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Preface

Why We Wrote the Book

The subject of financial markets is fascinating to many people: to those who care about
money and investments, to those who care about the well-being of modern society, to those
who like gambling, to those who like applications of mathematics, and so on. We, the
authors of this book, care about many of these things (no, not the gambling), but what
we care about most is teaching. The main reason for writing this book has been our belief
that we can successfully teach the fundamentals of the economic and mathematical aspects
of financial markets to almost everyone (again, we are not sure about gamblers). Why are
we in this teaching business instead of following the path of many of our former students,
the path of making money by pursuing a career in the financial industry? Well, they don’t
have the pleasure of writing a book for the enthusiastic reader like yourself!

Prerequisites

This text is written in such a way that it can be used at different levels and for different groups
of undergraduate and graduate students. After the first, introductory chapter, each chapter
starts with sections on the single-period model, goes to multiperiod models, and finishes
with continuous-time models. The single-period and multiperiod models require only basic
calculus and an elementary introductory probability/statistics course. Those sections can
be taught to third- and fourth-year undergraduate students in economics, business, and
similar fields. They could be taught to mathematics and engineering students at an even
earlier stage. In order to be able to read continuous-time sections, it is helpful to have been
exposed to an advanced undergraduate course in probability. Some material needed from
such a probability course is briefly reviewed in chapter 16.

Who Is It For?

The book can also serve as an introductory text for graduate students in finance, financial eco-
nomics, financial engineering, and mathematical finance. Some material from continuous-
time sections is, indeed, usually considered to be graduate material. We try to explain much
of that material in an intuitive way, while providing some of the proofs in appendixes to
the chapters. The book is not meant to compete with numerous excellent graduate-level
books in financial mathematics and financial economics, which are typically written in a
mathematically more formal way, using a theorem-proof type of structure. Some of those
more advanced books are mentioned in the references, and they present a natural next step
in getting to know the subject on a more theoretical and advanced level.
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Structure of the Book

We have divided the book into three parts. Part I goes over the basic securities, organization
of financial markets, the concept of interest rates, the main mathematical models, and
ways to measure in a quantitative way the risk and the reward of trading in the market.
Part II deals with option pricing and hedging, and similar material is present in virtually
every recent book on financial markets. We choose to emphasize the so-called martingale,
probabilistic approach consistently throughout the book, as opposed to the differential-
equations approach or other existing approaches. For example, the one proof of the Black-
Scholes formula that we provide is done calculating the corresponding expected value.
Part III is devoted to one of the favorite subjects of financial economics, the equilibrium
approach to asset pricing. This part is often omitted from books in the field of financial
mathematics, having fewer direct applications to option pricing and hedging. However, it is
this theory that gives a qualitative insight into the behavior of market participants and how
the prices are formed in the market.

What Can a Course Cover?

We have used parts of the material from the book for teaching various courses at the Univer-
sity of Southern California: undergraduate courses in economics and business, a masters-
level course in mathematical finance, and option and investment courses for MBA students.
For example, an undergraduate course for economics/business students that emphasizes
option pricing could cover the following (in this order):

• The first three chapters without continuous-time sections; chapter 10 on bond hedging
could also be done immediately after chapter 2 on interest rates
• The first two chapters of part II on no-arbitrage pricing and option pricing, without most
of the continuous-time sections, but including basic Black-Scholes theory
• Chapters on hedging in part II, with or without continuous-time sections
• The mean-variance section in chapter 5 on risk; chapter 13 on CAPM could also be done
immediately after that section

If time remains, or if this is an undergraduate economics course that emphasizes
equilibrium/asset pricing as opposed to option pricing, or if this is a two-semester course,
one could also cover

• discrete-time sections in chapter 4 on utility.
• discrete-time sections in part III on equilibrium models.
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Courses aimed at more mathematically oriented students could go very quickly through
the discrete-time sections, and instead spend more time on continuous-time sections. A
one-semester course would likely have to make a choice: to focus on no-arbitrage option
pricing methods in part II or to focus on equilibrium models in part III.

Web Page for This Book, Excel Files

The web page http://math.usc.edu/∼cvitanic/book.html will be regularly updated with
material related to the book, such as corrections of typos. It also contains Microsoft Excel
files, with names like ch1.xls. That particular file has all the figures from chapter 1, along
with all the computations needed to produce them. We use Excel because we want the reader
to be able to reproduce and modify all the figures in the book. A slight disadvantage of this
choice is that our figures sometimes look less professional than if they had been done by a
specialized drawing software. We use only basic features of Excel, except for Monte Carlo
simulation for which we use the Visual Basic programming language, incorporated in Excel.
The readers are expected to learn the basic features of Excel on their own, if they are not
already familiar with them. At a few places in the book we give “Excel Tips” that point out
the trickier commands that have been used for creating a figure. Other, more mathematically
oriented software may be more efficient for longer computations such as Monte Carlo, and
we leave the choice of the software to be used with some of the homework problems to the
instructor or the reader. In particular, we do not use any optimization software or differential
equations software, even though the instructor could think of projects using those.

Notation

Asterisk Sections and problems designated by an asterisk are more sophisticated in math-
ematical terms, require extensive use of computer software, or are otherwise somewhat
unusual and outside of the main thread of the book. These sections and problems could
be skipped, although we suggest that students do most of the problems that require use of
computers.

Dagger End-of-chapter problems that are solved in the student’s manual are preceded by
a dagger.

Greek Letters We use many letters from the Greek alphabet, sometimes both lowercase
and uppercase, and we list them here with appropriate pronunciation: α (alpha), β (beta),
γ , � (gamma), δ, � (delta), ε (epsilon), ζ (zeta), η (eta), θ (theta), λ (lambda), µ (mu),
ξ (xi), π, � (pi), ω, � (omega), ρ (rho), σ, � (sigma), τ (tau), ϕ, � (phi).
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A Prevailing Theme: Pricing by Expected Values

Before we start with the book’s material, we would like to give a quick illustration here in
the preface of a connection between a price of a security and the optimal trading strategy of
an investor investing in that security. We present it in a simple model, but this connection is
present in most market models, and, in fact, the resulting pricing formula is of the form that
will follow us through all three parts of this book. We will repeat this type of argument later
in more detail, and we present it early here only to give the reader a general taste of what
the book is about. The reader may want to skip the following derivation, and go directly to
equation (0.3).

Consider a security S with today’s price S(0), and at a future time 1 its price S(1) either
has value su with probability p, or value sd with probability 1 − p. There is also a risk-free
security that returns 1 + r dollars at time 1 for every dollar invested today. We assume that
sd < (1 + r)S(0) < su . Suppose an investor has initial capital x , and has to decide how
many shares δ of security S to hold, while depositing the rest of his wealth in the bank
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account with interest rate r . In other words, his wealth X (1) at time 1 is

X (1) = δS(1) + [x − δS(0)](1 + r)

The investor wants to maximize his expected utility

E[U (X (1))] = pU (Xu) + (1 − p)U (Xd)

where U is a so-called utility function, while Xu , Xd is his final wealth in the case S(1) = su ,
S(1) = sd , respectively. Substituting for these values, taking the derivative with respect to
δ and setting it equal to zero, we get

pU ′(Xu)[su − S(0)(1 + r)] + (1 − p)U ′(Xd)[sd − S(0)(1 + r)] = 0

The left-hand side can be written as E[U ′(X (1)){S(1) − S(0)(1 + r)}], which, when made
equal to zero, implies, with arbitrary wealth X replaced by optimal wealth X̂ ,

S(0) = E

[
U ′(X̂(1))

E(U ′[X̂(1)])

S(1)

1 + r

]
(0.1)

If we denote

Z(1) := U ′(X̂(1))

E{U ′(X̂(1))} (0.2)

we see that the today’s price of our security S is given by

S(0) = E

[
Z(1)

S(1)

1 + r

]
(0.3)

We will see that prices of most securities (with some exceptions, like American options)
in the models of this book are of this form: the today’s price S(0) is an expected value of
the future price S(1), multiplied (“discounted”) by a certain random factor. Effectively, we
get the today’s price as a weighted average of the discounted future price, but with weights
that depend on the outcomes of the random variable Z(1). Moreover, in standard option-
pricing models (having a so-called completeness property) we will not need to use utility
functions, since Z(1) will be independent of the investor’s utility. The random variable Z(1)

is sometimes called change of measure, while the ratio Z(1)/(1 + r) is called state-price
density, stochastic discount factor, pricing kernel, or marginal rate of substitution,
depending on the context and interpretation. There is another interpretation of this formula,
using a new probability; hence the name “change of (probability) measure.” For example,
if, as in our preceding example, Z(1) takes two possible values Zu(1) and Zd(1) with
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probabilities p, 1 − p, respectively, we can define

p∗ := pZu(1), 1 − p∗ = (1 − p)Zd(1)

The values of Z(1) are such that p∗ is a probability, and we interpret p∗ and 1 − p∗ as
modified probabilities of the movements of asset S. Then, we can write equation (0.3) as

S(0) = E∗
[

S(1)

1 + r

]
(0.4)

where E∗ denotes the expectation under the new probabilities, p∗, 1 − p∗. Thus the price
today is the expected value of the discounted future value, where the expected value is
computed under a special, so-called risk-neutral probability, usually different from the
real-world probability.

Final Word

We hope that we have aroused your interest about the subject of this book. If you turn out to
be a very careful reader, we would be thankful if you could inform us of any remaining
typos and errors that you find by sending an e-mail to our current e-mail addresses. Enjoy
the book!

Jakša Cvitanić and Fernando Zapatero

E-mail addresses: cvitanic@math.usc.edu, zapatero@usc.edu


