CHAPTER ONE

The Development of Mathematical Logic
During the Middle Ages in Europe

1. Survey and Periodization

Despite the fact that mathematical logic is primarily an offspring
of the nineteenth century, individual ideas in this scientific discipline
were brought to light much earlier. In fact, the foundations of a
number of concepts in mathematical logic were laid in the Western
European Scholastic tracts on logics. ’

The achievements of the logicians of the Middle Ages have not
received enough attention in the Soviet literature. However, the
foreign literature includes a number of important works. Source
material on medieval logic is presented in a number of books,
notably References 17 and 370. The works of K. Prantl in
Reference 17 still command admiration for his scrupulousness
(although we must remember that Prantl, who was not well
versed in mathematical logic and wrote at a time when the subject

“was just beginning to develop as an independent scientific discipline,
naively believed that such general logical tracts as de consequentis and
de insolubilis were conglomerations of foolishness).

The Middle Ages has an important influence on the field of logic.
The scholars of that time excelled in subtle and abstract arguments;
however, isolation from experiment and the necessity of making
their arguments agree in every detail with the tenets of Catholicism,
the religion of many of the prominent researchers, were burdens on
their creative powers. The existing atmosphere of verbal battles led
to an increased interest in the study of the laws of deductive logic.
In addition, this was sometimes used as a convenient means for
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escaping from the ideological domination of clerical dogmatism.,
Even Abelard, in the twelfth century, actually proved that the
““theses of revelation”” were inconsistent with the logical studies of
the Greeks and Arabs. The fact that specific examples and religious
content as well as ““secular’ illustrations were contained in logic is,
of course, of no fundamental importance. Thus, as an example of a
fixed true statement, the Scholastics frequently used the phrase
deus est while, as an example of an impossible proposition, they used
the phrase deus non est. Incidentally, the reader may find it humorous
that such statements as deus est bonus (God is good) and asinus est
animal (the ass is an animal) were taken to be logically equivalent,

The Scholastic logic of the Middle Ages can be divided into three
phases. The first phase — the vetus logica, which included Aristotle’s
On Commentaries, his Categories with Porphyry’s commentary, and
the logical tracts of Boethius — extended into the middle of the
twelfth century. The second phase, the logica nova, was characterized
by the introduction, between 1136 and 1141, of the Analytics,
Topics, and On Sophistic Refutation by Aristotle. The third phase
began with the tract On the Properties of Terms, which led to the
formation of the so-called modern logic (logica modernorum) in the
form of various summulae.

Attempts to separate the development of medieval logic into
periods are found in References 370 and 21. The first period
extends from the beginning of the Middle Ages through the time of
Abelard (roughly, through the middle of the twelfth century). The
principal results of this period are related primarily to the works of
Byzantine logicians, especially Michael Psellus (1018-1096),
Synopsis Organi Aristotelici Michaele Psello autore, edited by M. Elia,
Ehingero, 1597. Psellus was a Byzantine who lived in Constan-
tinople. A platonist in his philosophic views, he subscribed to the
Neoplatonic interpretation of the philosophy of Plato and Proclus.
Of the latter Psellus said nothing without appending the epithet
“the divine.” However, the elements of Neoplatonism in the
philosophical views of Psellus had no great effect on his work in
logic. Psellus’ main contribution to the Byzantine Renaissance was
that, long before Spinoza, he applied the numerical methods of
mathematics and geometry to proving philosophical statements.
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The late Middle Ages tract de terminorum proprietatibus (on the
properties of terms) has, for its starting point, a commentary of
Psellus on the last chapter of Aristotle’s Topics, which considers the
importance of the various parts of speech from the viewpoint of logic.

According to Prantl, Western European scholarship became
familiar with the Synopsis of Psellus in the thirteenth century (see
Synopsis quingue vocum Porphyrii et Aristotelis Praedicamentum, Paris,
1541, and Synopsis Logicae Aristotelis, Augusta Vindelicorum
[Augsburg], 1597, 1600).

In particular, Psellus examined the problem of the equivalence
of propositions (aequipollentia propositionum) and found logical con-
ditions required for such equivalence. Much space in the Synopsis is
occupied by a study of substitutions of terms for other terms that
would apparently be scarcely possible without explicit distinction
between logical constants and logical variables. However, a large
part of his logical research is nonetheless devoted to the problems
that occupied the first commentators on Aristotelian logic during
the time of Boethius and is associated primarily with a scrupulous
study of various forms of syllogisms.

One of the most colorful figures in the first period of development
of medieval logic was Peter Abelard (1079-1142). Among his
works, published at various times, we should note Introductio ad
theologiam, Dialectica (Reference 73), De eodem ad diverso, Quaestiones
naturales, Sic et non, A History of My Calamities (St. Petersburg, 1902),
Die Glossen zu Porphyrius, Beitrage zur Geschichte der Philosophie
im Mittelalter (Munster, 1893).

In his commentaries on Porphyry, apparently written during his
youth, Abelard went far beyond a simple interpretation of the
Greek text. He defined logic as the science of evaluating and
distinguishing arguments on the basis of their truth. Logic, said
Abelard, teaches us neither how to use arguments nor how to
construct them. Since arguments consist of propositions, and
propositions consist of expressions, logic must begin with a study of
simple statements and then more complex ones. Abelard devoted
special attention to the copula and subjected it to logical analysis.

The problem of universals occupies an important place in the
logical works of Abelard (this is, the problem of the nature of
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general concepts, which must be solved if a satisfactory theory of
abstraction is to be constructed). The nature of the general, he said,
depends not on words (voces) but on their meanings (sermones). His
conception, which differed from that of more extreme nominalism,
is sometimes called sermonism. Abelard attempted, first of all, to
emphasize the semantic aspect of universals, that is, the relation
between the symbols used for universals and the objects they
represent.

Abelard’s Dialectics contains an early form of a modally implicative
treatment of conditional statements. For example, consider the
following rules, which concern the truth of an implication:

1. If the antecedent is true, so is the consequent;

2. If the antecedent is possible, so is the consequent;
3. If the consequent is false, so is the antecedent;

4. If the consequent is impossible, so is the antecedent.

Abelard sometimes stated the first of these rules in the following
form (Reference 73, p. 287):

I*. Nothing that is true ever implies something that is false.

According to Reference 50, p. 221, in one place Abelard used 1*
as a general principle for construction of proper arguments.

The logical problematics of Boethius has a rather strong in-
fluence in a number of places in Dialectics. This is evident par-
ticularly in Abelard’s discussion of equivalent expression of certain
logical constants in terms of others. Thus, following Boethius,
Abelard used the following equivalents:

5. (A®B) = A= DB & (B 4),

where @ denotes the exclusive “or” (Aut est A aut est B). Abelard
was also familiar with the use of disjunction in the ordinary (as we
would now say, non-Boolean) sense (Reference 50, p. 223;
A4 vel B). In particular he used the conjunction zel to combine
predicates into categorical propositions. Incidentally, Abelard
never chose definitely between the “exclusive” (Boethius) and
“inclusive” (Chrysippus) use of the word ““or.” In the last analysis,
he was inclined to treat disjunctive propositions as necessary dis-
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Jjunctions of the form N(4 v B), interpreting them as an alternative
form of necessary implications of the form N(4 — B), where N is
the necessity functor, and the antecedent of the implication is
therefore negative (Reference 73, p. 489-499). Thus, Abelard
placed the necessity operator before the weakened disjunction as a
whole. For him, modal disjunction was in some sense more ele-
mentary than implication and other logical unions.

Another important logician of the twelfth century was English-
born Adam of Balsham (Parvipontanus or Adam du Petit Pont),
who taught the ““trivium”* in Paris in his own school not far from
Petit-Pont. Methodologically, he was opposed to the noted
representative of early French Scholasticism Gilbert de La Porrée,
(ca. 1070-1158/9). As a logician, Adam was known primarily for
his adaptation of the “First Analytics” of Aristotle. The French
historian Cousin refers to one of Adam of Balsham’s manuscripts
under the heading Anno MCXXXII ab incarnatione Domini editus liber
Adam de arte dialectica.t

The Italian historian L. Minio-Paluello has analyzed the logical
works of Adam in detail (Reference 74). He believes that Adam
took a big step forward in his logic, in comparison with Aristotelian
logic. For example, he conducted a detailed analysis of the liar’s
paradox in the form of the statement of a man claiming to be
lying (qui se mentirt dicit).

As noted in Reference 79, Adam admitted the possibility of the
existence of a set of objects with a proper subset having as many
objects as the set itself. In other words, he anticipated Cantor’s
definition of an infinite class. Thomas Ivo (Reference 79) was
therefore absolutely right in saying that one of the paradoxes of the
infinite had already been stated in the twelfth century. In another
place in his Ars Disserendi, the criterion Adam used to distinguish
between finite classes and infinite classes was that the former do
not have the property he noted as characteristic of the latter. But
this actually anticipates C. S. Peirce’s (nineteenth century) idea
that a finite set cannot be mapped one-to-one onto a proper subset.

* The trivium was composed of grammar, rhetoric, and dialectics.
t Cousin, Fragment d. philos. du moyen-dge, Paris, 1885, p. 335. Concerning
Adam of Balsham, see also Reference 17, vol. 2, pp. 104, 212, 213.
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From the standpoint of mathematical logic, the period we have
been considering is distinguished primarily by the attempts of
Psellus to develop general methods for finding the ‘“middle
term’ in connection with problems on finding propositions
(tnventio propositionum) and by his interest in logical symbolism,
mnemonics, and finally a number of problems he considered on the
logic of modality.

The beginning of the second period dates to approximately the
middle of the twelfth century and continues until the last decade of
the thirteenth. The most important logicians of this period were
William Sherwood* (William of Shyreswood, died 1249), Albert
von Bollstadt (Albertus Magnus or Albert the Great, 1193-1280),
and their students Peter of Spain (1210-1277), John Duns Scotus
(1270-1308), and Raymond Lully (1234-1315).

William was born in Durham in the last decade of the twelfth
century and taught first at Oxford and later in Paris. He translated
the Synopsis of Psellus long before Peter of Spain did. The Synopsis
was the basis of the handbook of logic that Sherwood wrote in
Latin; this book remained in manuscript form until it was re-
discovered during the nineteenth century (Codex Sorbonnicus,
1797).

Sherwood was concerned primarily with a series of problems in
modal logic. His study of the ““liar’s antinomy”’ became the basis
for studies associated with analysis of undecidable propositions.
This group of problems subsequently led to Middle Ages tracts
on the theme de insolubulis. In addition, William devoted much
attention to further development of the mnemonic methods of
Psellus, among which we should note, for example, the well-known
“‘logical square.”

Peter of Spain’s Summulae Logicales enjoyed great popularity as a
text for teaching logic. Peter expended much effort in developing
mnemonics to fit the needs of logic. His name is also associated with
the revival of the traditions of the Peripatetic school in the Middle
Ages. The logical works of Peter of Spain may be found in the
following publications: Textus omnium tractatum Petri Hispani

* It appears that the source of William’s surname was the same Sherwood
Forest associated with the legendary Robin Hood.
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(Venice, 1487, 1489, 1503; Cologne, 1489, 1494, 1496) ; Summulae
Logicales of Peter of Spain (Notre Dame, Indiana, 1945).*

The Summulae consist of six sections: studies on suppositions,
propagation, designation, distribution, limitation, and statements
requiring additional interpretation. The Summulae present various
mnemonic methods for remembering the rules of logic. Consider,
for example, the following mnemonic verse for remembering the
rules for proving equivalence of statements:

Non omnis, quidam non. Omnis non quasi nullus.
Nonnullus, quidam : sed nullus non valet omnis.
Non aliquis nullus. Non quidam non valet omnis.
Non alter, neuter. Neuter non praestat uterque.

It is easy to see, for example, that the first phrase of the first line
(Non omnis, quidam non: *“Not for all true, therefore false for some)
corresponds to the formula Va(x) = 3x%A(x), while the first
phrase of the second line (Nonnullus, quidam: *‘Not for all false, so
true for some”’) corresponds, in modern symbolic notation, to the
relation Vx(x) = 3xA(x), where the bar indicates the logical
operation of negation, V is the universal quantifier, 3 is the existen-
tial quantifier, and = denotes equivalence. In the Summulae much
attention is devoted to the tract de terminorum proprietatibus (on the
properties of terms), which, in particular, analyzes words that in
ordinary language have the same function as quantifiers have in
formal logic, that is, the words every (omnis)t, no (nullus), both
(uterque), neither (neuter), all (fotus), and so on. There is also a
special study of the construction of statements made by placing the
word ““only”’ before the subject of a sentence and of the elimination
of statements containing the word ‘“‘except’ or containing sup-
positions, etc.

This last concept deserves further comment. The very word
“supposition”” literally means “proposition.” The theory of
suppositions is a theory of notation (for terms). A Scholastic would

* The literature on Peter of Spain includes References 25 and 61.

t Later Duns Scotus used the term omnis in the sense of the universal
quantifier for predicates and the term unusquisque for the universal quantifier
for individuals.



8 MATHEMATICAL LOGIC DURING THE MIDDLE AGES

say that a term denoting a really existing object is being used in the
mode of formal supposition (suppositio formalis). For example, in the
proposition ‘“the Earth is round” the term “Earth’ denotes an
actually existing object, the terrestrial sphere. On the other hand,
a Scholastic would say that a term signifying a word that is the
name of an existing object is used in the mode of material supposition
(suppositio materialisy. For example, in the proposition *“‘earth’
consists of five letters,” the term ‘“earth’’ signifies a word (and not
an object), and so is used in the mode of suppositio materialis. Al-
though it is impossible to establish a direct connection between the
suppositions of logicians of the Middle Ages and the precise logical
notions of the present, there is, for example, reason to attempt to
find semantic analogs for the use of terms in the mode of suppositio
materialis.* The great popularity of the Summulae is indicated by the
fact that it underwent forty-eight printings in the half century
following the invention of the printing press.

Albert the Great (Albertus Magnus), a contemporary of Peter
of Spain’s, was born in Lauingen in Swabia, studied at Padua, and
taught in Cologne and Paris. In the theory of abstractions, he
leaned toward the compromise solution of the problem of uni-
versals, which was due to Avicenna. His writings were collected in
Opera Omnia, vols. 1-38, Paris, 1890-1899,

Albert, who was strongly influenced by the Arabian Averroés
(Reference 17, vol. 2, p. 105), was, in particular, responsible for
development of Psellus’ theory on methods of finding propositions;
his primary goal was to solve the type of problem that appears when
corollaries of given premises are sought. The problem he solved
could be applied only to the syllogistic apparatus developed by
Aristotle; hence his results were of a very special nature.

Particularly unique logical views were held by John Duns
Scotus, who was also an outstanding political figure in the Middle
Ages: he raised the problem of ““apostolic poverty’’ to the hated
papal curia, attacked the richness of the church, and exposed papal
robbery.

Early in his career, Duns Scotus showed a great interest in

* Partially anticipating Peter of Spain, William Sherwood had already
distinguished between formal and material supposition.
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mathematical disciplines. At 23, he became a teacher at Oxford.
Since he was a member of the Franciscan order, Duns Scotus was
in outright opposition to the prevailing Catholic dogmatism of his
day and, in particular, to the theological determinism of Thomas
Aquinas. Duns Scotus’ output is striking in scope. For example, the
Lyon edition of his works (1639) consists of twelve volumes. De-
tailed analyses of the logical views of Duns Scotus may be found in
Reference 56 and in E. Gilson, Jean Duns Scotus, 1952,

Following ‘al-Farabi, Duns Scotus distinguished between the
logic of the theoretical (docens) (as the science of necessary con-
clusions from necessary premises) and the logic of the applied
(utens). He provided great impetus to the development of Peri-
patetic logic, basing his work primarily on the compendium of
Peter of Spain. Duns Scotus, in particular, is responsible for the
logical law which is formally expressed as: p © (p @ ¢), where the
bar indicates negation.

To a considerable extent, his ideas are responsible for intensive
development of an important aspect of medieval logic, namely
treatises on the theme de obligatoris. As Vladislavlev (Reference 19)
notes, the formal impetus for these treatises is a single statement of
Aristotle’s (which occurs in his work twice — in the first book of
the second Analytics and in the ninth chapter of Metaphysics): A
premise accepted as really possible cannot entail an impossible
conclusion. The Scholastics noted that if certain propositions are
related (for example, one proposition implies another), then other
propositions, on the contrary, can be treated as independent of one
another.

One of the aims of the de obligatoris treatises consisted in finding
logical conditions under which the assertion or the negation of some
proposition belongs to this class of necessary implication. The
notion of obligatio is defined as a defensible system of assertions such
that none imply anything impossible, that is, in modern terms, the
system of assertions satisfies the criterion of consistency.*

It appears that tracts on the theme de obligatoris can be treated,
although far from absolutely so, as predecessors of axiomatic-

* < Obligatio est pragfixio alicjus enunciabilis ne sequitur impossibile” (Reference 19).
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deductive studies. Analysis of the logical legacy of Duns Scotus
shows that it can be treated as a predecessor of not only the calculus
of propositions in contemporary mathematical logic but also
studies of Husserl type. It is scarcely necessary to add that the first
tendencies in the logic and methodology of this prominent Scottish
thinker were progressive.

Another bright figure in medieval logic was Raymond Lully.
Although a number of authors have attempted to place him off the
“main line” in the development of logic, it seems natural to say
that the achievements of Lully (part of which, we should note in
passing, belong to de consequentis) are a natural consequence of the
raised level of logical formalization that was characteristic of the
period after the Summulae appeared. It should be noted that
Vladislavlev (Reference 18) attempted to overcome the nihilistic
view of Lully and his school. According to Vladislavlev, Lully’s
“art” is a natural result of the evolution of logic in the Middle
Ages.

Raymund Lully was born in 1234 in Palma, on the island of
Majorca. Until he was nearly thirty, he was a courtier at the court of
Jacob, King of Aragon, and he obtained some measure of acclaim
as a poet. Lully’s courtly life was conducted in very grand style.
Once, in courting a married woman, he rode a horse at top speed
into a church during a mass. As the legend has it (Reference 63),
the “lady of his heart” said to her suitor: “Would you see my
breasts, which your sonnets have so lavishly adorned? Well then,
I can afford you that pleasure!”> With these words, she lifted her
mantle and exposed her breasts, which were covered with bleeding
ulcers. This sight stunned Lully, and on the spot, he decided to
devote himself to the church. The shock experienced by Lully is
comparable to that experienced by Prosper Merimée’s Don Juan in
A Soul in Hell when, learning from a funeral procession that the
““object of his affections” has died, Don Juan rapidly converts
from a thoroughgoing hedonist to a hermit who confines himself to
a monastic cell. The decision so quickly made by Lully abruptly
changed his life and he removed himself from worldly vanity.
Fortunately for science, Lully decided to devote his time to much
more useful pursuits than the Don Juan of Prosper Merimée.
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Exchanging the costume of a courtier for the habit of 2 monk,
Lully devoted himself almost completely to the study of logic. He
defined logic as the ““art and science by means of which truth and
untruth can be recognized by reason and separated from each
other — the science of finding truth and eliminating falseness”
(Logica est ars et scientia, quae verum et falsum ratiocinando cognoscuantur
et unum ab altero discernitur, verum eligendo et falsum dimittendo) ; cited in
Reference 17, vol. 3, p. 150. Lully’s works are collected in Raymundi
Lulli Opera, Argentorati, 1617. Of material on the nature and extent
of Lully’s logical ideas, the following sources should be emphasized
References 14, 15, 60, and 62.

After he developed the “great art,”” Lully threw himself into an
ascetic life, attempting to find methods for practical application of
his studies. He traveled to all the principal cities of Western
Europe, acquainting the academic world with his discovery and
simultaneously igniting a zeal among the clergy to eradicate
Mohammedanism. He traveled to Africa three times, attempting
to lead the “unfaithful”” to the “way of truth.” Lully spent the
remainder of his life attempting, first, to build his own school of
logic and, second, to “‘persuade’’ Mohammedans to change their
relation to Christianity. He was successful in neither of his aims: a
Lullist school of logic appeared only long after his death, and the
Mohammedans held to their own convictions.

The device invented by Lully for mechanization of syllogistic
processes was rather primitive and limited in its capabilities. Lully
began by constructing four special figures. The first figure included
nine absolute predicates (““is a quantity,” “‘is perfect,” etc.), nine
subjects (“quantity,” *“perfection,” etc.), and nine letters: B, C, D,
E, F, G, H, J, and K. The outer ring of the associated circle was
comprised of letters; then came subjects and, finally, predicates.
The inner ring consisted of a circumscribed disk with a star-shaped
figure drawn on it; the lines of this figure indicated the directions
of all possible combinations of the initial concepts.

On the second figure nine relative predicates were written (*“is
different from,” “is in the relation of agreement with,” ““is in the
relation of mutual exclusion to,” etc.).

Absolute predicates and relative predicates were combined in
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the third figure; combinations of the form BB were eliminated, and a
combination of the form XY was assumed to be identical to the
combination YX. The third figure generated two-term combinations
of terms, that is, sentences.

The fourth figure was a system of three disks of which only the
outermost was stationary. This one, according to Lully, could be
used to simulate the syllogistic process, by which he meant the
procedure of combining (and substituting) terms. Here the con-
Jjunction est was taken by Lully to express the relation between the
whole'and a part. It is interesting that, although Lully sometimes
used the operation or quantification (refinement of volume) in an
implicit form, he was, on the whole, far from a systematic analysis
of this operation. In effect, the only operation in his logic of terms
is the operation of intersection. .- This naturally greatly restricted
Lully’s combinatorial techniques and made it impossible to con-
struct algorithms for his individual methods. For the structural
details of Lully’s figures, see Reference 19, pp. 100-107.

Among the members of Lully’s school, we should note the fol-
lowing: the pantheist Giordano Bruno, Agrippa von Nettesheim
(1487-1535), Athanasius Kircher (died 1680), J. H. Alsted (1588-
1638), and the materialist and Epicurean Pierre Gassendi (1592-
1655).

In his philosophical works, Lully fought Averroism and, in
particular, the study of the dual nature of truth. Unfortunately,
his arguments, as we would now say, were a “‘critique of the
right.”

In addition to his attempts to mechanically simulate logical
operations, Lully also busied himself with analysis of the relations
between the logical constants ““and” and “or”’ as well as with a
study of the logical essence of interrogative propositions. For
example, in Lully’s Introduction to Dialectics, statements are initially
divided into true and false (Reference 19, p. 111). On pp. 151-152
of the same work, Lully presents conditions under which conjunctive
and disjunctive statements may be true or false. These conditions
correspond exactly to the modern rules for truth of conjunctions
and disjunctions. And Lully’s rule that “‘from the universal we can
proceed to the corresponding particular, indefinite, and individual *’
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(Introduction to Dialectics, F8 rB) corresponds to the following three
formulas of the calculus of predicates:

Va(x) + A(x,) (to the particular!), (1)
VaxU(x) — A(y) (to the indefinite!), (2)
VxU(x) + A(a) (to the individuall), (3)

where V is the universal quantifier and + denotes derivability.

The bridge between Lully’s logic and that of the Jansenists of
Port Royale was Lully’s analysis of so-called general points of view
(aspects) for study of various objects. The loci communes of the
scholars of Port Royale was nothing more than a further develop-
ment of Lully’s *“‘general points of view,”” directed toward a known
standardization of problems on a certain theme (see Lully’s work
Tractatus de venatione medii inier subjectum et praedicatum). To the section
on statements, Lully attempted to append the Scholastic theory of
suppositions, which he greatly simplified: he separated suppositions
into formal (simple and complex) and material.*

A particularly important achievement of the second period was
the appearance of the tractatus syncategorematibus, which contains an
analysis of simple and complex terms pertaining to the formal
structure of propositions, for example, ‘“‘not,” “and,” “if...,
then,” ‘““each,” etc. In the fourteenth century, the Scholastics
augmented this treatise with a section entitled Sophismata, which

* Lully’s simplification of the theory of suppositions was a direct consequence
of well-known weaknesses of this viewpoint (for example, in the form used by
Peter of Spain).

The theory of supposition was later criticized and even parodied. Francois
Rabelais, for one, parodied it in the following manner in Gargantua and
Pantagruel (Chapter XX, Book I):

As a sign of gratitude, Gargantua offers the Scholastic Janotus a bolt of
cloth. Then there is an argument between Janotus and his colleagues, who
are experts in logic, about who should get the cloth. *“ What is the supposition
of this cloth?” (Pannus pro quo supponit?) asks Janotus. ‘“Mixed and dis-
tributive” (confuse et distributive), says Bandouille “I am not asking you,
blockhead, about the nature of this supposition (quomodo supponit) but about
its object (pro quo). Answer: This piece of cloth was intended for my legs
(pro tibiis meis), as the supposition carries the supplementaries (sicut sup-
positum portat adpositum).”
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considers the most typical errors that appear in arguments, as well
as an entire class of problematical statements.

The culmination of the achievements of the medieval logicians
occurs in the third period in the development of Scholastic logic,
which covers the epoch between William of Ockham (1300-1347)
and the end of the Middle Ages (Ockham studied logic intensively
between 1328 and 1329; see Reference 370). During this period a
significant shift in Scholastic methodology occurred. In the first
place, we should note the studies of intensification and remission of
forms. Study of the variability of the intensity symbols other than
the uniquely defined symbols of the Scholastics was a step toward
the mathematical theory of variables (Reference 29).

This study is closely related to the attempt at symbolization in
philosophy, which Maier characterizes as an ‘“innovation of the
fourteenth century”; she also considers the ‘‘inclination to
mathematization of philosophical conceptions and proofs”
(Reference 29, p. 79). Nonetheless, this tendency cannot be said to
be fundamentally “new”’; in essence, it is only a development of
the older methodological ideas of the Chartres school.

The fourteenth century exhibits a distinctly new approach to the
problem of the infinite; this approach is associated with abandon-
ment of the *‘physicalization” of this notion by Aristotle. At this
time, a considerably more abstract (than Aristotle’s) base led to
animated discussions of the relations between ‘‘categorematic”’
and “‘syncategorematic’’ infinity, which, to some extent, correspond
to the modern problem on the relations between actual and poten-
tial infinity. Naturally, this controversy had an important in-
fluence on the process of refining the terms in logical works on the
theme tractatus syncategorematibus. In these works, in addition to
purely logical constants, there begin to appear analyses of such
nonlogical notions as ‘““infinitely many”’ and ‘‘infinitely small.”

In view of the new tendencies of the fourteenth century in
methodology, a symptomatic and unique (in his generation)
attempt was made by the nominalist and skeptic Nicholas of
Autrecourt (born about 1300, died about 1350) to revive the
atomism of Democritus. His opposition to the current of orthodox
Catholic dogmatism is eloquently indicated by the papal curia’s
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censure of Nicholas’ works in 1346 and by the subsequent burning
of his “heretical” books.

The most prominent philosopher and logician of the Middle
Ages, William of Ockham, was born at the very end of the
thirteenth century. He studied at Oxford, where he later taught
until 1324, As the result of a charge of heresy, Ockham spent four
years in prison at Avignon. Rescued from his ideological ad-
versaries, he found refuge at the court of Louis IV of Bavaria.
Decidedly at odds with the papacy in the controversy over separa-
tion of church and state, Ockham supported the view that church
and state should be completely separated. He admitted the pos-
sibility that the Pope and ecumenical councils might deviate into
heresy, that is, he was actually a distant predecessor of the
Reformation.* His conception of the duality of truth was sociolog-
ically reflected in his battle for secularization of the state. Ockham
died of plague in Munich in 1347.

Many historians have given the name “terminism” to Ock-
hamist nominalism in the field of logic since Ockham believed
that the point of logic is analysis of signs. In addition, he believed
that the scientific methods applicable to logic, rhetoric, and
grammar were closely related. “Logic, rhetoric, and grammar,”
he said, “are really cognitive studies, and not speculative dis-
ciplines, since they actually control the intellect in its activity.”{
Literature on Ockham can be found in References 1-10. In
Boehner’s opinion (Reference 3), Ockham considered three truth
values: “true,” “false,”” and ‘‘indefinite.”” We will denote truth by
the numeral 1, falseness by numeral 0, and indefiniteness by N.
Consider the function p > ¢ (if p, then ¢), defined on the set
{0, 1, N}. For p © ¢ we construct the truth table shown in Figure 1,
which, according to Boehner, is the form it took in Ockham’s
studies.

* In the dispute between Pope Boniface VIII and Philip the Fair, Ockham
took the side of the temporal sovereign. He sharply criticized the Pope and
his retainers in his Defensorium (a pamphlet). It is interesting to note that
Ockham believed that it is impossible to prove the existence of God.

1 Ockham’s logical works are Summa totius logicae, Oxford, 1675; Summa
logicae. Part 1, published by P. Boehner, Louvain, 1951; Quodlibeta septem,
Paris, 1487.
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In our opinion, we are not actually dealing, in this case, with a
multivalued logic in the strict sense of the word. Rather, because
“indefiniteness” is considered in addition to “true’ and “false,”
the situation reflects a well-known occurrence in the logical square
of elementary logic (for example, in this square the proposition
that a partially affirmative statement is “true” implies that the

p q pOg
1 1 1
0 1 1
N 1 1

1 0 0
0 0 1
N 0 N
1 N N
0 N 1
N N N

Figure 1

corresponding generally affirmative statement is only ‘“‘indeter-
minate”). As a result, Boehner’s assertion of the existence of a
trivalent logic in Ockham’s work seems to be a modernization of
the problem.

Signs, according to Ockham, can be applied in two ways:
artificially (words) and naturally (thoughts). Knowledge is com-
posed of signs that, instead of reflecting reality, denote it. Signs
become terms when they enter into propositions, and terms
interpreted by the intellect form concepts; the value of spoken or
written terms is, to a great degree, conventional, while concepts,
according to Ockham, have a natural significance. Universals, in
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his opinion, are only terms that are used in logic to denote a group
of objects and relations, but in no case do they actually exist as
divine essences. Ockham believed that universals are also related
to the mental act of understanding, that is, obliquely, with the
external world. The essential pattern of abstraction, he asserted,
depends on the so-called similarity of real substances.

Like all nominalists of the Middle Ages, Ockham carefully
distinguished so-called connotative names (from the grammatical
viewpoint, adjectives and participles). Thus, for example, the
adjective ‘‘triangular” not only applies to a concrete triangle but
also indicates its property of ““triangularity.” In other words, the
general notion of ‘“triangular” contains not only ‘“concrete
objects” (such as equilateral triangles) but ‘““abstract’” objects
(such as ““triangularity”). On the other hand, Ockham also dis-
cussed so-called absolute signs (such as “‘Plato,”” “virtue”) each
of which denote either only concrete objects (in a particular case,
material objects) or abstract objects.

Ockham classified the sciences as rational or real. He defined the
distinction between these two groups as follows: ‘“Real sciences are
distinguished from rational sciences by the fact that the terms, that
is, the part of known propositions, in real science indicate and
denote real objects, while rational sciences deal with terms that
indicate and denote other terms’ (Ockham, Expositio aurea super
totam artem veterem).

The fact that Ockham’s gnosiology is absolutely consistent not
only with deductive methodology but also with inductive method-
ology was not, of course, accidental. Inductive empiricism gradually
developed despite the triumph of deductive habits and concepts.
The Scholastic proponents of the inductive theory of abstraction
and the inductive method were Roger Bacon (1214-1294) and his
teacher Robert Grosseteste (1175-1253).

Robert Grosseteste was born in Strandbrook, England (Suffolk).
He made his reputation as a master at Oxford and a commentator
on the physical and logical works of Aristotle. Of his writings, we
should note Roberti Grosseteste epistolac ed. H. R. Luard (1861), vol.
25, Rerum Britannicarum medii aevi scriptores. Of his original works,
we should note Summa in octo physicorum Aristotelis libros, 1498. He is
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discussed in References 77 and 78. According to Grosseteste,
physics studies form as filled by matter, while mathematics ab-
stracts form from matter. As a concession to the spirit of his time,
he begins with the thesis that knowledge of universals requires
intuitive comprehension. However, recognizing the role of in-
tuition in gnosiology and ontology, Robert was not alien to ration-
alistic tendencies when he passed to formulation of problems in
scientific methodology proper. Using the Aristotelian concept of
mathematics as a more accurate physics (Metaphysics 12, 3. 1077b—
1078a), Grosseteste went considerably further than the Stagirite,
asserting that mathematics must be the basis of all physical
disciplines.

“Logical and metaphysical truths, as a result of their distance
from the senses and as a result of their precision,’ he said, ““escape
the intellect which must view them, as it were, from a distance;
hence, the fine distinctions are not recognized. It is here that
consideration from a distance, together with blurring of fine
distinctions, proves to be the source of certain errors. Similarly, the
reliability of physical conclusions is reduced because of the change-
ability of natural substances. It is these three — that is, logic,
metaphysics, and physics — that Aristotle calls rational (rationales)
since the unreliability of our comprehension of them requires us
to make greater use of argument and probability than in the
sciences; these latter, of course, contain both science and proof, but
not in the most rigorous sense of the words. However, mathematics
is at once a science and a proof in the most rigorous and proper
sense (maxime ¢t particulariter dicta)” (cited in Reference 76, p. 111).

Elsewhere, Grosseteste asserts that ‘“‘all sources of natural
actions must be given directly by lines, angles, and figures”
(Reference 79, p. 293), which explicitly contradicts Aristotle’s
physicalism. On the whole, the methodology of Grosseteste can be
characterized as mathematical atomism.

Thus, according to Grosseteste, mathematics is the most exact
and exemplary scientific discipline. However, he took only the first
steps along the path of practical application of mathematical
methods to analysis of empirical data. The ideas that he developed
concerning the necessity of experimental investigation of nature
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were later adopted and made concrete by the Franciscan monk
Roger Bacon. '

Roger Bacon was born into rich nobility near Ilchester in
Dorset. In 1225 he entered Oxford and, after finishing his studies,
remained there to teach. In Paris, Bacon joined the Franciscan
order. Upon his return to Oxford in 1252, he lectured on mathe-
matics, physics, and foreign languages. In 1257 he was banished
from the university as a ““wizard and sorcerer,” and between 1278
and 1292 Bacon was imprisoned by the ignorant monks as a
““dangerous heretic.”” The major works of Bacon are Opus majus
(published 1733); Opus secundum; Opus minus; Opus tertium (ca.
1260); Essays, ed. Little (Oxford, 1914); Summulae Dialectices
(Oxford, 1940). Bacon’s work in logic is discussed in References 43
and 80-82.

According to Bacon, there are ‘“two methods of knowing: by
proof and by experiment. Proof yields a solution to a problem, but
does not provide us with certitude, since the correctness of the
solution need not be confirmed by experiment’’ (Reference 80,
p- 18).

Bacon decisively separated theology from science and philosophy.
In contrast to the qualitative estimates used by Aristotle in dis-
cussions of the world, he took important steps in the direction of
rigorous quantitative evaluations of being.

In the fourth part of his Opus majus, he defines mathematics as
the ‘“‘alphabet of philosophy.” ‘“‘Mathematics has had the mis-
fortune to be unknown to the church fathers,” said this pioneer of
Western European empiricism with biting irony. Mathematics, he
believed, must be treated as an important goal in any branch of
scientific endeavor.

““Mathematics provides,” said Bacon, ‘‘universal techniques. . .
that can be applied to all sciences. .. (and) no science can be
known without mathematics” (translated by O. V. Trakhtenberg,
Reference 43, p. 164).

“The problem of logic,”” Bacon said, ““is to construct arguments
that will move the practical intellect toward goals of love, courage,
and felicitous being”’ (Opus majus, 59). No doubt this definition of
the problems of logic is, to some extent, a flight of poetic rhetoric.
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He includes logic, which he treats as an auxiliary scientific dis-
cipline like grammar, in the study of method.

In addition to Ockham and Bacon, among the outstanding
logicians in the third period of the development of Scholastic
dialectics we should note John Buridan (1300-1358), Albert of
Saxony (1316-1390), John of Cornubia (second half of the
fourteenth century), Ralph Strode (second half of the fourteenth
century, peak in 1370), Marsilius von Inghen (1330-1396),
Nicollette Paulus of Venice (Paul of Venice) (died 1429), and
Peter of Mantua (second half of the fourteenth century). The third
period witnessed the apogee of nominalism (and its variant,
terminism), which occurred with the establishment of a method-
ological basis for logical investigations that is actually close to
materialism. Note that the Paris physicist and Ockhamist John
Buridan was the teacher of Albert of Saxony; the most extreme
position of terminism was taken by Peter of Mantua; among the
students of Buridan was Marsilius von Inghen; among students of
the Scotists were Ockham and Strode.

The achievements of this era are highly respected in the classical
works of Marxism-Leninism. In his article “Debate on the Free
Press’’ Marx said, “The twenty tremendous volumes of Duns
Scotus are as stunning . . . as a Gothic edifice,” and from them we
obtain a ‘“‘real sense of value.”* In another place, the founder of
scientific communism said ‘“Materialism is the unmistakable off-
spring of Great Britain. Even her great Duns Scotus wondered
whether ‘matter can think.’”’t ‘

Let us briefly summarize the problems dealt with by the nomi-
nalist logicians. The main direction taken by their research appears
in the treatises de consequentiis and de insolubiliis, considered to be im-
portant supplements not only to Aristotelian logic but also to the
compendium of Peter of Spain, which provided a direction for
work on syllogisms and the theory of suppositions. The source of
work in de consequentiis in the Middle Ages was the third book of the
“Topics,” where Aristotle focused attention on the existence of

* K. Marx and F. Engels, Collected Works (Russian translation) (Moscow—
Leningrad, 1928), vol. 1, p. 140.
t K. Marx and F. Engels, op. cit., vol. 2, p. 142,
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contingent conclusions in which the assertions about one subject
make it possible to make assertions about other subjects of the same
type (Reference 19, p. 39). While the Scholastics were able to draw
the idea of formal implication from Aristotle, for the elements of
the theory of material implication they turned to the works of the
Arabian logicians Avicenna, al-Farabi, al-Ghazzali (Algazel), and
Averroés (Reference 17, vol 3, p. 138).

The tract de insolubiliis was brought to the nominalists via
William Sherwood. The subject was highly developed by Thomas
Bradwardine* (1290-1349), Walter Burleigh (1273-1357), Buri-
dan, Albert of Saxony, and others. Many examples of semantic
antinomies can be found, for instance in the sixth part of Perutilis
Logica Magistri Alberti de Saxonia (Venice, 1592).

The liar’s paradox was analyzed by Ockham in the third part of
the fifth tract of his Summa Logicae. A theory of formal implication
was constructed by Strodet in his work Consequentiae Strodi (Venice,
1493). The exceptionally broad range of logical research and the
tremendous dimensions (even on the scale of contemporary works)
of the logical compendia are astounding. Bochenski notes in
Reference 370 that, for example, Paul of Venice’s: Logica Magna

* This British Scholastic is noteworthy, in particular, for his attempts to
apply mathematical methods of research to justification of a rationalistic
theological system.

1 Ralph Strode was a logician and pedagogue who taught at Oxford in the
second half of the fourteenth century. He traveled widely, visiting France,
Germany, Italy, Syria, and Palestine. The logical works of Strode (among
them, in particular, Consequentiarum formulae) were placed in the Consequentiae
and Obligationes classifications at the end of the fifteenth and sixteenth
" centuries.

I Paul of Venice, the Averroist from Udino, began teaching at Oxford in
1390 and wrote extensive commentaries on all of the fundamental philosoph-
ical and logical works of Aristotle. Paul’s logical works comprise perhaps the
highest state of Scholastic logic. He died in Padua in 1429. In addition to his
Logica Magna, among his best known works we should note Dubia circa
philosophiam (1493), published in 1498 under the title Quadratura. This work
presents, in particular, the following classification of semantic antinomies:

. The consequent is simultaneously correct and incorrect;
. the statement is simultaneously true and false;

. contradictory notions about the same object;

. statements of mutual exclusion (Reference 11, p. 636).

OO N e
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(fourteenth century) contained about 3,650,000 words, that is,
(according to the most conservative calculations), about the same
amount as is contained in five or six volumes of a modern
encyclopedia.

Aristotle’s Organon provided great impetus to further evolution
in logical studies. Leibniz considered the invention of syllogistics a
major accomplishment of the human intellect. Thus far, Aristo-
telian logic had preserved its scientific value. Oriented basically
toward gnosiological, linguistic, and grammatical factors, it never-
theless influenced the Greek mathematicians contemporary with
Aristotle. A number of prominent men (among them Weyl)
believe that the Aristotelian theory of proof has definite points in
common with the structure of Euclidean geometry (Reference 23,
p- 35). The usual characterization of Aristotelian logic as a logic of
monadic predicates (properties) is, in general, correct.

However, discussions of the relationship between Aristotelian
formalism and other logical studies must not neglect the fact that
even Leibniz believed it possible (in principle) to reduce all re-
lations to properties, and here he proceeded as a follower of the
Stagirite. The consensus of many contemporary logicians is that
Aristotelian logic includes the theory of formal implication and the
beginnings of the calculus of modalities. It is not an accident,
therefore, that the elements of mathematical logic appeared in the
Scholastic tracts at the end of the twelfth century, when the
Scholastics began to work directly from Aristotle’s Organon and not
from the investigations of Porphyry of Tyre (232-304) or A. M.
T. S. Boethius (480-526), as had been the case before.

We should note that the scholars of the Middle Ages who dealt
with logic constantly emphasized that they were the students of
Aristotle and carefully cited all the places in his works that
stimulated them to research in new directions.* The study of

* Some logicians have erroneously believed that Scholastic logic led away
from Aristotle. In particular, this is the belief of the French logician Charles
Serrius, who berated the nominalist logicians for illegitimately substituting
words for ideas. This argument makes absolutely no sense: we must realize
that no one has yet succeeded in operating with ideas outside his verbal-
material skeletons (Reference 24, pp. 58-59).
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mathematical logic in Scholastic treatises was stimulated by two
fundamental circumstances: first of all, the influence of direct
acquaintance with the original logical research of Aristotle and,
second, the strengthening of sensualistic tendencies and the at-
traction toward problems in mathematics and natural science that
were characteristic of the latter days of orthodox Scholasticism.

We will limit the analysis primarily to the characteristics of the
two principal treatises {de consequentiis and de insolubiliis) that are
of the most interest from the viewpoint of the history of logic
(especially mathematical logic). We will first briefly describe the
medieval logic of modalities and the tractatus exponibilium of Peter
of Spain. Reference will not be made formally to the original texts
except when it proves necessary for clarification of important points
or when the meaning of the text is not clear. For literature on
medieval logic, see References 1-63.

2. The Modal Logic of the Middle Ages

No special treatises on modalities were written during the
Middle Ages, although discussions of modality appeared in various,
more general works. Sherwood had already stated six forms of
modal ““modes’: true, false, possible, impossible, contingent, and
necessary. Later, Scholastics tended to limit themselves to three
modes which, in their opinion, were of the most value: neces-
sity, possibility, and impossibility. As the result of research on
semantic antinomies, the logicians of the fifteenth century dealt
primarily with the modes of truth, falseness, and undecidability
(tnsolubile).

Sherwood was the first to apply the method of the so-called
logical square (introduced by Psellus, see Reference 25) to analysis
of the relations between statements that were related ‘“materially”
(i.e., in content) but were of different modalities. Sherwood’s square
of modal statements was later reproduced by his student Peter of
Spain.

We denote the necessity functor by N, the possibility functor by
M, the impossibility functor by U, and the contingent functor by
T. Then Sherwood’s square takes the form shown in Figure 2.
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If, for example, N is true, then M is also true, Tis false (Nand T
are in contradictory relation to each other), and U is false (N and
U are in the contrary relation to each other). The same method of
logical squares was applied to the study of direct modal conclusions
by Ockham (Reference 17, vol. 3, pp. 317-318). We will consider,
for example, one of his squares of modalities. Let N and M,
respectively, be the modal necessity and possibility functors, where
the symbols g, ¢, ¢, and o are respectively used to denote universal
affirmation (XaY), universal negation (XeY), partial affirmation
(XiY), and partial negation (XoY) in Aristotelian syllogistics.
Ockham’s square took the form shown in Figure 3.

The diagram in Figure 3 can easily be justified if we recall the
relationship between the functors N and M, that is, N(¢) = M(i),
where the bar denotes logical negation and the symbol ¢ denotes an

Contrary
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Figure 3
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arbitrary statement. Then, if we substitute the expression XaY for
¢, we find that

N(XaY) = M(XaY) = M(X0Y),

and, by setting ¢ equal to XeY, we find that

N(XeY) = M(XeY) = M(XiY).

In other squares, Ockham placed modal functors not only be-
fore a sentence but also before its components (that is, before both
the subject of the sentence and its predicate). It should be empha-
sized that modal logic of propositions was, as a rule, still not
differentiated from modal syllogistics, and the latter developed
much more rapidly than the former. A special place was always
occupied by the study of direct modal implications, which achieved
its apogee in the work of Buridan.* Desiring mnemonic and graph-
ical solidifications of the results he obtained, he was forced to
abandon Psellus’ square and to adopt a star-shaped figure (see
Fig. 4). He considered modal functors (necessary, impossible, and
possible) and the syllogistic functors a, ¢, 7, and o. The subject-
predicate structure of sentences was preserved, although modal
functors as well as the symbol for logical negation could be placed
before a statement as a whole or before any of the statement’s
individual components.

In Figure 4 we have substituted m for @ and ¢ for e to prevent
confusion with the corresponding syllogistic functors. At each of

* John Buridan (1300-1358) studied logic, ethics, and physics. He taught at
the University of Paris. His philosophical viewpoint comes under the heading
of Ockhamism. From some time during the fifth decade through some time
during the sixth decade of the fourteenth century, Buridan remained at the
university where he was twice elected rector. Of his works, we should note
the following: Sophismata (Paris, 1493); Quaestiones super libros quattuor de
caelo ¢ mundo (Cambridge, Mass., 1942); Summa de dialectica (Paris, 1487);
Perutile compendium totius logicae, cum jo. Dorp. expositione (Venice, 1490).
Buridan was known as a student of Ockham and was an intellectual deter-
minist: In choosing one of several possible decisions, the ““will” is controlled
by reason. It acts only when the reason decides that one of the possibilities
is the best (the will also chooses this possibility). But if reason decides that
several possibilities are equivalent, the will does not act. This is the source of
the well-known example of ““Buridan’s ass,”” which died while standing
between two identical handfuls of grass.
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Subcontrary
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the vertices of the star-shaped figure, labeled m, b, ¢, d, g, f; h, and
t, there is one of nine equivalent statements. Thus, it is possible to
construct eight sets of statements (with nine in each set, where all
statements in a given set are equivalent).

The following types of relations hold between these sets: con-
tradiction, contrariness, inclusion (subordination), etc. We should
note, for example, the contradictions. They constitute the following
combinations: gb, hm, b, fin, gd, and fo. Thus, for example, the
sentence Xa(N(Y)), where N is the necessity functor and X and ¥
are the subject and predicate, respectively, is true at the vertex m
if, let us say, the statement Xo(N(Y)) at the vertex £ is false; con-
versely, Xa(N(Y)) is false if Xo(N(Y)) is true.

We will now present an example of equivalence of sentences of
the set at the vertex m. The sentences Xa(N(Y)) and Xe(M(Y)) of
this set are equivalent, or we have that

Xe(M(T)) = Xe(N(Y)) = Xe[N(T)) = Xa(N(Y)) = Xa(N(T)),

where = denotes logical equivalence.
The above examples give some idea of medieval research on
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modal logic. Other, more interesting modal concepts of the Middle
Ages are closely related to the contents of treatises on the theme de
consequenttis, which we will consider in Section 4.

3. Analysis of Separative and Exclusive Sentences

Medieval logical treatises on the theme of exponibilia (exponi-
bilia are propositions that require interpretation) are of interest
because the study of exponibilia led the Scholastics close to the
so-called De Morgan’s laws. These rules were not explicitly stated
by the Scholastics, although they were definitely used implicitly.

For separative exponibilia (that is, sentences of the form “only X
has the property Y**), Peter of Spain presented the following four
rules in his Summulae (Reference 19):

1. If a separative sentence is affirmative, it is equivalent to some
conjunctive sentence whose first term is some affirmative statement
(coinciding in content with the initial exponibilium without the
word ““only”’), while the second statement is negative and such that
its predicate is negated relative to all that is not the subject of the
initial exponibilium.

2. “Only Sis P” implies “every Pis S.”

3. If the symbol of negation is placed before the exponibilium,
that is, if the exponibilium is of the form ““it is not true that only S
is P,” then it is equivalent to a sentence of the form “it is not true
that all S are P or (vel) something other than S is P.”

4, Thestatement “only Sisnot P’ is equivalent to an affirmative
conjunctive sentence of the form ““S is not P and all other than §
are P.”

Rules 1 through 4 admit the following symbolic representations
(the expression X, denotes “only X*’); (1" corresponds to 1, 2’
corresponds to 2, etc.):

1. (XyaY) = [(XaY) & (XeY)], where “&” denotes “and”;

2'. (XpaY) o (YaX), where © denotes ““if. .., then”;

3. (XaaY) = [(XaY) v (XiY)] = [XoY v XiY], where v
denotes inclusive “or”” (vel);

4. (XpeY) = [(XeY) & (XaY)].
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In Expression 3, De Morgan’s law x, & x, = %, V %, is used
implicitly. Similarly, De Morgan’s laws are used for analysis of
exclusive statements (that is, sentences of the form “any S; except
S, has the predicate P**),

"The mnemonic aids of the logical square have been widely used
for study of the relations between exponibilia that distinguish
quantity and quality (that is, on the basis of the volume of the
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subject or the affirmative or negative nature of a copula) or that
distinguish between the subject and predicate of a statement (in the
corresponding sentence).

Consider, for example, the square constructed by Peter of
Tartaret* (see Reference 17, vol. 4, p. 208). This square (or more
properly, “metasquare” since it contains several logical squares)
took the form shown in Figure 5.

As usual, ¢, 4, 0, and ¢ are the syllogistic functors, while the
letters D, S, R, T, N, H, V, and L have no semantic meaning —
they are simply parts of the mnemonic signs.

Assume that we are dealing with exponibilia of type i, that is,

* Peter of Tartaret was a fifteenth-century Scotist and an active com-
mentator on the logical, physical, and ethical works of Aristotle. A Franciscan
who is representative of the later Scholastics, he became rector of the Uni-
versity of Paris in 1490. Of his works, we note Expositio in Summulas (1501); In
Summulas Petri Hispani, in Isagogen Porphyrii et Aristotelis Logicam (Venice,
1592).
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with expressions of the form X,¢Y. For this case the ‘“metasquare”
of exponibilia takes the form shown in Figure 6:

XY = Xpe¥ = XeY & XaY = (XiY) v (XoY)

XY = XpaY = Xa¥ & XeY = (XoY) v (XiY)

If X,aY is true, then X,0Y is false.

In conclusion, we note some of the fundamental rules of negation
for syllogistic propositions. These rules are explained in many
places, so we will present them immediately in their symbolic
form:

1. SaP = SoP; 2. SeP = SiP; 3. SoP = SaP;
4, SiP = SeP; 5. SaP = SeP; 6. SeP = SaP;
7. SiP = SoP; 8. SoP = SiP; 9. SeP = SoP;
10. SaP = SiP; 11, SiP = SaP;  12. SoP = SeP.

Despite the obvious use of De Morgan’s laws in certain places in
the tractatus exponibilium, it took a long time to find medieval works
that would make it clear whether the Scholatics were aware of the
meaning of De Morgan’s laws in their general form (that is, without
special conditions on the formal structure of the variables treated
by the laws). Finally Boehner (Reference 26) succeeded in demon-
strating that Ockham used De Morgan’s laws. A number of logical
historians (such as J. Lukasiewicz, Reference 27) believe that one



30 MATHEMATICAL LOGIC DURING THE MIDDLE AGES

could say Ockham’s laws instead of De Morgan’s laws. For the
history of the application of De Morgan’s laws during the Scholastic
period, the interested reader is referred to the valuable material of
Reference 26.

4. The Theory of Logical Implication

Here we will present a detailed analysis of the division de con-
sequentiis. Fundamental to this section is the notion of implication,
which is rather broad.

First of all, this notion includes the modern view stated by the
expression “4 implies B’ (B can be derived from 4 by way of
definite rules; symbolically, 4 + B, where implication is meant in
the sense of some relation between 4 and 5).

Secondly, this notion includes the idea corresponding to inter-
pretation of implication as an operation or function. In modern
“language,” this approach corresponds, for example, to the
symbolic relation 4 © B, which, without stretching the point, can
be read “If A, then B.” Interpretation of implication as an
operation has been traced to the Megarian-Stoic school (Philo).
This approach, however, was comparatively rare in the logic of the
Middle Ages, and, as we shall shortly see, it was unknown to Duns
Scotus, who treated implication in the sense of derivability.

Duns Scotus classified the forms of implication as follows:
“‘Implications may be separated into proper and improper. Proper
implications are enthymematic or syllogistic. Enthymematic im-
plications can be separated into formal and material, the latter
being simple or factual.””*

According to Duns Scotus, proper implication (bona consequentia)
is concerned with a hypothetical relation in which the antecedent
and the consequent are related by a contingent or causal relation
such that it is impossible for the antecedent to be true and the
consequent to be (simultaneously) false.t Duns Scotus also claimed

* Duns Scotus, Qu. Sup. Anal. Pr, 1,20, p.302 B; see Reference 17,vol. 3, p. 139.
t Ibid, 10, p, 287 B: ““Consequentia est propositio hypothetica composita ex ante-
cedente et consequente mediante conjunctione conditionali vel rationali, quae denotat, quod
impossibile est ipsis, quod antecedens sit verum et consequens falsum.” See Reference
17, vol. 3, p. 139, fn. 614.
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that any proper implication that is not an Aristotelian syllogism is
an enthymeme. He characterized *“formal implication”’ as follows:

“A formal implication occurs when...both terms can be
transformed (uterque terminus est convertibilis)” (Reference 17, vol. 3,
p- 229, fn. 199).

Although it might seem from the above quotation that Duns
Scotus included material implication in the modern sense in the
notion of formal implication in a similarly modern sense, it is clear
from elsewhere in his work that he used the terms consequentia
materialis ‘and consequentia formalis in other than the modern
sense.

He associated the first term with conclusions that cannot be
obtained in a purely formal manner and, if the conclusion is to be
logically justifiable, must be supplemented by additional informa-
tion. (The simplest case of such conclusions is the common
enthymeme of elementary logic.) On the other hand, he associated
consequentia formalis with conclusions of a purely formal nature.
However, consequentia malerialis can be reduced to consequentia
formalis by reconstitution of omitted premises, after which the
content of the implication plays absolutely no part in determining
the logical correctness of the conclusion. Material implication can
be reduced to formal implication in two different ways.

Duns Scotus called material implications that could be reduced
to formal implications by appending a statement of necessity to the
antecedent “‘simple material conclusions’ (consequentia materialis
simpliciter). For example, we can reduce the implication “Man
walks. Therefore, animals walk,” to a formal implication (in the

. Duns Scotus sense) by adding the statement ‘“Every man is an
animal.”

On the other hand, Duns Scotus called a material implication
that he reduced to a formal implication by appending a contingent
statement to the antecedent ““a factual (u¢ nunc) material implica-
tion.”” Thus, for example, the proposition ‘‘Socrates goes. Therefore,
what is white goes,”” can be reduced by constructing the contingent
statement ‘‘Socrates is white.”

Although Duns Scotus treated the relation of logical implication
as dealing with content, he and his closest student, William of
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Ockham, treated implication itself in a manner very close to that
of formalization provided by material implication. Thus, among
Ockham’s rules for implication, we might note, for example, the
following: (1) An impossible statement implies any conclusion.
(2) A necessary statement follows from whatever is convenient.*

These rules correspond to the following identically true ex-
pressions in the propositional calculus: 4> (4> B) and
A4 > (B > A), where the bar denotes logical negation.

Elsewhere, Ockham states the following rules: (3) A true
statement never implies a false statement. (4) A possible statement
never implies an impossible statement (Reference 17, vol. 3, p. 129).

These rules correspond to the following formulas in propositional
calculus and modal logic:

A& B> (A5 B) and ((4=p)& (B =imp)) > (A> B),

where p denotes some fixed statement of possibility (from the Latin
possible) and imp denotes a fixed statement of impossibility (from the
word impossibile).

We should also note certain other of Ockham’s rules of implica-
tion (see Reference 17, vol. 3, pp. 390, 392, 396, 411-415, 417-419):
(5) A false statement may imply a true statement (ex falsis potest
sequi verum). (6) What follows from the consequent also follows from
the antecedent (Quidquid sequitur ad consequens, sequitur ad antecedens).
This is a statement of the factual transitivity of implication. (7)
Necessity does not imply contingency (Ex necessario non sequitur
contigens). (8) What contradicts the consequent contradicts the
antecedent (Quidguid repugnat consequenti, repugnat antecedenti). We
can formalize Statement 7 as follows:

(x = N(x) & (y = (M(y) & M(7))) = (=),

where N(x) denotes the statement “‘x must occur,” and the con-

junction M(y) & M(7) states thaty is contingent (here contingency

is defined as the possibility of M: M may or may not be true).
We should keep in mind that Ockham took necessity to be the

* Ockham, Summa Logicae, c. 70A, cited in Reference 17, vol. 3, pp. 129-130.
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negation of contingency, so his seventh rule is actually only a
restatement of his third (it is sufficient to replace the term ‘“true”
in the latter with the term ““necessary’’ and the word ““false’” with
the word ““contingent’’). Of course, it should be noted that here
there is no assertion of metaphysical identification of the categories
of truth and necessity on the one hand and the notions of falseness
and contingency on the other; there is merely a statement that
necessity bears the same relation to contingency as truth to
falseness.

Duns Scotus’ successor Ralph Strode developed what is actually
a theory of formal implication (in the sense of Duns Scotus), for
which he stated twenty-four rules (Reference 17, vol. 4, pp. 46-48,
50-52). Some of these rules are interesting because Strode intro-
duced a further gradation in the modes of modal logic. He included
the mode “questionable’” between ““true” and ““false.”” Some of
his rules read as follows: (9) If the consequent is questionable, the
antecedent is either questionable or known to be false (57 consequens
est dubium, et antecedens est dubium vel scitum esse falsum). (10) If the
antecedent is questionable, the consequent is not necessarily
negative (Si antecedens est dubitandum, ergo consequens non est ab codem
negandum). (11) If the consequent is negated, the antecedent is not
necessarily questionable (Si consequens est negandum, antecedens non est
ab codem dubitandum). (12) If the antecedent is known, the con-
sequent is known (S¢ antecedens est scitum, et consequens est scitum). "This
rule states perfectly the essentially analytic nature of implication in
the sense of deductive implication. (13) If the consequent is im-
possible, the antecedent is also impossible (Sz consequens est impossibile,
igitur et antecedens est impossibile). (14) If the consequent is contingent,
the antecedent is either contingent or impossible (St consequens est
contigens, et antecedens est contingens vel impossibile).

Analysis of other rules stated by Strode shows that, together with
material implication* in the sense of the Stoics and Avicenna, and

* Strode defines material implication as follows: ‘‘Material implication is
governed by two rules: (1) An impossible statement implies anything; (2) A
necessary statement follows from anything” (Pro consequentia materialis sunt
duae regulae: (1) ex impossibile sequitur quodlibet; (2) Necessarium sequitur ad
quodlibet).
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formal implication in the sense of Duns Scotus, he permitted a type
of implication that was not considered by either the Stoics or Duns
Scotus. This is made clear by Strode’s remark, ‘“a conditional
relationship may be false, even if the antecedent and consequent are
simultaneously true’ (... Conditionalem esse falsum, cuis tam ante-
cedens, quam consequens esset verum). Strode provides the following
example of such a false conditional relationship: i tu est homo, ergo
sum homo.

Thus, Strode moved away from the Stoic notion of implication
(which he did not reject entirely, for he reserved it for particular
types of sentences) toward the notion of a type of implication
which might be called semantic and which assumes that the
consequent must be part of the antecedent if the corresponding
conditional relationship is to be true. The material available does
not permit us to determine which of the contemporary notions of
implication — the Lewisonian or the Ackermannian (Reference
28) — Strode was moving toward; we can only be sure that he
abandoned the treatment of implication as strictly a function of
truth, an approach taken by the logical school of the Stoics.

The rules of implication stated by Albert of Saxony are also of
interest (Reference 17, vol. 4, pp. 73-75). In particular, he stated
the rule that, if 4, together with some statement of necessity,
implies B, then B follows from A alone.* Symbolically, we have—

A, N+B

Oy e

where the N is associated with the phrase ‘“statement of necessity”’
(from the word necesse) and the symbol +— denotes derivability
(following from the preceding).

Marsilius von Inghen (Reference 17, vol. 4, pp. 101-102) was
responsible for an important contribution to the development of de

* Reference 17, vol. 4, p. 73: Logica Alberticuii, C2, F24rB: Si ad A cum aliqua
necessaria sibi apposita sequitur B, tunc B sequitur ad A solum. In the literature,
Albert of Saxony is also called Albert von Riegensdorf. He is known as a
mathematician and commentator on the works of Aristotle and Ockham.
After syllogistics, he considered the Topics, which he treated as part of a
study on implication in the form of a theory of so-called maximal propositions
(propositione maxima) (Reference 17, vol. 4, p. 78).
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consequentis.* Among the rules for which he is responsible we should
note the following:

(16) The entire disjunction follows from each of its terms.}

(17) A universal statement makes it possible to conclude arbi-
trary individual terms.}

It is easy to see that the sixteenth rule corresponds to the modern
rules

A—Av B, B—AvV B,

for introducing the sign of disjunction, while the seventeenth rule
corresponds to the rule

VaA(x) — Aly)

of the restricted calculus of predicates, where V denotes the universal
quantifier and can be read ““for all x.”” The letter % denotes some
property (predicate) of the subject x. The expression “the subject
x has the property’’ can be symbolically written in the form (x).

In his work Logica magistri Petri Mantuani (published in 1483 in
Pavia and in 1492 in Venice), the terminist Peter of Mantua con-
sidered the problem of de consequentiis in close connection with
problems of modal logic. However, he is important not because of
his results as a whole but because of one of the rules pertaining to
the problem of the modality of rules, namely, the rule that leads to
the conclusion ad nullam de necessario, that is, in contemporary terms,
a necessary statement follows from the empty set of premises (ad

* Marsilius von Inghen was a German successor of John Buridan. He re-
ceived his education in Paris, reached the level of magister, and became
rector of Heidelberg. His Dialectics was appended in 1512 to an edition of
Peter of Spain’s Summulae.

Doctrinally Marsilius was a Thomist, but in the theory of material
implication he leaned toward the views of Duns Scotus; in logic he was at
one with Ockham. In the theory of abstraction he adopted a compromise
position between realism and nominalism. Marsilius wrote glosses for
Aristotle’s Categories and for the well-known Introduction of Porphyry. Among
his works we should note Quaestiones super quator libros Sententiarum (Petri
Lombardi) (1947), which was published in a second edition in 1501.

t Reference 17, vol. 4, pp. 101-102.

+ Ibid. Raymond Lully stated this rule in a somewhat more complicated
form: “From a universal statement we can conclude the corresponding
particular, indeterminate, and individual statements.”
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nullam). In addition to this rule, Peter stated sixty-three other rules
of the same type.

Gradually a tendency arose to consider the general notion of
logical implication. As far as we can judge from Prantl’s classifi-
cation (Reference 17, vol. 4, p. 181) of views on the nature of
implication in medieval logic, there were three fundamental
approaches to the definition of logical implication. According to
the first view, implication is the relation of derivability of a con-
sequent from an antecedent (Duns Scotus, Ferabrikh); according
to the second, implication consists in establishing a situation where
the consequent is part of the antecedent (Strode, Ockham);
according to the third, implication is nothing more than an aggre-
gate consisting of an antecedent, a consequent, and a conjunction
(the extreme terminists). The first conception is close to the theory
of formal implication, the second is very nearly the same as what
is meant by implication in the semantic sense, and the third treats
implication in a manner close to that admitting formalization in
terms of the apparatus of material implication.

5. The Theory of Semantic Paradoxes

Paradoxes of the ““liar’s” type had been dealt with as early as the
time of Adam of Balsham (twelfth century). Basically, however,
rapid progress concerning de insolubiliis occurred during the
fourteenth and fifteenth centuries. Important contributions to
these studies were made by Albert of Saxony and John Buridan.

Buridan, in particular, considered such insolubilia* (that is,
paradoxical statements) as the statement ‘““‘everything written in
this volume is false,” where this statement itself is the only thing
written in the entire volume.

We denote the proposition in quotes by p. It is required to deter-
mine whether p is true or false. Assume that p is true. But then, as
the statement says, it is false, because it is written in the given book.
We now assume that p is false. But then the book should contain at

* Buridan’s statement of this insolubilium reads as follows: Propositio scripta in
illo folio est falsa. We have presented it in a form somewhat more convenient
for analysis.
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least one true proposition, and this can be only p since it is the only
proposition in the given book. As a result, p must be true. Thus, if
we assume that p is true, we must conclude that it is false, and con-
versely, if we assume that p is false, we must conclude that it is true.

As a result, we have before us two statements of the form p > p
and § > p, demonstrating the presence of a paradox since it
follows from them that p is equivalent to $, that is, either both
statements are true (we have p and §) or both are false (we have
p and ;) In both cases, we have an explicit formal contradiction
since both the proposition and its negation are true (in the second
case both are false: we have § and ;)

We will now present several examples of the semantic antin-
omies encountered in the work of Albert of Saxony that permit,
without changes in form, changes in some part of the content of the
paradoxical statements within them. We state the first of these
antinomies in the following form:

“If2 x 2 = 4, then some contingent statement made by a liar
in a given time interval ¢ is false,” and, except for the phrase in
quotes, over the time interval ¢ the liar N makes no contingent
statements.* It is required to determine whether the liar N has
made a true or false statement.

To rigorously analyze this paradoxical situation, we initially
introduce two predicates: (1) during the time interval ¢ someone
has asserted #,”” which (predicate) we denote by “ass x,”” and (2)
the identity predicate, which has the property that, if x and y are
identical (that is, if we have x = y), then all that is true concerning
xis also true concerning y. We can now state the problem in the form

I, ass(2 x 2 = 4)>(AXIY ((ass(X 2 ¥)) & (X = T))),
which is a symbolic representation of the sentence ““someone says,
‘if 2 x 2 = 4, then some stated contingent proposition is false.””’

2, VitVo(ass(t 2 0))2(t = (2 x 2 = 4))

& (v =3X3(ass(X > Y) & (X > Y))),

* Si deus est, aliqua conditionalis est falsa, et sit nulla alia conditionalis — Albert,
Perutilis Logica Magistri Albert de Saxonia, VI (Venice, 1522). Albert set
out to determine whether the proposition in italics is true or false (assuming
that it is unique).
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which states that for N any contingent statement made by N in the
time interval ¢ coincides with that of 1’. We now assume something
that N said, that is,

2 x 2 =45 3X3¥(ass(X> ¥) & (X > 7)) (1)

is true. Since the premise of the implication is true, in view of our
assumption the conclusion is also true, that is, the expression

1X3¥(ass(X > ¥V) & (X > Y)) (2)
is true.

Applying a common procedure of introducing symbols U, and
V, to be treated as constants (that is, for which nothing can be
substituted and to which we cannot apply the rule of generaliza-
tion), we write Implication 2 in the form

ass(Uy @ Vo) & (U 2 V). 3

Applying the rule for elimination of the universal quantifier
(dictum de omni)* to Condition 2’, we find also that

ass(Uy 2 Vo) @ (Upy = (2 x 2 = 4))
& (Vo =3IAy(ass(X > Y) & (X2 7)) 4

Since, in view of Implication 3, the premise ass(U; 2 V) in
Implication 4 is true, the consequent of Implication 4 is also true;
that is, U, coincides with 2 x 2 = 4, and V, coincides with

Iy(ass(X > ¥) & X > 7).

But this means that U, © V, is precisely our Implication 1.
Nonetheless, Implication 3 implies that U, > V,. Assuming that
Implication 1 is true (that is, that U, @ V;), we thus find that
Implication 1 is false.

We now assume that Implication 1 is not true. Since its anteced-
ent is true, the conclusion must be false; that is, we have

IxJy(ass(X 2 V) & (X > Y)) or
VaVy((ass(X > Y)) > (X > Y))

* We do this by substituting U, for ¢ and V, for V, which this rule permits
us to do.
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from which it follows, by virtue of the rule for elimination of the
universal quantifier by replacing X by 2 x 2 =4 and Y by
Ix3Y(ass(X 2 ¥V) & (X > Y)), that

ass(2 X 2 =4) 2 xdy(ass(X > ¥V) & (X > Y))
> (2x2=4)> ky@s(X>2Y)& (X>7Y)). (5)

Since by Condition 1’ the antecedent of Implication 5 is true, the
conclusion is also true. But this conclusion is also the consequent of
Implication 1, from which it follows that all of Implication 1 is
true, even though we assumed it to be false. Thus, if Implication 1
is true, it is simultaneously false. Similarly, if it is false, it is also true.
We are therefore dealing with an unsolvable proposition, a paradox.

We can analyze the following examples of Albert of Saxony
(which have been changed in content but not in form) in the same
way':

a. 2 x 2 = 5 or some disjunction is false,”” where the universe
of discourse contains no more than one disjunctive proposition;*

b. “2 x 2 = 4 or some conjunction is false,”” where the con-
clusion in quotes is the only conjunction in the universe of discourse ;

c. “Socrates says, ‘Man is an animal,” while Plato asserts that
‘only Socrates speaks the truth,” and there are no other assertions.

It is required to determine whether or not Plato has lied.” }

We will analyze Example c. First of all, it is quite easy to obtain a
paradox contensively. Assume that Plato is telling the truth. In this
case only the assertion ‘“Man is an animal” is true, and all others
are false.

But Plato’s statement differs from Socrates’. Thus, Plato has lied.
We now assume that Plato has lied. Then we must find at least one
true statement other than that of Socrates. But the only other
possible statement is Plato’s (recall that, except for his statement,

* Albert de Saxonia, Logica . .., VI; *Homo est asinus vel alique disjunctiva est
Salsa, et sit nulla alia disjunctiva in mundo.

t Ibid.; ¢ Deus est et aliqua copulativa est falsa,’ et sit sic, quod nulla alia copulative
sit in mundo, haec ipsa. Tunc quaeritur, utrum sit vera.

+ Ibid.; Dicat Socrates: ‘“ Deus est,” et Plato dicat: *‘Solus Socrates dicit verum,” et
non simul alii loquentes in mundo. Tunc quaeritur, utrum Plato dicit verum.
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there is no other). As a result, Plato is not lying; so we have a
paradox.

To formalize this paradox, we denote the statements of Socrates
and Plato by p; and p,, respectively; we introduce the identity
predicate,* and we introduce the predicates SS (Socrates said) and
PS (Plato said). The antinomy is formalized by the following system
of premises:

I'. p; (in other words, p, is a fixed true statement).

2'. S8(p,).

3. pa = S8(,) & Vz((z # py) = ).

4", PS(p,).

S VYw((w = p1) V (w = p,)), which means that except for
p1and p,, no other statement is made in the time interval ¢,

6. p1 # pa.

We assume that what Plato said is true, that is, the following
formula is true:

S5(p1) & Vz((z # py) = 2). (1)

But in Formula 1 the first conjunctive term is true (Premise
2'), it can therefore be eliminated. Formula 1 is equivalent to the
expression

Vz((z # p1) = 2). (2)
By dictum de omni, it follows from 2 that
(b2 # 1) @ po. 3)

But because the antecedent of Implication 3 corresponds to
Premise 6, it follows that 3 is equivalent to

b (4)

Thus, if we assume that p, is true, we are led to the conclusion
that it is false.
Assume that p, is false, that is, the formula

S5(p1) & Vz((z # p1) > 2) ©)

* It is unnecessary to introduce a special distinction predicate, because
distinction is nothing more than simple negation of identity.
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is true; this formula is equivalent to

SS(p1) v 3z((z # p1) & 2), (6)
from which it follows, by Premise 2’, that
Az(z # p,) & Z. (7

We now introduce the symbol z, to replace z, using the same

technique we already used in formalizing the preceding paradox.
We have '

(20 # 1) & Z,. (8)

Applying the rule for elimination of the universal quantifier to
Premise 5, we find that

(2o = p1) V (20 = p2). 9)

From 8, 9, and the fact that Z, is equivalent to z,, it follows that
z, coincides with §,. By substituting p, for z, we obtain:

(b2 # b1) & poe (10)

But the first term of 10 can be eliminated since it is Premise 6’.
Thus, the final statement is:

b (11)

As a result, if we assume that p, is false, we find that p, is true, a
fact which in conjunction with Formula 4 leads to an antinomy.
We leave it to the interested reader to obtain antinomies from the
following two examples of Albert of Saxony, which have been

‘slightly changed in content but not in form:

d. We are given three statements p;, p,, and p3, where p, states
that p, is false, p, states that p; is false, and p; states that p, is false.
Determine whether or not p, is false.

e. We are given only the two statements p, and p,, where p,
states that p, is false and p, states that p, is false. Determine
whether p, is true or false.

f. 2 x 2 = 4; therefore a given consequence does not hold.
Determine whether or not Example f is true or false (under the
assumption that Example { is unique).
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g. We are given two premises:
g;. ““man is an animal”
and
g,. any statement except g, is true,
Determine whether or not Premise g, is true.
h. We are given the following premises:
h;. man is an animal,
h,. the earth is round,
and
h,. every statement except h; is true.
Is Premise hj true?
i. We are given the following premises:
1;. twice two is four,
iz. unicorns exist,
and
ig. every statement other than i, and i, is false.
Determine whether Premise i, is true or false.

We will obtain paradoxes for Examples f through i, beginning
with Example f. Assume that Example f is true; in this case the
antecedent of Example f can be eliminated as a fixed truestatement.
But the assertion of the truth of the consequent of f is equivalent to
asserting that all of Proposition f is false. As a result, f is false. We
now assume that Example fis false, a condition that can occur only
if the antecedent is true (and this is indeed so) and the consequent
of f is false. But the assumption that the consequent is false is, in
this case, equivalent to asserting that the entire proposition f is
false. As a result, Example f is true. Paradox.

Examples g and i are of the same type in the sense that they in-
clude separative exponibilia (with the word ‘““except”). They can
be reduced to paradoxes in exactly the same way, so we will limit
our analysis to Example h. Under the assumption that Premise h,
is true, we can easily show that hg is false. If, however, we assume
that Premise h; is false, that is, at least one statement in addition
to h; is false, we can easily show that this is impossible since
Premises h; and h, are both true, and, except for them and h,, we
have no other statements at our disposal. As a result, we must
assert that Premise h; is true (reasoning from the general principle
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that, if an assumption leads to a contradiction, the given assump-
tion is false).

Albert of Saxony presents a number of examples that, instead
of containing insolubilia, contain only some system of premises
composed of inconsistent statements. For example, we are given
two premises 4 and B, where B denotes some fixed false statement
and A states that “everything but 4 is different from B.” Tt is
required to determine whether 4 is true or false. Initially, assume
that 4 is true, that is, the statement “only 4 does not differ from
B is true. We must also conclude that B differs from 4 (since the
universe of discourse consists of only 4 and B), and this is impossible
(it violates the law of identities). As a result, the assumption that
A is true is untenable; thus, 4 is false. If we assume that 4 is false,
we can only conclude that B is not different from B; that is, the
statement ““4 is true,” required to obtain a paradox, does not
appear. Thus, the system of premises consisting of 4 and B is
inconsistent, and analysis of it proves that 4 is false.

Buridan is responsible for a curious system of statements in which
no statement is true, the system is not paradoxical, and each of them
is defined in terms of another by means of the same method.
Namely, he calls attention to the case of two premises, p and g,
where p says: “gis false” and g says “p is false.” It is easy to see that
the assumptions

I. pis true and g is false and
II. p is false and g is true

are consistent. There is no way of deciding whether Assumption I
is true or Assumption II is true.

Thus far, our discussion of antinomies has remained within the
framework of two-valued formalism. The problem of how the
Scholastics formalized modal antinomies (i.e., paradoxes whose
statements contain modal terms) remains unanswered. Albert of
Saxony, for example, presents an antinomy whose literal expression
contains such expressions as *“ Socrates doubts that . . .,”” and ““Plato
proposes that...,” (Reference 17, vol. 4, p. 80; Anmerkung,
Reference 77). These can scarcely qualify as modal antinomies in
the narrow sense since they can apparently be expressed completely
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within the framework of two-valued formalism. Albert himself
offered the opinion that the nature of such antinomies is linguistic
and psychological rather than logical.

Discussions of paradoxes in Scholastic logic were very lively. A
classification of the viewpoints on the nature of insolubilia is con-
tained in the work of Johann Mayoris Scott (1478-1540), who lived
and taught in Paris (Reference 17, vol. 4, p. 250).

A close examination of the opinions (of which Scott counted
eight and Bochenski (Reference 370) counted thirteen) shows that
there were essentially three approaches: (a) “rejection” (cassatio),
(b) *“restriction” (restrictio), and (c) ““resolution”” (solutio).

According to Approach (a), an insolubilium is not a proposition
(Paul of Venice) and, because it cannot be said to be true or false,
it is simply meaningless. We will illustrate Approach (b) with an
example taken from the work of Ockham. According to Ockham,
the source of an antinomy lies in the fact that the terms required
for notation of propositions are sometimes used for notation of the
same propositions in which they are used as constituents. More
plainly, Ockham meant that part of a proposition (the predicate
““is false”) must not (in order to eliminate an antinomy) refer to
the entire assumption in which it appears.*

Ockham’s view therefore reduces to an interdiction of circular
definitions. In other words, it is not permissible to require linguistic
constructions in which, for example, a given proposition appeals
directly to falseness proper (or unprovability). By eliminating
circular arguments in his studies of paradoxes, Ockham was led to
his famous ““razor”’ (“essentials should not be multiplied more than
is necessary”’). He believed that his solution to the problem was the
most general possible (in the sense that if his proscription is fol-
lowed, antinomies do not appear). However, Buridan found an
example in which Ockham’s proscription is not violated (there
is no direct appeal to falseness), but an antinomy nonetheless
appears.

* The problem of this type of restriction did not appear in connection with
the predicate “is true,” because, in defining truth, Ockham, following
Aristotle, assumed that the propositions (1) “p” and (2) “‘p’ is true” are

equivalent.
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The system X consists of the following statements:

C;. “man is an animal,”

C,. “only G is true,”

C;. ““C; and G, are the only available statements.”
3 1 2 y

(See Example c in the discussion of the antinomies of Albert of
Saxony; in that example, G, is an insolubilium, although it does
not appeal directly to falseness.)

The system X therefore contains a paradoxical statement, C,,.
The special - property of G, is that it does not contain a direct
appeal to the falseness of C,. Rather, it refers only to Premise C;.
Without knowing anything about C;, it would still be impossible
to draw definite conclusions about the truth or falseness of C,.
Indeed, if C; stated that ‘‘the meaning of C; is identical to that of
C,,” no antinomy would appear.

In view of this type of expression, Buridan distinguished two
types of paradoxical statements: The first type contains ‘‘direct
reference’ (relative to the truth value ascribed to a proposition in
accordance with the Aristotelian definition of truth), while the
second type contains ‘‘indirect reference.”” For instance, in the
liar’s paradox, there is ‘““‘direct reference,” while in the above
system of propositions, C, contains an indirect reference.

The existence of “‘indirect reference’’ provided Buridan with the
occasion to declare Ockham’s approach to elimination of semantic
antinomies ineffective and to attempt to find other methods for
elimination of paradoxes. In modern terms, Ockham’s approach
leaned toward Russell’s theory of logical types, while Buridan’s

approach is somewhat reminiscent of Tarski’s viewpoint in The
Concept of Truth in Formalized Languages (Lvov, 1935).

Of the attempts made during the Middle Ages to eliminate
antinomies, we will discuss in more detail only Buridan’s theory
since this approach is apparently the one of most value. It is
presented primarily in his works Sophismata and Johannes Buridani
Quaestiones in Methaphysicam Aristotelis (Paris, 1518).

From the formal viewpoint, Buridan’s considerations on a
method of eliminating semantic paradoxes in Johannes Buridani
Quaestiones in Methaphysicam Aristotelis (VI, Qu. 11) can be stated as
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follows. We assume that p is some unsolvable proposition such as
the one we considered above: “all that is written in this book is
false.” To eliminate the antinomy appearing in this case, Buridan
proposes to append to p (the symbol for the given paradoxical
proposition) an auxiliary premise Ap, where Ap states that the
proposition p is actually spoken by someone, say Socrates. From
the conjunction p & Ap, we can derive the proposition . But from
p, in view of the value of p, that is, the actual words in the propo-
sition, we can derive the statement .

Thus, from p & Ap we can obtain the two propositions  and $;
that is, we can obtain an explicit formal contradiction. But, if a
given statement leads to a contradiction, it is false. That is, the
expression p & Ap is true, but p p & Ap implies that p > Ap. In
other words, the proposition that p is true implies only that
Socrates cannot be responsible for it. We should note that p & Ap
implies Ap > §; that is, the premise that Socrates has spoken p
implies that p is false. Thus, there is no paradox.

Buridan’s ideas can also be formalized on the basis of an analysis
of texts that are not in Prantl’s compendium but are presented in
Reference 20 (which gives several excerpts from Buridan’s works).
This latter reference initially attempts to find a concrete form of the
Aristotelian meaning of the predicate *to be true”” and presents the
following method of formalizing Buridan’s ideas.

Buridan criticized the viewpoint according to which all (in-
cluding, therefore, paradoxical) propositions imply another prop-
osition in which the subject is the name of the initial proposition
itself and the predicate is ““is true.” If V is the universal quantifier,
x is some proposition, x, is the name of this proposition, and T is
the predicate ““is true,” then the proposition Buridan had in mind
takes the form

Va(x> T(x)- (1)

From the viewpoint of material implication, Formula 1 is, of
course, irrefutable. While x may be false in Formula 1, the entire
implication is nonetheless true. However, Buridan used the follow-
ing argument to avoid the thesis that Expression 1 is always true.
Information may actually be contained in x, but it need not be
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fixed in a particular statement. Hence x is only the name of a
statement (‘‘the consequent [that is, 7'(x,) in Formula 1], because
it is affirmative, can denote nothing,” said Buridan). He added an
additional premise, asserting the existence of the proposition x.
Thus, the expression “x, is the name of x and x is’’ is equivalent to
the phrase ““x, is true.”” Symbolically, we have

T (%) = xpx & %, (2)

where the expression x,x is taken to be a single, inseparable symbol
denoting the statement “‘x, is the name of x” (“x, denotes x”°).
Definition 2 can easily be used to eliminate the liar’s paradox.
Let some paradoxical statement (we call it m) mean (after it is
appropriately interpreted) “m is false.”” Symbolically, we have
m = T(m,), where my, is the name of m.

If we accept Thesis 1, a paradox is obtained as follows:

m="Tm) (byl), (3)
m = T(my) (premise) 4)

It .follows‘ from (3) and (4) that (Tm,) = T (m,); that is, we have
an antinomy that is easily eliminated by use of Premise 2. Assume
that m is true. Then we obtain

T(my) = mym & m. (3)
By (4), we have that

T(mn) = mnT(mn) & T(mn) > T(mn)
or

T(my) > T(my).

We now assume that m is false, i.e., that we have

Tmy) = mm &m (6)
or

T(mn) = mnT(mn) & (T(mn) O]

from which we obtain

T(my) > myT(my) v T (my). (®)
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It is now impossible to derive T'(m,) from T (m,), so a paradox does
not appear.

Thus, the assumption that m is false leads only to the statement
“either m is true or m, is not the name of a true proposition m,” but
not to the categorical statement (required for an antinomy) “m is
true.”

In addition to Buridan’s theory of elimination of paradoxes, we
should also note a similar study by Paul of Venice; we will present
a discussion of these ideas, somewhat modifying the formalization
presented in Reference 370, pp. 291-292. Paul assumed that,
because an insolubilium is a proposition, there is no basis for
assuming that the Aristotelian criteria of truth do not extend to it.
To eliminate antinomies, however, it is necessary to verify the
difference between the “ordinary” and ““precise” value of a
paradoxical proposition. We will see that this requirement by Paul
is equivalent to a refinement of the Aristotelian notion of truth and,
in connection with this, that Paul’s ideas did not extend past the
basic superstructure constructed by Buridan.

Before proceeding to what Paul actually meant, we introduce
the following conventions. By f we denote the falseness functor,
and by ¢ we denote the truth functor. We will write an insolubilium
in the form

A= (4=f). (1)

Adding Paul’s refinement of Aristotle’s notion of truth, we
obtain the following system of premises:

d=p—>(d=1t)=(4d=1) &), @)
d=p—>((4=f)=((4d=1)&p)), ©)

to which we must add the usual definition of falseness,

il

A=f)=@A=1). 4)

We leave it to the interested reader to verify that Premises 1
through 4 and the assumption that 4 is true imply that 4 is false.
On the other hand, let us consider the consequences of Premises 1
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through 4 under the assumption that 4 is false. First of all, sub-
stituting 4 = f for p in Premise 3, we obtain

Ad=d=f)—->d=f)=((Ad=0)&d=/)) O

Application of modus ponens to 1 and 5 yields

A=fl=d=t) &d=)). (6)
Since we have assumed that A4 is false, 6 reduces to
(d=1) & (4 =/), ™)

which is equivalent to the expression
A=stv A=f (8)

But, by Premise 4, 4 = ¢ is equivalent to 4 = f. Therefore,
finally we obtain

Ad=f)vd=f), )

that is, a variation of the principle of tertium non datur, from which
naturally we cannot derive the necessary conclusion (for a paradox)
that A is true. Thus, the paradox has been eliminated, and,
according to Paul, the assumption that the insolubilium is false
leads only to a statement about the validity of the law of the
excluded middle.

It should be noted that many of the viewpoints of medieval
scholars on the nature of insolubilia anticipate in one way or
“another some of the contemporary approaches to elimination of
antinomies. For example, some Scholastics insisted on strict
prohibitions against the ““vicious circle” (circulus vitiosus), which
they saw as an immediate source of paradoxes. In the opinion of
others, an ““insolubilium is neither true nor false but lies somewhere
in between these notions, different from both,”* an opinion, in
modern terms, equivalent to the statement that paradoxes must be
resolved in trivalent logic.

* For the text of Paul of Venice on the opinion of his opponents on the
subject of insolubilia, see Reference 370, p. 281.
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By the end of the sixteenth century, the emphasis on logical
research had diminished. And, about the same time, it appears that
the differentiation between the logical schools became complete.
At the end of the Middle Ages, there were basically three logical
schools: (1) the school of peripatetics (which had its origins in the
Summulae of Peter of Spain) ; (2) the Ramists, the followers of Peter
Ramus (1515-1572), who persistently advanced proposals for
reforming Aristotelian logic; and (3) the Lullists, who based their
doctrine on the studies of Raymond Lully.

The Frenchman Peter Ramus was not satisfied with the level of
Aristotelian logic. Following Lorenzo della Valle and other Stoics,
he sharply censured the gap between logic and rhetoric. A number
of like-minded scholars in Germany, for example, Johannes Sturm
(1507-1589), were drawn to Ramus’ criticism.

Ramus criticized the Aristotelian system of categories, which, in
his opinion, did not permit classification of logical methods. He
had some influence on the logic of Leibniz (in particular, on the
problem of using certain figures of syllogisms for proving particular
rules concerning the conversion of sentences). Mainly, Ramus
proposed using syllogisms of the second and third figures for this
purpose. For instance, the modus Datisi of the third figure and the
principle of identity can be used to prove the reversal rule that SiP
implies Pi§ (that is, the statement ‘““some § are P>’ implies that
“some P are $”). Indeed, if we substitute the term P for M in the
statement (MaP. MiS) — (SiP), we obtain (PaP. PiS) — (SiP),
from which, by appealing to the identically true statement PaP,
we obtain Pi§ — SiP.

An important place in the logic of Ramus was occupied by
problems of methodology and, in particular, the theory of loci,
(loct communes), that is, points of view that make it possible to con-
struct proofs. He distinguished five ““original”® points of view and
nine ““derived”’ points of view.

Of the works of Ramus, we should note the following: Ani-
madversiones in dialecticam Aristotelis (1543); Dialecticae partitiones
(1543) ; Institutiones dialecticae (Paris, 1543, 1547) ; Scholae in liberales
artes (Basel, 1569, 1578, 1582).

The logical ideas of Lully were completely adopted by the well-
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known Spanish pedagogue and humanist Luis Vives (1492-1540)
and the great thinker Giordano Bruno (1548-1600).

Vives insisted that scientific research be based not on the
authority of Aristotle but on experiment. In his works On the Means
of the Probable and Against Pseudodialectics (1519) he argued against
exaggerating the value of the rhetorical applications of logic,
preparing the way for the empirical methodology of Bacon.
Vives was responsible also for an ideographic representation of the
relations between syllogistic notions. The diagram in Figure 7 is

N
N

Figure 7

reproduced from his De censura veri (1555), where C denotes the
minor premise of a syllogism, 4 denotes the middle, and B is the
major term; the inclusion relation is indicated by the V-shaped
sign.

Vives’ work can be treated as a precursor of ideographic methods
later developed by Hamilton. In 1555 his dialogues were translated
into German by Breringen in Oldenburg. The collected works of
Vives were published that same year in Basel and in 1782-1790 in
an eight-volume edition in Valencia. In the Russian language we
have A Guide to Knowledge (St. Petersburg, 1768), which was
translated from the Latin. Further information about Vives can be
found in: A. Lange, Ludvig Vives and Schmidt’schen Encyclopddie des
Erziehungs- und Unterrichtswesens, vol. © (1869).

A number of ideas in the propositional calculus were slowly for-
mulated by the Lullists in the special study called “axiomatica”
that was used as an introduction to syllogistics. In particular, this
is the way J. H. Alsted proceeded in his handbook 4 New Form of
General Logic (1652). Because he strictly adhered to certain logical
ideas of Ramus, Alsted attempted to reconcile the dialectics of
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Ramus and Lully with Aristotelian logic. Born in 1588 in Nassau,
he was appointed professor of philosophy at Strassburg in 1610,
Alsted had commented on Lully’s work in Sources of Lully’s Art and
True Logic in 1609. In 1624 he made an attempt at further develop-
ment of the ideographic methods of Vives. In one of his Frankfurt
works, written about 1641, Alsted attempted to state the axioms
basic to a number of the philosophical systems of his contem-
poraries. '

Bruno was an active commentator on Lully, as we can see from
his works De compendioso architectura et complemento artis Raymundi
Lullii (Paris, 1582); De Lulliano specierum scrutinio (Prague, 1588);
and De Lampade combinatoria Lulliana.

In keeping with his fondness for convenient mnemonic devices,
Bruno attempted to justify the logical technique of the Ars Magna
by gnosiological apparatus. In De Lampade combinatoria Lulliana he
considered three forms of activities of the human mind: perception
of elementary objects, identification and distinction of objects, and
argumentation. Accordingly, in Ars Magna a theory for a method of
combining terms and argumentation based on the laws of com-
bining terms is derived from a list of initial, undefined terms in a
given alphabet.

Bruno was also responsible for a detailed critique of the Scholastic
Peripatetic school of logic from the viewpoint of his somewhat
improved version of Lully’s principles. In his On the Shadows of Ideas
(1582), he raised the more general problem of improving memory.

A final important achievement of the Lullists was their sim-
plification of the cumbersome studies of Peter of Spain on the
forms of suppositions.

The foregoing discussion, of course, raises the puzzling problem
of the extent to which the considerable logical achievements of the
Middle Ages were forgotten during the Renaissance. Before we
attempt to answer this question, we should note the fact that there
was an objective limit to further evolution of the Scholastic form of
logic. Just as Greek geometry could not advance beyond Apollonius
since literal algebra had not yet been developed, so the Scholastic
logic of the Middle Ages could not advance beyond its state in the
Logica Magna of Paul of Venice since no formalism could be found
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that would make possible consolidation of prior achievements, thus
making possible further progress.*

Another source of the well-known cu! de sac of Scholastic logic can
be seen in the fact that the mathematics and technology of the
Middle Ages could not sufficiently stimulate its development, not
even to the point of developing effective symbolism for the formal-
isms. The decisive factor, however, is that the technology of the
Middle Ages could not stimulate logic the way the industrial
practice of rising capitalism could. By virtue of these circumstances,
the individual great logical achievements of the Middle Ages,
which were not based on an artificial “‘language,” were sometimes
formalized by extremely unreliable mnemonic devices and they
thus necessarily remained deeply hidden.

Mathematical logic began to flower only in the nineteenth
century under the influence of the exact sciences, which made
complex computational problems the order of the day. Even the
form of the new logic differed from Scholastic logic. Syntactical
problems of logic were relegated to the background of semantic
problems, which, for a time, were of absolutely no interest to
scholars. For example, the Scholastic theory of suppositions was
treated as being of doubtful logical value. To some extent, there has
been a return to the syntactical form of ancient logic, although the
modern form is no trivial reproduction since natural science and
technology have advanced greatly, with consequent major in-
fluences on the evolution of logical thought. By no means can we
assume that the logic of the Middle Ages has been completely
analyzed. There are many ‘“gaps,” such as the problem of deter-
mining the major medieval conceptions of semantic implication
and what modern forms of implication can be used to formalize
them. In addition, we do not know whether it was only semantic

* It is quite reasonable to argue that the source of this circumstance is the
underdeveloped technology and the social structure of Greece at the time of
Apollonius (and later) or of the European Middle Ages. Certainly, industrial
technology and the nature of the social structure are related to the develop-
ment of science, which led to both algebra and formalisms not available to
the Middle Ages. However, the immediate reason that Greek geometers and
the logicians of the Middle Ages were unable to progress was their lack
of the necessary research techniques.
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paradoxes (and not other types of antinomies) that were analyzed.
It can also be asked whether inductive logic developed during the
Middle Ages.* This list can be greatly extended; it is only meant to
indicate the necessity of further research on the logical heritage of
the Middle Ages.

It is beyond the scope of this book to consider the immense
subject of the fate of our logical inheritance from the Middle Ages.
However, we should note, for example, that the problem of the
extent to which Western European logic affected the development
of logical thought in Russia and in other Eastern European
countries has received little attention. The Russian scholars M. V.
Bezobrazova (Reference 14) and N. A. Sokolov (Reference 15)
have discovered Russian manuscripts of the seventeenth and
eighteenth centuries that contain extensive critical commentaries
on Lully’s Ars Magna. One variant of this manuscript was found by
Sokolov in the Kazan library of the Solovetsky monastery.

It is interesting to note that initially the manuscript belonged
to a peasant, Semen Ivanov, who lived on the holdings of the
Solovetsky monastery close to Archangel; it was sold to a servant,
Grigory Titov of the Solovetsky monastery (Reference 15, p. 332).
Thus, it would seem that there were many copies of the Russian
interpretation of Lully’s Ars Magna. One of the copyists has called it
a “fragrantly productive garden.”

It was demonstrated in References 14 and 15 that the author of
the Russian interpretation of Ars Magna was a translator of the
‘““ambassadorial office,” Andrei Khristoforovich Belobodsky (Ref-
erence 15, p. 337). According to Savitskiy ( Trudy Kievskoy Dukhovnoy
Akademii, November 1902, p. 444), Belobodsky ‘“discovered the
logical principles of Lully completely independently.” As
Trakhtenberg has properly remarked, Belobodsky stated as his aim
an attempt to find a universal method for obtaining knowledge,
using graphical methods for this purpose (a table is a “grid”

* Of course, individual remarks on inductive logic can be observed in the
works of the scholars of the Middle Ages. For example, Lully considered
induction (inductio incompleta), and Duns Scotus asserted that a defect in
Aristotelian induction existed in Aristotle’s thesis that, in the process of
perception, the individual precedes the general.



THE THEORY OF SEMANTIC PARADOXES 55

classifying “‘all reality,” the ‘“chain of being,” etc.). See O. V.
Trakhtenberg, ‘“Social and Political Thought in Russia During the
fifteenth through seventeenth centuries,” in On the History of Russian
Philosophy (Moscow, 1951), p. 87.

The logical ideas of Lully were being introduced into the
Secondary schools of Russia at that time, and they penetrated even
into rhetoric. However, the influence of these ideas was not strong
and waned rapidly. The same must be said of the influence of
Scholastic methodology on Russian academic philosophy in the
seventeenth century.



