
Preface

The situation calculus has been with us since 1963, when John McCarthy first introduced
it as a way of logically specifying dynamical systems in artificial intelligence, but for most
of that time, it was not taken very seriously as a realistic formalism. True, it was the
language of choice for investigating technical issues, like the frame problem, that arise in
axiomatizing dynamics, but most AI researchers viewed it as just that—a theoretical tool
without much practical importance. About nine years ago, Hector Levesque and I came
to realize that the situation calculus had a lot more potential than was commonly believed,
and we and our collaborators set out to demonstrate this, mainly by extending the language
to incorporate features like time, concurrency, procedures, probability, etc., while taking
care to do so in ways that provide for efficient implementations. This book is largely the
result of that activity.

Insofar as its subject matter concerns the modeling of dynamical systems, this book
crosses traditional academic boundaries. Its intended audience consists of graduate stu-
dents and researchers in AI, databases, robotics, software agents, simulation, decision and
control theory, computer animation, and, indeed, in any discipline whose central concern
is with specifying and implementing systems that evolve over time. The academic world
doesn’t lack for books about dynamical systems, so what distinguishes this one? The
simple answer is that its theoretical and implementation foundations rest on mathematical
logic. In a nutshell, the central idea of the book is this: When faced with a dynamical sys-
tem that you want to simulate, control, analyze, or otherwise investigate, first axiomatize
it in a suitable logic. Through logical entailment, all else will follow, including system
control, simulation, and analysis. Such a claim is by no means obvious, and to a large
extent, this book is an exploration of this idea—in our case, using the situation calculus as
the underlying logic.

This book is as much about implementing dynamical systems as it is about their theo-
retical and representational foundations. Therefore, it provides a large number of examples
and, perhaps unusually for books of its kind, it includes all the code for these examples.
This turned out to be feasible because the implementation language, Prolog, is so ele-
gant and close to logic that once one gets the logical specification right, compilation into
extremely compact Prolog code is in most cases absolutely trivial. How to perform this
compilation—and the justification for it—is the subject of Chapter 5, and I believe that
learning how to do this is one of the most important lessons of the book. This methodolog-
ical theme pervades the book and can be captured by the slogan:

No implementation without a sitcalc specification

To keep faith with this slogan I have been careful, throughout the book, to accompany all
code with its logical specification in the situation calculus, even if, on occasion, this may



seem a bit on the pedantic side. The payoffs are many: A logical specification states clearly
and unambiguously what the modeling assumptions are, it helps enormously in coding and
debugging an implementation, and it allows you to prove properties of the system model.

I have used this material on several occasions as the basis of a graduate course at
the University of Toronto. Students were drawn from virtually all branches of computer
science, but also included control theorists, electrical and computer engineers, and the oc-
casional mathematician. The course ran for 13 weeks, two hours per week, which was
enough time to comfortably cover most, but not all of the book. I think that Chapters
1–8, 11, and 12 contain the essential ideas and should form the core of any such course.
Time permitting, Chapter 10 on planning can be a lot of fun. Chapter 9 on progression
is perhaps the least important to include in a course, even though it tells rather a nice
story about how STRIPS and the situation calculus are related. I assigned exercises from
each chapter covered, trying for a balance between theoretical and implementation-based
questions. The final course component was a project that gave expression to the students’
individual interests and backgrounds. Frequently, these projects were inventive and ambi-
tious; often, they led to graduate theses. Project topics ranged all over the map, including
databases, computer animation, simulation of physical systems, program verification, the-
oretical foundations, and high-level robotics. My experience in teaching this course has
been that once they learn how to use the situation calculus, students quickly realize how
pervasive dynamics is in their own areas of interest, and relevant project topics immediately
present themselves.


