
Chapter 1

Introduction

CONSIDER A seller of an object who faces N potential buyers. The
seller may have some notion concerning the object’s value to himself,
but little or no information concerning how much any one of the poten-
tial buyers values the object. How should the seller choose to sell the
object? A variety of different selling mechanisms exists. One commonly
used mechanism involves announcing a take-it-or-leave-it price and then
selling the object to the first person who accepts that price. Another
might involve the seller’s engaging in pair-wise negotiations with individ-
ual potential buyers, either simultaneously or sequentially. Yet a third
way is to sell the object at auction.

Auctions are ubiquitous in market economies; they are also ancient,
their durability suggesting that auctions serve an important allocational
role. Over the past forty-five years, economic theorists have made con-
siderable progress in understanding the factors influencing prices real-
ized from goods sold at auction. For example, they have found that
the seller’s expected revenue depends on the auction format employed
as well as the amount of competition, the information available to po-
tential buyers, and the attitudes of bidders toward risk.

But what does holding an auction entail? The description of an
auction format typically involves outlining the rules governing how the
potential buyers must behave during the selling process; to wit, how bids
must be tendered, who wins the auction, what the winner pays, and so
forth. We shall introduce a number of different auction formats later in
this book. Most importantly, however, the seller must commit to abide
by the rules under a particular auction format.

Perhaps the most important feature defining environments in which
auctions are used involves the existence of an asymmetry of information
between the seller and the potential buyers. Typically, the seller knows
little or nothing concerning the valuations of potential buyers. Moreover,
these potential buyers have no incentive to tell the seller anything about
their valuations. The role of the auction format is to get the potential
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buyers to reveal to the seller information concerning their valuations of
the object.

But how do the valuations of potential buyers obtain? The way in
which potential buyers form their valuations remains an open question
in economics. In fact, in auction theory, researchers are unusually vague
concerning what generates the demand structure, unlike in standard
demand theory where considerable care is taken to specify the structure
of preferences. Suffice it to say that, in auction theory, when economic
theorists come to modeling this asymmetry in information as well as the
heterogeneity in valuations across agents, they use random variables.
Often, it is assumed that each potential bidder demands at most one
unit of the object in question. In the simplest model, the marginal utility
of this one unit, for each potential bidder, is assumed an independent
and identically distributed realization of a continuous random variable
V which has a differentiable cumulative distribution function FV (v) and
probability density function fV (v) equal to dFV (v)/dv. By and large,
the budget constraint as well as issues of substitution are ignored.

1.1 An Example

For example, in the most common paradigm of an auction, referred to
in the preface as the independent private-values paradigm (IPVP), each
of N potential bidders gets an independent and identically distributed
draw {vi}Ni=1 from FV (v). If one orders these N valuations

v(1:N ) ≥ v(2:N ) ≥ . . . ≥ v(N :N )

and then plots the highest valuation first, for which aggregate demand at
that price is one, and then the second-highest valuation next, for which
aggregate demand at that price is two, and so forth, one obtains the
step function of aggregate demand, which is depicted in figure 1.1 for N
equal five.

One way to interpret FV (v) is as follows: First, define the survivor
function

Pr(V > v) = SV (v) = [1− FV (v)] = [1− Pr(V ≤ v)]

which is the proportion of the population having demand when the price
is v. Plotting the price p on the ordinate, as economists are wont to do,
and NSV (p) on the abscissa, one has an expected-demand curve as is
depicted in figure 1.2. Each potential bidder, of which there are N , is
assumed to demand at most one unit, so aggregate demand is at most
N when p is zero.
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Figure 1.1
Aggregate Demand Step-Function

Now, the ordered marginal utilities of the N potential bidders are
{v(i:N )}Ni=1. From these one can create the sample analogue of SV (v), the

empirical survivor function ŜV (v); e.g., using the Kaplan–Meier product-
limit estimator. We have depicted an estimate of expected demand,
based on the estimated survivor function, generated from a sample of
size N equal five, along with the population expected-demand function
when N is five, in figure 1.3.

The idea of empirical work involving auction data is to estimate the
expected-demand function NSV (p) using the bids of the n participants
at the auction. What makes this endeavor sometimes difficult, but
invariably interesting, is that the n participants are often a subset of
the potential bidders. Sample selection, in the Heckman sense, often
exists. Also, depending on the auction format, bidders do not always
reveal their true marginal utility.

In fact, one way to view auction theory is as demand analysis with
a small number of consumers. But, unlike in standard demand analysis,
where one typically assumes that the prices faced by an individual
consumer are fixed, in auction theory one must take into account that
the format and the rules of the auction, the primitive information giving
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rise to heterogeneity in beliefs concerning valuations, the preferences of
potential bidders, the strategic behavior of the participants as well as
the notion of equilibrium will all have an effect on the traded price, the
winning bid. Thus, in the language of the econometrician, prices are
endogenous. How can a researcher learn about the preferences of agents
using either the bids submitted at auctions or just the winning bids?

The SEA uses the twin hypotheses of optimizing behavior and mar-
ket equilibrium (henceforth optimization and equilibrium) to identify
FV (v), the distribution of valuations.1

This is important. For, prior to applications of the SEA, many
believed that it was impractical to implement mechanism-design theory
to calculate the optimal selling mechanism because the optimal selling
mechanism depended on quantities typically unobserved by the designer;
viz., FV (v). Moreover, the actions (equilibrium strategies) of the agents,
their bids {si}ni=1, while positively related to the valuations, were not
always fully revealing; e.g., specifically, in the case of first-price, sealed-

1 Typically, one assumes that potential bidders maximize the expected profit or
the expected utility of profit from winning the auction and then uses either
dominance or Bayes–Nash as an equilibrium concept.
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bid and oral, descending-price auctions. Thus, some believed that no
way existed to estimate this distribution of latent types FV (v).

Now, one can typically estimate consistently the cumulative distri-
bution function of observed actions (strategies) FS(s) using well-known
empirical methods. Note, too, that in auction theory the strategy S is
often a continuous and differentiable function σ of V . For example, at
first-price, sealed-bid auctions the Bayes–Nash, equilibrium-bid function
is

σ(V ) = v −
∫ v
0
FV (u)

N−1 du

FV (v)N−1
. (1.1)

In general, when
S = σ(V ) σ′(V ) > 0,

as is the case of (1.1),
V = σ−1(S)

and

fS(s) =
fV [σ

−1(s)]

σ′[σ−1(s)]
.
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Thus, under suitable regularity conditions, which are usually met in
theoretical models of auctions, one can construct an estimator F̂S(s)
of F 0

S(s) where the superscript “0” denotes the true population value.
Moreover, as the sample size increases, the estimator F̂S(s) converges
in probability to F 0

S(s). Also, from F̂S(s) one can usually construct a
consistent estimator f̂S(s) of f

0
S(s) and subsequently, F̂V (v), a consistent

estimator of F 0
V (v). Thus, the SEAD is an econometric identification

strategy.

One can quite rightfully ask why, given the detailed research existing
in standard demand theory, would one use such a blunt instrument
to investigate demand? In the SEAD, strategic behavior is the most
important consideration. Reverse engineering in the face of deception by
market participants is the goal. Thus, all other considerations, typically
deemed important in standard demand theory, have been shunted to the
side in order that the main focus not be lost.

1.2 Some Intriguing Problems

One of the most intriguing problems faced by researchers who investi-
gate data from auctions using the SEA is that different auction formats
typically generate different kinds of information, so one omnibus em-
pirical procedure to analyze these data cannot be proposed. One can,
however, propose a general strategy; in this book, we describe several of
many recent contributions to this general strategy.

To see how different auction formats generate different amounts
of information, consider first the most informative auction format, the
second-price, sealed-bid auction. At second-price, sealed-bid auctions
within the IPVP, as will be shown below, each of the N bidders reveals
his valuation truthfully. Thus, in the absence of a minimum bid price,
the empirical distribution of bids {bi}Ni=1 can be used to estimate the
cumulative distribution of valuations. To wit, construct F̂V (v), an
estimate of F 0

V (v), using the empirical distribution function

F̂V (v) =
1

N
N∑

i=1

1(bi ≤ v)

where 1(A) denotes the indicator function of the event A. The identifying
assumption in this case is that bidders tell the truth, bid their actual
valuations

Bi = β(Vi) = Vi.
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Of course, the properties of F̂V (v) can be improved by kernel-smoothing;
in other words, using the estimator

F̃V (v) =
1

N
N∑

i=1

K

(
bi − v
hF

)

where hF is often referred to as the bandwidth parameter, while the func-
tion K(·), which is often referred to as the cumulative kernel function,
has the following properties:

lim
y→−∞

K(y) = 0

lim
y→∞

K(y) = 1

K(y) ≥ 0 −∞ < y <∞.

Unfortunately, the standard asymptotics are typically undertaken as N
goes to ∞ and this does not happen at an auction. What to do?

Typically, to get more data, researchers combine data from auctions
of objects that are not exactly alike. Thus, the independent and iden-
tically distributed assumption commonly made in empirical work may
not apply. In some cases, the objects for sale may differ in observable
ways that can be summarized for auction t by an observed vector of
covariates zt. If one is willing to adopt a single-index model, then one
can write

Vit = µ(z>t γ) + Uit

where

E(Uit|zt) = 0,

and use the methods discussed in Horowitz (1998). Of more concern
than the dearth of data concerning identical objects is the fact that
second-price, sealed-bid auctions are rarely, if ever, used.

The most commonly used auction format and, under certain as-
sumptions to be outlined below, also the next most informative format,
from the perspective of an econometrician, is the oral, ascending-price
auction. As we shall see below, at oral, ascending-price auctions within
the IPVP, assuming the clock model of Milgrom and Weber (1982), each
nonwinning bidder reveals his valuation truthfully, while all one knows
about the winner is that his valuation is above the second-highest valua-
tion. It is in this last sense that data from oral, ascending-price auctions
are not as informative as second-price, sealed-bid auctions. Now, under
clock model assumptions, the cumulative distribution function FW (w)
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of the winning price W is the cumulative distribution function of the
second-highest valuation V(2:N ) which is defined by

FW (w) = N (N − 1)

∫ FV (w)

0

uN−2(1− u) du.

In the absence of a minimum bid price, when the number of potential
bidders N is fixed and known, the empirical distribution of winning
bids {wt}Tt=1 for a sample of T auctions, can be used to estimate the
cumulative distribution of valuations by solving the following equation:

F̂W (v) =
1

T

T∑

t=1

1(wt ≤ v)

= N (N − 1)

∫ F̂V (v)

0

uN−2(1− u) du

at each point v. In this case, the identifying assumptions are that bidders
tell the truth

Bi = β(Vi) = Vi

and that the winning price is the second order statistic of valuations

Wt = β[V(2:N ),t] = V(2:N ),t.

Of course, kernel-smoothing methods can improve the small-sample be-
havior of the estimator. Also, kernel-smoothing methods are needed
to provide estimates of the optimal selling mechanism, which takes the
form of an optimal minimum bid price ρ∗ solving the following equation:

ρ∗ = v0 +
[1− FV (ρ∗)]
fV (ρ∗)

where v0 is the seller’s valuation of the object for sale.
Another intriguing problem arises when a binding minimum bid

price exists because, in that circumstance, not all of the N potential
bidders may participate at the auction. For example, when the minimum
bid price is r, the number of participating bidders N is a random variable
defined by

N =
N∑

i=1

1(Vi ≥ r).

Because each of the random variables {1(Vi ≥ r)}Ni=1 is an independent
and identically distributed Bernoulli random variable, their sum, the
random variable N , is distributed binomially with two parameters, N
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and [1 − FV (r)]. Moreover, the bids submitted at auction represent a
truncated sample: only those potential bidders having valuations greater
than r appear in the sample.

One feature that makes oral, ascending-price and second-price,
sealed-bid auctions particularly tractable, at least numerically, is that
the bid function in each case is a trivial function of the valuation. This
is not the case at either first-price, sealed-bid or oral, descending-price
auctions. At these auctions, within the symmetric IPVP and assuming
risk-neutral potential bidders, the Bayes–Nash, equilibrium-bid function
is

σ(v) = v −
∫ v
0
FV (u)

N−1 du

FV (v)N−1
.

The first thing to notice about this strategy function is that it is mono-
tonic, having positive slope less than one when v exceeds zero. What
this means is that bidders with higher valuations bid more, but they bid
systematically less than their true value. Moreover, the higher a poten-
tial bidder’s valuation, the larger is the extent of this deception. Thus,
the winner of either a first-price, sealed-bid or an oral, descending-price
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sealed-bid auction, the potential bidder with the highest valuation, will
be the most deceptive: for a set of potential bidders, the winning bid
will be the furthest from the actual valuation. We depict an example of
this equilibrium-bid function at first-price, sealed-bid auctions in figure
1.4. In this figure, the 45◦-line, denoted β(v), depicts the equilibrium-
bid function at the second-price, sealed-bid auction, while the curve that
is everywhere below it (except at zero where they are equal), denoted
σ(v), depicts the equilibrium-bid function at the first-price, sealed-bid
auction. Notice how a small change in the rules of the auction has an
important impact on the behavior of the bidders at the auction.

The least informative format is the oral, descending-price auction.
At these auctions, the researcher only gets to observe an action of the
winner. A major portion of the potential bidders, [(N − 1)/N ] to be
exact, reveals no information. It is, in fact, somewhat surprising that
one can make any statements concerning the cumulative distribution
function FV (v) by just observing the winning bids from a sample of these
auctions, particularly if a binding minimum bid price exists because the
number of participants is then endogenous, but such is the power of the
twin identifying hypotheses, optimization and equilibrium.

1.3 Plan of Book

In this book, we present an introduction to modern econometric tech-
niques that are used in conjunction with the SEA to interpret field data
from auctions. We do not consider the application of structural econo-
metric methods to experimental data because, in those cases, the re-
searcher typically knows F 0

V (v) as he or she has selected it to generate
the data for the subjects of the experiments. However, the methods
we describe below can be used to test particular hypotheses using data
from experiments. Thus, our book should be of interest to experimental
workers who study auctions.

In chapter 2, we present an overview of single-object auction theory
assuming auctions can be modeled as noncooperative games of incom-
plete information. We begin by describing the four most commonly stud-
ied auction formats and then some additional rules. Subsequently, we
describe three models of information structures. Because the preferences
of bidders are closely related to the structure of information, we discuss
them next, but separately, to highlight the importance of risk aversion in
formulating the decision problem faced by potential bidders under two of
the auction formats. Ultimately, we derive the equilibrium-bid functions
under the four auction formats, for risk-neutral and risk-averse bidders,
without and with binding minimum bid prices. We then discuss the
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revenue equivalence proposition and characterize the optimal auction.
We also show how risk aversion affects expected revenues under the four
auction formats and outline Myerson’s (1981) method for constructing
optimal auctions. At the end of the chapter, we present a brief descrip-
tion of the winner’s curse, perhaps the most well-known phenomenon in
auction theory, showing why it is irrelevant for the models considered
below.

While Krishna (2002) has provided an elegant and complete treat-
ment of the material presented in chapter 2, we use this chapter to
develop a notation, to introduce well-known results, and to outline the
material necessary to formulate the major questions of interest.

In chapter 3, we then investigate the econometrics of oral, ascending-
price and second-price, sealed-bid auctions. Even though it is rarely
used, we begin with the second-price, sealed-bid auction because this
format allows us to develop the basic intuition of the SEA within a
nonparametric framework. Subsequently, we introduce covariates and
then discuss single-index models and semiparametric estimation meth-
ods. The implications of a binding minimum bid price are discussed
next. Endogenous participation, induced by a binding reserve price,
highlights the limitations of nonparametric methods, so we introduce
parametric methods.

Having developed most of the important econometric results con-
cerning second-price auctions within the symmetric IPVP, we then
present an extended policy application by Paarsch (1997), who estimated
the optimal selling mechanism for timber in the province of British
Columbia, Canada.

The fact that most oral, ascending-price auctions have either known
bid increments or random, bidder-induced jumps in the price leads us
naturally to an analysis of incomplete data and inference following the
work of Haile and Tamer (2003).

In the final section of the chapter, we introduce asymmetric bidders,
outlining a proof of nonparametric identification based on Meilijson
(1981) and used by Brendstrup and Paarsch (forthcoming). The model
as well as the methods of identification and estimation introduced in
this section will prove useful in the specification of multi-unit auctions
described in chapter 5.

In chapter 4, we investigate the econometrics of first-price, sealed-
bid and oral, descending-price auctions. Following Paarsch (1989, 1992),
we first derive the data-generating processes of the equilibrium-bid func-
tion as well as the winning bid. We then use the work of Guerre, Per-
rigne, and Vuong (2000) to demonstrate nonparametric identification.
In the following section, we describe four different estimation strategies:
First, we describe the nonparametric estimation methods of Guerre et al.

11



Chapter 1: Introduction

Subsequently, in an effort to deal effectively with observed covariate het-
erogeneity, we introduce parametric models, specifically discussing the
method of maximum likelihood of Donald and Paarsch (1993, 1996) and
then the method of simulated nonlinear least-squares of Laffont, Ossard,
and Vuong (1995). Finally, we address some criticisms of the maximum-
likelihood approach, examining the work of Donald and Paarsch (2002).

We then introduce a binding reserve price. In these cases, as
noted by Brendstrup and Paarsch (2003), the extensive-form games
at first-price, sealed-bid and oral, descending-price auctions are differ-
ent because the number of participants is typically observed at oral,
descending-price auctions, but realistically assumed unknown at first-
price, sealed-bid auctions.

In most structural-econometric analyses of auction data, researchers
have typically assumed that the potential bidders are risk neutral with
respect to winning the auction. At oral, ascending-price and second-
price, sealed-bid auctions, such an assumption is irrelevant because the
dominant-strategy, equilibrium-bid function remains unchanged under
these formats when potential bidders are risk averse. For example,
at second-price, sealed-bid auctions, risk-averse bidders continue to bid
their valuations when they exceed the minimum bid price. On the other
hand, at first-price, sealed-bid and oral, descending-price auctions the
attitudes of potential bidders toward risk matter. Thus, in the next
section of chapter 4, we describe the effects of symmetric, von Neumann–
Morgenstern preferences on the structural-econometric analysis, first
using parametric methods, as in Donald and Paarsch (1996), and then
using semiparametric methods, following Campo, Guerre, Perrigne, and
Vuong (2000).

All of the surveyed research concerning first-price, sealed-bid and
oral, ascending-price auctions has been within the symmetric IPVP. We
go on to examine the effects of stochastic private-values, following the
research of Lu (2004), who used the theoretical work of E̋so and White
(2004). We also consider asymmetric bidders, those whose valuations
are drawn from different distributions, especially in the presence of a
binding reserve price, examining Brendstrup and Paarsch (2003), who
have extended the results of Guerre et al. We then consider the work
of Krasnokutskaya (2004), who investigated the effects of unobserved
heterogeneity within the IPVP.

To illustrate a policy experiment, we examine the research of Brend-
strup and Paarsch (forthcoming) in which the performance of the oral,
ascending-price vis-a-vis the oral, descending-price auction is compared
when potential bidders are asymmetric. Under these conditions, Maskin
and Riley (2000) have demonstrated that inefficient allocations can ob-
tain at oral, descending-price auctions, while at oral ascending-price
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auctions efficient allocations always obtain, at least within the IPVP.
Moreover, the revenue equivalence proposition breaks down. Using data
from fish auctions in Gren̊a, Denmark, Brendstrup and Paarsch esti-
mated the incidence and economic importance of inefficiencies at oral,
descending-price auctions and then compared the expected revenues of
the two auction formats.

Finally, we consider a model of fixed costs to bidding and endoge-
nous auction participation, examining Li’s (2005) application of a sim-
ulated, generalized method-of-moments estimator within a parametric
specification.

We devote chapter 5 to an investigation of multi-unit auctions.
During the past four decades, economic theorists have systematically
investigated simple theoretical models of behavior at auctions in which
only one object is sold to buyers demanding at most one object each. In
reality, however, many auctions involve the sale of multiple units of the
same object to buyers who may demand several units. Recent research
concerning multi-unit auction models suggests that such institutions
introduce a host of additional economic issues typically absent in the
analysis of single-object auction models.

We begin the chapter by first making the distinction between multi-
object and multi-unit auctions and then introducing Weber’s (1983)
classification of multi-unit auctions. Subsequently, we introduce models
of singleton demand and then describe two models of multi-unit demand,
nonrandom and random demand. For completed research, we then
describe identification and estimation strategies. Because multi-unit
demand and supply models are topics of current research, our discussion
in this chapter is incomplete.

In our last chapter, chapter 6, we discuss briefly directions for future
research. We first describe some research that is currently either under
revision or under way, and then speculate on a few fruitful directions in
which researchers might go. Finally, we summarize the book, briefly.

We have written a number of technical appendixes to this book. We
encourage the reader to master the material in them before attempting
the next four chapters of the book. In these appendixes are included
a review of some basic probability theory concerning distributions of
transformations of random variables and, particularly, order statistics.
We have also presented a brief review of first-order asymptotic meth-
ods as well as simulation methods and the bootstrap; the application
of these methods to the evaluation of different estimation strategies is
also described. The implementation of different estimation strategies is
motivated by descriptions of some elementary tools from numerical anal-
ysis. Because using numerical methods requires their implementation in
some sort of programming environment, our final appendix is a primer
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concerning MATLAB.
In an effort to provide readers with instruments to gauge their

understanding of this material, at the end of this chapter, we have
presented several practice problems. Other practice problems, which
build on the material covered in the problems at the end of this chapter,
are included at the end of each of the next four chapters. A reader
who has successfully completed these practice problems will be able to
analyze data from an actual auction and then derive policy conclusions
from this research. We hope that readers will make this effort and thus
enter the exciting field of SEAD.

1.4 Practice Problems

The problems at the end of this chapter are designed to give you some
practice with the basics of probability theory as well as statistical esti-
mation and inference that are presumed in the remainder of the book.
By implementing the estimation strategies in the programming language
MATLAB (or any other programming language for that matter), you will
also gain some practice in the elementary numerical methods needed
later in the book.

1. Consider a discrete random variable N having probability mass
function

fN (n; θ0) =
−(θ0)n

n log (1− θ0) n = 1, 2, . . . , 0 < θ0 < 1

which is often referred to as the logarithmic series distribution for
reasons that will become clear later in the problem.

a) Prove that
∞∑

n=1

fN (n; θ0) = 1.

(Hint: consider the Maclaurin-series expansion of log (1 + x)
and substitute in x = −θ0.)

b) Find the expected value of N , E(N). (Hint:
∑∞

n=1 ρ
n = ρ

1−ρ .)

c) Find the variance of N , V(N). (Hint: remember that the
derivative of a sum is the sum of the derivatives of each of
the sum’s parts.)

d) Define the method-of-moments estimator θ̂MM of θ0.
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N 1 2 3 4 5 6 7 8 9+

Frequency 700 205 50 26 10 6 1 1 1

Table 1.1
Observed Frequency Distribution of N

e) Show that the condition that defines θ̂MM has a unique solution.
(Hint: draw a graph.)

f) Set up the recursion you would use in order to employ Newton’s
method to solve for θ̂MM.

g) Define the maximum-likelihood estimator θ̂ML of θ0.

h) Demonstrate that θ̂MM and θ̂ML are consistent estimators of
θ0.

i) Find an approximation to the variance of θ̂MM and θ̂ML.

j) Characterize the asymptotic distribution of θ̂MM and θ̂ML and
explain your reasoning.

After considerable effort, a researcher has obtained a random sample
of one thousand measurements on N . These data are summarized
in Table 1.1.

k) Write a MATLAB program to implement Newton’s method and
then calculate the maximum-likelihood estimate of θ0 using the
above data.

l) At size 0.05, test the following hypothesis:

H0 : θ0 = 0.50

H1 : θ0 6= 0.50.

m) At size 0.10, test the following hypothesis:

H0 : log θ0 = −0.70
H1 : log θ0 6= −0.70.

n) At size 0.05, ignoring the fact that θ̂ML is estimated and that no
observed counts exist above nine, use Fisher’s χ2, goodness-of-
fit test to decide whether the empirical frequency is consistent
with the logarithmic series distribution.
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2. Consider a random sample {Vt}Tt=1 from the log-normal distribu-
tion, having probability density function

fV (v; θ
0
1, θ

0
2) =

1

v

1√
2πθ02

exp

[−(log v − θ01)2
2θ02

]

v > 0, θ02 > 0, and−∞ < θ01 <∞.

Note that the kth raw moment of V is

E(V k) = exp

(
kθ01 +

k2

2
θ02

)
k = 1, 2, . . . .

a) Write down the likelihood function, the logarithm of the likeli-
hood function, and the score vector for this sample. Solve for
the maximum-likelihood estimators θ̂ML

1 and θ̂ML
2 of θ01 and θ02.

b) Calculate the expectations of θ̂ML
1 and θ̂ML

2 . Are the MLEs
unbiased estimators? Calculate the variance and the small-
sample, exact distribution of θ̂ML

1 .

c) Derive the method-of-moments estimators θ̂MM
1 and θ̂MM

2 . Are
MMEs unbiased estimators of θ01 and θ02? Explain your answer.

d) Prove that the MMEs are consistent estimators of θ01 and θ02.

e) For simplicity, assume that θ02 is known to equal one. Using
the delta method, find the asymptotic distribution of θ̂MM

1 .
Compare the asymptotic variance of this estimator with the
exact variance of the MLE. Which estimator is more efficient?
Why?

3. Suppose that, in the model of practice problem 1, θ0 depends on a
(K × 1) vector of covariates z. Assume further that the unknown
θ(z) can be modeled as a logistic function, so

θ(z) =
exp(z>γ)

[1 + exp(z>γ)]

where the vector of unknown parameters γ, or (γ0, γ1, . . . , γK−1)
>,

is conformable to z>.

a) For a sample {(zt, nt)}Tt=1, write down the likelihood function,
the logarithm of the likelihood function L(γ), the score vector
g(γ), and the Hessian matrix H(γ)

b) Set up the recursion you would need in order to solve for the
maximum-likelihood estimate γ̂.
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Practice Problems

c) In the file logser.dat, which is located on the CD accompa-
nying this book, you will find five columns of numbers. In the
first is recorded an identification number, which ranges from
1 to 1000, while in the second is recorded the dependent vari-
able nt. In the next three are recorded the covariates z1,t, z2,t,
and z3,t. The entire file has 1, 000 rows, so 1, 000 observations.
Write a MATLAB program to calculate the maximum-likelihood
estimate of γ when a constant is present in z>γ.

d) Using the likelihood-ratio test, decide whether the following
hypothesis can be rejected at size 0.05:

H0 : γ01 = γ02 = γ03 = 0

H1 : not H0.

4. To get some practice implementing the bootstrap, complete the
following:

a) In MATLAB, generate 1,000 samples of size twenty-five for nor-
mal pseudo-random variables having mean zero and variance
one. For each sample, calculate the sample median and then
simulate the nonparametric bootstrap standard error of the
sample median using 100 bootstrap samples. Using this infor-
mation, gauge the accuracy of the asymptotic formula for the
variance of the sample median, which is

πσ2

2T

where σ2 is the variance (one in this case), T is the sample
size (twenty-five in this case), and π can be approximated by
3.14159.

b) In MATLAB, generate 1,000 samples of size twenty-five for uni-
form pseudo-random numbers. Using the property that cu-
mulative distribution function of a continuous random variable
is distributed uniformly on the interval [0, 1], generate pseudo-
random variables from the exponential distribution having haz-
ard rate one. Using the bootstrap with 100 samples, evaluate
the asymptotic formula for the standard error of the sample
lower quartile ξ̂ as an estimator of the population lower quar-
tile ξ0 when the asymptotic distribution of the lower quartile
is

√
T (ξ̂ − ξ0) d→N

[
0,

3

16Tf0V (ξ0)
2

]
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Chapter 1: Introduction

where f0V (·) is the true exponential probability density func-
tion.

5. Consider the following function

f0V (v) = exp
[
v − v2 −√v + sin(v)

]
v ∈ [0, 3].

a) Plot this function in MATLAB.

In MATLAB, evaluate the above function at each point from 0 to 3
for a constant step-size 0.1; store the thirty-one ordered pairs.

b) On the interval [0, 3], estimate the generalized Chebyshev poly-
nomial approximations of the function f 0V (v) for orders one,
four, and seven using MATLAB. Graph these three polynomials
superimposing them on a graph of the true function f 0V (v). Do
the approximations improve as the order of the approximating
polynomial increases?

c) Using the thirty-one ordered pairs of numbers from part a)
above, estimate, by the method of least squares, the appropri-
ate coefficients for a polynomial of order one, four, and seven
and then plot these functions along with the true function
f0V (v).

6. In a variety of circumstances in econometrics, researchers often need
to evaluate an integral of the following form:

Γ(a, b) =

∫ b

a

f(u) du.

In some circumstances Γ(a, b) will have a closed-form solution that
can be calculated in a straighforward fashion. For example, suppose
that

f(u) = exp(−u) u > 0.

In this case,

Γ(a, b) = [1− exp(−b)]− [1− exp(−a)] = [exp(−a)− exp(−b)].

In many cases, Γ(a, b) does not have a closed-form solution. In
these cases, quadrature methods are often used to calculate Γ(a, b).
Quadrature involves dividing the interval [a, b] up into subintervals,
evaluating the area under f(u) for each subinterval, and then adding
up the areas to find Γ(a, b). In higher dimensions (more than three)
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Practice Problems

quadrature rules can become numerically unreliable and difficult
to implement with any precision. In such cases, researchers often
use Monte Carlo methods to simulate the integral Γ(a, b). Monte
Carlo simulation involves sampling from a known distribution on
the interval [a, b], for example the uniform, and then taking the
average of f(u) evaluated at each random draw. As the number of
simulation draws K goes to infinity, this estimator converges to the
truth.

In this problem, you will use simple trapezoidal quadrature as well
as Monte Carlo methods to evaluate

Γ(0, 1) =

∫ 1

0

exp(−u) du

which you know equals [1− exp(−1)] or 0.6321.

a) Approximate Γ(0, 1) by the area of a trapezoid defined by the
points (0, 0), (0, 1), (1, 0), and (1, exp(−1)), then calculate the
error associated with using this rule.

b) Now divide the interval [0, 1] up into ten subintervals of the
same width. Calculate the area for each trapezoid, and then
the estimated area for Γ(0, 1). What is the estimation error
now?

c) Derive a formula for the estimation error as a function of the
points a and b as well as the number of subintervals on [a, b],
assuming that the trapezoid rule is used and that the function
f(u) equals exp(−u).

d) Now consider making independent and identically distributed
draws concerning uniform random variable U on the interval
[0, 1]. Calculate the expected value of exp(−U) on the interval
[0, 1]. Calculate the variance of exp(−U) on the interval [0, 1].

e) Provide a simulation estimator GK(0, 1) of the integral Γ(0, 1)
where K is the number of simulation draws. Find its asymp-
totic distribution.

f) How large must K be before the root mean-squared error of
GK(0, 1) equals the error in part a)?
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