (x — p))

(27[)11/2|2|1/2

that is, it is parameterized by the mean vector p and covariance matrix X. For a two-

2 2
. . o g

dimensional vector X, p= [y,]’ and T = [) 122} Sketch the contours of
0 0

P(x) in an (x1,x7) plane for the following four distributions:

a) HZ[Z 3] g12 = 021 ZO, 011 — 0 = 0.
b)p=1[-2 2|7, 010 =021 =0, 011 > 0.
C) HZ[3 —3]T, g1y = 03] :O; g1 < 0.
d) p=_3 —Z}T, 012 = a1 > 0.

1.32. Find the equations of P(x), and of the contours for which P(x) = 0.5, for the
following three two-dimensional Gaussian distributions:

ayp=02 2", x= [(1) ﬂ

byp=2 21", 2= [3 (1)]

Problems 113

onp=2 2", 2= ﬁ ;]

1.33. Given the covariance matrix and mean vector of a four-dimensional normal
distribution

15 3 1 0
316 6 -2 .

E=|1 ¢ 4 |- w=hoo -0y
0o -2 1 3

determine the probability-density function P(x). (Hint: Calculate £~! and |Z|. Do
not leave the exponent of P(x) in matrix form.)

1.34. Consider a three-dimensional Gaussian probability-density function

V3 1
P(x) = 1637 &P (— 3 (2x7 4 4x3 — 2x2(x3 + 5) + (o3 + 5)2)).

a) Find the covariance matrix X. (Hint: Note that in this problem P = Pj(x;)-
Pz(Xz,Xg), meaning that g1, = 013 = O)

b) Determine the locus of points for which the probability-density is 0.01.

1.35. Consider the multivariate n-dimensional Gaussian probability-density function
P(x) for which the covariance matrix X is diagonal (i.e., g; = 0, i # j).

a) Show that P(x) can be expressed as

P(x) = W exp <—% inl (X,-Ji,ui)2>.

b) What are the contours of constant probability-density? Show graphically the con-
tours for x = [x; x2]”, p=[-2 3|7, and o, = 20.

c¢) Show that the expression in the exponent of P(x) in (a) is a Mahalanobis distance.

1.36. Consider three classes with Gaussian class-conditional probability-density
1 0

functions having the same covariance matrix X; = X = [0 05

}, i=1,2,3, and

withmeansp, = [0 2]", m, =4 1), my=1[1 0]".

114 Chapter 1. Learning and Soft Computing

a) Draw the contours of P;(x) in an (xj, x) plane.

b) Find both the decision (discriminant) functions and the equations of decision
boundaries. Draw the boundaries in the graph in (a).

1.37. The calculation of a Bayes’s classifier requires knowledge of means and co-
variance matrices. However, typically only training data are known. The following
two feature patterns (x € %R?) from the two equiprobable normally (Gaussian) dis-
tributed classes (class 1 = 0, and class 2 = 1) have been drawn:

Class 1 Class 2

X1 X2 d X1 X2 d
1 2 0 6 8 1
2 2 0 7 8 1
2 3 0 8 7 1
3 1 0 8 8 1
3 2 0 7 9 1

a) Find discriminant (decision) functions for both classes.

b) Calculate the dichotomizing function. Draw (in an (xj,x;) plane) the training
data pairs, the dichotomizing function, and the intersections of the two discriminant
functions with an (xj, x;) plane.

c) Test the performance of your dichotomizer by classifying the previously unseen
pattern x; = [4 1], x; =[6 7]". (Hint: Calculate the empirical means and co-
variance matrices from the data first, and then apply appropriate equations for
calculation of discriminant functions. Use

pzé] (leass i_ l'lclass i) (X;Iass i_ uclass i) T
Z,’ =—
(est) (P _ 1)

for a covariance matrix calculation. Subscript (est) denotes an estimate.)

1.38. A two-dimensional random vector y has the probability-density function

P(y): Z OgylayZSaa

0 otherwise.

Problems 115

Another two-dimensional random vector x related to y has the conditional density
function

P(X|): 1 ex _ (X] —YI)2+(X2_J’2)2
y 21610, P 207 203 '

Find the posterior probability-density function P(y|x). Is there a closed form solu-
tion? (Hint: Find the joint probability-density function P(x,y) first, and use it for
computing P(y |x). If this problem seems to be too difficult, go to the next problem
and return to this one later.)

1.39. Assign the feature x = 0.6 to the one of two equiprobable classes by using the
maximum likelihood decision rule associated with classes that are given by the fol-
lowing class-conditional probability-density functions:

P(x|w) = (2171)0'5 exp(— x;) and P(x|wy) = <21n>0'5 exp (_ (x—2 1)2>.

Draw the class-conditional probability-density functions, and show the decision
boundary. (Hint: Assuming equal prior probability-densities (P(w;) = P(w,)), the
maximum likelihood decision rule is equivalent to the MAP (Bayes’) decision
criterion.)

1.40. Determine the maximum likelihood decision rule associated with the two
equiprobable classes given by the following class-conditional probability-density
functions:

P(x|w;) = (%)0'5 exp(— %2> and P(x|wy) = <%>0A5 exp <— %)

Draw the class-conditional probability-density functions and show the decision
boundaries. (Hint: Note that the means are equal.)

1.41. The class-conditional probability-density functions of two classes are given by

P(x|w)) = (21—”)0'5 exp(— %) and P(x|w)) = <21_n>0‘5 exp (_ (x _2 1)2>‘

Prior probability for a class 1 is P(w;) = 0.25. Find the decision boundary by mini-
mizing a probability of classification error, that is, use the MAP (Bayes’) decision
criterion. (Hint: Use (1.70b).)

116 Chapter 1. Learning and Soft Computing

1.42. The class-conditional probability-density functions of two classes are given by
1
P(x|wy) = 3 exp(—|x|) and P(x|w;) = exp(-2|x|).

Prior probability for a class 1 is P(w;) = 0.25, and the losses are given as Lj; =
Ly =0, L =1, and Ly; = 2. Find the decision boundaries by minimizing Bayes’
risk. (Hint: Use (1.86).)

1.43. The class-conditional probability-density functions of two classes are given by
P(x|w;) =2exp(—2x) and P(x|wy) =exp(—x),

both for x > 0; otherwise both are equal to zero).

a) Find the maximum likelihood decision rule.

b) Find the minimal probability of error decision rule. Prior probability for a class 1
is P(w;) =2/3.

¢) Find the minimal risk decision rule for equally probable classes and with the losses
L1 =0,Ly=1,L,=2 and Ly; = 3.

(Solving this problem, you will confirm that here (as in the case of function approxi-
mation tasks), the best solution depends upon the norm applied. Note that in (a) the
best means maximization, and in (b) and (c) the best is the minimizing solution.)

1.44. Find the posterior probability-density functions P(w; | x) and P(w; | x) for the
two equiprobable one-dimensional normally distributed classes given by likelihood
functions (class-conditional probability-density functions that are also known as data
generation mechanisms)

Plx|on) == exp [—% * J’“ﬂ,

P(x|) = ﬁ exp [% (x ;“Zﬂ .

(Hint: Start with Bayes’ rule, plug in the given likelihoods, and find the desired pos-
terior probability-density functions in terms of distribution means and standard
deviation.)

1.45. Derive the posterior probability-density function P(w; | x) for the likelihood
functions defined in problem 1.44 but having different variances (o) # a3).

Simulation Experiments 117

1.46. Find the posterior probability-density function P(w;|x) for a binary (two
classes only) classification problem when x is an n-dimensional vector. The two
Gaussian multivariate class-conditional probability-densities have arbitrary mean
vectors p;, i = 1,2, equal prior probabilities, and the same covariance matrix X.
Sketch the classification problem in an (xj, x,) plane, and explain your graph for the
case of an identity covariance matrix (X =1). (Hint: Start by plugging the multi-
variate Gaussian likelihood functions into Bayes’ rule. At the end of the derivation,
similar to the previous one-dimensional case, the posterior probability-density func-
tion P(w; |x) should have a form of logistic function and should be expressed in
terms of vector quantities comprising means and covariance matrix.)

Simulation Experiments

The simulation experiments in chapter 1 have the purpose of familiarizing the reader
with interpolation/approximation, that is, nonlinear regression. (Nonlinear regres-
sion and classification are the core problems of soft computing.) The programs used
in chapter 2 on support vector machines cover both classification and regression by
applying the SVM technique. There is no need for a manual here because all routines
are simple (if anything is simple about programming). The experiments are aimed at
reviewing many basic facets of regression (notably problems of over- and under-
fitting, the influence of noise, and the smoothness of approximation). The first two
approximators are classic ones, namely, one-dimensional algebraic polynomials and
Chebyshev polynomials. The last three are radial basis function approximators: linear
splines, cubic splines, and Gaussian radial basis functions. In addition, there is a
fuzzy model that applies five different membership functions.
Be aware of the following facts about the program aproxim:

1. It is developed for interpolation/approximation problems.

2. Tt is designed for one-dimensional input data (y = f(x)).

3. It is user-friendly, even for beginners in using MATLAB, but you must cooperate.
It prompts you to select, to define, or to choose different things.

Experiment with the program aproxim as follows:

1. Launch MATLAB.

2. Connect to directory learnsc (at the matlab prompt, type cd learnsc
{RETURN)). learnsc is a subdirectory of matlab, as bin, toolbox, and
uitools are. While typing cd learnsc, make sure that your working directory is
matlab, not matlab/bin, for example.

118 Chapter 1. Learning and Soft Computing

3. Type start {RETURN).

4. The pop-up menu will prompt you to choose between several models. Choose 1D
Approximation.

5. The pop-up box offers five approximators (networks, models, or machines). Click
on one.

6. Follow the prompting pop-up menus to make some modeling choices. Note that if
you want to have your function polluted by 15% noise, type 0.15.

Now perform the following experiments (start with the demo function):

1. Look at the difference between the interpolation and approximation. Add 25%
noise (noise = 0.25), and in order to do interpolation, choose the model order for
polynomials to be n =P — 1, where P equals the number of training data. (The
number will be printed on the screen.) For radial basis functions, interpolation will
take place when you choose ¢t = 1. Choosing ¢ = 1 means that you are placing one
radial basis function at each training data point. If you want to approximate the
given function, you select # < P — 1 and ¢ > 1 for polynomials and RBFs, respec-
tively. It is clear that ¢ < P.

Experiment type 1 Start with any demo function with 25% noise. Interpolate it first.
Reduce the order of the polynomial gradually, and observe the changes in modeling
quality. Always check the final error of models. Note that if there is a lot of noise,
lower-order models do filter the noise out. But don’t overdo it. At some stage, further
decreasing the model’s order (or the capacity of the model) leads to underfitting. This
means that you are starting to filter out both the noise and the underlying function.

Experiment type 2 Now repeat experiment 1 with an RBF model. Controlling the
capacity of your model to avoid overfitting noisy data is different for polynomials
than for RBFs. The order of the model controls the polynomial capacity, and the
number of basis functions is the smoothing parameter (the parameter for capacity
control) for RBFs. It is not the only parameter, however. This is one of the topics in
chapter 5.

Compare the smoothness of linear splines approximators and cubic splines ap-
proximators. When using Gaussian basis functions, you will have to choose k.
Choosing, for example, the value for this coefficient k, = 2, you define a standard
deviation of Gaussian bells ¢ = 2Ac¢. This means that ¢ of all bells is equal to two
distances between the Gaussian bell centers. For good (smooth) approximations,
0.75 < o < 10. This is both a broad and an approximate span for ¢ values. ¢ is
typically the subject of learning. However, you may try experimenting with various

Simulation Experiments 119

values for the standard deviation ¢. You will be also prompted to choose an RBF
with bias or without it. Choose both, and compare the results. Many graphs will be
displayed, but they are not that complicated to read. Try to understand them. More
is explained in chapter 5.

2. Look at the effects of different noise levels on various interpolators or approxi-
mators. Note that noise = 1.0 means that there is 100% noise. For many practical
situations, this is too high a noise level. On the other hand, in many recognition tasks,
pollution by noise may be even higher. Repeat all experiments from (1) with a dif-
ferent noise level.

3. You are now ready to define your own functions and to perform experiments that
you like or are interested in.

