1. Homotopy Groups

1.0 Introduction

The problems with which we shall be concerned here are those of
the extension and classification of continuous maps. These may be
stated as follows.

ExT1ENSION PROBLEM (E): Given spaces X, Y, a closed subset 4 of X,
and a map fi4 — Y, does there exist a map g:X — Y such that
gl4 = f?1If so, then g is called an extension of f.

CrassIFICATION PROBLEM (C): Given spaces X, 7, a closed subset 4 of
X, and maps f’,f” of X into Y such that f’|4 = f"'|4, does there exist a
map g:J X X — Y such that g(0,x) = f'(x), g(1,x) = f"(x) for x € X,
and g(t,x) = f'(x) = f"(x) for x € A? (I is the unit interval.) If so,
then g is called a homotopy of f' to f” relative to 4. If A4 is the null set,
then g is simply called a homotopy of f” to f”.

The classification problem is a special case of the extension problem.
For let X*=IX X, A*=0X XUI1IX XUIXA, and define
[id* = Y by f(O,x) = f(x), f(1,x) = f"(x), f(t,x) = f'(x) =f"(x)
for x € A. Then an extension of f over X* is exactly a homotopy of f*
to f" relative to A.

On the other hand, under suitable hypotheses on the spaces involved,
if f/ and f”" are homotopic maps of 4 into Y, then f’ can be extended
over X if f” can. In fact we have the homotopy extension theorem,
which may be stated as follows.

1



2 HOMOTOPY GROUPS

THEOREM 1.0.1. Let X,Y be spaces, AC X, ;i X— Y, FiFAXI—>Y
maps such that f|A = F|A X {0}. Then if either of the two sets of con-
ditions stated at the end of the theorem are satisfied, there exists a map
G:X X I— Y such that GlJA X I = F, G|X X {0} = f. The possible
conditions are
I. X separable regular, A closed
Y an absolute neighborhood retract
or
II. (X, A) finitely triangulable
Y arbitrary
PROOF. Partlis standard. See, for instance, Hurewicz and Wallman
[B.1, p. 86 (Borsuk’s theorem)]. For Part II, we need the fact that a
finitely triangulable space is an ANR. See, for instance, Lefschetz
[B.2, p. 292].

Let Y = 4 X IU X X {0}, F and f the identity. By the foregoing
remark, Y is an ANR. It follows from Part I that there exists a map
GXXI—Y
such that G|¥ is the identity. Then the map G:X X I — Y given by

Gp)=(f-G)(p) Gp)€ XX {0}
Gp)=F-G)(p) GpeAaxI

satisfies the conditions of the theorem.

CoroLrary 1.0.2. Let (K;L,Ky) be a finitely triangulable triad,
Ly=KoN L. Let

Si(KL) — (X,4)

¢ (Ko X I, Ly X I) = (X,4)

be maps with ¢(x,0) = f(x) for x € Ko Then there is a map
YK X I, LXI)— (X,A) such that

Yx0) =f(x) €K
V) = ¢(x0)  (x € Ko)

PROOF. The pair (L,Ly) being triangulable, there is a map
g:L X I — A such that

g(x,0) =f(x) (x&€L)
g(xst) = ¢(X,t) (X € LO)

Define h:(Ky U L) X I — X by

C (en) (€K
e o R
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The pair (K,K, U L) being triangulable, there is a map y: K X I — X
such that

Yx0) =fx) xEK)

Wx0) =hxp) EKUL

Then v is the desired map.

We now give examples in which we demonstrate necessary condi-
tions for the solubility of (C) and (E). In general, these conditions will
be far from sufficient, as will be demonstrated later.

THEOREM 1.0.3. Let E be an n-cell, S its boundary, and let f:S— Y.
Then a necessary condition that f be extendable to a map g:E— Y is
that the induced homomorphism f,:H, «(S) — H,—(Y) be identically
zero.

PROOF. Leti:S — Ebe the inclusion map. If g exists, then f = g - i,
and hence f, = g, - i,. But i, is identically 0, since H,—i(E) = 0.
Q.E.D.

REMARK. It is easy to see that S may be replaced by any subset of E,
and n — 1 by any integer greater than 0.

THEOREM 1.0.4. Under the same conditions as those of Theorem 1.0.3,
let f', f"":S — Y. Then, in order for f’ and f" to be homotopic, it is
necessary that the induced maps fy and fi on the homology groups be
equal.

PROOF. Since f’ and f” are homotopic, the maps f§ and f3 induced
by f’ and f”, respectively, on the singular complex of S are chain-
homotopic. But it is well known that chain-homotopic maps on a
complex induce the same map on the homology groups. Q.E.D.

REMARK. The same remark holds for Theorem 1.0.4 as for Theorem 1.0.3.

At present, the foregoing problems have been solved only in a few
special cases. If either X or Y is a cell, the problem of classifying the
maps of X into Y is trivial. But if X is so simple a space as an n-sphere,
the classification problem is far from solved, although great progress
has been made in the last few years. The attempt to solve the latter
problem (X = S*) led Hurewicz to define the homotopy groups, which
may be thought of as higher dimensional generalizations of the funda-
mental group. In this chapter we describe the basic properties of the
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homotopy groups; later we shall show how they are used in attacking
the general extension and classification problems.

1.1 Function Spaces [7, 16]
Let X and Y be topological spaces.
DEFINITION. N(4,B) = {f|f:X > Y,f(4) C B} for AC X,BC Y.

DEFINITION. YX = space of all maps (continuous functions) f: X — Y,
with the smallest topology containing all sets N(C,U), C compact and
contained in X, U open and contained in Y. This is called the compact-
open topology.

LemMma 1.1.1. Let X be Hausdorff; O; open C X, i =1, -+, n;

’

C compact C O = knj oF
i=1
Then 3 C; such that
c=Uc
i=1
C; closed C O;
i=1,---,n

PROOF. Standard. See Lefschetz [B.2, p. 26 (33.4)(a)].

LemMA 1.1.2. Let A be a subbasis for the topology of Y. If X is Hausdorff,
then the sets N(C,U), C compact, U € A, form a subbasis for the topology
of Y%,

PROOF. 1t suffices to show that, for each fand N(C,U), C compact,

U open, f € N(C,U), there exist compact sets C; and members U; of 4,
i=1, .-+, m with

£E€ N MC,U) C NC,U)
Now since 4 is a subbasis, we certainly have U = \U V,, where each

V. is a finite intersection of elements of 4. Now f(C) C U, so
CCfY(U) = (U Vo) = U f(Vo). Since C is compact, it follows

that
cC U f1ra)

with the V,, picked from among the V,. From Lemma 1.1.1 it follows
that there exist closed subsets C; of C, i = 1, - - -, n, with
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C.;Cf(V.) and C= Q C;
Let Voo = UsaN -+ N Uir, Ui,; € A. Then
n ks
rE€ A ) MCUi) C NEG)
i=1j=

For f(C)) C Vo C Uiy, ie., fE€ N(C,U,,;); and if g € N(C;,Us,)),
then g(C;) C Us,;, g(C:) C N U;,; = Vo, C U. But the C; exhaust C;
so g(C) C U, g € N(C,U). This completes the proof.

Let X,Y,Z be topological spaces. Then, if f takes X into Z¥, we
denote by f* that function from X X Y into Z which takes (x,y) into
SxO).

THEOREM 1.1.3. a. f* € Z¥¥ = f € (ZV)X
b. f€ (ZY)%, Y locally compact and Hausdorff
f* C ZXXY
PROOF. a. Suppose f* € ZXX¥, 1t suffices to prove that if x € X
and f(X) € N(C,U), with C compact and U open, then 3 a neighbor-
hood ¥V of X such that f(V) C N(C,U). Now if y € C, we have
SH*ey) = fO)() € f(x)(C) C U; hence 3 neighborhoods ¥, of x
and W, of y such that f¥(V, X W,) C U. The sets W, cover C, and
therefore there exist yi, -+, y. € Cwith CC W,, U --- U W,,. Let
V=VuN - NV, Then if x’ € V, y € C, we have, for some i,
Yy € Wy Also x' € V C V,, and therefore
FENES Vi X W) CU

Thus f¥(V X C) C U, f(x) C N(C,U). Q.E.D.

b. Suppose, on the contrary, that f € (Z¥)X. Let x € X, y € Y,
and let U be a neighborhood of f*(x,y). Since f(x) € Z¥ and Y is
locally compact Hausdorff, there exists a compact neighborhood W of
y such that f(x)(W) C U; i.e., f(x) € N(W,U). Since f is continuous
and N(W,U) is a neighborhood of f(x), there exists a neighborhood ¥
of x such that f(V) C N(W,U). Then V X W is a neighborhood of
(ey)and fX(V X W) C U. Q.E.D.

THeOREM 1.1.4. If X and Y are Hausdorff and Y is locally compact,
then the correspondence f — f* is a homeomorphism of (Z¥)¥ onto ZXX¥,

PROOF. By Theorem 1.1.3, f — f*isa 1:1 correspondence ¢ of (ZV)*
onto Z*¥X¥, Now f € N(A4,N(B,U)) if and only if f* € N(4 X B,U).
Hence ¢ maps subbasic open sets onto open sets and therefore ¢! is
continuous. Conversely, let £ € (Z¥)X and let C be a compact subset
of X X Y, U an open subset of Z, such that f* € N(C,U). Let 4 and
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B be the projections of Cinto X and Y, respectively. If (x,y) € C, then
there exist neighborhoods V., of x relative to 4, and W, , of y relative
to B, such that f*(V,, X W.,) C U. Now we may assume without
loss of generality that V., and W,, are compact; for 4 and B are
compact Hausdorff spaces, and thus are regular. Thus even if V., and
W., are not closed, they contain closed neighborhoods of x and y,
respectively; and these will be compact, since closed subsets of compact
spaces are compact. Now

CC U (Vey X W)
() E€C

Since C is compact, it follows that
CC U Ve X Wealy  (<p) € Coy i=1,000,m
Then if we can show
L £ € () NV aiuoN (W U)
and
2. £ € () NVauaoN(Weis V) = 8* € NC,U)

then the proof is complete; for then the right side of Part 1 is a neigh-
borhood of f; and by Part 2 is sent into the given neighborhood of
¢(f) by ¢, and so ¢ is continuous. If the given neighborhood were

A NCU)

then we could have obtained the corresponding neighborhood of f by
intersecting the appropriate neighborhoods. Part 1 follows from the
fact that

f*(U-'ci.ui X Weu) C U, i=1.-,n

ie.,
S*E NV X Wiy, U), i=1,.--,n
ie.,
S € NVaiyo N(Weiy,, U)) i=1-.-,n
and Part 2 follows from
8 &€ N(Vaiyos N(Wyiy, U)) i=1,---,n
= g* C NV X Wain, U) i=1,---,n
= 8*Vaoys X Weiy) CU i=1,-,n

= g*(U in.y.‘ X Wa:.',y-') C U
= g*(C) C U= g* € N(C,U). QED



FUNCTION SPACES 7
THEOREM 1.1.5. (fix) = f(x) is a map of YX X X into Y, if X is
locally compact Hausdorff.

PROOF. Let ¢:YX — YX be the identity map, which is certainly
continuous. Then ¢*(£,x) = ¢(f)(x) = f(x). Q.E.D.

THEOREM 1.1.6.  Suppose B; are closed subsets of a topological space X,
i=1, .-+, n, and that

B;=X
1

Suppose further that we are given n continuous mappings fi:B; — Y,
with fi|B;(\ B; = fi|B: N\ B; for all i,j. Then if we define f:X — Y by
1 |Bi = fi, we have that f is continuous.

PROOF. Standard.

THEOREM 1.1.7. Let X and Y be spaces, Z a locally compact Hausdorff
space, and let {Ay,- - -,Ax} be a closed covering of Z. Let 6;:4; — X be
maps. Let
H={(fuorof) CYEX oo X YE|fie 0]di N\ 4; = f6}/4: N 4;
j’j—_- 1’ ...,n}
Define ¢:H — Y% by
(fy,e - o fa)2) = fl042), z€ A

Then ¢ is continuous.

PROOF. By Theorem 1.1.3, it suffices to prove that ¢*. H X Z — Y
is continuous. For this, it suffices by Theorem 1.1.6 to prove that
¢*|H X A; is continuous. But this is the composite of

(fl: e sfmz) - (fiaz) - (ﬁ>€i(z)) —>f;(9;(2))

The first function is continuous because it is a projection; the second
because 6, is; and the third by Theorem 1.1.5.

PROBLEM 1.
Let X, Y, Z be spaces. Then

1. For each f &€ Z¥, g — f- g is a map of Y¥ and Z%.

2. For each f € YZX, g — g - fis a map of ZY into Z%.

3. If Yislocally compact and Hausdorfl, then (f,g) — g - fis a map
of Y¥ X ZY into ZX,
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1.2 Paths and the Fundamental Group

Let Xbeaspaceandlet I= {{ C R0<¢<1}. Apathin Xis a
map f:] — X; fis said to start at f(0) and to end at f(1). A loop in X
is a path f such that f(0) = f(1); the loop fis said to be based at the
point £(0) = f(1) of X.

Let f,g be paths in X such that /(1) = g(0). We define a new path
e @20 ( 3

_ t 0<t<%
VOO=Ye2r—1 @<t<D

Clearly f-g is a path starting at (0) and ending at g(1). We also define
a path f by

fo=ra-0n @D
fis a path from f(1) to £(0).

THEOREM 1.2.1.

L. (fi®) = f-gisamap of F = {(f,g) € X* X X"|f(1) = g(0)} into X".
2. f— fis amap of X into X%

PROOF. The Proof follows from Theorem 1.1.7, with Y = X, X = [,
Z=1I

1. Here we set 4; = [0,3], 42 = [1,1], 6u(x) = 2x, 6x) = 2x — 1.
2. Hereweset A = [0,1],0(x) =1 — x.

For x € X, let e, be the constant map of I into the point x; e, is
a path from x to x. If fis a path from x to y, then f is a path from
y to x. If f'is a path from x to y and g a path from y to z, then f-gis a
path from x to z. Let C(X,x) be the set of points of X which can be
joined to x by a path; C(X,x) is called the path component of x in X.
The path components form a decomposition of X, in virtue of the
foregoing remarks. We say that X is pathwise-connected or O-connected
if and only if C(X,x) = X for some (and therefore for all) x € X.
Define x = y if and only if 3 a path in X from x to y.

We readily verify the following Theorem.

THEOREM 1.2.2.
L. O(X X Y,(x,p) = C(X,x) X C(Y,y).
2. If f: X — Y is a map, then f(C(X,x)) C C(Y,f(x)).

Let F(X,x,y) be the space of all pathsin X from x toy.If f,g € F(X,x,y)
then f = g if and only if g € C(F(X,x,y),f). Thus f = g if and only
if 3 amap A:I X I — X such that
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h(s,0) = f(s)
h(s,1) = g(s)
h0,) = x
) =y

We have the following Corollary to the continuity of multiplication
and inversion.

COROLLARY 1.2.3.

1. Iff=f'andg=g',thenf-g=f'g¢.
2. Iff=f"thenf=f'.

PROOF.

1. We have f' € C(F(X,x,p),f)

g € C(F(X.y,2).8)
By Theorem 1.2.2 (1), we have

(f".¢) € CF(X,x,y) X F(X,3,2),(f.8)

Suppose we denote by ¢ the map in Theorem 1.2.1 (1). Then
¥ = Y|F(X,x,y) X F(X,y,z) is certainly continuous, and we have

ViIF(X,x,y) X F(X,y,2) = F(X,x,2)
Thus from Theorem 1.2.2 (2) it follows that

f-g =¥f.g"
= 1Ab/(fl,gl) € W(C(F(X,x,y) X F(X,y,z),(f,g))) - C(F(X’xaz)

V(f8)) = CF(X,x,2),fg)- QE.D.

2. This follows in a similar manner from Theorem 1.2.1 (2) and Theo-
rem 1.2.2 (2). Theorem 1.2.2 (1) is not used, although Theorem 1.2.2 (2)
was needed in the proof of Theorem 1.2.3 (1).

Let m(X,x,y) be the set of path components of F(X,x,y). We shall
abbreviate F(X,x,x) and m(X,x,x) to F(X,x) and m(X,x). By the
Corollary, we see that the operations on paths induce operations on

the equivalence classes: If « € m(X,x,y), 8 € m(X,y,2), then we may
define without ambiguity

a-f = C(F(X,x,z),f-g)

at = C(F(X,p,%),f)
forany f€ o, g € 8.
To prove that the operations above have reasonable properties, we
prove the following Theorem.
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THEOREM 1.2.4.

L. (f&h) = (f-9)-h and (fig.,h) — f-(g-h) are
homotopic maps of a subset G of X! X X! X X!
into X1.

2. f— f ey is homotopic to the identity map of
X1,

3. f—f-fand f — e;«) are homotopic maps of X!
into X1,

PROOF.

1. Let G = {(fig.M|f(1) = g0) and g(1) = #(0)}. Define a map
$:G X I — X7 by

[ 4 1+ ¢
f(l—i—t) OSSS—T
$(fghtl(s) = g(ds — £ — 1) l% <s 52_1+_t
4s —t—2 24t
Lh< 2_t ) 4 SSSI

We verify easily that ¢(£,,4,0) = (f*g)-k and ¢(f,g,h,1) = f-(g-h).
To prove continuity let ¢::G — (X?)! be the function defined by ¢
(i.e., ¢ = ¢7), and let ¢ be the natural homeomorphism of (X’)I onto
XP4, Then it is sufficient to prove ¢ o ¢;-G — X is a mapping.
We now apply Theorem 1.1.7, with Y=X, Z=IX1I, Y = 1,

A= {(s,t)CIXI[OSsS‘I%t}

4y = {(s,z)€1x1|%5s334—‘}
1(s,z)€1><1’——+ gsgl}
4s

&—l+t

0 =4s — t — 1
s — 1 — 2

bs = 2—1¢

Since it is easily verified that the conditions of Theorem 1.1.7 are
satisfied, it follows that o o ¢; is continuous. Thence, since ¢ is a homeo-
morphism, it follows that ¢, is continuous, and therefore . Q.E.D.
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2. Define y: XT X I — X! by
f(l%{it) OSSSI—;—Z
YHLO() = 1+
S) ——<s<1

f €1

Clearly ¥(£,0) = f-esqy, ¥(f;1) = f. Continuity follows from Theorem
1.1.7 as previously shown.
3. Define x: XI X I — X! by

7@ 0<s<k
fes-n  5<s<;
X*U5K) = 1 .
f@-2s—-19 5<s<Et
/O lcs<t

Clearly x(£,0) = f-f, x(f;,1) = ¢;. Continuity again follows from
Theorem 1.1.7.

COROLLARY 1.2.5. The map f — e;q-f is homotopic to the identity. The
maps f— f-f and f — e;qy are homotopic.

PROOF. e;0-f = f-e;0) and f-f = f-f.

COROLLARY 1.2.6. The operations of multiplication and inversion of
homotopy classes have the following properties.

l. Each a & m(X,x,y) has a left identity e, and a right identity e,.

2. Each a € m(X,x,y) has an inverse o' with co™ = &, al-a = ¢,
3. If e € m(X,x,p), BE m(X.p,2), v € m(X,z,w), then (a-B)-y =
a-(B-7).

COROLLARY 1.2.7. m(X,x) is a group.

CoROLLARY 1.2.8. If x and y can be joined by a path in X, then m( X,x) ~
W;(X,y).
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For let o € m(X,x,y). For B & m(X,x) let ¢(8) = a—Ba; for
v € m(X,p) let ¥(v) = aya~l. Then ¢ and ¢ are homomorphisms in-
verse to each other.

1.3 Grouplike Spaces

Let X be a space, e € X. We say that (X,e) is an H-space if and only
if 3 amap u:(X X X,(e,€)) — (X,e) such that the maps x — u(x,e) and
x — ple,x) are homotopic relative e to the identity map (X,e) — (X,e). X
is an IH-space if and only if X is an H-space and 3 amapr:(X,e) —(X,e)
such that the maps x — u(x,»(x)) and x — p(¥(x),x) are homotopic
rel e to the constant map of X into e. X is an AIH-space if and only if
X is an IH-space and the maps (x,y,z) — u(x,u(y,2)) and (x,y,2) —
w(u(x,»),2) are homotopic rel (e,e,e). (Note: We shall usually abbreviate
w(x,y) to x-y, »(x) to x~1)

REMARK 1.3.0. A4 ropological group is an AIH-space. If X is any space,
x € X, then the space F'(X,x) is an AIH-space under u(f-g)=f-g,
v( f) = f, in the sense of Section 2.

If X is an H-space, we may use the multiplication in X to define a new
multiplication of paths. Let f,g be paths in X, and let f# g be the path
given by

(f#8)®) =f(0)-g0)
LemMa 1.3.1. Let X be an H-space. Then (f,g) = f#g is a map of
XT X X! into X*.

PROOF. 1t suffices by Theorem 1.1.3 to show that (f,g,) —
(F# 2@ = f(2)-g(0) is continuous. This can be decomposed as follows:

(f:8:0) — (f(0),8(0) — f(1)-8())
The first is continuous because a map into a product space is continuous
if and only if each of the projections is continuous; i.e., we must prove

a. (f,g,0) — f(®) 1is continuous
b. (f,g,Y) — g(?) is continuous

The function in Part a is the composition of (f,g,1) — (f,£) — f(¢). The
first is continuous because it is a projection; the second by Theorem
1.1.5. Similarly Part b is true. As for the mapping (f(2),g(t)) — f(#)-g(9),
this is continuous by the definition of H-space.

LemMa 1.3.2. Suppose X is an H-space, f € X¥; define map f',f"" by
F'@ =f(@0)-e
[0 =ef@®
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Then f— f' and f — f" are maps of X! into X! which are homotopic
to the identizy.

PROOF. Let ¢:X X I — X be a map such that

¢(X’O) =X
ox,1) =x-e
dle,r) = e

To prove f — f’ homotopic to the identity define ®- X! X I — X! by
B(f,0(s) = ¢(f(s),0)
Then &(f£,0) = f,¢(f,1) = f’. To show & continuous it suffices to show
&*: X1 X I X I — X is continuous. This can be broken up into
(f:1,8) = (f(s):,0) = ¢(f(s).1)

and both steps are continuous. The proof for f — f*’ is similar.

THEOREM 1.3.3. Let X be an H-space, F = F(X,e). Then the maps
(f-8)—rg
(f9)—gf
(fi8) —fitg

are homotopic maps of F X F into F.

PROOF. Define ¢:F X F X I— Fby

W00 = {11 2l s d 10— 1) <5<
There are several verifications which have to be made.

1. Consistency: if s = 4, the first line gives /(1 — #)g(#) and the second
gives f(1 — 9)g(®).
2. #(f,8,0) € F: s = 0givesf(0)g(0) = e-e = e;s = 1 gives f(1)g(1) =
e-e=e.
3. Continuity: routine (by now).
Now note that
_ 108 =f@s)e =125  0<s<}
$(£:8:0)5) = fg@s— D =cgRs—1)=g"@2s—1) $<s<1
so that ¢(f,2,0) = f'-g". Also
HL2ANS) = 16)-86)
so that ¢(f,2,3) = f# g. Finally

1O)p2s) = g0 = g'2)  O<s<H)
DO = {fo5— 1g(l) = f@s— e =f2s— 1) G<s<D)
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so that ¢(f,g,1) = g”- f". Let®: X7 X I — X7, 3: X7 X I — X be maps
such that

0 =f LD=f

o) =f LD =f"
Then the mapping

VFXFXI—F
given by
W/figD) = (f,1)-2(g.1)

provides a homotopy from (f,g) —f-g to (f,g) —f'-g". Similarly
(f,g) — g-fand (f,g) — g”-f’ are homotopic. But we have shown that

(f,g) = f'-g" and (f,g) — g"’-f” are both homotopic to (f;8) — f#g.
From this and the transitivity of homotopy the result follows.

CoroLLARY 1.3.4. Let X be an H-space. Then if f € a € m(X,e) and
gEBE n(Xe), thenf#ge& aB.

COROLLARY 1.3.5. Let X be an H-space. Then m(X,e) is abelian.

THEOREM 1.3.6. Let X be an AlH-space, F = F(X,e). Denote by f the
member of F given by f(f) = (f(0)™". Then F is an AIH-space under
w2 = f#g v(f) =f, e = el where e, = the constant map of I into e.

PROOF. 1. u:F X F — Fis continuous.
This follows from Lemma 1.3.1.
2. uletel) = el.
For (el # eb)(1) = eX1)-el(t) = e-e = ¢ = el(t). Thus e’ # e} = el.
3. The maps f — u(e.,f) and f— u(f,e:) are homotopic relative e; to
the identity map of F — F.
For let ¢: X X I — X with

¢(x,0) = e-x
¢(x31) =X
d(e,s) = e

The existence of ¢ is assured by the fact that X is an H-space. Now
define
S FXI—>F
by
(f,5)0) = $(f(),9)

& is certainly a mapping, and we have
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B(f,0X0) = ¢(f(1),0)
=e-f(t)
= el0)-f()
= (e #/X2)
o/, 1)) = $(f(),1)
= f()
Blel,s)D) = dlel(D),5)
= ¢(e,5)
= e
= e/(d)

(f0) = ez #f
(LD =f

(et,s) = el

It follows that

similarly for f— u(fel).
4. y:F — Fis continuous.
The proof is similar to that of Lemma 1.3.1.
The rest of the conditions may be proved in a manner similar to that
of Part 3.

DEFINITION. Let (X,ex), (Y,ey) be H-spaces, f:(X,ex) — (Y,ey). Then
fis said to be an H-space homomorphism if and only if u(f(X2),f(X2)) =
S (X1, X))

THEOREM 1.3.7. Let (X,ex) be an AIH-space, wo(X,ex) the set of its
path components, C(x) the path component of x in X. Then m(X) is a
group under the operation C(x) + C(y) = C(u(x,y)), where C(x) is the
path component of x.

PROOF. Evident. The identity is C(ex).

THEOREM 1.3.8. Let (X,ex), (Y,ey) be AIH-spaces, f:(X,ex) — (¥Y,ey)
an H-space homomorphism. For x € X, define f (C(x)) = C(f(x)). Then
S im(X,ex) — m(Y,ey) is a homomorphism.
PROOF. We first show that f, is well defined. Let x” € C(x). Then
clearly f(x") € C(f(x)), since f is continuous. So f, is indeed well
defined. To show it is a homomorphism it is only necessary to show
a. f(Clex)) = Cley)
b. fl(C(x) + C(x)) = fUCx)) + f(C(x))
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Part a follows from the hypothesis, while Part b may be shown as
follows:

FLEX) + C(xY) = flCulx,x7)) = C(f(u(x,x)) = Clu(f(x).f (X))
= Cf(x) + A (X)) = FLC) + f(Cx))

THEOREM 1.3.9. Let (X,ex), (Y,ev) be AIH-spaces, f:(X,ex) — (Y,ey).
Then according as f is a homeomorphism onto or onto, f,:m(X,ex) —
no Y,ey) is an isomorphism onto or onto.

PROOF. 1If fis a homeomorphism onto it cannot take two path
components into one. So f, must have kernel zero. On the other hand,
let f be onto. Then every path component of ¥ must be represented in
S(X), so that f, is onto. This completes the proof. Note that in order
for f, to be an isomorphism, it is not sufficient that £ be 1:1 onto or
even a homeomorphism into. Counterexamples are easy to construct.

1.4 Homotopy Groups [14]

Denote by I, as usual, the set of real n-tuples all of whose coordi-
nates are in the interval 0 < ¢z < 1 for n > 0, and I° = {0}. Define

Ir = {1 € FUTL (141 = 1) = 0}

(i.e., we simply demand that at least one of the coordinates be either
one or zero for n > 0) and I° = @, the null set. The boundary of I*
in Euclidean n-space is . Clearly I* = I-1 X I. Furthermore, we have
the following Remark.

REMARK 1.4.1. I» = [t U 1 X I,
PROOF. Obvious.

DEFINITION. Let X be a space, x € X. Then
L F(X,x) = {f€ X"|fU") = {x}}, n>0

F(X,x) = X
2. e = the constant map of I" into x, n>0
0
é; = X

3. m(X,x) = the set of path components of F*(X,x), n>0.

LemMa 1.4.2. If n > 1, then Fr(X,x) is homeomorphic with
FY(F—Y(X,x),eZ™")

under a mapping which takes €% onto ey
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PROOF. Thisis a consequence of thehomeomorphism between X7 * 1"
and (X", For, if
M IX I = X, () = (x)
then from Lemma 1.4.1, we have ¢*(/ X I = (x), that is,
$(H(I1) = (%)

that is, .

o) = ez™? ()
On the other hand, again from Lemma 1.4.1, we have

¢*(I X 1) = (x)

that is )

(DY) = (x)

o(l) € F1(X,x) ©)
From Expressions 1 and 2, we obtain that the image of F»(X,x) is in
FY(FY(X,x),ez""). Similarly we may prove that the preimage of
F'(F~(X,x),e5™") is in F(X,x). It remains only to prove that e® goes
into e’ But this is easy to verify. This completes the proof.

that is

CoroLLARY 1.4.3. For n > 1, F/(X,x) is an AIH-space with u(f,g) =
J+ gand v(f) = —f given by

.. — f(lls' * '9tn—1’2tn) In S
(4 8t = {1 e2) yooms

(—f)(tb' ‘ '3tn) =f(t13' * '9tn—131 - tn)
PROOF. By induction on n. For n = 1 it is a consequence of Remark

1.3.0. (In fact, it is Remark 1.3.0.) For n > 1 it follows immediately
from the induction hypothesis, Theorem 1.3.6 and Lemma 1.4.2.

(SN

COROLLARY 1.4.4. For n > 1, the homeomorphism of Lemma 1.4.2 in-
duces a 1:1 correspondence between w.(X,x) and m(FY(X,x),ex~ ).

DEFINITION. We make m.(X,x) into a group by demanding that the
correspondence of Corollary 1.4.4 be an isomorphism. n.(X,x) is called
the nth homotopy group of (X,x).

THEOREM 1.4.5. Let
[E€ a & m(X,x)
8 € B &€ m(X,x)
Then f+ g € a+ B. That is, m(X,x) = n{F"(X,X),e%), as groups.
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PROOF. Let f* € FY(F(X,x),e:™ ") correspond to f under the
homeomorphism of Lemma 1.4.2 and a* € m(F* (X, x), 1) to «
under the correspondence of Corollary 1.4.4. Then f* € a*, g* € B*.
By Corollary 1.3.4, we have f* # g* € a* + *. So by the Deﬁnition
of m(X,x), we have f* # g* € (a + B)*. Now

(f* 7 89ty + +s1) = (f¥(11) + (N2, + +510)
(here the + is in the AIH-space F*~!(X,x))

f*(tl)(tZ,' : "2tn) ta S %
g )ty -2t — 1) 1t 21
f(th' ¢ -,ZZn) la S %

(ty- - 32, — 1) t,>1

= (f+ g)(tly' ‘ ',tn)
(here the + is in the AIH-space F*(X,x))
= (f+ 8*)(t- - 1)

It follows that f* #g* = (f+ g)*. Therefore (f+ g)* € (« + B)*.
Since * is 1:1, the result follows.

THEOREM 1.4.6. 7(X,x) is abelian for n > 2.

PROOF. Follows from the definition and Theorem 1.3.5. A more
direct proof that r,(X,x) is abelian is suggested by the picture:

PR |
f ’ /

// 20

It is left as an exercise to the reader to write down formulas for the
homotopies suggested by the picture.

THEOREM 1.4.7. F***(X,x) is homeomorphzc with F{(F(X,x),e3) under
a homeomorphism which sends eX+* into et

PROOF. For k =1 this is Lemma 1.4.2. The theorem now follows
by induction from the fact that the spaces

FHF(X,x),€2)
FY(FU(Fr (X x)ez),e6m )
F(F=1(X, 0,5+
Fn+k(X,x)

are homeomorphic, the base points behaving correctly.
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LemMMA 1.4.8. Let f:(X,x) — (Y,y). Then
F(FY(X,x),e3) — (F/(Y,),€5)
is an H-space homomorphism, where
7(8)(t1,‘ : '9tn) = f(g(tls' ° ',tn))

PROOF. Continuity follows from Problem 1(1). The homomorphic
property is immediate.

COROLLARY 1.4.9. f, 17 X,x) — m.(Y,) is a homomorphism.
PROOF. Theorems 1.3.8 and 1.4.5. In the future we shorten f, to f,.
DEFINITION. f = f’ means f homotopic to f'.

LemMA 1.4.10. Let X,Y be spaces, f,f': X — Y, f = f'. Then C(f(x)) =
C(f' ().
PROOF. Obvious.

THEOREM 1.4.11. Let X, Ybe spaces, f, f':(X,x) = (Y,p),f = f' relative
X. Then f,, = f%.
PROOF. Follows from Problem 1 and Lemma 1.4.8.

THEOREM 1.4.12. Let X,Y,Z be spaces,
[1(X,x) — (Y,p), hi(Yy) — (Z,2)
Then (he f)y = hyo fy
PROOF. (h-f)(C(g)) = Clh-f-g)
= h,C(f- 8
= hy o f(C(g)

THEOREM 1.4.13.  Let f be the identity map of a space onto itself. Then f,
is the identity.

PROOF. Utterly trivial. Notice that Theorems 1.4.n, n = 11,12,13,-
show that m,(X,x) satisfy the first two Eilenberg-Steenrod axioms for
homology theory, and the fifth.

1.5 The Ogerations of 7; on =, [2, 21]
DEFINITION. G*(X) = LCJXF"(X,x)

G(X) is a subspace of XI*
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DEFINITION. The function = on G*(X) into X is that function for which

W(f) =f(0" * '30)’

THEOREM 1.5.1. = is continuous.

PROOF. = = (g h)|G(X), where
X — XX I
g XX nr—-X

are given by a(f) = (£,(0,--+,0))
and

g =f()
Obviously % is continuous and g is by Theorem 1.1.5.
DEerINITION. Let f,g € G(X), p € FY{(X,a,b). Then f= g (f is freely
D

homotopic to g via p) if and only if there exists a path q in G¥(X) from f to
g such that « o q = p. Alternatively: There exists a map g*:I"** — X
such that
g*0,) = f@, ¢*(L,) = g(»), &I
g*(s,t) = p(s), tel
DEFINITION. Let t € I*. Then |t| = max [|2t; — 1.
i=L...,n

LemMA 1.5.2. || = O if and only if t = (3,5, - *,3)
|l = 1ifand only if t € Ir
DEFINITION. Let g € F(X,b)
p € F(X,a,b)

2t —l’”"ztn_l t
Then 18t 1) = {55 00 b

QN2

JOERN

LemMa 1.5.3. (g,p) — t(g) is continuous from
U_ (F(X,b) X F'(X,a,)) to G*(X)
abeX

(An idea of what the map looks like is suggested
by the accompanying picture.)
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PROOF. Follows from Theorem 1.1.7. Here Y =X, X = Z = I,
A={EM L3}, {d=1t€ 1>}

91(11’. . ‘,tn) = (2[1 —_ 1’. . ',22‘,. — 1)

02(th‘ ’ "tn) = (tl,' : ’,tn)
It follows that (g,5) — 1,(g) is continuous, where p(f,- - oln) =
P(2 — 2[t]). It remains to prove that p — j is continuous from X!
to XT". This follows from Problem 1, Part 2, once it is shown that
(t1,+ - +,tn) = 2 — 2|t is continuous, which follows from the continuity
of (t,- -« ,tn) — |1 Q.E.D.

THEOREM 1.5.4. If g =g’ in FY(X,b) and p = p’ in F{(X,ab), then
t(8) = t,(g’) in F(X,a).

PROOF. Trivial; merely rewrite the homotopies.

LemMMmA 1.55. f=gandg=h=f=h
¥4 q ]

LEMMA 1.56. f=g=g=f
D ?

Lemva 1.5.7. f= f', p = p' in F\(X, f(I"),f'(I")
2
=f=f
¥4
PROOF. Define a mapping

b — In r>1
PR (2 CYREEN () Rl
by Aty -+ otn) = (h(t),- - - h(t,)), 1| > r
where
2t:+nr—1
h(t;) = 2
7 tl 1 -_7r
) = 3= BS
I, t; 1 e 2 I + r
Ry =S

Obviously %, is continuous for each 7 in the range indicated; Ay, is the
identity.

Define £,(g) = #,(g) * k.. Then #/%(g) = 1,(g), t}(g) = g, and it may
easily be shown that the mapping (r,g,p) — #(g) is continuous. Let ¢
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be a path from f to f/ such that 7« ¢ = p, and let k be a path from p
to p’ in FI(X, f(I*), f'(I"), k(?) = k(z)(s). Now let ¢’ be the path from f
to f given by ¢'(s) = 51 ¥(g(s)). It is easy to show that ¢’ is indeed
continuous and satisfies the initial conditions, and thus the result is
proved.

Lemma 1.58. f=g,f = g=f=f"in F/(X, f(0,---,0).
P ¥4
PROOF., By Lemma 1.5.6, g =f’. By Lemma 1.5.5, f= f’. But
? P

PP = epm. [For suppose that we consider the composition G of the
string of mappings

IXI—>XXDXI—>XIXI—>X

where the first is the mapping h(s,9) = ((p,s),), the second is induced
by the mapping of Theorem 1.2.5 (3), and the third is that of Theorem
1.1.5. Then G provides a homotopy from pp to e,q.] The result now
follows from Lemma 1.5.7 and the trivial fact that f= f’ and
Sfer,---,0) = f' are the same statement.

LemmA 1.59. t(g9) = ¢
y4

PROOF. Let p(f) = p(s + t — st). Then the path g(s) = 5" "/%(g)
defines the desired homotopy.

COROLLARY 1.5.10. f = g if and only if f = t(g) in F¥(X,f([").
4

LemMa 1511, f=gf =¢g¢=f+f=¢g+¢.
4 4 4

PROOF. Let ¢ and ¢’ be paths in G*(X) between f and g and f’ and
g, respectively, o ¢ = 7o ¢’ = p. Then define a path ¢ between
f+f and g+ g by () = ¢(1) + ¢'().

COROLLARY 1.5.12. 1,(g + g') = t(g) + t,(g) in F(X,p(0)).
PROOF. tfg+g)=g+g. Butzlg =g t,(g)= g So #,(g) +
p(g’) =g+¢g.50 tp(g +g)= tp(g) + tp(g’)-

LemMA 1.5.13. t.(g) = g in F*(X,b).

LemMaA 1.5.14. t,,(h) = t,(t,(h)).



THE OPERATIONS OF 7 ON wx 23

PROOF. () =h )]
rg
t(h) = h 3
t(t(h)) = t(h) C))
from Formulas 3 and 4 and Lemma 1.5.5, we have
t(t(h) = h )
pg

From Formulas 2 and 5 and Lemma 1.5.7, the result follows.

Let g € o € m(X,0), p € ¢ € n(X,a,b). Then t,(g) is in F(X,a);
but by Lemma 1.5.4, its path component in F*(X,a) depends only on
the component of g in F*(X,b), and that of p in Fi(X,a,b), i.c., on «
and ¢ So we may state the following Definition.

DEFINITION. Let p € ¢ € 7w X,a,b), g € a € 7(X,b). Then 6c) is the
component of t,(g) in m.X,a). '

LemMa 1.5.15. 6a -+ B) = 0(c) + 0:8)
Oee) = e = Clep)
b)) = 0¢(6:(c))
PROOF. Lemmas 1.5.n, n = 12, 13, 14.

COROLLARY 1.5.16. 0; is a homomorphism from m.(X,b) to m.(X,a).

DEFINITION. Let X be a O-connected space. A bundle G of groups in X
consists of the following:

1. A function which assigns to each x € X a group G..

2. A function which assigns to each § € w(X,x,y) a homomorphism
v:: Gy — G., satisfying the following requirements.

3. IfE € m(Xx,), n € m(X,3,2), then v = Vi © vy

4, If x € X, then v., = identity.

1t follows that each v is an isomorphism onto, and that the groups G,

are all isomorphic. We frequently write G = {Gy,ve}. The bundle G is

said to be simple if and only if for every x,y € X, £, n € m(X,x,y), we

have yi = v,

THEOREM 1.5.17. If X is O-connected, then the system

Tn(X) = {Tn(X:x)’os}

is a bundle of groups in X.
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PROOF. 2, Corollary 1.5.16; 3 and 4, Lemma 1.5.15.

DEFINITION. The 0-connected space X is said to be n-simple if and only
if the bundle r.(X) is simple.

DEFINITION. Let f:Y — X be a map, and let G = {G,,v:} be a bundle
of groups in X. We define a new bundle f*G = {H,,5,} by

H, = Gy

& = Vst
Let G = {G.,v}, H = {H.,,6:} be bundles of groups in X. A homo-
morphism ¢:G — H is a function which assigns to each x € X a ho-

momorphism ¢.:G. — H, satisfying the commutativity relation 8¢ - ¢, =
¢z 0 ye for all £ € m(X,x,y)

If, for each x,
. [an isomorphism into
&z Is { P }
onto
we say that

. [an isomorphism into
¢is { P }
onto

If, for each x, G, C H,, and ¢ is the inclusion map, we say that G isa
subbundle of H. If each G is a normal subgroup of H,, we say that G is a
normal subbundle of H and define the factor bundle G/H with groups
G./H, and homomorphisms ~v§ induced by v;.

DEFINITION. Q.(X,x,) is the subgroup of m.(X,x,) generated by all ele-
ments of the form a — 0{a) with a € w.(X,x0), £ € m(X,Xo).

THEOREM 1.5.18. If ¢ € m(X,x,), then 0{2.(X,y)) C Qu(X,x). The sys-
tem {Q.(X,x),0{Q.(X,»)} = Qu(X) is a normal subbundle of n.(X). The
bundle w.(X)/Q.(X), denoted by (X)), is simple.

PROOF. We first prove the following Lemma.

LemMa 1.5.19. Q(X,x) is a normal subgroup of m(X,x). In particular,
Q(X,X) is the commutator subgroup of m(X,x).

PROOF. Since 7(X,x) is abelian for # > 1, we may confine our
attention to the second statement. By returning to the definition of
t,(g), we see at once that it is homotopic to (p-g)-p. It follows that
0() = Eaf™t. But @(X,x) is generated by the affe)™! = af la7lt =
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af a7 (E71)71, and these are precisely the generators of the commutator
subgroup. Q.E.D.

Now let n € m(X,p), a € 7.(X,»). Then

O — /() = 0(e) — Be() = 0() — Ogne(6(c))
Since &1 € m(X,x), the element just described belongs to Q.(X,x).
Hence 6Q.(X,»)) C Q.(X,x). To prove simplicity of the factor bundle, it
suffices to show &1 € m(X,x,)), @ € 7(X,y) = 0:(c) — 0,(c) € Qu(X,X).
But
b)) — (@) = 8e) — Br-1(0(e))
and this element is in Q,(X,x) since nt~! € m(X,x).

We now show that the notion of “bundle of groups” is equivalent
to the simpler notion “group with operators in m(X).” In fact, if
G = {G.,v:} is a bundle of groups in X, and x, € X, then the homo-
morphism § — v, (¢ € (X, X)), defines m(X,x,) as group of operators
on G = Gy. Conversely, if G is a group on which m(X,x,) operates, we
define a bundle G as follows. For each x € X, choose & € m(X,x0,x%)
with £, = &, Then let

EY

G.=G %
74g) = (4t ) g ¢

3

Then G = {G.,7:} is a bundle of groups in X. If the group G with
operators in (X, x) is derived from a bundle G, then G ~ G under the
isomorphisms &,:G, — Gz, = G. Conversely, the group with operators
derived from G is G; for if ¢ € m(X,x,), then
7d8) = (Gt ) g = &g

Thus the foregoing correspondence between bundles and groups with
operators in m is 1:1.

The notion of bundle of groups is useful in homology theory, as we
shall see later. It is actually a special case of Cartan’s notion of
“faisceau.”

ReMARK 1.5.20. Let f1Y — X. Then f, maps w.(Y) homomorphically
into f*r(X). That is to say: For £ € m(Y,x,p), a € w(Y,y), we have
Ji0(@) = Opx(fi()-



26 HOMOTOPY GROUPS

1.6 Relative Homotcpy Groups [12]

DEFINITION.  J*~ = I X "1 0 X I"\, Let x € A C X. Then
Fr(X,A,x) = space of al{ maps of (I*,I»J*1) — (X,4,x), i.e., those maps
of I into X which take I" into A and J*~1 into x.

ma(X,4,X) = set of path components of Fr(X,A4,x).

LeMMA 1.6.1. Fr(X,A4,x) is homeomorphic with F\(F1(X,4,x),e?™ ).
PROOF. Similar to that of Lemma 1.4.2,

COROLLARY 1.6.2. If n 2 2, F*(X,A,x) is an AIH-space with addition
the same as for F*(X,x).

PROOF. The proof is similar to that of Corollary 1.4.3, insofar as
the induction goes. It remains only to establish the truth of the theorem
for n = 2, and this may be done in standard fashion.

However, it is instructive to pause at this point and examine why the
theorem succeeds in this case, whereas it fails for n = 1. To this end,
we must examine what members of F*(X,4,x) really are. They are
simply maps of I* into X, in which all faces but one, namely the face
I1 % {1}, go into x; while I X {1} goes into 4. We denote by J»1
the remainder of the faces, namely the set I* — I*1 X {I}. Now when
n > 1, the sets J*~1 and I*~1 X {1} intersect, and their intersection is
precisely the boundary of I*~1 X {1}. (We know that they must inter-
sect, because of the connectedness of I» for » > 1.) But in the case of
n=1,I1% {1} = {1} and J*! = {0} do not intersect. This is made
possible by the disconnectedness of I'. Now when we add two maps of
I, we are essentially “gluing” them along the hyperplane x, = 1 of
the first map, and x, = 0 of the second. When n > 1, this is all right,
because these hyperplanes are in J»~1. But when n = 1, there are not
enough dimensions to force the point 1 to be in J*~1, and so it does not
have to go into x, but may go into any point of 4. Obviously no gluing
can be accomplished if the two parts to be attached are not even
brought together.

COROLLARY 1.6.3. 7.(X,4,x) is a group for n > 2.
PROOF. Similar to that of Corollary 1.4.4.

COROLLARY 1.6.4. 7.(X,A4,x) is abelian for n > 3.
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PROOF. By definition,
(X, 4,%) =~ m(Fr~Y(X,A4,x),ex™ ")

F~Y(X,A4,x) is an H space whenn — 1 > 2, i.e.,, when n > 3. Now use
Theorem 1.3.5.

CoROLLARY 1.6.5. m.(X,4,x) = mo(F*(X,4,x),e%), as groups.
PROOF. Similar to that of Theorem 1.4.5.

COROLLARY 1.6.6. F"* (X,A,x) is homeomorphic with
' Fr(FH(X,0),F(4,%),¢5)
under a homeomorphism which is an H-space homomorphism.
PROOF. Similar to that of Lemma 1.4.2, using the natural homeo-
morphism between X7*™* and (X™)". The fact that the resulting ho-

meomorphism is an H-space homomorphism may be verified by simply
examining the additions in the two spaces.

COROLLARY 1.6.7. min(X,4,%) R ma(FH(X,X),F¥(4,%),e5).

PROOF. Corollary 1.6.5, Theorem 1.3.9, and, of course, Corollary
1.6.6.

LeMMA 1.6.8. 4 = {x} = m(X,4,%) = m(X,X).

DEFINITION. Let n > 1. Then the boundary function 3 from F*(X,4,x) to
Fr=Y(A4,x) is given by (3f )t + +,tn) = f(Lita+ 1)

LeMMA 1.6.9. 9 is an H-space homomorphism; (it is therefore called the
boundary mapping). Furthermore, if 3, = 9, f:(X,4,x) — (Y,B,y), then
3. S = (fl4) 04, and thus the third Eilenberg-Steenrod axiom for
homology theory is satisfied by homotopy groups.

PROOF. We must first check that 9 is continuous. To this end, con-
sider the mapping d: X* — XI"™, which is induced by the projection
piI* — I given by p(ty,- « +,t,) = p(L,ts,- - -,t,). Then the continuity
of d follows from that of p by Problem 1, Part 2. But 8 = d|F*(X,4,x).
The homomorphism property is readily verified. Commutativity fol-
lows from 5(f° g)(tls' : ’szn) = (f" g)(l,lz,' '.':tn) = f(g(1>123' cnta)) =
f((gg)(th' ‘ '3tn))’ where g F"(X,A,X).

From now on through the end of Section 1.6, and occasionally there-
after, we abbreviate our symbols for homotopy groups and H-spaces



28 HOMOTOPY GROUPS

by omitting explicit mention of the base point x. The resulting symbols
are not to be confused with those for the corresponding bundles.

LemMA 1.6.10. Let i:tA — X and j:(X,x) — (X,A) be inclusion maps,
and write X* = FX), A* = F¥(A). Then the diagram

Tari(d5) =5 Tpa(XD) —2 (X5, A4Y) —2 1 (A 2 10X

% Jx 2 Tx
Trprs1(A) = Topisi(X) = Taprsa(XoA) — moga(d) — mopi(X)
is commutative, where the vertical homomorphisms are the isomorphisms

onto of Corollary 1.6.7. The lemma holds even when n = 0, i, j,, and 9,
being defined in the obvious fashion.

PROOF. Immediate, upon examination of the homomorphisms in-
volved and the mappings which induce them.

LemMA 1.6.11. Suppose that the diagram

/i /2
. —)A1—1—)A2——2)A3——)“'

l/, lfs lf1
I fs

« ——> B —> B, —> B; —> .

is commutative and that the vertical functions are one-one onto. Then it
the top sequence is exact, so is the bottom sequence.

PROOF. Before we begin the proof, we ask the reader to recall that
by commutativity we mean f; o fi = fi o fs, f1° /2 = f5 o f3, etc. We also
note that the sets 4; and B in question by no means have to be groups,
or even to possess any structure whatsoever, except that they have to
have a distinguished zero element, such that all the functions take the
zero of one group into the zero of the next. The definition of exactness
remains unchanged,
The proof is as follows. We have

Kernel f; = f; Kernel f5 - f; (because f; is onto)
= f; Kernel f7 - f; (by commutativity)

= f; Kernel f; (because since f; is 1-1, the only element
which goes into 0 is 0)

= f; Image f; (by exactness)

= Image f; - f1

= Image fy  fs (by commutativity)

= f; Image f;

= fi(B) (because f; is onto)

= Image f,

This completes the proof.
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LemMa 1.6.12. The sequence

() 5 mi(X) B m(X,4) 5w A) B wo(X)
is internally exact.
PROOF.
® Kernel j, = Image i,
For,
Kernel j, = {C(f) € m(X)|j,C(f) = Cle)}
= {C(f) € m(XD)|C(jf) = Cle)}
[the components on the left side being taken in the space F'(X,4)] =
{C(f) € mX)|C(f) = Clen)y = {C(f) € m(X)|3 F:I X I— X such
that F(z,1) = x, F(t,0) = f(t), F(0,t) = x, F(1,t) € A} [the latter con-
ditions because the homotopy must take place in F'(X,4)]. Now let
g(®) = F(1,1 — ). Then g(?) € 4, g(1) = F(1,0) = f(0) = x, g(0) =
F(1,1) = x. Define
F(2,25(1 — ©) s<13
Fl—-21=-s)(1—01—08 s=>3%
Then G(t,s) provides a homotopy in X between g(¢¥) and f(), so
C(f) = C(g) in X. But g € F'(4), so
C(f) = Cg) = Clig)in X
=i, C(gin 4
So C(f) € Image i,. It follows that Kernel j, C Image i,. The oppo-
site inequality is proved in a similar fashion.
® Kernel 9, = Image j,
For the image of j, consists of the set of path components of F(X,4)
which contain a loop of X; whereas the kernel of 9, is the set of path
components of F'(X,4) which contain paths whose end points are in
the identity of m(4), i.e., may be joined to x by a path in 4. So Image
J« C Kernel 9, is obvious; and for the opposite inequality, it is merely
necessary to show that if
fO=x fl)=a& 4
g0)=a g)=x g4
then 3 F:I X I — X such that
FO,)) = f() *ea
F(t0)=x
F@He A
F1,1) =x

G(t,s) =
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F is provided by F(s,t) = f(¢) » g(st), and shows that every path in
FY(X,4) whose end point can be joined to x by a path in 4 is homotopic
in (X,4) to a loop of X. It follows that Kernel 9, C Image j,
© Kernel 7, = Image 9,

Let o € m(A4); so a is a path component of A. Then for « € Kernel 7,
it is necessary and sufficient that the elements of « be elements of C(x)
in X. On the other hand, for « € Image 9, it is necessary and sufficient
that the elements of « be end points of paths which start at x; that is,
the elements of o must be points of C(x). This completes the proof.

THEOREM 1.6.13. The sequence

¢ = Tan(5A) B 1 A) 3B 1) B (X, 4) — -
is exact.

PROOF. The proof follows immediately from Lemmas 1.6.n; n = 10,
11, 12. In Lemma 1.6.12, we simply put X = X*, 4 = A*, then apply
the other two.

THEOREM 1.6.14. Let BC A C X, and let k:(4,x) C (4,B), i:(4,B) C
(X,B), j:(X,B) C (X,d) and let 3, = k, « 3. Then the sequence

= Tana(X,A) 5 1 A,B) B 1 (X,B) B m(X,4) —
is exact.
PROOF. See Eilenberg and Steenrod [B.3, p. 25, Theorem 10.2]. The
theorem is there proved for homology ; however, only his axioms 1, 2, 3,
and 4 are used [see B.3, pp. 10, 11], all of which hold for homotopy as

well, as we have proved. The proof thus goes through in exactly the
same way.

PROBLEM 2. Let X be an Ic}, pathwise connected space, with X a
covering space of X. Then m(X) = mu(X), n > 2.

PROBLEM 3. Let y € I*+, and assume ma(X,x) = 0. Then every map
of (I**1,y) into (X,x) can be extended to a map of I**! into X.

PROBLEM 4. Let m.(X,4) = 0. Then every map of (J7, {1} X I~y) into
(X,4,x) has an extension f:I"*! — X with f({1} X I") C A.

1.7 The Bundle 7.(X,4)

The definition of this bundle corresponds to that of ,(X), and many
of the lemmas in this case have proofs similar to those with the same
number in Section 1.5. When this is so, the proof will be omitted.
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Note, however, that these lemmas are not consequences of those of
Section 1.5. For the bundle 7,(X,A4) is a bundle on A4, not on X; and
if we let 4 = (x), so that m,(X,4,x) = m.(X,x), then we have that the
bundle 7.(X,4) is a trivial bundle on a single point. The two cases
then have to be stated separately.

Let

G(X,A) = LCJA Fr(X,A,x)

Define m:G(X,4) — 4 by #(f) = x if f € F*(X,4,x). Then we have
the following theorem.

THEOREM 1.7.1. = is continuous.
DErINITION. Let f € F{(X,A4,x), g € F{(X,A,b), and p € F\(X,a,b). Then
we say that f = g if and only if there exists a path P in G"(X,A) from f

to g such that - P = p. (Alternatively, there exists a map P*:["*1 — X,
such that P*(0,u) = f(w), P*(1,u) = g(u), P*(t,) € Aifn € "1 X {1},
P*(t,) = p(2) if u € J1)

DEFINITION. Let t € I*. Then
le]| = max (|24, — 1],-+ -, |2t00 — 1],1 — 2,)

LemMa 1.7.2. ||| = O ifand only if t = (3,++-,3,1)
2]l = 1if and only if t € J»*

DEFINITION. Let g € FY(X,A,y), p € FY(4,x,p).
Then

- g(2t1 _ %,‘ . ',2tn—.1 - %,2tn - 1)’ 0< ”t”
t t R .’tn =
o)t 1) {pa = 2/lell), 3 < |ldl

An idea of what the map looks like is suggested by the picture.

p— R

IAIA

LemMma 1.7.3. (g,p) — 7.(g) is continuous from

/ 9
U FY(X,4,y) X F'(4,x,p)
2y A
10 G*( X, A). "// °\ P

THEOREM 1.74. If g =g’ in FN(X,A,y) and p = p’ in F{(4,x,y), then
Zp(g) = ip'(g’) in F"(X,A,X).

/]

LemMMA 1.75. f=g,g=h=f=h.
P q o4
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LemMa 1.7.6. ff g=g ff‘

LevMa 1.7.7. fff’,p = p’ in FX{4,x,y) =>ff’f’.

Lemma 1.7.8. ff g f -7— g=f=f"in F(X,A4,x).

LemMma 1.7.9. 7.(9) ;=' g.

COROLLARY 1.7.10. f _f g if and only if f = i/g) in F(X,A,x).
Lawva L7111 f=g,f' =g =f+f =g+¢.

CoROLLARY 1.7.12. T(g + &) = 1(g) + 7(¢’) in FY(X,A4,x).
Lemma 1.7.13. %.(f) = f in F/(X,A,x).
LemMmA 1.7.14. 1,(h) = 1(i(h)) in F{X,A,x).

Thus if ¢ € mi(4,x,), a € 7(X,4,y), then we may define §(a) €
7(X,A,x) to be the path component of 7,(g) for any p € ¢, g € a.
Then we have the following Lemma.

LeMMA 1.7.15. 8fa + o) = 8{e) + 84’
Bee) = GB())
fcfe) = a

COROLLARY 1.7.16. 8; is a homomorphism from x.(X,A,) to w.(X,A,x).

THEOREM 1.7.17. If A is O-connected, then the system w(X,A)=
{ma(X,A4,%),0:} is a bundle of groups in A.

DEFINITION. If 4 is O-connected, the pair (X,A) is said to be n-simple if
and only if the bundle m.(X,A) is simple.

PrROBLEM 5. Let o,8 € m(X,4,x); then
fox(B) =+ B—a
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(Note that this group is not necessarily commutative, so that we do
not necessarily have a 4+ 8 — a = g8.)

COROLLARY 1.7.18. The kernel of
9, imA(X,4,x) — m(A4,%)
is contained in the center of wyX,A,x).

PROOF. Leta € Kernel 9,. Then for 8 € my(X,4) we have a + 8 —
& = Ba,)(B) = 6i(8) = B. So a4+ B8 =8+« and it follows that
a € center of m(X,4,x).

DEFINITION. .(X,4,x0) is the subgroup of w.(X,A,x,) generated by all
elements of the form a — 9a), @ € m(X,4,x0), £ € m1(4,X0).

THEOREM 1.7.19. If £ € mi(4,x,p), then 8(8.(X,4,y)) C Qu(X,4,x). The
system {Q(X,4,%),0:0u(X,4,0)} = Gu(X,A) is a normal subbundle of
(X, A). The bundle m.(X,A)/Q.(X,A), denoted by w}(X,A), is simple.

PROOF. We first prove the following Lemma.

LemMA 1.7.20. Q.(X,4,x) is a normal subgroup of w«(X,A,x). In particu-
lar, 0x(X,A4,x) contains the commutator subgroup of r(X,4,x).

PROOF. Since m.(X,4,x) is abelian for n > 2, we may confine our
attention to the case of n = 2. We then have, for 8 € m(X,4,%),
B+ (x— b)) — B

=B+a—B+ B~ b)—pH

= Dor(@) — fax@(0(e))  (by Problem 6)

= (73*(,3)(01) - ga*(ﬂ)-é(a) (by Lemma 1715)

= Oox(@) — Box@eroren-o* (@)

= fore(@) — Box@retor o1~ (B (@) € O X,4,X)

This proves normality.
For the second statement, let @« + 8 — a — 8 be a generator of the
commutator subgroup. Then

atf—a—B="0rup)—B
= [8 — I @(B)]* € Qo X, 4,x0)

This completes the proof of the lemma. The remainder of the proof of
Theorem 1.7.19 is similar to the corresponding part of that of Theorem
1.5.18.
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Remark 1.7.21. Let fi(Y,B) — (X,A). Then f, maps m.(Y,B) homo-
morphically into f*r.(X,4). That is to say: For & & w(B,x,)),
a € 1,(Y,B,y), we have

SiBde) = Fre(ful)
DErINITION. Let £ € m(A4,x), a € m(X,x), i:(4,x) — (X,x) be the in-
clusion map. Then 8(a) = 6;.4(c).

THEOREM 1.7.22. The diagram

] [’
o = (XA, X0) — Ta(A,x0) —> (X, X0)
[ O 0’

. —_— 7r,,+1(X,A,Xo) i) Wn(Ag-xO) i) Wn(X:xo)

2y (XA yxe) — -
3

2y (XA x) — -
is commutative.
PROOF. 1. Clearly dt,(g) = t,(3g).
Therefore 9, ¢ ; = 6o 9.
2. By Remark 1.5.20, we have

1,(64(0)) = Bine(i4()) = 6i(i ()

3. It is clearly sufficient to show that z,(g) and 7,(g) can be joined by a

path in F*(X,A,x,). By Corollary 1.7.10, it is sufficient to show that

t(g) = g in the sense of Section 1.7, that is, that there exists a path P
b4

in G*(X,A) joining t,(g) to g, with = - P = p. Now there does exist such
a path in G*(X). But clearly G*(X) C G*(X,4). This completes the
proof.



