
Chapter 1

INTRODUC TION

1. 1 Iterative Systems

Many problems of current interest in the field of information

processing involve the presentation of data in the form of a simple
sequence or a uniform array . The signals received over a teletype
line constitute a time sequence ; the numerical inputs to the accumulator 

of a digital computer constitute a one - dimensional array ,

or spatial sequence ; and the light pattern projected upon the receptor 
cells of the eye constitutes a two - dimensional array . In these

three examples , and in a large class of other problems , the manner
in which the inputs are interpreted depends only upon the " patternl '
of the signals , and is relatively independent of the exact time or
location at which the signals appear . Thus a certain pattern of
marks and spaces is interpreted as a teletype ' lA " regardless of
the time at which it is received . Similarly , the operation of addition 

remains the same as the two numbers to be added are shifted

with respect to the decimal point or the accumulator . Finally , the
mind interprets the retinal image of a tree as a tree , regardless of
where that image falls on the retina .

The fact that in many cases the kind of processing to be performed 
is unaffected by a translation of the input pattern suggests

that the portion of the processing mechanism near anyone input is
similar in structure and operation to the portion near any other input

. In the above examples this is indeed the case . The teletype

receiver does not change its structure or mode of operation with
time ; each stage of the accumulator is identical ; and the cells of

the retina are , as far as we know , essentially alike in their structure 
and interconnection .

These examples , and others , suggest that an important class of
information processing ne'tworks is that in which each network is
composed of a number of identical subnetworks interconnected together 

to form a regular array . Networks constructed in this

" iterative " form have several advantages over networks not having
such a repeated structure . Being made up of many identical subnetworks

, they are economical to manufacture and repair . They can

be enlarged to accommodate more variables by simply adding more
subnetworks ; the existing portion of the network is unchanged . The
design of an iterative network , which consists in specifying the circuitry 

of a single subnetwork , is usually simpler than that of an
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equivalent unstructured network . Finally , an iterative network

can often be converted from " parallel " to " sequential " operation

without any major changes in design , while an unstructured network
cannot .

It appears that many important and complex information processing 
problems will be implemented only when we are able to design ,

and build economically , large networks in iterative form . It is thus

natural to ask , ' I What kinds of operations can iterative networks perform
, how can they be analyzed , and how can an iterative network

be designed to do a specific job ? ' I The purpose of this book is to
present a few preliminary answers to these very broad questions .

We shall be concerned only with systems in which the inputs and
outputs occur at distinct points of space or time , rather than being
distributed over the entire array . Furthermore , we shall re strict

the operation of a system and its basic components to be discrete ,

rather than continuous . Thus the basic elements , and hence any

network built from them , are to be logical , or switching , circuits .
In principle , any iterative network of this type could be designed
as a single switching circuit , but such a procedure would beexceed -
ingly difficult for networks containing a large nwnber of input variables

. While it might be possible to state the input - output requirements 

concisely in English , a functional description of the same

requirements would be hopelessly complex for all but the smallest
networks . Even assuming that such a functional description could
be obtained , there remains the complex task of reducing this description 

to an economical physical circuit . In particular , there is

little chance that this design process would yield a network formed
as an array of identical subnetworks , even when such an iterative

solution is one of the most economical . If the advantages of the
iterative solution are to be achieved , the designer must start off
by assuming the general structure of the network and then determine

the logical requirements that should be placed upon the individual
subnetworks . While conventional switching theory is helpful in designing 

the specific circuitry of the subnetworks , it is of little help

in deciding what the terminal behavior of these subnetworks should

be . One of our aims is to gain some facility in prescribing this
terminal behavior .

Although systems whose outputs are functions of a time sequence
of input values are of great practical importance , we shall restrict
our attention almost entirely to systems in which there is a fixed

mapping of constant input patterns into constant output patterns . Any
general treatment of systems whose terminal behavior is sequential

in nature must wait until more is known about systems whose terminal 
behavior is combinational . The internal behavior of the

systems will not be restricted , though , and may be sequential in
nature . As we $hall see , such sequential behavior has several advantages

.
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With this brief introduction to the kinds of problems we wish to
consider , and reasons for considering them , we turn our attention
to a more precise description of an iterative system . The next
section sets forth the basic definitions that make possible a rigorous 

discus sion of iterative systems , while the third section pose s

the questions and problems that will be treated in later chapters .

1 . 2 Definitions

Structure of an Iterative Network . An iterative network is one

that is composed of a number of identical subnetworks , or = ! ~
interconnected in a regular array . We shall restrict the cells to
be logical networks , either combinational or sequential . One of
each cell ' s inputs , called its primary input and denoted by the variable 

x , serves as an input to the entire network . In addition , there
are a number of intercellleads that carry discrete signals between
adjacent cells . In general , each cell will also have a primary out -

~ denoted by the variable Z , which serves as one of the outputs
of the entire network . With no loss of generality , we shall assume

that the primary inputs and outputs are two - valued (with values 0
and 1 ) .

There are many ways in which cells can be connected together to
form an array . We shall consider only n - dimensional Euclidean

arrays in which the location of any cell can be specified by n integer
coordinates . Two such arrays are shown in Figure 1. 1, where arrows



are used to indicate the directions in which signals flow. In addition
to specifying the logical structure of the cells that make up an iterative network, it is necessary to specify the signals that are to be
applied to the intercellleads entering the edges of the networks.
These specifications will be referred to as ~oundary conditions; theboundary signals are to be constant with time and identical for all
the cells along any given boundary. In logical diagrams, the usual
notation will be to indicate boundary conditions in parentheses, as
in Figure 1.1.

For convenience of both analysis and synthesis, it will normally
be assumed that an iterative network operates synchronously. Then
if time instants are represented by integers, the outputs and internal
state variables of any cell at time t are dependent only upon the inputs and internal state variables that were present in that cell at
time t-l . At some points in the later chapters it will be possible
to relax this restriction, but unless otherwise stated, we shall assume such a synchronism without indicating delay elements in the- -
logical diagrams.

Note illat no restriction has been placed upon the number of cells
in an iterative network; we require only that the array of cells form
a rectangle or hyper-rectangle. Thus the structure of an individual
cell, tegether with a set of boundary conditions, js representative
of an infinite number of iterative networks. The class of all the
finite networks having a particular cell structure and boundary conditions is referred to as the iterative system defined by that cell
structure and boundary conditions. Then the analysis problem for
an iterative system consists in determining the behavior of an arbitrary network of the system in terms of the boundary conditions
and the structure of an individual cell. Conversely, the synthesis
problem consists in determining a satisfactory cell structure and
boundary conditions in terms of the desired behavior of an arbitrary 

network.
In many cases we are not interested in obtaining a primary output from every cell in the network, but only in obtaining a single

output from the entire network. This can most easily be done by
ignoring the primary outputs of all cells except one, usually locatedat one end or corner of the network. Such a network will be referred
to as a single-output network, and systems of such networks will be
called single-output systems.

In other cases the primary output of each cell will be a function
only of the position of that cell in the network, and not a function
of the primary input values. A network or system in which the
primary inputs do not influence the primary outputs is call autonomous.

We are now ready to make some definitions that will enable us to
discuss the equilibrium and transient behavior of iterative systems.Cell and Network States. The state of a cell of an iterative net--
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work is that property described by the values of all the inputs to
the cell , plus the internal state variables , if any . Thus , if the in -
tercellleads of Figure lila carry binary signals and the cells are
combinational , each cell may assume sixteen different states .

The ~~ of an iterative network is that property described by
the states of all its cells . Similarly , the state of a portion of a network 

is specified by the states of the cells in that portion . Thus a

network of four of the cells of Figure lila could have a total of 164
different combinations of cell states . When the boundary conditions
are applied , this number is reduced to 8 X 162 X 4 = 8 ,192 network
states . Because of the assumption of synchronous operation , this
particular network could be analyzed as a finite - state machine with
8,192 states . Although such an analysis is conceptually straightforward

, it is clearly impractical . For practical purposes we seek a

means of analysis that takes advantage of the repeated structure of
the network , and one that is independent of the number of cells in
the network .

Equilibrium and Transient Behavior . Fixing the value s of the
primary inputs of an iterative network will naturally reduce the
number of states that the network can assume . As long as the input 

values remain constant , the network acts like an autonomous

sequential machine , and can be represented by an appropriate state
transition diagram .13 If any network state is succeeded by itself
in the transition diagram , we shall call it an equilibrium state for
the particular pattern of primary input values chosen . It may happen
that for some choice of primary input values no equilibrium states
will exist , while for other choices one or more equilibrium states

may exist .

If the transition diagram contains a closed loop involving two or

more states , we shall say that the network has a (state ) S~ for
the chosen set of primary input values . This is necessarily the case
when no equilibrium state exists , but may also occur when equilibrium 

states are present . Sometimes the states of a cycle will all

produce the same pattern of primary output values ; in other cases
different primary output patterns will be produced . If a primary
input combination results in a cycle in which different primary output 

patterns are produced , the network will be said to have an ~
put cycle for that primary input combination . Clearly the existence 

of an output cycle implies the existence of a state cycle , but

not the other way around .

If an iterative network has exactly one equilibrium state for each
possible combination of primary input values , we shall call it a
regular network . If an iterative system has the property that every
one of its networks is regular , it will be called a regular system . If
a network is free of state cycles for every possible choice of its
primary input value s, it will be called a stable network . Similarly ,
if every network in a system is stable , w ~ shall call the system a
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Fig . 1.2. Equilibrium states and cycles in iterative networks

stable system . System stability is a very specialized property , but

a very useful one . If a cell structure and boundary conditions define 
a stable system , then any network made up of these cells must

ultimately reach an equilibrium state regardless of the initial state

in which it is placed . Furthermore , as we shall see , all stable networks 
or systems of combinational cells are regular .

~ i 0 0 ~~~:~ ~

i 0
( . )

i i 00 J 0 { i O
Non - unique equilibrium

.
. . . . . . . . . . . . . . . . . . 00

00
 

X

.
. . . . . . . . . 00 . . . . . . . . . . 00

 

~

.
. . . . 0 . . . . . 0 . . . . . 0 . . . . . 0 ' <

00
0

. . . . . . . . . . 0 . . . . . 0 ~

"
" " " " " " " " " " " ' . . . . . . . . . . 0 ~

00

. . . . . . . . . . 0 . . . . . 00
 

N



At this point an example may be helpful . For reasons of simplicity 
we shall present a one - dimensional example , although the concepts 

described above apply equally well to networks of any number

of dimensions . Figure 1. 2a shows a combinational cell with two
binary interceilleads , one carrying signals from left to right , the
other carrying signals from right to left . Figure 1. 2b summarizes
the logical behavior of the cell in terms of a truth table . The boundary 

conditions require that w = 0 at the left - most cell of any network

and that y = 0 at the right - most cell of any network . Figure 1. 2c
shows a network composed of two of these cells that is supplied
with the designated boundary conditions and the constant primary
input pattern (I , 0) . The cell inputs presented by the intercell
leads are initially assumed to be both o . Then the left - hand cell
must generate a I on its right output lead , while the right - hand
cell must generate a 0 on its left output lead . Thus the cell inputs 

appearing at the next time instant are as shown in Figure
2 .ld . Repeating this process , we find that the network must go
through the states indicated in Figures 2 . lc - g at successive time
instants . Since the state of the network at the fifth time instant

is identical to that at the first , the network exhibits a cycle for
this particular primary input combination . Furthermore , all
four possible network states appear in the cycle . so that no equilibrium 

state exists for this input combination .

When the primary inputs are (0 , 1) , the example network has
a unique equilibrium state , as shown in Figure 1. 2h . That the
equilibrium is unique can be verified by showing that each of the
three other po 'ssible network states eventually leads to this equilibrium

. Finally , if the primary inputs are both 0 , the network

has two equilibrium states , shown in Figures 1. 2i and 1. 2j . Note
that these equilibrium states are essentially different ~ that they
produce different primary output patterns . In conclusion , we note
that the system described in Figure 1. 2b is neither stable nor
regular , since it contains a network that exhibits a cycle for
some primary input pattern , as well as one that lacks an equilibrium 

state for some primary input pattern .

Equivalence . Suppose that two regular iterative networks
have different cell structures and boundary conditions , but are
composed of the same number and arrangement of cells . Now
apply identical primary input patterns to the two networks and
examine the primary output patterns produced when the networks
are in equilibrium . If the equilibrium primary output patterns
of the two networks match exactly for all possible input patterns ,
the networks will be said to be equivalent . Two regular systems
are equivalent if and only if each network of one is equivalent to
the corresponding network of the other . If single - output networks 

or systems are being considered , only those primary outputs 
that actually represent network outputs are to be compared .
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gomposition . One operation that we shall make frequent use
of in later chapters is the combination of two networks of the same

size into one composite network . One possible way to combine

two networks of the same number and arrangement of cells is

simply to connect their corresponding primary inputs together .
In this case we shall say that they have been connected in parallel .
Each cell of the parallel combination contains as its component

parts the cell structures of the two original networks . Figure
1. 3 illustrates this process . In this figure , as in others to follow ,
heavy arrows are used to represent bundles of binary leads . The
primary outputs of the composite network may be specified as
some function of the primary outputs of the component networks ,
or more generally as some function of the states of the composite 

network .

Fig . 1. 3 . Parallel combination of iterative networks

If every network of one system is placed in parallel with the
corresponding network of a second system , the resulting system

is called the parallel combination of the two original , or component
, systems . The intercell signals of the composite system ,

which are referred to as composite signals , consist of ordered
pairs of signals from the component systems . In general , not
all possible pairs of this type will occur in the composite system

. The composite signals that are actually needed may usually

be determined by starting at the boundary conditions and working
inwards , step by step . The details of this process will be described 

in Chapter 2 .



Our ultimate goal is to be able to design iterative information
processing systems that realize any specified mapping of primary 

input patterns into primary output patterns . The terminal
behavior of such a system is to be " memoryless " in the sense
that the time sequence of inputs preceding the appearance of a
given input pattern has no effect upon the output pattern to be
produced by that particular input . This does not imply that the
internal behavior of the system must be memoryless ; important
advantages are often to be gained through the use of sequential
cell structures . Although it is not always possible , one simple
way to design these systems is to require that each network in
the system have some equilibriwn state for every possible primary 

input pattern . To facilitate this approach , it would be desirable 
to have a test that could determine whether or not every

network of a given system possessed an equilibrium state for
each possible primary input pattern . A further refinement would
be a test for deciding whether a given system is regular , i . e . ,
whether every network in the system has a unique equilibrium
for each primary input pattern . Another useful analysis tool
would be a test that could determine whether or not two regular
systems were equivalent . Thus we should like to have general
tests that could be applied to a description of the cell structure
and boundary conditions of an arbitrary system in order to provide 

answers to a few fundamental questions about the equilibriwn "

or steady - state , behavior of the system . Unfortunately , such
tests do not exist for all classes of iterative systems . Chapter
2 defines certain classes of systems for which these tests do exist

, and describes the tests in detail . Chapter 3 is devoted to

proving that correspo  I:ding tests for other classes of systems do
not exist .

In Chapter 4, we consider the analysis of the transient behavior
of iterative systems , and in particular , the possibility of formulating 

a general procedure for testing the stability of an arbitrary 

system . Here the results are even more discouraging ,
since general stability te $ts do not exist for any class of systems
containing feedback loops .

Having established that even the simplest equilibriwn and transient 
questions cannot be answered in general for many classes

of iterative systems , and that consequently a general analysis
procedure does not exist , we turn our attention to the functional
capabilities of various types of systems . Chapter 5 discuss  es
the effects of dimensionality , cell memory , and directions of
signal flow upon the capabilities of iterative systems . The results 

obtained on the analytical aspects of iterative systems are

summarized in Chapter 6 .
Chapter 7 presents techniques applicable to the synthesis of

9problems for consideration
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the simplest class of systems , namely one - dimensional systems
with one direction of signal flow . Techniques for designing networks 

without internal cell memory are first reviewed , and then

extended to networks with cell memory . In Chapter 8 , means
of dealing with problems of stability , premature outputs , and
asynchronous operation are discussed . Chapter 9 attempts to
expand the techniques of Chapter 7 to apply to one - dimensional
networks with two directions of signal flow , and to two - dimensional 

networks . Finally , extensions of the familiar minimiza -

tion techniques to apply to more complex systems are discussed
in Chapter 10 . Chapter 11 concludes with a summary and discussion 

of important unsolved problems .
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