
1 Introduction

Imagine Alice, Bob, and two piles of ten rocks. Alice and Bob are bored one

Saturday afternoon so they play the following game. In each turn a player

may either take one rock from a single pile, or one rock from both piles. Once

the rocks are taken, they are removed from play; the player that takes the last

rock wins the game. Alice moves first.

It is not immediately clear what the winning strategy is, or even if there

is one. Does the first player (or the second) always have an advantage? Bob

tries to analyze the game and realizes that there are too many variants in

the game with two piles of ten rocks (which we will refer to as the 10+10

game). Using a reductionist approach, he first tries to find a strategy for the

simpler 2+2 game. He quickly sees that the second player—himself, in this

case—wins any 2+2 game, so he decides to write the “winning recipe”:

If Alice takes one rock from each pile, I will take the remaining rocks

and win. If Alice takes one rock, I will take one rock from the same

pile. As a result, there will be only one pile and it will have two rocks

in it, so Alice’s only choice will be to take one of them. I will take the

remaining rock to win the game.

Inspired by this analysis, Bob makes a leap of faith: the second player (i.e.,

himself) wins in any n+n game, for n ≥ 2. Of course, every hypothesis must

be confirmed by experiment, so Bob plays a few rounds with Alice. It turns

out that sometimes he wins and sometimes he loses. Bob tries to come up

with a simple recipe for the 3+3 game, but there are a large number of differ-

ent game sequences to consider, and the recipe quickly gets too complicated.

There is simply no hope of writing a recipe for the 10+10 game because the

number of different strategies that Alice can take is enormous.

Meanwhile, Alice quickly realizes that she will always lose the 2+2 game,

but she does not lose hope of finding a winning strategy for the 3+3 game.
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Moreover, she took Algorithms 101 and she understands that recipes written

in the style that Bob uses will not help very much: recipe-style instructions

are not a sufficiently expressive language for describing algorithms. Instead,

she begins by drawing the following table filled with the symbols ↑, ←, ↖,

and ∗. The entry in position (i, j) (i.e., the ith row and the jth column) de-

scribes the moves that Alice will make in the i + j game, with i and j rocks

in piles A and B respectively. A← indicates that she should take one stone

from pile B. A ↑ indicates that she should take one stone from pile A. A

↖ indicates that she should take one stone from each pile, and ∗ indicates

that she should not bother playing the game because she will definitely lose

against an opponent who has a clue.

0 1 2 3 4 5 6 7 8 9 10

0 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

1 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

2 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

3 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

4 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

5 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

6 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

7 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

8 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

9 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

10 ∗ ← ∗ ← ∗ ← ∗ ← ∗ ← ∗

For example, if she is faced with the 3+3 game, she finds a↖ in the third

row and third column, indicating that she should take a rock from each pile.

This makes Bob take the first move in a 2+2 game, which is marked with

a ∗. No matter what he does, Alice wins. Suppose Bob takes a rock from

pile B—this leads to the 2+1 game. Alice again consults the table by reading

the entry at (2,1), seeing that she should also take a rock from pile B leaving

two rocks in A. However, if Bob had instead taken a rock from pile A, Alice

would consult entry (1,2) to find ↑. She again should also take a rock from

pile A, leaving two rocks in pile B.

Impressed by the table, Bob learns how to use it to win the 10+10 game.

However, Bob does not know how to construct a similar table for the 20+20

game. The problem is not that Bob is stupid, but that he has not studied

algorithms. Even if, through sheer luck, Bob figured how to always win the
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20+20 game, he could neither say with confidence that it would work no

matter what Alice did, nor would he even be able to write down the recipe

for the general n + n game. More embarrassing to Bob is that the a general

10+10+10 game with three piles would turn into an impossible conundrum

for him.

There are two things Bob could do to remedy his situation. First, he could

take a class in algorithms to learn how to solve problems like the rock puzzle.

Second, he could memorize a suitably large table that Alice gives him and

use that to play the game. Leading questions notwithstanding, what would

you do as a biologist?

Of course, the answer we expect to hear from most rational people is “Why

in the world do I care about a game with two nerdy people and a bunch of

rocks? I’m interested in biology, and this game has nothing to do with me.”

This is not actually true: the rock game is in fact the ubiquitous sequence

alignment problem in disguise. Although it is not immediately clear what

DNA sequence alignment and the rock game have in common, the compu-

tational idea used to solve both problems is the same. The fact that Bob was

not able to find the strategy for the game indicates that he does not under-

stand how alignment algorithms work either. He might disagree if he uses

alignment algorithms or BLAST1 on a daily basis, but we argue that since he

failed to come up with a strategy for the 10+10 rock game, he will also fail

when confronted with a new flavor of alignment problem or a particularly

complex similarity analysis. More troubling to Bob, he may find it difficult

to compete with the scads of new biologists who think algorithmically about

biological problems.2

Many biologists are comfortable using algorithms like BLAST without re-

ally understanding how the underlying algorithm works. This is not sub-

stantially different from a diligent robot following Alice’s winning strategy

table, but it does have an important consequence. BLAST solves a particular

problem only approximately and it has certain systematic weaknesses. We’re

not picking on BLAST here: the reason that BLAST has these limitations is, in

part, because of the particular problem that it solves. Users who do not know

how BLAST works might misapply the algorithm or misinterpret the results

it returns. Biologists sometimes use bioinformatics tools simply as compu-

tational protocols in quite the same way that an uninformed mathematician

1. BLAST is a database search tool—a Google for biological sequences—that will be introduced
later in this book.
2. These “new biologists” have probably already found another even more elegant solution of
the rocks problem that does not require the construction of a table.
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might use experimental protocols without any background in biochemistry

or molecular biology. In either case, important observations might be missed

or incorrect conclusions drawn. Besides, intellectually interesting work can

quickly become mere drudgery if one does not really understand it.

Many recent bioinformatics books cater to this sort of protocol-centric prac-

tical approach to bioinformatics. They focus on parameter settings, specific

features of application, and other details without revealing the ideas behind

the algorithms. This trend often follows the tradition of biology books of

presenting material as a collection of facts and discoveries. In contrast, intro-

ductory books in algorithms usually focus on ideas rather than on the details

of computational recipes.

Since bioinformatics is a computational science, a bioinformatics textbook

should strive to present the principles that drive an algorithm’s design, rather

than list a stamp collection of the algorithms themselves. We hope that de-

scribing the intellectual content of bioinformatics will help retain your inter-

est in the subject. In this book we attempt to show that a handful of algorith-

mic ideas can be used to solve a large number of bioinformatics problems.

We feel that focusing on ideas has more intellectual value and represents

a better long-term investment: protocols change quickly, but the computa-

tional ideas don’t seem to.

We pursued a goal of presenting both the foundations of algorithms and

the important results in bioinformatics under the same cover. A more thor-

ough approach for a student would be to take an Introduction to Algorithms

course followed by a Bioinformatics course, but this is often an unrealistic ex-

pectation in view of the heavy course load biologists have to take. To make

bioinformatics ideas accessible to biologists we appeal to the innate algorith-

mic intuition of the student and try to avoid tedious proofs. The technical

details are hidden unless they are absolutely necessary.3

This book covers both new and old areas in computational biology. Some

topics, to our knowledge, have never been discussed in a textbook before,

while others are relatively old-fashioned and describe some experimental

approaches that are rarely used these days. The reason for including older

topics is twofold. First, some of them still remain the best examples for in-

troducing algorithmic ideas. Second, our goal is to show the progression of

ideas in the field, with the implicit warning that hot areas in bioinformatics

seem to come and go with alarming speed.

3. In some places we hide important computational and biological details and try to simplify
the presentation. We will unavoidably be blamed later for “trivializing” bioinformatics.
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One observation gained from teaching bioinformatics classes is that the

interest of computer science students, who usually know little of biology,

fades quickly when the students are introduced to biology without links to

computational issues. The same happens to biologists if they are presented

with seemingly unnecessary formalism with no links to real biological prob-

lems. To hold a student’s interest, it is necessary to introduce biology and

algorithms simultaneously. Our rather eclectic table of contents is a demon-

stration that attempts to reach this goal result in a somewhat interleaved or-

ganization of the material. However, we have tried to maintain a consistent

algorithmic theme (e.g., graph algorithms) throughout each chapter.

Molecular biology and computer science are complex fields whose termi-

nology and nomenclature can be formidable to the outsider. Bioinformatics

merges the two fields, and adds a healthy dose of statistics, combinatorics,

and other branches of mathematics. Like modern biologists who have to

master the dense language of mathematics and computer science, mathe-

maticians and computer scientists working in bioinformatics have to learn

the language of biology. Although the question of who faces the bigger chal-

lenge is a topic hotly debated over pints of beer, this is not the first “invasion”

of foreigners into biology; seventy years ago a horde of physicists infested bi-

ology labs, ultimately to revolutionize the field by deciphering the mystery

of DNA.

Two influential scientists are credited with crossing the barrier between

physics and biology: Max Delbrück and Erwin Schrödinger. Trained as

physicists, their entrances into the field of biology were remarkably different.

Delbrück, trained as an atomic physicist by Niels Bohr, quickly became an ex-

pert in genetics; in 1945 he was already teaching genetics to other biologists.4

Schrödinger, on the other hand, never turned into a “certified” geneticist and

remained somewhat of a biological dilettante. However, his book What Is

Life?, published in 1944, was influential to an entire generation of physicists

and biologists. Both James Watson (a biology student who wanted to be a

naturalist) and Francis Crick (a physicist who worked on magnetic mines)

switched careers to DNA science after reading Shrödinger’s book. Another

Nobel laureate, Sydney Brenner, even admitted to stealing a copy from the

public library in Johannesburg, South Africa.

Like Delbrück and Schrödinger, there is great variety in the biological

background of today’s computer scientists-turned-bioinformaticians. Some

of them have become experts in biology—though very few put on lab coats

4. Delbrück founded the famous phage genetics courses at Cold Spring Harbor Laboratory.
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and perform experiments—while others remain biological dilettantes. Al-

though there exists an opinion that every bioinformatician should be an ex-

pert in both biology and computer science, we are not sure that this is fea-

sible. First, it takes a lot of work just to master one of the two, so perhaps

understanding two in equal amounts is a bit much. Second, it is good to

recall that the first pioneers of DNA science were, in fact, self-proclaimed

dilettantes. James Watson knew almost no organic or physical chemistry be-

fore he started working on the double helix; Francis Crick, being a physicist,

knew very little biology. Neither saw any need to know about (let alone

memorize) the chemical structure of the four nucleotide bases when they

discovered the structure of DNA.5 When asked by Erwin Chargaff how they

could possibly expect to resolve the structure of DNA without knowing the

structures of its constituents, they responded that they could always look

up the structures in a book if the need arose. Of course, they understood the

physical principles behind a compound’s structure.

The reality is that even the most biologically oriented bioinformaticians are

experts only in some specific area of biology. Like Delbrück, who probably

would never have passed an exam in biology in the 1930s (when zoology and

botany remained the core of the mainstream biological curriculum), a typi-

cal modern-day bioinformatician is unlikely to pass the sequence of organic

chemistry, biochemistry, and structural biochemistry classes that a “real” bi-

ologist has to take. The question of how much biology a good computer

scientist–turned–bioinformatician has to know seems to be best answered

with “enough to deeply understand the biological problem and to turn it

into an adequate computational problem.” This book provides a very brief

introduction to biology. We do not claim that this is the best approach. For-

tunately, an interested reader can use Watson’s approach and look up the

biological details in the books when the need arises, or read pages 1 through

1294 of Alberts and colleagues’ (including Watson) book Molecular Biology of

the Cell (3).

This book is what we, as computer scientists, believe that a modern biolo-

gist ought to know about computer science if he or she would be a successful

researcher.

5. Accordingly, we do not present anywhere in this book the chemical structures of either nu-
cleotides or amino acids. No algorithm in this book requires knowledge of their structure.


