
Introduction

1. Homotopy Groups
1.0

The problems with which we shall be concerned here are those of

the extension and classification of continuous maps . These may be

stated as follows .

EXTENSION PROBLEM ( E ) : Given spaces X , Y , a closed subset A of X ,

and a map I : A - + Y , does there exist a map g : X - + Y such that

glA = I ? If so , then g is called an extension off .

C LAS  S I F I C An  ON PROBLEM ( C ) : Given spaces X , Y , a closed subset A of

X , and mapsf ' , f " of X into Y such thatf ' I A = f " IA , does there exist a

map g : I X X ~ Y such that g ( O , x ) = f ' ( x ) , g ( l , x ) = f " ( x ) for x E: = X ,

and g ( t , x ) = f ' ( x ) = f " ( x ) for x E: = A ? ( I is the unit interval . ) If so ,

then g is called a homotopy off ' to f " relative to A . If A is the null set ,

then g is simply called a homotopy off ' tof " .

The classification problem is a special case of the extension problem .

For let X * = I X X , A * = 0 X XU 1 X X U I X A , and define

f : A * ~ Y by f ( O , x ) = f ' ( x ) , f ( l , x ) = f " ( x ) , f ( t , x ) = f ' ( x ) = f " ( x )

for x E: = A . Then an extension off over X * is exactly a homotopy off '

tof " relative to A .

On the other hand , under suitable hypotheses on the spaces involved ,

if f ' and f " are homotopic maps of A into Y , thenf ' can be extended

over X if f " can . In fact we have the homotopy extension theorem ,

which may be stated as follows .
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COROLLARY 1.0.2. Let (K ;L,Ko) be a finitely triangulable triad,

there is a map

{ g(X,O) = f (x)g(x,t) = cf>(x,t)
(x EL)
(x E::: Lo)

Define h:(Ko U L) X I --+ X by

h(x,t) = {Ct>(X,t) (x E::: Ko)g(x,t) (x EL)

Lo = Kon L. Let
j :(K,L) ~ (X, A)
<I>:(Ko X I, Lo X 1) ~ (X,A)

be maps with <jJ(x,O) = f (x) for x E: Ko. Then there is a map
'I/;:(K X I, L X J) ~ (X,A) such that

{ 1/ t ( X , O ) = f ( x )1/ t ( x , t ) = cf>( x , t )

PROOF . The pair ( L , Lo ) being

g : L X I - * A such that

(x E: K)
(x E: Ko)

triangulable,

THEOREM 1.0.1. Let X , Ybe spaces, A C X , fiX - 7 Y, F :A X / - 7 Y
maps such that flA = FIA X {O} . Then if either of the two sets of conditions 

stated at the end of the theorem are satisfied, there exists a map

G: X X / - 7 Y such that GIA X / = F, GIX X {O} = f . The possible
conditions are

I . X separable regular , A closed
Y an absolute neighborhood retract

or

II . (X , A) finitely triangulable
Y arbitrary

PROOF . Part I is standard . See, for instance, Hurewicz and Wallman
[B.1, p. 86 {Borsuk 's theorem )J. For Part II , we need the fact that a
finitely triangulable space is an ANR . See, for instance, Lefschetz
[B.2, p . 292J.

Let Y = A X I U X X {a} , F and j the identity . By the foregoing
remarkY is an ANR . It follows from Part I that there exists a map

G: XXI ~ Y

such that GI Y is the identity . Then the map G:X X I ~ Y given by

G(p) = (foG ) (p) G(p) E:= X X {a}
G(p) = (F 0 G) (p) G(p) E:= A X I

satisfies the conditions of the theorem .
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The pair ( K , Ko U L ) being triangulable , there is a map I/; : K X I ~ X

such that

{ 1/; ( X , o ) = f ( x ) ( x E: K )I/; ( x , t ) = h ( x , t ) ( x E: Ko U L )

Then 1/1 is the desired map .

We now give examples in which we demonstrate necessary conditions 

for the solubility of ( C ) and ( E ) . In general , these conditions will

be far from sufficient , as will be demonstrated later .

THEOREM 1 . 0 . 3 . Let E be an n - cell , S its boundary , and let f : S - 7 Y .

Then a necessary condition that f be extendable to a map giE - 7 Y is

that the induced homomorphism f * : H n - i S ) - 7 H ni Y ) be identically

zero .

PROOF . Let i : S ~ Ebe the inclusion map . Ifg exists , thenf = go i ,

and hence f * = g * 0 i * . But i * is identically 0 , since Hn - ICE ) = O .

Q . E . D .

REMARK . It is easy to see that S may be replaced by any subset of E ,

and n - 1 by any integer greater than O .

THEOREM 1 . 0 . 4 . Under the same conditions as those of Theorem 1 .0 . 3 ,

let f ' , f " : s - 7 Y . Then , in order for f ' and f " to be homotopic , it is

necessary that the induced maps f ~ and f ' : on the homology groups be

equal .

PROOF . Since / ' and / " are homotopic , the maps I ; and I , ' induced

by I ' and I " , respectively , on the singular complex of S are chain -

homotopic . But it is well known that chain - homotopic maps on a

complex induce the same map on the homology groups . Q . E . D .

REMARK . The same remark holdsfor Theorem 1 . 0 . 4 asfor Theorem 1 . 0 . 3 .

At present , ' the foregoing problems have been solved only in a few

special cases . If either X or Y is a cell , the problem of classifying the

maps of X into Y is trivial . But if X is so simple a space as an n - sphere ,

the classification problem is far from solved , although great progress

has been made in the last few years . The attempt to solve the latter

problem ( X = Sn ) led Hurewicz to define the homotopy groups , which

may be thought of as higher dimensional generalizations of the fundamental 

group . In this chapter we describe the basic properties of the
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1.1 Function Spaces [7, 16J

LEMMA 1.1.1.

   Then 3 Ci such that

i =

PROOF.

Now since A is a subbasis, we ly have U = U Va, where eacha

i =

homotopy groups ; later we shall show how they are used in attacking

the general extension and classification problems .

Let X and Y be topological spaces .

DEFINITION . N ( A , B ) = { III : X ~ Y , f ( A ) C B } for A C X , B C Y .

DEFINITION . yx = space of all maps ( continuous functions ) f : X ~ Y ,

with the smallest topology containing all sets N ( C , U ) , C compact and

contained in X , U open and contained in Y . This is called the compact -

open topology .

Let X be Hausdol : fJ ; Oi open C X , i = 1 , . . . , n ;

n

C compact CO = U Oi

i = l

n

C = U Ci

i = l

Ci closed C Oi

1 . . . n, , .

Standard . See Lefschetz [ B . 2 , p . 26 ( 33 . 4 ) ( a ) ] .

LEMMA 1 . 1 . 2 . Let A be a subbasis for the topology of Y . If X is Hausdorff ,

then the sets N ( C , U ) , C compact , U E: : : A , form a subbasis for the topology

of yx .

PROOF . It suffices to show that , for eachfand N ( C , U ) , C compact ,

U open , fEN ( C , U ) , there exist compact sets Ci and members Ui of A ,

1 . . . m with, "

mIEn N ( Ci , Ui ) C N ( C , U )

i = l

Va is a finite intersection of elements of A . Now f ( C ) C U , so

C Cf - l ( U ) = f - l ( U Va ) = Uf - l ( Va ) . Since C is compact , it follows

a a
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U
' C ; $

.
. . .

c = Ci

Let V cr, =

Ci Cf - l ( Vai ) and

Ui , l n . . . n Ui , ki ' Ui , jE = : A . Then

n ki

IE = : nn N ( Ci , Ui , j ) C N ( C , U )

i = lj = l

For f ( Ci ) C Vai C Ui , j , i . e . , IE = : N ( Ci , Ui , j ) ; and if g E = : N ( Ci , Ui , j ) ,

then g ( Ci ) C Ui , j , g ( Ci ) C n Ui , j = Vai C U . But the Ci exhaust C ;

so g ( C ) C U , g E = : N ( C , U ) . This completes the proof .

Let X , Y , Z be topological spaces . Then , if f takes X into ZY , we

denote byf * that function from X X Y into Z which takes ( x , y ) into

f ( x ) ( y ) .

THEOREM 1 . 1 . 3 . a . f * E = : ZXXY = } f E = : ( ZY ) X

b . f E = : ( ZY ) X , Y locally compact and Hausdorff

f * E = : ZXXY

PROOF . a . Suppose f * E = : ZXXY . It suffices to prove that if x E = : X

andf ( x ) E = : N ( C , U ) , with C compact and U open , then 3 aneighborhood 

V of X such that f ( V ) C N ( C , U ) . Now if yE = : C , we have

f * ( x , y ) = f ( x ) ( y ) E = : f ( x ) ( C ) C U ; hence 3 neighborhoods V y of x

and W y of y such that f * ( V y X W 1 / ) C U . The sets W y cover C , and

therefore there exist Y1 , . . . , Yn E = : C with C C W Yl U . . . U W y . . ' Let

V = V Yl n . . . n V y . . . Then if x ' E = : V , yE = : C , we have , for some i ,

yE = : W Yi . Also x ' E = : V C V Yi and therefore

f * ( x ' , y ) E = : f * ( V Yi X W Yi ) C U

Thusf * ( V X C ) C U , f ( x ) C N ( C , U ) . Q . E . D .

b . Suppose , on the contrary , that f E = : ( ZY ) X . Let x E = : X , yE = : Y ,

and let U be a neighborhood of f * ( x , y ) . Since f ( x ) E = : ZY and Y is

locally compact Hausdorff , there exists a compact neighborhood Wof

y such that f ( x ) ( W ) C U ; i . e . , f ( x ) E = : N ( W , U ) . Since f is continuous

and N ( W , U ) is a neighborhood off ( x ) , there exists a neighborhood V

of x such that f ( V ) C N ( W , U ) . Then V X W is a neighborhood of

( x , y ) andf * ( V X W ) C U . Q . E . D .

THEOREM 1 . 1 . 4 . If X and Yare Hausdorff and Y is locally compact ,

then the correspondence f - 7 f * is a homeomorphism of ( ZY ) x onto ZXXY .

PROOF . By Theorem I . I . 3 , f - 7 f * is a 1 : 1 correspondence < / > of ( ZY ) x

onto ZXXY . Now IE = : N ( A , N ( B , U ) ) if and only iff * E = : N ( A X B , U ) .

Hence < / > maps subbasic open sets onto open sets and therefore < / > - 1 is

continuous . Conversely , letfE = : ( ZY ) X and let C be a compact subset

of X X Y , U an open subset of Z , such that f * E = : N ( C , U ) . Let A and



B be the projections of C into X and Y, respectively . If (x ,y) E: C, then
there exist neighborhoods V X,lI of x relative to A , and W X,lI ofy relative
to B, such that f *( V X,lI X W X,lI) C U. Now we may assume without
loss of generality that V X,lI and W x,y are compact ; for A and Bare
compact Hausdorff spaces, and thus are regular . Thus even if V x,y and
W x,y are not closed, they contain closed neighborhoods of x and y ,
respectively ; and these will be compact , since closed subsets of compact
spaces are compact . Now

C C WX,lI)

intersecting the appropriate neighborhoods . Part 1 follows from the
fact that
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u ( VX,y X
(x ,y ) E: C

Since C is compact , it follows that
n

C C U [ V(Xi'Y;) X W(Xi,YiJ, (Xi,Yi) E: Ci ,
i = l

Then if we can show

n

1. IE : nN ( V Xi'Yi,N( W Xi,Yi' U) )
i = l

and
n

2. g En N( V Xi,Yi,N( W Xi,Yi' U) ) =:;. g * E: N ( C, U)
i = l

i = 1, . . . , n

i = 1, . . . , n

1 . . . n, ,

1 . . . n
, ,

i .e.,

i .e.,
i =

i =

and Part 2 follows from

g EN( V Xi,Yi,N( W Xi,Yi' U))
=? g* E: N( V Xi,Yi X W Xi,Yi' U)
=? g*(V Xi,Yi X W Xi,Yi) C U
=? g*(U V Xi,Yi X W Xi'Y) C Ui

=> g*( C) C U => g* E::: N( C, U) . Q.E.D

then the proof is complete ; for then the right side of Part 1 is a neighborhood 

off , and by Part 2 is sent into the given neighborhood of

~ ( f ) by ~ , and so <t> is continuous . If the given neighborhood were

m

nN ( Ci , Ui )
i = l

then we could have obtained the corresponding neighborhood off by

f *(UXiIYi X W XilYJ C U,

f * E: N(V Xi I Yi X WXi,Yi'U)'

IE: N(V Xi I Yi,N(W Xi I Yi' U)

Z. = 1 . . . n, ,

i = I , . . . , n

i = 1, . . . , n
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THEOREM 1 . 1 . 5 . ( fiX ) ~ f ( x ) is a map of Yx X X into Y , if X is

locally compact Hausdorff .

PROOF . Let </ > : YX ~ yx be the identity map , which is certainly

continuous . Then </ > * ( f , x ) = </ >( f ) ( x ) = f ( x ) . Q . E . D .

THEOREM I , I , 6 , Suppose Bi are closed subsets of a topological space X ,

Z' = I ' " n and that, "

n

U Bi = X

i = l

Suppose further that we are given n continuous mappings fi : Bi ~ Y ,

with / i I Bin Bj = hlBi n Bj for all i , j . Then if we define f : X ~ Y by

J l Ei = Ii , we have that f is continuous .

PROOF . Standard .

THEOREM 1 . 1 . 7 . Let X and Y be spaces , Z a locally compact Hausdorff

space , and let { AI , " . , An } be a closed covering of Z . Let Oi : Ai ~ X be

maps . Let

H = { ( i I , " . , In ) E : : YX X . . . X YXl / i 0 8ilAi ( ) Aj = / i 0 8jlAi ( ) Aj

i , j = 1 , . . . , n }

Define 4 > : H - ? yz by

4 > ( / 1 , . . . , fn ) ( z ) = h ( e ~( z ) ) , z E : Ai

Then 4 > is continuous .

PROOF . By Theorem 1 . 1 . 3 , it suffices to prove that <t > * : H X Z ~ Y

is continuous . For this , it suffices by Theorem 1 . 1 . 6 to prove that

<t > * IH X Ai is continuous . But this is the composite of

( / I , ' . . , fn , z ) ~ ( fi , Z ) ~ ( fi , Oi ( Z ) ) ~ fi ( O ~{ Z ) )

The first function is continuous because it is a projection ; the second

because Oi is ; and the third by Theorem 1 . 1 . 5 .

PROBLEM 1 .

Let X , Y , Z be spaces . Then

I . For eachfE : ZY , g - + fog is a map of yx and Zx .

2 . For eachf E : yx , g - + go lisa map of ZY into Zx .

3 . If Yis locally compact and Hausdorff , then ( f , g ) - + go . fis a map

of yx X ZY into zr .
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1.2 Paths and the Fundamental Group

Let X be a space and let ! = { tE : = RIO ~ t ~ I } . A path in X is a

mapf : ! - 7 X ; lis said to start atf ( O ) and to end atf ( I ) . A loop in X

is a pathfsuch thatf ( O ) = f ( I ) ; the loopfis said to be based at the

pointf ( O ) = f ( l ) of X .

Let fig be paths in X such that f ( l ) = g ( O ) . We define a new path

f . gby

{ f ( 2t ) ( 0 : : ; t : : ; ! )( f . g ) ( t ) = g ( 2t - I ) ( ! : : ; t : : ; I )

Clearly f . g is a path starting atf ( O ) and ending at g ( I ) . We also define

a path 1 by

l ( t ) = f ( 1 - t ) ( tE : = / )

lisa path fromf ( l ) tof ( O ) .

THEOREM 1 . 2 . 1 .

1 . ( f , g ) - + fig is a map of F = { ( fig ) E : = XI X XllfCI ) = g ( O ) } into XI .

2 . f - + lisa map of XI into XI .

PROOF . The Proof follows from Theorem 1 . 1 . 7 , with Y = X , X = I ,

Z = I .

1 . Here we set Al = [ O , ! J , A2 = [ ! , IJ , er ( x ) = 2x , e2 ( X ) = 2x - 1 .

2 . Here we set A = [ O , IJ , e ( x ) = 1 - x .

For x E : X , let ex be the constant map of I into the point x ; ex is

a path from x to x . Iff is a path from x to y , then J is a path from

y to x . Iffis a path from x to y and g a path from y to z , thenf . g is a

path from x to z . Let C ( X , x ) be the set of points of X which can be

joined to x by a path ; C ( X , x ) is called the path component of x in X .

The path components form a decomposition of X , in virtue of the

foregoing remarks . We say that X is path wise - connected or O - connected

if and only if C ( X , x ) = X for some ( and therefore for all ) x E : X .

Define x = y if and only if 3 a path in X from x to y .

We readily verify the following Theorem .

THEOREM 1 . 2 . 2 .

1 . C ( X X Y , ( x , y ) ) = C ( X , x ) X C ( Y , y ) .

2 . Iff : X ~ Y is a map , then f ( C ( X , x ) ) C C ( Y , f ( x ) ) .

Let F ( X , x , y ) be the space of all paths in X from x toy . Ifj , g E : : F ( X , x , y )

then f = = g if and only if g E : : C ( F ( X , x , y ) , f ) . Thus f = = g if and only

if 3 a map h : I X I ~ X such that



h(s,O) = / (s)
h(s, l ) = g(s)
h(O,t) = ",\"
h( lit ) = y

We have the following Corollary to the continuity of multiplication
and inversion .
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COROLLARY 1.2.3.

PROOF.
1. We have! '

g'
By Theorem 1

I . 1/ / = / ' andg = g', then/ .g = / ' .g'.
2. 1/ / = / ' then/ = / ' .

E: C(F(X ,x ,y),f )
E: C(F(X ,y ,z),g)
.2.2 ( 1), we have

( f ' , g ' ) E: : : C ( F ( X , x , y ) X F ( X , y , z ) , ( jig  

Suppose we denote by 1/ 1 the map in Theorem 1 . 2 . 1 ( 1 ) . Then

1/ 1 ' = 1/ IIF ( X , x , y ) X F ( X , y , z ) is certainly continuous , and we have

1/ ; ' : F ( X , x , y ) X F ( X , y , z ) - 7 F ( X , x , z )

Thus from Theorem 1 . 2 . 2 ( 2 ) it follows that

f ' . g ' = 1/ ; ( f ' , g ' )

= 1/ ; ' ( f ' , g ' ) E: : : 1 / ; ' ( C ( F ( X , x , y ) X F ( X , y , z ) , ( jig ) ) C C ( F ( X , x , z )

1fi ' ( f , g ) ) = C ( F ( X , x , z ) , j ' g ) . Q . E . D .

2 . This follows in a similar manner from Theorem 1 . 2 . 1 ( 2 ) and Theorem 

1 . 2 . 2 ( 2 ) . Theorem 1 . 2 . 2 ( 1 ) is not used , although Theorem 1 . 2 . 2 ( 2 )

was needed in the proof of Theorem 1 . 2 . 3 ( 1 ) .

Let 7rl ( X , X , y ) be the set of path components of F ( X , x , y ) . We shall

abbreviate F ( X , x , x ) and 7riX , x , x ) to F ( X , x ) and 7riX , x ) . By the

Corollary , we see that the operations on paths induce operations on

the equivalence classes : If a E : : 7rl ( X , X , y ) , ( 3 E : : 7riX , y , z ) , then we may

define without ambiguity

a - { 3 = C ( F ( X , x , z ) , f - g )

a - I = C ( F ( X , y , x ) , f )

for anyf E: : : a , g E: : : { 3 -

To prove that the operations above have reasonable properties , we

prove the following Theorem -
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THEOREM

We verify easily that </>(Jig,h,O) = (fig ) .h and </>(Jig,h,I) = f .(g .h).
To prove continuity let </>1: G ~ (XI)I be the function defined by </>

(i.e., </> = </>r), and let 0' be the natural homeomorphism of (XI)I onto
XIXI. Then it is sufficient to prove 0' 0 </>1. G 7 XIXI is a mapping.

We now apply Theorem 1.1.7, with Y = X, Z = I X I , Y = I ,

Since it is easily verified that the conditions of Theorem 1.1.7 are
satisfied, it follows that 0" 0 <PI is continuous. Thence, since 0" is a homeo-
morphism, it follows that <PI is continuous, and therefore <p. Q.E.D.

HOMOTOPY GROUPS

1.2.4.

1. (f,g,h) ~ (fig ) .h
homotopic maps of a
into XI.

and (j ,g,h) ~ f .(g.h) are
subset G of Xl X Xl X Xl

�

PROOF.
I . Let G = {(jig ,h)lf (l ) = g(O) and g(l ) = h(O)} . Define a map
<I> : G X I ~ Xl by

f (ltr ) 0 ~ s ~ It.t
cf>(f,g,h,tl(s) = g(4s - t - 1) 1-:f:-1 < s < ~~4 - - 4

h (4S - t - 2) 2 + t2- t ~ ~s~1

{(S,t) E:::: / X /10 < s < 1-:l:....! l- - 4 J

{(Sit) E:::: / X / I !--.J:-1 < s < ~ }4 - - 4

{(S,t) E:::: / X / I ~ ::;: s ::;: I}

Al =

A2

A3

4s01 = 1-+/
82 = 4s - t - 1

4s - t - 283 = 2 - t

2. f ~ f .ef(l) is homotopic to the identity map of
XI .

3. f ~ f .f and f ~ ef(O) are homotopic maps of XI
into XI .



1.1.7 as previously shown.
3. Define x : XI X 1 -7 XI by

Clearly xCf,O) = I 'j , xCf, I) = e/CO). Continuity again follows from
Theorem 1.1.7.

11PATHS AND THE FUNDAMENTAL GROUP

2. Define if;: Xl X I -7 Xl by

  f f ( 1

(-1!-) 1 + 1f 1+1 05.s5.-2
(I) !li < s < 12 - -

Clearly 1/;(/,0) = f . ef(l), 1/;(/' 1) = f. Continuity follows from Theorem

t
O~s~2

1~<S~-22-
2- t

~<S~ 22-
~ <s~ 12 - f f

COROLLARY 1.2.7. 7rl(X,X) is a group.

COROLLARY 1.2.8. Jfx and y can be joined by a path in X, then il"l(X,X) ~
il"l(X,y).

if;*(J,t)(s) =

COROLLARY 1 . 2 . 6 . The operations of multiplication and inversion of

homotopy classes have the following properties .

I . Each a E: : 7r1 ( X , X , y ) has a left identity Ex and a right identity Ey .

2 . Each a E: : 7r1 ( X , X , y ) has an inverse a - I with aa - 1 = Ex , ~ - I ' a = Ey .

3 . If a E: : 7riX , x , y ) , (:3 E: : 7riX , y , z ) , ' YE : : 7r1 ( X , Z , W ) , then ( a . (: 3) . ' Y =

a . ( (: 3 . ' Y) .

COROLLARY 1.2.5. The mapf -? ef(o).fis homotopic to the identity. The
mapsf -? I .fandf -? ef(l) are homotopic.

..........." " " A
PROOF. efCO).f = f .efCO) andf .f = f .f.
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LEMMA 1.3.2.

1.3 Grouplike Spaces

Let X be a space, e E: X. We say that (X,e) is an H-space if and only
if 3 a map }J.:(X X X,(e,e)) - + (X,e) such that the maps x - + Jl(x,e) and
x - + Jl(e,x) are homotopic relative e to the identity map (X,e) - + (X,e). X
is an I H-space if and only if Xis an H-space and 3 a mapv:(X,e) - +(X,e)
such that the maps x - + Jl(x,v(x)) and x - + Jl(v(x),x) are homotopic
re I e to the constant map of X into e. X is an AIH -space if and only if
X is an IH -space and the maps (x,y,z) - + Jl(x,Jl(y,z)) and (x,y,z) - +
Jl(Jl(x,y),z) are homotopic re I (e,e,e). (Note: We shall usually abbreviate
Jl(X,Y) to x . y, v(x) to AI .)
REMARK 1.3.0. A topological group is an AIH -space. If X is any space,
x E: X, then the space F'(X,x) is an AIH -space under Jl(f . g) = f . g,
v( f ) = f , in the sense of Section 2.

If X is an H-space, we may use the multiplication in X to define a new
multiplication of paths. Let fig be paths in X, and let f # g be the path
given by

(f # g)(t) = f (t) . g(t)

X be an H-space. Then (f,g) - + f # g is a map ofLE  Mi \ ! A 1 . 3 . 1 . Let

XI X XI into XI .

PROOF . It suffices by Theorem 1 . 1 . 3 to show that ( Jig , t ) ~

( f # g ) ( t ) = f ( t ) . g ( t ) is continuous . This can be decomposed as follows :

( Jig , t ) ~ ( f ( t ) , g ( t ) ) ~ f ( t ) . g ( t )

The first is continuous because a map into a product space is continuous

if and only if each of the projections is continuous ; i . e . , we must prove

a . ( J , g , t ) ~ f ( t ) is continuous

b . ( J , g , t ) ~ g ( t ) is continuous

The function in Part a is the composition of ( Jig , t ) ~ ( J , t ) ~ f ( t ) . The

first is continuous because it is a projection ; the second by Theorem

1 . 1 . 5 . Similarly Part b is true . As for the mapping ( f ( t ) , g ( t  ) ~ f ( t ) . g ( t ) ,

this is continuous by the definition of H - space .

Suppose X is an H - space , IE : XY ; define map f ' , f " by

f ' ( t ) = f ( t ) . e

f " ( t ) = e . f ( t )

HOMOTOPY GROUPS

For let a E: 7rl( X ,X ,y ) . For (:JE : 7rl( X ,X) let </J((:J) = a - l (:Ja ; for

' YE: 7rJX ,y ) let 1ft( ' Y) = a ' Ya- l . Then </J and 1ft are homomorphisms inverse 
to each other .
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THEOREM 1.3.3. Let X be an H -space, F = F(X ,e) . Then the maps

(f . g) - 7f .g

(fig ) - 7 gif

(fig ) - 7 f # g

are homotopic maps of F X F into F.
PROOF. Define <t>:F X F X I ~ Fby

J f(2s(1 - t)).g(2st) 0 ,:::;: s ,:::;: !cj>(f,g,t)(s) = V(1 - 2t(1 - s)).g(2(s + t - Sf) - 1) ! :$: s:$: l

cj>(J, O)(s) = {f(2s).g(O) =f(2s).e =f '(2s) 0:::;: s:::;:!g, f(l)g(2s - I) = e.g(2s - I) = g"(2s - I)
so that cj>(Jig,O) = f '. g". Also

! ~ s~ l

</>(J,g,! )(s) = / (s). g(s)
so that </>(f,f?;,! ) = f # g. Finally

(! ::; s ::; 1)<J>(f,a l)(s) = {f(0)g(2S) = e. g(2s) = g"(2s) (0::;: s ::;: !)0' f(2s - l)g(l) =f(2s - l).e =f'(2s - 1)

Then f - ? f ' and f - ? f " are maps of Xl into Xl which are homotopic
to the identity .

PROOF . Let <t>: X X I ~ Xbe a map such that

<t>(x ,O) = x

<t>(x , l ) = x .e

<t>(e,t) = e

To prove / ~ I ' homotopic to the identity define <1>. XI X I ~ XI by

<I>(/ , t)(s) = <t>(f (s),t)

Then <1)(/ , 0) = / , <t>(/ , I ) = I ' . To show <I> continuous it suffices to show
<1>* : XI X I X I ~ X is continuous . This can be broken up into

(J, t,s) - 7 (f (s),t) - 7 <f;(f (s),t)

and both steps are continuous . The proof for f - 7 f " is similar .

There are several verifications which have to be made .

I . Consistency : ifs = ! , the first line givesf ( 1 - t ) g ( t ) and the second

givesf ( 1 - t ) g ( t ) .

2 . cf > ( f , g , t ) E : : : F : s = 0 givesf ( O ) g ( O ) = e . e = es = 1 givesf ( l ) g ( l ) =

e . e = e .

3 . Continuity : routine ( by now ) .

Now note that



<t>(x,O) = e.x

<t>(x,l ) = x

<t>(e,s) = e

The existence of cf> is assured by the fact that X is an H -space. Now
define

<I>: F X I ~ F

by
~(f , s)(t) = cf>(f (t),s)

<I> is certainly a mapping , and we have

the identity map of F ~ F.
For let ~:X X I ~ X with

14 HOMOTOPY GROUPS

so that <t>( / , g , l ) = g " ' IlLet ~ : XI X 1 - 7 Xl , <I> : XI X 1 - 7 xz be maps

such that

~ ( / , O ) = I <1>( / , 1 ) = I '

~ ( f , O ) = f ~ ( f , l ) = f "

Then the mapping ' ./I : F X F X I ~ F

given by './I( Jig , t ) = ~ ( J , t ) . <I>( g , t )

provides a homotopy from ( fig ) ~ f . g to ( fig ) ~ f ' . g " . Similarly

( f , g ) ~ g .fand ( fig ) ~ g " .f ' are homotopic . But we have shown that

( fig ) ~ I ' . g " and ( f , g ) ~ g " .f ' are both homotopic to ( fig ) ~ f # g .

From this and the transitivity of homotopy the result follows .

COROLLARY 1 . 3 . 4 . Let X be an H - space . Then if IE : : a E: : 7rl ( X , e ) and

g E: : fl E: : 7rl ( X , e ) , thenl # g E: : a ' fl .

COROLLARY 1 . 3 . 5 . Let X be an H - space . Then 1!"l ( X , e ) is abelian .

THEOREM 1 . 3 . 6 . Let X be an AIH - space , F = F ( X , e ) . Denote blithe

member of F given by j ( t ) = ( f ( t ) ) - I . Then F is an AIH - space under

Jl ( fig ) = f # g , p ( f ) = je = e : , where e : = the constant map of I into e .

PROOF . I . , u : FXF ~ Fiscontinuous .

This follows from Lemma 1 . 3 . 1 .

2 . , u( e ~, e ~) = e ~.

For ( e ; # e ; ) ( t ) = e ; ( t ) . e ; ( t ) = e . e = e = e ; ( t ) . Thus e ~ # e ; = e ; .

3 . The mapsf ~ , u( e ; , f ) and f ~ , u( fie ; ) are homotopic relative e ; to
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= e

THEOREM 1.3.8. Let (X,ex), ( Y,ey) be AIH-spaces, f :(X,ex) ~ (Y,ey)
an H-space homomorphism. For x E::: X, definef *(C(x)) = C(f (x)). Then
f * :7ro(X,ex) ~ 7ro(Y,ey) is a homomorphism.

PROOF. We first show thatf * is well defined. Let x' E::: C(x). Then
clearly f (x') E::: C(f (x)), since f is continuous. So f * is indeed well
defined. To show it is a homomorphism it is only necessary to show

a. f *(C(ex)) = C(ey)
b. f *( C(x) + C(x')) = f *( C(x)) + f *( C(x' )

It follows that = e : ( t )

~ ( J , O ) = e : # f

~ ( f , l ) = f

q , ( e ~ , s ) = e ;

similarly for f ~ p . ( f , e ; ) .

4 . v : F ~ F is continuous .

The proof is similar to that of Lemma 1 . 3 . 1 .

The rest of the conditions may be proved in a manner similar to that

of Part 3 .

DEFINITION . Let ( X , ex ) , ( Y , ey ) be H - spaces , f : ( X , ex ) ~ ( Y , ey ) . Then

lis said to be an H - space homomorphism if and only if JJ, ( f ( XJ , f ( X2 ) ) =

f ( JJ, ( xi , X2 ) ) .

THE  OR  El \ ~ 1 . 3 . 7 . Let ( X , ex ) be an AIH - space , 7ro ( X , ex ) the set of its

path components , C ( x ) the path component of x in X . Then 7ro ( X ) is a

group under the operation C ( x ) + C ( y ) = C ( , u ( x , y ) ) , where C ( x ) is the

path component of x .

PROOF . Evident . The identity is C ( ex ) .
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Part a follows from the hypothesis ,
follows :

while Part b may beshov..'ll as

. n
In = {(tl,' . ' ,tn) E: Inl n (tJ{1 - tj)) = O}j=1

(i.e., we simply demand that at least one of the coordinates be either
one or zero for n > 0) and 10 = cp, the null set. The boundary of In
in Euclidean n-space is jn. Clearly In = In- l X I . Furthermore, we have
the following Remark.

REMARK 1.4.1. jn = jn- l X [ U [n- l X j .
PROOF. Obvious.

n ~ o.

DEFINITION . Let X be a space , x E: : X . Then

1 . Fn ( X , x ) = { IE : : XI " ' f ( in ) = { x } } , n > 0

FO ( X , x ) = X

2 . e ~ = the constant map of In into x , n > 0

e ~ = x

3 . 7rn ( X , X ) = the set of path components of Fn ( X , x ) ,

LEMMA 1 . 4 . 2 . Ifn ~ 1 , then Fn ( X , x ) is homeomorphic with

Fl ( Fn - l ( X , x ) , e ~ - l )

under a mapping } t 'hich takes e ~ onto e : : " - l .

1.4 Homotopy Groups [14]

Denote by In, as usual, the set of real n-tupies all of whose coordinates 
are in the interval 0 ::;: t ::;: 1 for n > 0, and 10 = {O} . Define

f *( C(x) + C(x'  = f *( CJ.L(x,x'  = C(f (J.L(x,x' ) = C(J.L(f (x),f (x' )

= C(f (x  + C(f (x'  = f *( C(x  + f *( C(x' 

THEOREM 1.3.9. Let (X,e"y), ( Y,ey) be AIH-spaces,f :(X,ex) -* ( Y,ey).
Then according as f is a homeomolphism onto or onto, f * :?ro(X,ex) - *
?rO( Y,ey) is an isomorphism onto or onto.

PROOF. If / is a homeomorphism onto it cannot take two path
components into one. So / * must have kernel zero. On the other hand,
let/ be onto. Then every path component of Y must be represented in
/ (X) , so that/ * is onto. This completes the proof. Note that in order
for / * to be an isomorphism, it is not sufficient that / be 1: 1 onto or
even a homeomorphism into. Counterexamples are easy to construct.



tn ~ !
1) tn ~ !

(- / )(t1' . . .,tn) = / (t1' . . .,tn- I,1 - In)

PROOF. By induction on n. For n = 1 it is a consequence of Remark
1.3.0. (In fact, it is Remark 1.3.0.) For n > 1 it follows immediately
from the induction hypothesis, Theorem 1.3.6 and Lemma 1.4.2.

THEOREM 1.4.5. Let

HO1VOTOPY GROUPS 17

(/+ g)(tl'. . . ,In) = J l(t1,. . . ,tn-l,2tn)Wtl'. . . ,tn-l,2tn -

f E: a E: 7rn(X,X)
g E: ,8 E: 7rn(X,X)

Then f + g E: a + ,8. That is, 7rn(X,X) = 7ro(Fn(X,x),e~), as groups.

PROOF. This is a consequence of the homeomorphism between XIXI"-1
and (XI"-I)l . For, if

ct>*:[ X [n- l ~ X, ct>*(in) = (x)

then from Lemma 1.4.1, we have ct>*(i X [ n- l) = (x), that is,
cp(i )(/n- l) = (x)

that is,
cp(i ) = e~- l ( I)

On the other hand, again from Lemma 1.4.1, we ha\'e

<1>*(/ X jr~- l) = (x)
that is

<I>(/ )(jr~- l) = (x)
that is

q,(l ) E::: Fn- l(X,x) (2)
From Expressions 1 and 2, we obtain that the image of Fn(X,x) is in
Fl(Fn- l(X,x),e~- l). Similarly we may prove that the preimage of
Fl(Fn- l(X,x),e~- l) is in Fn(X,x). It remains only to prove that e~ goes
into e:z"-l. But this is easy to verify. This completes the proof.

COROLLARY 1.4.3. For n ~ 1, Fn(X,x) is an AIH-space with ,u(fig) =
j + g and 11(/ ) = - f given by

COROLLARY 1.4.4. For n :?:. 1, the homeomorphism of Lemma 1.4.2 induces 
a 1: 1 correspondence between 7rn(X,X) and 7rl(Fn- l(X,x),e~- I).

DEFINITION. We make 7rn(X,X) into a group by demanding that the
correspondence of Corollary 1.4.4 be an isomorphism. 7rn(X,X) is called
the nth homotopy group of (X, x).



THEOREM 1.4 .7 .

a homeomorphism

PROOF .

by induction

18 HOMOTOPY GROUPS

THEOREM 1.4.6.
PROOF.

PROOF . Let f * E: Fl (F 't- I(X ,x),el - I) correspond to f under the
homeomorphism of Lemma 1.4.2 and a * E: 7rl(Fn- I(X ,X),e~- I) to a
under the correspondence of Corollary 1.4.4. Thenf * E: a*, g* E: {:3*.
By Corollary 1.3.4, we havef * # g * E: a* + (:3*. So by the Definition
of 7rn(X ,X), we have f * # g* E: (a + (:3) *. Now

(/ * # g*)(tJ (t2' . . . ,In) = U *(tJ + g*(tJ )(t2' . . . ,In)

(here the + is in the AIH -space Fn- I(X ,x 

- {f*(tJ(t2'. . . ,2tn) tn ::;: !- g*(tJ (t2' . . . ,2tn - I ) t ~ !

= Jf (tl, . . .,2tn) In ::;: !
~ (tl' . . .,2tn - I) tn ~ !

= U + g)(tl ' . . . ,In)

(here the + is in the AIH -space Fn(X ,x 

= U + g) *(tJ (t2' . . . ,In)

It follows that f * # g* = U + g) *. Therefore U + g) * E: (a + (:3) * .
Since * is I : I , the result follows .

7rn(X ,x) is abelianfor n ~ 2.

Follows from the definition and Theorem 1.3 .5 . A more

direct proof that 7rn(X ,X) is abelian is suggested by the picture :

rn ~ ~ H ~ ~ rn
It is left as an exercise to the reader to write down formulas for the

homotopies suggested by the picture .

Fn+k(X ,x) is homeomorphic with Fk(Fn(X ,x),e~) under
h . h d n+ k . ekW lC sens ex mto ee: R.

For k = I this is Lemma 1.4 .2 . The theorem now follows

from the fact that the spaces

Fk(Fn(X ,x),e~)

FI (Fk- l(Fn(X ,x),e~),e~; 1)

FI (Fn+k- I( X ,x),e~+k- l )

Fn+k( X ,X)

are homeomorphic , the base points behaving correctly .
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LEMMA 1.4.8.

The homomorphic

Let X , Y be spaces,f , f ' : X ~ Y,f == f ' . Then C(f (x)) =

Obvious .

Let X , Ybe spaces,f , f ' : (X ,x) ~ ( Y,y),f == f ' relative

Follows from Problem 1 and Lemma 1.4 .8 .

THEOREM 1.4 . 12 . Let X , Y ,Z be spaces ,

f : (X ,x) ~ ( Y,y), h : ( Y,y) ~ (Z ,z)

Then (h of ) * = h* of * .

PROOF . (h  f ) *(C(g)) = C(h ofo g)

= h* C(f 0 g)

= h* of *(C(g))

1.5 The Operations of 7rl on 7rn [2, 21]
DEFINITION. Gn(X) = U Fn(X,x)xE:X

Gn(X) is a subs pace of XI"

Let / :(X ,x) - 7 ( Y,y) . Then

! :(Fn(X,x),e~) - 7 (Fn( Y,y),e~)

is an H -space homomorphism, where

! (g)(tl ' . . . ,In) = / (g(tl, . . . ,In))

PROOF . Continuity follows from Problem 1( 1) .
property is immediate .

COROLLARY 1.4.9. ! * :7rn(X,X) - 7 7rn( Y,y) is a homomorphism.

PROOF. Theorems 1.3.8 and 1.4.5. In the future we shorten! * to / *.

DEFINITION. / = / ' means/ homotopic to / ' .

LEMMA 1 .4 . 10 .

C ( f ' ( x  .

PROOF .

THEOREM 1 .4 . 11 .

x . Thenf * = f ~ .

PROOF .

THEOREM 1.4.13. Letfbe the identity map of a space onto itself. Thenf *
is the identity.

PROOF. Utterly trivial . Notice that Theorems 1.4.nn = 11,12,13,
show that 7rn(X,X) satisfy the first two Eilenberg-Steenrod axioms for
homology theory, and the fifth .
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U (Fn(X,b) X Fl(X,a,b  to Gn(X)a,bE:X

HOMOTOPY GROUPS

DEFINITION. The function 7r on Gn(X) into X is that function for which
7r(f ) = f (O,. . . ,0).

THEOREM 1.5.1. 71" is continuous.

PROOF. 71" = (g 0 h)IG, X) , where
h:XI" -+ XI" X In

g:XI" X In -+ X
are given by h(f ) = (f,(0,. . .,0))
and

g(fit ) = f (t)
Obviously h is continuous and g is by Theorem 1.1.5.
DEFINITION. Let fig E:: Gn(X) , p E:: Fl(X,a,b). Then f == g (f is freely1)
homotopic to g viap) if and only if there exists a path q in Gn(X) fromfto
g such that 7r 0 q = p. Alternatively: There exists a map q*:In+l ~ X
such that

q*(O,t) = I (t), q*(l ,t) = g(t), tE: In
q*(s,t) = p(s), tE: jn

DEFINITION. Let tE: In. Then It I = max 12ti - 11.i=l,...,n

LEMMA 1.5.2. It I = 0 if and only ift = (! ,! ,' . ' ,! )
It I = 1 if and only ift E: jn

DEFINITION. Let g E: Fn(X,b)
p E: FI( X ,a,b )

'1. ) ) fg (2tl - ! ,. . .,2tn- ! ) Itl ~ !T (ten tp(g (tl,. . . ,tn = LP(2 - 21tl) It I ?:. !

(An idea of what the map looks like is suggested
by the accompanying picture.)

LEMMA 1.5.3. (gip) --t tp(g) is continuousfi'om
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PROOF. Follows from Theorem 1.1.7. Here Y = X, X = Z = In.

Al = {tE:: In/ltl ~ ! } , {A2 = tE:: In/ltl ~ ! }

LEMMA1.5.7. / = / ', p = p' in Fl(X,/ (in),/ '(in))p
=} / = / 'p'

Define a mapping
hr: In ~ In r ~ !

PROOF.

LEMMA 1.5.5.1= g andg = h =? 1= hP q pq
LEMMA 1.5.6.1= g =? g =1p ~

01(t1,. . .,tn) = (2t1 - 1,. . .,2tn - 1)
02(t1,. . . ,tn) = (t1,. . . ,tn)

It follows that (gip) ~ tp(g) is continuous, where P(t1,. . . ,tn) =
p(2 - 2Itl). It remains to prove that p ~ p is continuous from XI
to XI". This follows from Problem 1, Part 2, once it is shown that
(t1,. . . ,tn) ~ 2 - 2/tl is continuous, which follows from the continuity
of (t1,. . .,tn) ~ Ill. Q.E.D.

THEOREM 1.5.4. If g == g' in Fn(X,b) and p == p' in Fl(X,a,b), then
tp(g) == tp,(g') in Fn(X,a).

PROOF. Trivial; merely rewrite the homotopies.

{ (h(tJ,. . . ,~(tn)), It I ~ rby hr(tl' . . . ,In) = (h(tJ,... ,h(tn)), I tl ~ r
where

h(tJ = 2(t1 + r) - 14r

h=(t ) ti 1 - ri = 2(1 t.<- r) ~ - 2

h(ti) = ti + 1 - 2r t. > 1-.:f:-!2(1 - r) ~ - 2
Obviously hr is continuous for each r in the range indicated; hi/2 is the
identity.

Define t;(g) = tp(g) 0 hr. Then tV2(g) = tp(g), tUg) = g, and it may
easily be shown that the mapping (r ,g,p) ~ t~(g) is continuous. Let q
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(2)

(3)

(4)

PROOF . tpq(h) == h
pq

tq(h) == h
q

tp(tq(h)) == tq(h)
p

from Formulas 3 and 4 and Lemma 1.5 .5 , we have

tp(tq(h)) == h
pq

(5)

THEOREM 1.5.17. If x is a-connected, then the system

7rn(X) = {7rn(X ,x),e~}

is a bundle of groups in X.

From Formulas 2 and 5 and Lemma 1.5.7, the result follows.
Let g E: a E: 7rn(X,b), p E: ~ E: 7riX,a,b). Then tp(g) is in Fn(X,a) ;

but by Lemma 1.5.4, its path component in Fn(X,a) depends only on
the component of g in Fn(X,b), and that of p in Fl (X,a,b), i .e., on a
and ~. So we may state the following Definition .

DEFINITION. Let p E::: ~ E::: 7rl(X,a,b), ~ E::: a E::: 7rn(X,b). Then e~(a) is the
component of tp(g) in 7rn(X,a).

LEMMA 1.5.15. e~(a + {3) = e~(a) + e~({3)

eEb(a) = a Eb = C(eb)

e~T)(a) = e~(eT)(a))

PROOF. Lemmas I .5.nn = 12, 13, 14.

COROLLARY 1.5.16. e~ is a homomorphism from 7rn(X,b) to 7rn(X,a).

DEFINITION. Let X be a a-connected space. A bundle G of groups in X
consists of the following :

t . Afunction which assigns to each x E: X a group Gz.
2. A function which assigns to each ~ E: 7riX ,x,y) a homomorphism

'Y~: Gy ~ Gz, satisfying the following requirements.
3. If ~ E: 7rl(X,X,y), 1] E: 7rl(X,y,Z), then 'Y~'1 = 'Y~ 0 'Y'1'
4. If x E: X, then 'Ye~ = identity.
It follows that each 'Y~ is an isomorphism onto, and that the groups Gz
are all isomorphic. We frequently write G = {GxiY~} . The bundle G is
said to be simple if and only if for every x,yE::: X, ~, 17 E::: 7rJX,x,y). we
have 'Y~ = 'Y 17.
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PROOF. 2, Corollary 1.5.16; 3 and 4, Lemma 1.5.15.

DEFINITION. The a-connected space X is said to be n-simple if and only
if the bundle 7rn(X) is simple.

DEFINITION. Letf : y ~ X be a map, and let G = {GziY~} be a bwzdle
of groups in X. We define a new bundlef *G = {Hy,o1)} by

{ Hy = G1(y)01) = 'Y/*(1)

Let G = {GziY~} , H = {Hz,o~} be bundles of groups in X. A homo-
morphism cf>: G ~ H is a function which assigns to each x E: X a ho-
momorphism cf>z: Gz ~ Hz satisfying the commutativity relation O~ 0 cf>v =
cf>z 0 'Y~for all ~ E: 7rl(X,X,y)

<1>,
Gy ~ Hy

1 "IE 1 O'E~~
Gz ~ Hz

If, for each x,

cPz is { an isomorphism into}onto
we say that

cp is { an isomorphism into}onto

If, for each x, Gz C Hz, and cPz is the inclusion map, we say that G is a
subbundle of H . If each Gz is a normal subgroup of Hz, we say that G is a
normal sub bundle of H and define the factor bundle G/ H with groups
Gz/ Hz and homomorphisms 'Y~* induced by 'Y~.

DEFINITION. Qn(X,XO) is the subgroup of 7rn(X,XO) generated by all elements 
of the form a - e~(a) with a E: 7rn(X,XO)' ~ E: 7rl(X,XO).

THEOREM 1.5.18. Jf ~ E=: 7riX,x,y), then e~(Un(X,y)) C Un(X,x). The system 
{Un(X,x),e~Jun(X,y)} = Un(X) is a normal subbundle of 7rn(X) . The

bundle 7rn(X) / Un(X) , denoted by 7r~(X) , is simple.

PROOF. We first prove the following Lemma.

LEMMA 1.5.19. Qn(X,X) is a normal subgroup of 1rn(X,x). In particular,
QICX,x) is the commutator subgroup of1r I C X,x).

PROOF. Since 7rn(X,X) is abelian for n > 1, we may confine our
attention to the second statement. By returning to the definition of
tp(g), we see at once that it is homotopic to (p. g) . jJ. It follows that
Ot(a) = ~a'(;-l . But Ql(X,X) is generated by the a Ot(a)- l = a'(;-la- l~ =



ty

Xo

f.

Ox = G
1~(g) = (~x~~;;l). g

REMARK 1.5.20. Let fY -' ) X. Then f * maps 7rn( Y) homomorphically
into f *7rn(X) . That is to say: For ~ E: 7ri Y,x,y), a E: 7rn( Y,y), we have
f *(e~(a  = ef*(~JCf *(a .
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a ~ la - l ( ~ l ) - l , and these are precisely the generators of the commutator

subgroup . Q . E . D .

Now let 7J E: : 7rl ( X , y ) , a E: : 7rn ( X , y ) . Then

e ~( a - e ' 7( a   = e ~( a ) - e ~'7( a ) = e ~( a ) - e ~' 7~ - l ( e ~( a  

Since ~ '71: ; - 1 E: : 7rl ( X , X ) , the element just described belongs to - Un ( X , x ) .

Hence e ~( - Un ( X , y   C - Un ( X , x ) . To prove simplicity of the factor bundle , it

suffices to show ~ , 7J E : 7riX , x , y ) , a E : 7rn ( X , y ) = ? 8 ~( a ) - 81 ]( a ) E : Qn ( X , X ) .

But

e ~( a ) - ell ( a ) = e ~( a ) - ell  P' - I ( e ~( a ) )

and this element is in Qn ( X , X ) since ' 1] - ; - 1 E : 7r1 ( X , X ) .

We now show that the notion of " bundle of groups " is equivalent

to the simpler notion " group with operators in 7rix ) . " In fact , if

G = { GziY ~} is a bundle of groups in X , and Xo E : X , then the homo -

morphism ~ - 7 ' YP. , ( ~ E : 7riX , xo ) ) , defines 7riX , xo ) as group of operators

on G = Gxo . Conversely , if G is a group on which 7riX , xo ) operates , we

define a bundle G as follows . For each x E : X , choose ~ z E : 7riX , xo , x )

with ~ xo = Exo . Then let

Then G = {C;x,1~} is a bundle of groups in X. If the group G with
operators in 7rl(X,XO) is derived from a bundle G, then G ~ G under the
isomorphisms ~x:Gx ~ Gxo = G. Conversely, the group with operators
derived from G is G; for if ~ E: 7rl(X,XO), then

1~(g) = (~x~~; l) . g = ~. g

Thus the foregoing correspondence between bundles and groups with
operators in 7rl is 1: 1.

The notion of bundle of groups is useful in homology theory, as we
shall see later. It is actually a special case of Cartan's notion of
" faisceau."
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COROLLARY 1.6.4. 7rn(X,A,x) is abelianfor n ? 3.

COROLLARY 1.6.3. 7rn(X,A,x) is a group for n ~ 2.

PROOF. Similar to that of Corollary 1.4.4.

1 . 6 Relative Homotopy Groups [ 12J

DEFINITION . In - l = I X jn - lU 0 X In - I . Let x E : A C X . Then

Fn ( X , A , x ) = space of all maps of ( In , jn , Jn - l ) - + ( X , A , x ) , i . e . , those maps

of In into X which take jn into A and In - l into x .

7rn ( X , A , x ) = set of path components of Fn ( X , A , x ) .

LEMMA 1 . 6 . 1 . Fn ( X , A , x ) is homeomorphic with FI ( Fn - l ( X , A , x ) , e ~ - l ) .

PROOF . Similar to that of Lemma 1 . 4 . 2 .

COROLLARY 1 . 6 . 2 . If n ~ 2 , F1I ( X , A , x ) is an AIH - space with addition

the same as for Fn ( X , x ) .

PROOF . The proof is similar to that of Corollary 1 . 4 . 3 , insofar as

the induction goes . It remains only to establish the truth of the theorem

for n = 2 , and this may be done in standard fashion .

However , it is instructive to pause at this point and examine why the

theorem succeeds in this case , whereas it fails for n = I . To this end ,

we must examine what members of Fn ( X , A , x ) really are . They are

simply maps of In into X , in which all faces but one , namely the face

In - l X { I } , go into x ; while In - l X { I } goes into A . We denote by In - l

the remainder of the faces , namely the set In - In - l X { I } . Now when

n > 1 , the sets Inland ! n - l X { I } intersect , and their intersection is

precisely the boundary of In - l X { I } . ( We know that they must intersect

, because of the connectedness of jn for n > 1 . ) But in the case of

n = 1 , jn - l X { I } = { I } and In - l = { a } do not intersect . This is made

possible by the disconnectedness of ft . Now when we add two maps of

In , we are essentially " gluing " them along the hyperplane Xn = 1 of

the first map , and Xn = 0 of the second . When n > I , this is all right ,

because these hyperplanes are in In - l . But when n = 1 , there are not

enough dimensions to force the point 1 to be in Inland so it does not

have to go into x , but may go into any point of A . Obviously no gluing

can be accomplished if the two parts to be attached are not even

brought together .
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PROOF. By definition,
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7rn(X,A,x) ~ 7rl(Fn- l(X,A,x),e~- I)
Fn- l(X,A,x) is an H space when n -
Theorem 1.3.5.

1 ~ 2, i .e., when n ~ 3. Now use

COROLLARY 1.6.5. 7rn(X,A,x) = 7ro(Fn(X,A,x),e~), as groups.
PROOF. Similar to that of Theorem 1.4.5.

COROLLARY 1.6.6. Fn+k(X ,A ,x) is homeomorphic ~'ith

Fn(FA{ X ,x ),FJ:(A ,.Y ),e;)

under a homeomorphism ~'hich is an H -space homomorphism.

PROOF . Similar to that of Lemma 1.4.2, using the natural homeo -
morphism between XI "+k and (Xlk)I". The fact that the resulting ho-
meomorphism is an H -space homomorphism may be verified by simply
examining the additions in the two spaces.

COROLLARY 1.6.7. 7rk+n(X,A,x) I;::::j 7rn(Fk(X,x),Fk(A,x),eb.

PROOF . Corollary 1.6.5, Theorem 1.3.9, and, of course, Corollary
1.6 .6 .

LEMMA 1.6.8. A = {x} =? 1I"n(X,A,x) = 1I"n(X,X).

DEF1NITION. Let n > 1. Then the boundary function a from Fn(X ,A ,x) to
Fn- 1(A,x) is given by (8f )(t1' . . . ,tn) = f (l ,t2' . . . ,tn).

LEMMA 1.6.9. o is an H -space homomorphism ; ( it is therefore called the
boundary mapping). Furthermore , if  * = "8* ,f : (X ,A ,x) - 7 ( Y,B,y), then
o*f * = (fIA )*o*, and thus the third Eilenberg-Steenrod axiom for
homology theory is satisfied by homotopy groups.

PROOF . We must first check that a is continuous . To this end, consider 
the mapping d : Xln - 7 Xln-l, which is induced by the projection

p :/ n - 7 / n- l given by P(tl , . . . ,In) = p( l ,tz, . . . ,In) . Then the continuity
of d follows from that of p by Problem 1, Part 2. But a = dIFn(X,A,x) .
The homomorphism property is readily verified . Commutativity fo1-

lows from acto g)(tl, . . .,tn) = (f 0 g)(I ,t2' . . .,tn) = f (g(l ,t2' . . .,tn)) =
f ((ag)(tl ' . . . ,tn)), where g E: Fn(X,A,x).

From now on through the end of Section 1.6, and occasionally thereafter
, we abbreviate our symbols for homotopy groups and H -spaces



LEMMA 1.6.11. Suppose that the diagram
11 12

. . . ~ ai ~ A2 ~ A3 ~ . . .

1/6 1/3 1/714 16

. . . ~ B1 ~ B2 ~ B3 ~ . . .

is commutative and that the vertical functions are one-one onto. Then i J
the top sequence is exact, so is the bottom sequence.

PROOF. Before we begin the proof, we ask the reader to recall that
by commutativity we meanh oil = /4  / 6, fi 0/2 = / sh , etc. We also
note that the sets Ai and Bi in question by no means have to be groups,
or even to possess any structure whatsoever, except that they have to
have a distinguished zero element, such that all the functions take the
zero of one group into the zero of the next. The definition of exactness
remains unchanged,

The proof is as follows. We have

Kernels = h Kernels oh (becauseh is onto)
= h Kernelfi 0/2 (by commutativity)
= h Kernel/2 (because sincefi is 1-1, the only element

which goes into 0 is 0)
= h Image fi (by exactness)
= Image h 0 fi
= Image/4 0/ 6 (by commutativity)
= /4 Image Is
= /4 (BJ (becauseis is onto)
= Image /4

This completes the proof .
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by omitting explicit mention of the base point x . The resulting symbols
are not to be confused with those for the corresponding bundles.

LEMMA 1.6.10. Let i :A - ? X and j :(X,x) - ? (X, A) be inclusion maps,
and write Xk = Fk(X) , Ak = Fk(A). Then the diagram

i* k i* ( VI, Ak)  * (Ak) i* /Xk)7rn+i Ak) - - 7 7rn+l(X ) - - 7 7rn+l A. '., - - 7 7rn - - 7 7rn

1 i* 1 i* 1  * 1 i* 1
7rn+k+l(A) - - 7 7rn+k+ix ) - - 7 7rn+k+i X,A) - - 7 7rn+k(A) - - 7 7rn+k(X)

is commutative, where the vertical homomorphisms are the isomorphisms
onto of Corollary 1.6.7. The lemma holds even when n = 0, i *, j *, and a *
being defined in the obvious fashion.

PROOF. Immediate, upon examination of the homomorphisms involved 
and the mappings which induce them.
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LEMMA 1.6.12. The sequence

i* i* ( ) a* (A) i* (X)7rRA) -t 7rRX) -t 7rl X,A -t 7ro -t 7ro
is internally exact.
PROOF.

For ,

Kernelj * = {C(f ) E:: 7rl(X) lj *C( f ) = C(ex)}

= {C(f ) E:: 7rl(X) !CUf) = C(ex)}

[the components on the left side being taken in the space F '(X ,A)] =
{C(f ) E:: 7rl(X)IC(f ) = C(ex)} = {C( f ) E:: 7riX) 13 F :I X 1 -' ) X such
that F(til ) = x, F(t,O) = f (t), F(O,t) = x, F( lit ) E:: A} [the latter conditions 

because the homotopy must take place in FI(X,A)] . Now let
g(t) = F( l , l - f) . Then g(t) E:: A , g( l ) = F ( l ,O) = f (O) = x , g(O) =
F ( l , l ) = x . Define

G(t s) - {F(t,2S(1 - t) s ~ !, - F( 1 - 2( 1 - s)(1 - t),1 - t) s 2:: !

Then G(t,s) provides a homotopy in X between g(t) and f (t), so
C( f ) = C(g) in X . But g E:: FI (A), so

C( f ) = C(g) = C(ig) in X

= i *C(g) in A

So C( f ) E:: Image i * . It follows that Kernelj * C Image i * . The opposite 
inequality is proved in a similar fashion .

(5) Kernel a * = Image j *

For the image of j * consists of the set of path components of FI (X ,A)
which contain a loop of X ; whereas the kernel of a * is the set of path
components of FI (X ,A) which contain paths whose end points are in
the identity of 7ro(A), i .e., may be joined to x by a path in A . So Image
j * C Kernel a* is obvious ; and for the opposite inequality , it is merely
necessary to show that if

f (O) = x f ( 1) = a E:: A

g(O) = a g(1) = x g(t) E:: A

then 3 F : I X 1 - ' ) X such that

F (O,t) = f (t) * ea

F(t,O) = x

F (t,1) E:: A

F( 1,1) = .:\'
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F is provided by F(sit) = f (t) * g(st), and shows that every path in
Fl (X,A) whose end point can be joined to x by a path in A is homotopic
in (X,A) to a loop of X. It follows that Kernel B* C Imagej *

@ Kernel i * = Image G *

Let a E:: 7ro(A) ; so a is a path component of A. Then for a E:: Kernel i *,
it is necessary and sufficient that the elements of a be elements of C(x)
in X. On the other hand, for a E:: Image G* it is necessary and sufficient
that the elements of a be end points of paths which start at x ; that is,
the elements of a must be points of C(x). This completes the proof.

THEOREM 1.6.13. The sequence

(X A)  * ( i* j *. . . ~ 7rn+l , ~ 7rn A) ~ 7rn(X) ~ 7rn(X,A) ~ . . .
is exact.

PROOF. The proof follows immediately from Lemmas 1.6.nn = 10,
11, 12. In Lemma 1.6.12, we simply put X = Xk, A = Ak, then apply
the other two.

THEOREM 1.6.14. Let B C A C X, and let k :(A,x) C (A,B), 1:(A,B) C
(X,B), ] :(X,B) C (X,A) and let a* = k * 0 a*. Then the sequence- - -

~ 7rn+l(X,A) ~ 7rn(A,B) ~ 7rn(X,B) ~ 7rn(X,A) ~
is exact.

PROOF. See Eilenberg and Steenrod [B.3, p. 25, Theorem 10.2] . The
theorem is there proved for homology; however, only his axioms I , 2, 3,
and 4 are used [see B.3, pp. 10, II ] , all of which hold for homotopy as
well, as we have proved. The proof thus goes through in exactly the
same way.

PROBLEM 2. Let X be an lc!, path\\1se connected space, with X a. -
coverIng space of X. Then 7rn(X) ~ 7rn(X) , n ~ 2.

PROBLEM 3. Let yE : jn+l, and assume 7rn(X,X) = O. Then every map
of (In+l,y) into (X,x) can be extended to a map of In+l into X.

. .
PROBLEM 4. Let 7rn(X,A) = O. Then every map of (In,{ l } X jn,y) Into
(X,A,x) has an extensionf :jn+l - + X withf ( { I} X In) C A.

1.7 The Bundle 7rn(X,A)

The definition of this bundle corresponds to that of 7rn(X) , and many
of the lemmas in this case have proofs similar to those with the same
number in Section 1.5. When this is so, the proof will be omitted.
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l()(t ...t)={g(2tl- l,...,2tn-l- l,2tn- I), O~lltll~lp g 1, , n p(2 - 211tll), l ~ Iltil ~ 1
An idea of what the map looks like is suggested by the picture.

LEMMA 1.7.3. (gip) ~ tp(g) is continuousfi.om

U Fn(X,A,y) X Fl(A,x,y)x,yE:A
to Gn(X,A).

THEOREM 1.7.4. If g = g' in Fn(X,A,y) and p = p'
tp(g) = tp{g') in Fn(X,A,x).

in Fl(A,x,y), then

1.7.5. f == g, g == h =} f = h.
p q pq

LEMMA 1.7.2. Iltil = 0 if and only ift = (! ,. . .,! ,I)

Iltil = 1 if and only ift E::: In- l

DEFINITION. Let g E::: Fn(X,A,y), p E::: FJ(A,x,y).
Then

Note , however , that these lemmas are not consequences of those of

Section 1 . 5 . For the bundle 7rn ( X , A ) is a bundle on A , not on X ; and

if we let A = ( x ) , so that 7rn ( X , A , x ) = 7rn ( X , X ) , then we have that the

bundle 7rn ( X , A ) is a trivial bundle on a single point . The two cases

then have to be stated separately .

Let

Gn ( X , A ) = U Fn ( X , A , x )

xE : A

Define 7r : Gn ( X , A ) ~ A by 1I " ( f ) = x iffE : Fn ( X , A , x ) . Then we have

the following theorem .

THEOREM 1.7.1. 7r is continuous.

DEFINITION. Letf E:= Fn(X,A,x), g E:= Fn(X,A,b), and p E:= Fl(X,a,b). Then
we say thatf = g if and only if there exists a path P in Gn(X,A)fromfv
to g such that 7r 0 P = p. (Alternatively, there exists a map p*:In+l -7 X,
such that P*(O,u) = f (u), P*(l ,u) = g(u), P*(t,u) E: A ifn E: In-1 X {I} ,
P*(t,u) = p(t) ifu E: In- I.)
DEFINITION. Let tE::: In. Then

Iltil = max(12tl- 11," ' ,12tn-l - 11,1 - In)
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LEMMA 1.7.6. f = g =} g =f.p 'fl

LEM1fA 1.7.7. / =/ ', p = p' in F(A,x,y) =? / =/'.p p'
LEMMA 1.7.8. 1 = g,I ' = g =} 1 = 1' in Fn(X,A,x).p p

DEFINITION. If A is a-connected, the pair (X,A) is said
and only if the bundle 1rn(X,A) is simple.

PROBLEM 5. Let a,(:J E: 7r2(X,A,x) ; then

Oa*(aR(:J) = a + (:J - a



This completes the proof of the
Theorem 1.7.19 is similar to the
1.5.18.

lemma. The remainder of the proof of
corresponding part of that of Theorem
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(Note that this group is not necessarily commutative , so that we do
not necessarily have a + {3 - a = (3.)

COROLLARY 1.7.18. The kernel of

o* :7r2(X ,A ,x) --+ 7rICA,x)

is contained in the center of7r2(X ,A ,x) .

PROOF . Let a E: Kernel  * . Then for .BE: 7r2(X ,A) we have a + .B -
a = Oa*(a)({3) = Oo({3) = {3. So a + (3 = .B + a, and it follows that
a E: center of 7r2(X ,A ,x).

DEFINITION. !2n(X ,A ,xo) is the subgroup of 7rn(X ,A ,xo) generated by all
elements of the form a - (j~(a), a E: 7rn(X ,A ,xo), ~ E: 7riA ,xo) .

THEOREM 1 . 7 . 19 . If ~ E: : 7rJA , x , y ) , then ( j ~( Qn ( X , A , y ) ) C Qn ( X , A , x ) . The

system { Qn ( X , A , x ) , e ~ I Qn ( X , A , y ) } = Qn ( X , A ) is a normal subbundle of

7rn ( X , A ) . The bundle 7rn ( X , A ) jQn ( X , A ) , denoted by 7rn * ( X , A ) , is simple .

PROOF . We first prove the following Lemma .

LEMMA 1 . 7 . 20 . Qn ( X , A , x ) is a normal subgroup of 7rn ( X , A , x ) . In particular

, Q2 ( X , A , x ) contains the commutator subgroup of7r2 ( X , A , x ) .

PROOF . Since 7rn ( X , A , x ) is abelian for n > 2 , we may confine our

attention to the case of n = 2 . We then have , for . BE : : : 7r2 ( X , A , x ) ,

. B + ( a - e ~( a ) ) - . B

= { 3 + a - { 3 + ( { 3 - O ~( a ) - ( 3)

= Oa * ( f3 ) ( a ) - ea * ( f3 ) ( O ~( a ) ) ( by Problem 6 )

= Oa * ( f3) ( a ) - Oa * ( f3 ) . ia ) ( by Lemma 1 . 7 . 15 )

= Oa * ( f3 ) ( a ) - Oa * ( f3 ) ~ [ a * ( f3 ) ] - la * ( f3 ) ( a )

= Oa * ( f3 ) ( a ) - Oa * ( f3 ) ~ [ a * ( f3 ) ] - XOa * ( . B) ( a ) ) E : Q2 ( X , A , x )

This proves normality .

For the second statement , let a + { 3 - a - { 3 be a generator of the

commutator subgroup . Then

a + fJ - a - fJ = Oa * ( a ) ( fJ ) - fJ

= [ . B - Oa * (a ) ( f3 ) ] - lE : : ! 22 ( X , A , Xo )
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Then f * maps
to say: For

7rn( Y,B) homo-
~ E: 7riB,x,y),

f *(1J~(a)) = 1Jf*(~)(f *(a))

DEFINITION. Let ~ E: 7rl(A ,x), a E: 7rl(X ,X), i : (A ,x) - * (X ,x) be the UZ-
elusion map. Then 1J~(a) = 8i*ia ) .

THEOREM 1.7.22. The diagram

{  * i*
. . - 0) . 7J"n+JX ,A,xo) - 0) . 7J"n(A ,xo) - 0) . 7J"n(X ,XO)

le~ lo~ . lo,~ * ~*

;. . - 0) . 7J"n+JX ,A ,xo) - 0) . 7J"n(A ,xo) - 0) . 7J"n(X ,XO)

i* }
- 0) . 7J"n(X ,A ,xo) - 0) . . .

. le~.1*

- 0) . 7J"n(X ,A,xo) - ) 0 . .

is commutative .

PROOF. 1. Clearly 8tp(g) = tp(8g).

i*(e~(a  = ei*ii *(a  = e~(i*(a 

HOMOTOPY GROUPS

REMARK 1.7.21. Let j :(Y,B) -+ (X,A).
morphically into j *7rn(X,A). That is
a E:: 7rn( Y,B,y), we have

Therefore a * 0 e~ = e~ 0 a *.
2. By Remark 1.5.20, we have

3. It is clearly sufficient to show that tp(g) and tp(g) can be joined by a
path in pn(X,A,xo). By Corollary 1.7.10, it is sufficient to show that
tp(g) == g in the sense of Section 1.7, that is, that there exists a path Pp
in Gn(X,A) joining tp(g) to g, with 7r 0 P = p. Now there does exist such
a path in Gn(X) . But clearly Gn(X) C Gn(X,A). This completes the
proof.


