
1 Language Learning

1.1 What This Book Is About

This book argues that the linguistic framework of Optimality Theory (OT)
(Prince and Smolensky 1993) makes possible a particularly strong union
of the interests of language learnability and linguistic theory. In support of
this claim, a particular approach to language learning, Robust Interpretive
Parsing / Constraint Demotion (RIP/CD), is presented and evaluated.This
learning proposal is tightly bound to the central principles of OT, and the
success of the learning proposal is evidence in favor of the main claim.

The language learning issue of primary concern in this book is the
ambiguity of the overt information that constitutes the actual data
received by a learner, and the resulting interdependence of the core
grammar and the structural analysis of overt linguistic forms: which
grammar a learner chooses depends on how they interpret the forms
they hear, and which analysis they choose for a form depends on what
grammar they are using. The RIP/CD proposal claims that this interde-
pendence can be finessed by successive iteration: the learner can use a
first guess at a grammar to estimate the structural analysis of the data,
use the estimated analyses to improve the grammar, use the improved
grammar to improve the analyses, and so forth. The learning procedure
learns both the correct interpretations of the data and the correct
grammar simultaneously. The viability of this “back-and-forth” strategy
is heavily dependent on the use of OT to characterize the knowledge of
language that the learner comes to possess.

The RIP/CD learning proposal is evaluated by a series of computer
experiments, applying the proposal to overt data from a number of lan-
guages generated by an OT system for metrical stress. This system
exhibits a nontrivial degree of ambiguity in the overt forms: most overt
forms have several viable structural interpretations, with different inter-
pretations favored by different grammars of the system. The perfor-
mance is evaluated both on accuracy—whether or not the correct
grammar was in fact learned—and computational efficiency—the
amount of effort exerted during the process of learning the correct
grammar.

The empirical results just mentioned are supported by stronger formal
results concerning major parts of the proposal. It is not necessary to
conduct any simulations to attempt to measure the amount of informa-
tion required by the learner to determine the correct grammar, because



of a strong upper bound on the amount of data required. This result,
which applies to all language systems defined within OT, is proved
correct in chapter 7.This result is an important part of the proposal made
here, for it demonstrates that the adoption of OT guarantees a strong
solution to one of the major issues in language learning.

Chapter 1 is devoted to laying out the larger context of this work,
including the nature of relationships between learnability and universal
grammar, and the background work on general learning theory that has
informed and inspired the specific language learning proposal made
here. Readers who would prefer to skip the background on the first
reading are advised to jump to section 1.4, which presents a top-level
outline of the proposals made in this book, along with pointers to the
location of each topic within the book.

1.2 Learnability and Universal Grammar

It has become commonplace in generative linguistics circles to see the
logical problem of language acquisition as a driving force in shaping
grammatical theory (Chomsky 1981). The basic logic is essentially as
follows. Learning a grammar is difficult because there are so many con-
ceivable grammars and the available data is so impoverished. Thus a
crucial job of a theory of universal grammar is to restrict the space of
possible grammars the learner must consider, so that impoverished data
may suffice to determine a correct grammar. This notion of restrictive-
ness is often reduced to the criterion that a satisfactory grammatical
theory will delimit a finite set of possible grammars—distinguished from
one another by the values of a finite number of parameters, for example.
The fewer the possible grammars, the more learnable the theory.

Or so it would seem. In fact, however, limiting the set of possible gram-
mars to a finite number serves only to improve the worst-case perfor-
mance of the least informed learning method of all: exhaustive search, in
which every possible hypothesis is examined. For, with finitely many pos-
sible grammars, search for a correct one is guaranteed to terminate even-
tually: at worst, once all possible grammars have been examined. With
infinitely many possible grammars, such search may continue forever.

But comfort from the finiteness of the space of possible grammars is
tenuous indeed. For a grammatical theory with an infinite number of pos-
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sible grammars might be well structured, permitting informed search that
converges quickly to the correct grammar—even though uninformed,
exhaustive search is infeasible. And it is of little value that exhaustive
search is guaranteed to terminate eventually when the space of possible
grammars is finite, if the number of grammars is astronomical. In fact, a
well-structured theory admitting an infinity of grammars could well be
feasibly learnable,1 while a poorly structured theory admitting a finite,
but very large, number of possible grammars might not.

And indeed, a principles-and-parameters (P&P) universal grammar
(UG) with n parameters admits at least 2n grammars; more, if the para-
meters are not binary. Such exponential growth in the number of para-
meters quickly leads to spaces much too large to search exhaustively. An
OT UG with N constraints admits N! grammars, which grows still faster.

Thus to achieve meaningful assurance of learnability from our gram-
matical theory, we must seek evidence that the theory provides the space
of possible grammars with the kind of structure that learning can effec-
tively exploit.

Consider P&P theory in this regard. Two types of learnability research
are useful as contrasts to the results we offer in this book. The first is 
cue learning, exemplified by work such as Dresher and Kaye 1990. These
authors adopt a particular parameterized space of grammars, and analyze
in great detail the relationships between the parameter settings and the
forms overtly available to the learner. They propose a specific learning
algorithm to make use of the structure provided by a specific P&P theory.
Their analysis is entirely limited to their particular parametric system for
metrical stress; a cue learning approach to a parametric grammar for
some other component of linguistic theory, or even to an alternative para-
metric analysis of metrical stress, would essentially require starting over
from scratch.

Another approach to learnability within P&P, quite different from cue
learning, is represented in the work of Gibson and Wexler (1994) and
Niyogi and Berwick (1996). The triggering learning algorithm (and its
variations) is designed to learn grammars from data overtly available to
the learner. Like those developed in our work, these algorithms apply to
any instance of a very general class of systems: in their case, the class of
P&P systems. Further, Niyogi and Berwick (1996) provide formal analy-
sis of the algorithms. However, this work differs from ours in a direction
representing the opposite extreme from cue learning: these learning
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algorithms are minimally informed by the grammatical theory. For trig-
gering learning algorithms treat the grammar only as a black box 
evaluating learning data as either grammatically analyzable or not;
the algorithms either randomly flip grammar parameters in order to
render an input analyzable (Gibson and Wexler’s Triggering Learning 
Algorithm), or randomly flip parameters without regard to immediate
resulting analyzability (which, Niyogi and Berwick argue, can actually
outperform the Triggering Learning Algorithm). These learning algo-
rithms are equally appropriate as procedures for learning parameterized
grammars and as procedures for, say, training a neural network2 (with
binary weights) to classify radar images of submarines: if flipping a para-
meter (connection in the network) gives better classification of a sub-
marine, flip it. These are simply generic search algorithms that employ
no properties of the grammatical theory per se.

Further, the learnability results relating to triggering learning algo-
rithms assume the existence of overt data that directly reveal individual
parameter values. Such an assumption limits how impoverished the
learning data can be and has unclear relevance to realistic grammars (see
Frank and Kapur 1996); we discuss this further in section 6.1. Finally,
regardless of the availability of such “triggering” forms, these algorithms
offer little justification for confidence in their tractability. In fact, the only
result regarding the time required for learning is that the probability of
learning the correct grammar increases toward 1 as the number of learn-
ing instances approaches infinity3—leaving open the possibility of doing
even worse than exhaustive search.

In sum, these two approaches to learnability analysis within P&P
either (1) use grammatical structure in the learning algorithm, but the
structure of a particular parametric system, or (2) develop general algo-
rithms applicable to any P&P system, but algorithms so general they
apply just as well to any nongrammatical parameterized system. This
dichotomy of approaches is likely a consequence of the nature of P&P.
A particular P&P system, like one for stress, has sufficient structure to
inform a learning procedure (option 1). But as a general theory of 
how grammars may differ (as opposed to how stress systems may differ),
P&P provides little structure for a learner to exploit beyond the exis-
tence of a finite space for searching. In particular, P&P theory per se 
provides no characteristically grammatical structure for a language
learner to exploit.
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But the situation in OT is quite different. This theory is reviewed in
chapter 2, but the immediately relevant claims of OT are these:

(1.1) OT in a nutshell
• What is it that all languages have in common? A set of constraints on
well-formedness.
• How may languages differ? Only in which constraints have priority in
case of conflict.
• Language-particular relative constraint priorities are characterized
by a ranking of the universal well-formedness constraints into a
dominance hierarchy, with each constraint having absolute priority
over all lower-ranked constraints.
• The grammar of a particular language—its constraint hierarchy—is
an evaluator of structural descriptions, assigning a (nonnumerical)
Harmony value that assesses the degree to which the constraints are
met, taking into account the language-particular priorities. This
provides the harmonic ordering of forms, ordering structural
descriptions from maximal to minimal Harmony.
• The grammatical forms of the language are the optimal ones: the
well-formed structural description of an input is the one with maximal
Harmony.

Note that the constraints mentioned in (1.1) are the same in all lan-
guages: they contain no parameters. Unlike P&P, this is a theory of
crosslinguistic variation with sufficient structure to enable grammatically
informed learning algorithms independent of substantive grammatical
assumptions.

(1.2) Main claim of this book: OT is a theory of UG that provides
sufficient structure at the level of the grammatical framework itself to
allow general but grammatically informed learning algorithms to be
formally defined. Further, the efficiency of the algorithms can be
argued to follow in large part from the formal structure of the
grammatical framework.

The algorithms we develop are procedures for learning the priority
ranking of constraints that, by (1.1), is all that distinguishes the grammar
of a particular language. These are unquestionably grammar learning
algorithms, not generic search algorithms.4 Yet the structure that makes
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these algorithms possible is not the structure of a theory of stress, nor a
theory of phonology: it is the structure defining any OT grammar, that
given in (1.1).

Of course, if a grammatically uninformed learning algorithm, such as
the Triggering Learning Algorithm, is desired, it can be obtained as easily
in OT as in P&P; in fact, Pulleyblank and Turkel (1995, 1998) have already
formulated and studied the Constraint-Ranking Triggering Learning
Algorithm. Indeed, we can apply any of a number of generic search algo-
rithms to the space of OT grammars—for example, Pulleyblank and
Turkel (1995, 1998) have also applied the genetic algorithm to learning 
OT grammars. But unlike P&P, with OT we have an alternative to gram-
matically uninformed learning: learning algorithms specially constructed
to exploit the structure provided by OT’s theory of crosslinguistic 
variation.

1.3 Decomposing the Learning Problem

1.3.1 Grammar Learning and Robust Interpretive Parsing

To begin our analysis of grammar learning, we must distinguish the fol-
lowing three types of linguistic structure:

(1.3) The players in order of their appearance
• Overt part of grammatical forms: directly accessible to the learner
• Full structural descriptions: combine overt and nonovert (“hidden”)
structure
• The grammar: determines which structural descriptions are well formed

These three elements are all intimately connected, yet we propose to dis-
tinguish two subproblems, as schematically shown in figure 1.1.

(1.4) Decomposition of the problem
• Robust interpretive parsing: mapping the overt part of a form into a
full structural description, complete with all hidden structure—given a
grammar
• Learning the grammar—given a (robust) parser

(An interpretive parser is “robust” if it can parse an overt structure with
a grammar, even when that structure is not grammatical according to the
grammar. The importance of robustness will be discussed shortly.)

6 Chapter 1



A competence theory of grammatical structure is most useful to an
ultimate performance theory of language processing and acquisition
when it provides sufficient structure so that procedures for both parsing
and grammar learning can strongly exploit grammatical principles.
Showing that this is indeed the case for OT is a major goal of our work.

We propose that the problems of parsing and grammar learning be
decoupled to some degree. Such separation does at first seem problem-
atic, however. One of the central difficulties of language learning, of
course, is that grammars refer crucially to nonovert, hidden structure. Let
us take the acquisition of stress as an expository example. The problem,
then, is that the grammatical principles concern (say) metrical feet, yet
these are hidden in the data presented to the learner: only the location
of some stressed syllables is provided overtly. The learner cannot learn
the metrical grammar until she knows where the feet lie, but she cannot
know where the feet lie until she knows the grammar. We argue in
section 1.3.2 that, despite this conundrum, partial decoupling of the
parsing and learning problems is possible, and further, that such decou-
pling can enable powerful learning algorithms.

1.3.2 Iterative Model–Based Solutions to the Problem of Learning
Hidden Structure

The learner cannot deduce the hidden structure in learning data until
she has learned the grammar, but she cannot learn the grammar until
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she has the hidden structure. This feature of the language learning
problem is challenging indeed—but not at all special to language, as it
turns out. Even in such mundane contexts as a computer learning to rec-
ognize handwritten digits, the same problem arises. Given an example of
a 5, the computer needs to adapt its model for what makes a good 5. But
in many cases, the system is not told which digit a given training example
exemplifies: it is often impractical for all the digits in a huge training
corpus to be hand labeled as to what category they belong to, so the com-
puter is forced to learn which digits are 5s at the same time as learning
what makes a good 5. The computer-learner cannot improve its model
of what makes a well-formed 5 until it knows when it is seeing a 5, but
it cannot know when it has seen a 5 until it knows what makes a well-
formed 5.

This problem has been extensively studied in the learning theory liter-
ature (often under the label unsupervised learning; e.g., Hinton 1989).
Much of the work has addressed automatic speech recognition, mostly
under the name Hidden Markov Models (Baum and Petrie 1966; Bahl,
Jelinek, and Mercer 1983; Brown et al. 1990). These speech systems are
simultaneously learning (1) when the acoustic data they are “hearing” is
an example of, say, a (hidden) phone [f], and (2) what makes for a good [f].

This problem has been successfully addressed, in theory and practice.
The necessary formalization is approximately as follows. A parameter-
ized system (e.g., a neural network) is assumed that, given the values of
hidden variables, produces the probabilities that overt variables will have
various values: this is the model of the relation between hidden and overt
variables. (As we will see shortly, this model corresponds to the grammar
in our problem.) Given a hidden [f] in a sequence of phones, such a
model would specify the probabilities of different acoustic values in the
portion of the acoustic stream corresponding to the hidden [f].The learn-
ing system needs to learn the correct model parameters so that hidden
[f]s will be associated with the correct acoustic values, at the same time
it is learning to classify all acoustic tokens of [f]s as being of type [f]. The
general problem is usually formalized along the lines indicated in (1.5).

(1.5) Problem of Learning Hidden Structure

Given: A set of overt learning data (e.g., acoustic data) and a
parameterized model that relates overt information to hidden
structure (e.g., phones)
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Find: A set of model parameters such that the hidden structure
assigned to the data by the model makes the overt data most probable
(this model “best explains” the data)

There is a class of successful algorithms for solving this problem, the
most important of which is the Expectation Maximization (EM) algo-
rithm (Dempster,Laird,and Rubin 1977; for recent tutorial introductions,
see Nádas and Mercer 1996, Smolensky 1996c). The basic idea common
to this class of algorithms, which we will call iterative model–based learn-
ing algorithms, is characterized in highly general terms in (1.6).

(1.6) Iterative model–based solution to the Problem of Learning
Hidden Structure

Adopt some initial model of the relation between hidden and overt
structure; this can be a random set of parameter values, or a more
informed initial guess.
Step 1: Given this initial model, and given some overt learning data,
find the hidden structure that makes the observed data most probable
according to the model.5 Hypothesizing this hidden structure provides
the best explanation of the overt data, assuming the current (initially
poor) model. This first step of the algorithm is performed on all the
available data.
Step 2: Now that we have deduced some hidden structure (initially
incorrect), we use it to improve our model, in the second step of the
algorithm. Since all the overt (acoustic) data have been connected to
corresponding hidden (phonemic) structure, we can now improve the
model, changing its parameters so that the imputed hidden structure
optimally predicts the actual overt structure observed. (For example,
the model for hidden phone [f] is changed so that it now predicts as
closely as possible the actual acoustic values in the data that have been
identified as instances of [f].)
Now that the model has been changed, it will assign different
(generally more correct) hidden structure to the original overt data. So
the algorithm goes back through the data and executes step 1 over
again, reassigning hidden structure.
This new assignment of hidden structure permits step 2 to be repeated,
leading to a new (generally improved) model. And so the algorithm
executes steps 1 and 2 repeatedly.
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This is summarized in row (a) of table 1.1.6

In various formalizations, iterative model–based algorithms have been
shown to converge to a model that is in some sense optimal. In practice,
convergence often occurs rather quickly, even with a relatively poor
initial model. The key to constructing a successful iterative algorithm is
combining correct solutions to the two subproblems addressed in steps
1 and 2. Crucially, correct here means finding the correct solution to one
subproblem, assuming that the other subproblem has been correctly
solved. This is summarized in (1.7).

(1.7) Correctness criteria for solutions of iterative model–based
subproblems

For step 1: Given the correct model of overt/hidden relations, correctly
compute the hidden structure that is most probable when paired with
the overt data.
For step 2: Given the correct hidden structure, correctly compute the
model that makes the given pairing of overt and hidden structure most
probable.

The iterative model–based approach to learning can be connected
directly with OT with the mediation of a piece of neural network theory
called Harmony Theory (Smolensky 1983, 1986). In Harmony Theory, the
well-formedness of a representation in a neural network is numerically
measured by its Harmony value, and the probability of a representation
is governed by its Harmony: the greater the Harmony, the higher the
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Iterative Solution StepsFramework

Step 1
Find the hidden structure…

Step 2
Find…

(a) Iterative

Model

… that is most probable when paired with
the overt data, given the current model.

… the model that makes step 1’s
pairing most probable.

(b) Harmonic

Grammar

… that is most harmonic (numeric) when
paired with the overt data, given the current
grammar.

… the grammar that makes step 1’s
pairing of overt and hidden structure
most harmonic (numeric).

(c) OT

RIP/CD
… of the most harmonic (OT) structural
description consistent with the overt data,
given the current grammar.

Robust Interpretive Parsing

… a grammar that makes step 1’s
structural description optimal.

Constraint Demotion

Table 1.1
Iterative model-based learning algorithms



probability.7 A representation has a hidden part and an overt part, and
the Harmony function provides the model that relates these two parts:
given some overt structure, associating it with different hidden structures
leads to different Harmony values (and hence different probabilities). In
step 1 of the iterative learning algorithm (1.6), given some overt learn-
ing data we find the hidden structure that makes the overt data most
probable. This means finding the hidden structure that maximizes
Harmony, when associated with the given overt structure. In step 2, we
use this hidden structure to change the model—that is, change the
Harmony function so that the just-derived hidden/overt associations
have the greatest possible Harmony.

In Harmonic Grammar (Legendre, Miyata, and Smolensky 1990a,
1990b), an application of Harmony Theory to linguistics, the overt 
and hidden structures are part of linguistic structural descriptions,
and the model that governs the relation between overt and hidden 
structure is a grammar. In this context, the iterative model algorithm 
in table 1.1(a) becomes the Harmonic Grammar algorithm of table
1.1(b), and the correctness criteria are like those in (1.7), but with
grammar in place of model, and harmonic in place of probable. In this
case, harmonic refers to the numeric conception of Harmony used in
Harmony Theory.

In OT, the Harmony of structural descriptions is computed from the
grammar nonnumerically, and there is (as yet) no probabilistic interpre-
tation of Harmony. But the learning procedure of table 1.1(b) is still per-
fectly well defined; it is summarized in table 1.1(c) and labeled RIP/CD,
for Robust Interpretive Parsing / Constraint Demotion. Robust interpre-
tive parsing (further discussed in section 1.3.3) is the procedure that will
be used to perform the hidden structure assignment of step 1. Constraint
Demotion (presented in chapter 3) is the procedure that will be used to
perform the grammar learning of step 2.

Given some overt learning data, RIP/CD first computes the hidden
structure that has maximal Harmony when combined with the overt
structure. Given learning data consisting of a sequence of syllables with
stresses, for example, we find the foot structure that, in combination with
the given stress pattern, has maximal Harmony.Which foot structure this
is depends jointly on the overt stresses and on the currently assumed
grammar—the current ranking of metrical constraints. So the algorithm
proceeds as follows. Start with an initial grammar (the selection of an

Language Learning 11



initial grammar is further discussed in chapter 5). In step 1 (the RIP
step), use this grammar to assign (initially incorrect) hidden structure to
the overt learning data by maximizing Harmony. In step 2 (the CD step),
use this hidden structure to learn a new grammar, one in which each com-
bined hidden/overt structure of the currently analyzed data has higher
Harmony than all its competitors. With this improved grammar, return
to step 1 and repeat.

The prospects of success for this algorithm are supported by the fact
that the analogous “correctness” criteria are met. When translated from
the probabilistic framework into the OT framework, the correctness cri-
teria given in (1.7) become those stated in (1.8).

(1.8) Correctness criteria for solutions to the subproblems under OT

For step 1, robust interpretive parsing: Given the correct grammar of
overt/hidden relations, correctly compute the hidden structure that is
most harmonic when paired with the overt data.
For step 2, grammar learning: Given the correct hidden structure,
correctly compute the grammar that makes the given pairing of overt
and hidden structure optimal.

Procedures for performing robust interpretive parsing are discussed 
in section 1.3.3 (general parsing with OT grammars is discussed at
greater length in chapter 8). The Constraint Demotion algorithm 
for grammar learning is presented and discussed at length in chapter 
3. The correctness of the Constraint Demotion algorithm (i.e., that it 
satisfies the second criterion specified in 1.8) is a theorem; the full 
proofs are given in chapter 7. The performance of the overall RIP/CD
algorithm is explored in chapter 4, where results are presented for sim-
ulations applying this algorithm to the learning of metrical stress. The
results presented in this book are from the latest and most extensive 
simulations of this algorithm. For the results of earlier studies, see 
Tesar 1997, 1998b.

1.3.3 Remarks on Parsing

Step 1 of our problem decomposition, given in table 1.1(c), makes it
essential that we have a parser that can use a grammar to assign hidden
structure to overt forms that are not grammatical according to that very
grammar: this is what we mean by robustness. Our problem decomposi-
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tion, we can now see, imposes a seemingly paradoxical requirement. An
overt form will be informative (allow the learner to improve the
grammar) if the current grammar (incorrectly) declares it to be ungram-
matical. Step 1 of the RIP/CD algorithm requires that we use our current
(incorrect) grammar to parse this input (assign it hidden structure), even
though the grammar declares it ill formed. For many formal grammars,
such an ungrammatical form is, by definition, unparsable, yet step 1
requires the grammar to parse it just the same.

OT grammars can easily cope with this demand. An OT grammar pro-
vides a harmonic ordering of all full structural descriptions, as described
in (1.1). This harmonic ordering can be used in a variety of ways. The
customary use is as follows: Given an input I, Gen(I) is the set of all struc-
tural descriptions of I; we find the maximal-Harmony member of this set,
and it is the output assigned to I. This use of the grammar corresponds
to the “language generation” problem of computational linguistics, or the
“language production” problem of psycholinguistics. We will call this
production-directed parsing to contrast it with the interpretive parsing
used in RIP/CD.

But, as proposed in Smolensky 1996a and developed in Tesar 1999,
harmonic ordering can be used for the “language interpretation” or “lan-
guage comprehension” problem as well. In this problem, we are given an
overt “phonetic” form j. The set Int(j) is the class of all structural
descriptions with overt part equal to j. Let us call the maximal-Harmony
member of this set the interpretive parse assigned to j by the grammar.
Crucially for present purposes, this interpretation process makes sense
even when the grammar declares j ungrammatical (i.e., even when there
is no input I for which the optimal member of Gen(I) has overt form j).
An algorithm that can compute this mapping from j to its interpretative
parse is thus a robust interpretive parser capable of performing step 1
of the RIP/CD algorithm.

The most significant and general result, then, is the observation that
the structure of OT grammars makes it possible to coherently define
robust interpretive parsing. This definition works for any OT system.
Further, the function computed by robust interpretive parsing, when
given the correct grammar for a language, is the problem of “language
comprehension” under OT. Thus, the assumption that robust inter-
pretive parsing can be effectively computed is really little more than the
assumption that language comprehension can be effectively computed,
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an assumption most work on language learnability uncontroversially
relies on.

While it is not conceptually possible to provide parsing algorithms 
that will work for every conceivable OT system, parsing algorithms 
have been developed for particular linguistically interesting classes of
OT systems. For production-directed parsing, algorithms of several 
kinds have been developed. The production-directed parsing algorithm
used in the simulations of this book comes from a class of OT parsing
algorithms based on dynamic programming (Tesar 1995, 1996). Under
general formal assumptions on Gen and Con, these algorithms are
proved correct and efficient. The algorithms used in this book’s 
simulations have a time complexity that is linear in the length of the
input—for example, for syllabification, the amount of computation
required grows linearly with the number of segments in the input. Other
production-directed parsing algorithms for various classes of OT systems
have also been developed (Ellison 1994, Eisner 1997, Frank and Satta
1998, Karttunen 1998).

Robust interpretive parsing algorithms have also been developed for
specific classes of OT systems. The robust interpretive parsing algorithm
used in the simulations of this book (Tesar 1999) is quite similar to its
production-directed parsing counterpart and shares the linear computa-
tional complexity. The algorithm is a member of a class of interpretive
parsing algorithms that apply to cases where the underlying form is con-
tained within the overt form, so that hidden structure consists entirely
of structural (not lexical) information.

1.3.4 Remark on Grammar Learning from Full Structural
Descriptions

Given the decomposition of the learning problem developed in this
section, the subproblem of grammar learning is the problem of finding a
correct grammar given learning data consisting of grammatical full struc-
tural descriptions. This is the central problem solved by the Constraint
Demotion algorithms developed later.

On first glance, this problem may seem trivial, since knowing the full
structural descriptions provides considerable information about the
grammar that is not evident in the overt data. What this first glance fails
to perceive is that in OT, the grammatical principles (constraints) inter-
act in a rich, complex way. There is nothing like a transparent mapping
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from the hidden structure to the grammar: the explanatory power of OT
lies precisely in the diversity of structural consequences of a constraint
embedded within a hierarchy. Knowing the location of the metrical feet
in a word, for example, leaves one far short of knowing the metrical
grammar.An OT grammar is a collection of violable constraints, and any
given foot structure will typically involve the violation of many different
constraints: many language-particular OT grammars will be consistent
with the given foot structure. Linguists who have actually faced the
problem of deducing OT grammars from a complete set of full structural
descriptions can attest to the nontriviality of solving this problem, espe-
cially in the general case. Indeed, the algorithms presented here (in
chapter 3) have significant practical value for linguists working in OT.
Given hypothesized structural descriptions of language data and a
hypothesized set of constraints, these algorithms can quickly and easily
provide a class of constraint rankings that account for the data, or
directly determine that no such rankings exist.

1.4 Outline of the Book

The following is a guide to the main proposals of this book and where
they may be found.

The central claim of the book, stated in (1.2), is that OT provides suf-
ficient structure at the level of the grammatical framework itself to allow
general but grammatically informed learning algorithms to be formally
defined. Specifically, an algorithm is proposed in which the interdepen-
dence of grammars and structural descriptions is overcome by using suc-
cessive approximation, iterating between “robust interpretive parsing”
to assign structure to overt data, and grammar learning from the assigned
structure. This proposal, named RIP/CD for robust interpretive parsing
/ Constraint Demotion, was introduced in section 1.3.

RIP/CD relies heavily on the structure of OT. An overview of OT,
including illustrations with OT analyses of syllable structure and clausal
subject distribution, is presented in chapter 2.

RIP/CD employs a decomposition of learning into two central sub-
problems. The first subproblem is that of assigning a structural descrip-
tion to an overt linguistic form given a grammar that may not be correct.
This is the computation named robust interpretive parsing. Section 1.3.3
showed how this problem may be formally characterized within OT as
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optimization over a space of candidates all of which match the overt 
linguistic form. Concrete algorithms for computing robust interpretive
parsing are discussed in section 8.5 of chapter 8, devoted to parsing algo-
rithms for classes of OT grammars.

The second subproblem of RIP/CD is the learning of a constraint
ranking from a set of full structural descriptions. This problem is solved
by a family of algorithms based on the principle of Constraint Demo-
tion. This principle states that constraints violated by grammatical struc-
tural descriptions must be demoted (in the ranking) below constraints
violated by competing structural descriptions. Constraint Demotion is
presented in chapter 3, where it is illustrated and discussed.

Constraint Demotion has two important formal properties. First, it is
guaranteed to learn a correct ranking from an adequate data set. Second,
there is a strict bound on the amount of data needed to form an 
adequate data set: Constraint Demotion will never need more than 
N(N - 1) informative examples to correctly determine the grammar
(where N is the number of constraints). Formal proofs of these results
are given in chapter 7.

Constraint demotion reranks constraints based on the relative con-
straint violation patterns of structural descriptions of (1) grammatical
forms, and (2) some competing forms. It thus depends on an ability to
efficiently compute (1) structural descriptions of overt learning data, and
(2) informative competing structural descriptions. Computation of the
first is achieved by robust interpretive parsing, as discussed earlier. Com-
putation of the second, informative competitors, is achieved by produc-
tion-directed parsing, the very same computational procedure at work in
language production. The use of production-directed parsing in learning
is discussed in section 3.3; algorithms for performing production-directed
parsing are presented in an chapter 8.

Given concrete proposals for solving the two subproblems, it is possi-
ble to evaluate RIP/CD, the strategy of iterating between structure
assignment and ranking adjustment. Such an evaluation is conducted
here through a series of experiments using a computer implementation
of RIP/CD applied to an OT system for metrical stress. Many of the overt
forms in the languages of this system have a nontrivial degree of ambi-
guity—the same overt form is consistent with several different possible
structural descriptions—so this is a meaningful test. The experimental
results are presented and discussed in chapter 4.
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Given a credible approach to learning grammars by unraveling the
basic interdependence between structural descriptions and constraint
rankings, the possibility of multiple grammars consistent with the same
data may be raised. In particular, the familiar issue of subset relations
among different languages can be raised: Can the learner be constrained
so as to always select the smallest language consistent with the posi-
tive data presented? This question is briefly discussed in section 5.1,
along with a proposed solution: set the initial state of the learner to a
ranking in which all markedness constraints dominate all faithfulness
constraints.

One key component of the language learning problem that remains is
the language-specific inventory of lexical underlying forms, which clearly
must also be learned. The problem is made challenging by an interde-
pendence quite similar to that addressed by RIP/CD: the actual form of
the lexical entries is dependent on the constraint ranking, and vice versa.
Section 5.2 discusses the prospects for extending the same iterative strat-
egy embodied by RIP/CD to include the simultaneous learning of rank-
ings and lexical underlying forms.

Chapter 6 revisits the larger issue of the relationship between learn-
ability and linguistic theory, the issue first discussed in section 1.2. This
chapter discusses the observation that the approach to language learn-
ing proposed in this book is not at all neutral with respect to linguistic
theory: it is highly specific to OT. Further, this approach to learning actu-
ally thrives when substantive universal principles interact strongly in the
determination of linguistic patterns, a property hardly universal among
language learning proposals. The consequence is that the demands of 
linguistic explanation and the requirements of language learnability 
converge and are mutually supportive. We take this convergence as 
evidence that OT, and RIP/CD, are on the right track.
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