1 A tour into multiple image
geometry




2 A tour into multiple image geometry

This Chapter provides a conceptual overview of the book by introducing in a
simple and intuitive way some of its main ideas.

1.1 Multiple image geometry and three-dimensional
vision

The purpose of vision is to infer descriptions of the world from images. We will
concentrate on a limited but crucial type of description, that of geometry in space,
and will investigate how it can be recovered using only geometric constraints and
excluding semantic ones. As it will be explained soon, based on geometry alone, it is
not possible to infer the 3-D positions of points in a scene from a single image of this
scene. As humans, we rely on our semantic knowledge of the world to perform such
an inference, but this capability can be easily fooled, as illustrated in Figure 1.1.

The central problem which we wish to address is therefore concerned with mul-
tiple images: given two (or more) images of a scene, a partially instantiated camera
model, and points in these images which correspond to the same point in the world,
construct a description of the 3-D spatial relations between the points in the world.
In addition, one would like to complete the instantiation of the camera models and
describe the 3-D spatial relations between the cameras which were used to create
the images. Indeed, from the difference in position of image points, it is possible
to infer spatial relations by taking advantage of the geometric rules which govern
the formation of images. The theoretical focus of the book is on the rigorous ex-
position of these rules, using geometric and algebraic tools. Unlike standard texts
on projective geometry, we concentrate on the relation between 3-D space and 2-D
space, between points and their projection.

To give the reader an idea of the applications that we have in mind, we give two
examples. Throughout this Chapter, we will pause to see which progress we will
have made towards being able to process them. In the first example, we are handed
ten images of a scene taken by an unknown and possibly zooming camera, three of
which are shown in Figure 1.2 (the others are in Figure 10.8). Our goal is to be able
to make accurate length measurements in space. From these images, we construct a
3-D geometric model of the buildings and illustrate the correctness of the recovered
geometry by showing two rotated views of the reconstruction in Figure 1.3. The
model can be used to generate a synthetic view, obtained from a higher viewpoint
than the original images, as shown in Figure 1.4 (see also Figure 1.26). Figure 1.5
illustrate that the cameras positions and orientations can also be estimated as part
of the reconstruction process.

The second example demonstrates the capacity of the techniques described in
this book to deal with continuous streams of images for applications to augmented
reality. The sequence (from which images in Figure 1.6 are extracted) is taken with
an unknown camera from a helicopter flying over a site where a power plant is to
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Figure 1.1: A few examples illustrating the difficulty, even for humans, of inferring
the geometry of a scene from a single image. Viewers tend to assume that the angles
formed by the grey card are right angles (top left). A bird’s eye view (top right)
reveals that only one of the four angles is a right angle. Relative size judgment can be
easily misled by particular spatial configurations which defeat common assumptions
(middle and bottom images).
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Figure 1.2: A few images of the Arcades square in Valbonne, taken with a digital
camera. Courtesy Sylvain Bougnoux, INRIA.

v

Figure 1.3: Top and front view of the reconstruction of the Arcades square in
Valbonne, illustrating the metric correctness of the recovered 3-D model. Courtesy
Sylvain Bougnoux, INRIA.

be constructed. We wish to add to the scene an artificial object, consisting of a
model of the new power plant shown in Figure 1.7 while respecting the geometry of
the scene and the movements of the camera. We show in Figure 1.8 three images of
the modified sequence. It can be verified that the synthetic objects appear, as they
should, to be static with respect to the environment.

1.2 Projective geometry [Chapters 2 and 3]

Euclidean geometry describes our world well: the measurements we make in terms
of lengths, angles, parallelism, and orthogonality are meaningful because they are
preserved by a change of coordinates which is a displacement (rotation and trans-
lation), a Euclidean transformation. Because of that, Euclidean geometry has also



1.2 Projective geometry 5

Figure 1.4: Textured view of the reconstruction, illustrating that synthetic images
can be generated from a novel viewpoint. Courtesy Sylvain Bougnoux, INRIA.

traditionally been used by vision scientists to describe the geometry of projection.

However, we believe that for the purpose of describing projections, projective
geometry is a more adequate framework. As illustrated by Figure 1.2, the railroad
tracks are parallel lines in 3-D space, but in the image they are no longer parallel,
and appear to converge as they recede towards the horizon, towards a vanishing
point. Any set of parallel, horizontal lines, whether they lie on the ground or not,
appears to meet at a single point on the horizon line. In addition, all the points at
infinity in 3-D have the same projection as the observer moves. The rails always
seem to disappear at the same point, and as you move in the night, the moon and
stars seem to follow you. Since parallelism is not preserved by projection, clearly
neither are distances nor angles. Projective geometry is an extension of Euclid-
ean geometry, which describes a larger class of transformations than just rotations
and translations, including in particular the perspective projection performed by a
camera. It makes it possible to describe naturally the phenomena at infinity that
we just noticed. Between projective geometry and Euclidean geometry there are
two other geometries, similarity! and affine, as illustrated in Table 1.2 (See also
Table 1.4).

Let’s start with a point of Euclidean? coordinates [u,v]” in the plane. Its pro-
jective coordinates are obtained by just adding 1 at the end: [u,v,1]T. Having
now three coordinates, in order to obtain a “one-to-one” correspondence between

2

!The only difference between displacements and similarities is that the latter ones allow for
a global scale factor. Since in the context of reconstruction from images, such an ambiguity is
always present, we will designate by abuse of language Fuclidean. transformations the similarity
transformations.

2Technically speaking, the term “affine” would be more appropriate, but in the context of this
section we use by abuse of language the more familiar term “Euclidean”. See Chapter 2 for an
explanation.
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Figure 1.5: Another textured view of the reconstruction, showing also the estimated

positions and orientations of some of the cameras: Courtesy Sylvain Bougnoux,
INRIA.

Euclidean coordinates and projective coordinates, we have the rule that scaling by
a nonzero factor is not significant, so that the two triples of coordinates [u, v, 1]T
and [Au, \v, \]T represent the same point.

More generally, the space of (n + 1)-tuples of coordinates, with the rule that
proportional (n 4+ 1)-tuples represent the same point, is called the projective space
of dimension n and denoted P™. The object space will be considered as P? and
the image space as P2, called the projective plane. We will see in Section 1.3 that
projective coordinates represent naturally the operation performed by a camera.
Given coordinates in R” we can build projective coordinates by the correspondence

[xl,...,xn]T — [xl,...,xn,I]T.

To transform a point in the projective coordinates back into Euclidean coordinates,
we just divide by the last coordinate and then drop it:

1 Tn T

[561, .. .,l‘n,l‘n+1]T — [xn+1 sy xn+1

We see that the projective space contains more points than the Euclidean space.
Points with coordinates [z1,...,Zn,Tni1]? With 2,41 # 0 can be viewed as the
usual points, whereas the points with coordinates [r1, ..., ,,0]T have no Euclidean
equivalent. If we consider them as the limit of [zq,...,7,,A]7, when A — 0 i.e. the
limit of [z1/A,...,2,/A,1]7, then we see that they are the limit of a point of R”
going to infinity in the direction [z1, ..., 2,]7, hence the appellation point at infinity.
The projective space P™ can be viewed as the union of the usual space R™ (points
[T1,...,%n,1]T) and the set of points at infinity [z1,...,7,,0]T. The neat thing
about this formalism is that points at infinity are not special and are treated just
like any other point.
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Figure 1.6: Three images of a sequence taken from a helicopter: Courtesy Luc
Robert, INRIA.

Let’s go back to the projective plane. There is one point at infinity for each
direction in the plane: [1,0,0]7 is associated with the horizontal direction, [0, 1,0]
is associated with the vertical direction, and so on.

To represent a line in the projective plane, we begin with the standard equation
au + bv + ¢ = 0. Since it is independent of scaling, we can write it using projective
coordinates m = [z, y, z]* of the point m:

'm=m"l=az+by+cz=0,
where the line [ is represented by a vector with three coordinates defined up to a
scale factor, exactly like a 2-D point: 1 = [a,b, ¢]T is the projective representation
of the line. Since the representation of points is the same as the representation of
lines, several results concerning points can be transposed to lines: this is the notion
of duality. Please note that we use throughout the book the convention that bold
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Figure 1.7: Model to insert in the sequence of Figure 1.6. Courtesy Luc Robert,
INRIA.

type is used to represent the coordinate vector of the geometric object which is in
corresponding normal type, such as m,m, 1, and [ in this example.

It can be verified with elementary algebra that the line containing the two points
m and m' (their join) is expressed very simply as the cross-product of their repre-
sentations:

yz' — 2y’
lmxm'=| za' —x2
zy —ya'

Note that the three coordinates are just the determinants of the three 2 x 2 sub-
matrices of [m m’]. The points on the line are described by m = am + Sm’. The
three points m,m/,m' are aligned if and only if

mxm) ' m = |mm,m | =0
By duality, the point at the intersection (their meet) of lines [ and I' is m ~1x 1'.
The other properties of lines in 2-D space are summarized in Table 1.2.

Therefore, in the projective plane, points and lines have the same representation,
and the cross-product describes both meet and join. An important advantage of the
representation is that the cross-product is a linear operator, while the description of
the meet and join with usual coordinates involves divisions. Being a linear operator,
the cross-product can be written as a matrix product v X x = [v]xx where [v]x is
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Figure 1.8: Result obtained from Images 1.6 and 1.7. Courtesy Luc Robert,
INRIA.

the skew-symmetric matrix whose left and right nullspaces are the vector v:

0 —V3 Vo
[v]x = v3 0 —uy |. (1.1)
—U2 U1 0

Therefore we can use a simple matrix operator to represent the geometric operation
of union of two points to form a line or intersection of two lines to form a point.

If the lines [ and I’ are parallel, then the previous formula is still valid and
gives a point m whose coordinates are found to be proportional to [b, —a,0]7, or,
equivalently, to [b’, —a’, 0]7. This is a point at infinity which represents the direction
of [. We note that all the points at infinity belong in fact to the line of equation
[0,0,1]T, which is called the line at infinity of P?, and denoted l... The intersection
of the line [ with the line at infinity [, is, as expected, the point at infinity of [
[b, —a,0]*. This is to be contrasted to Euclidean geometry, where the intersection of
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Figure 1.9: Scene with converging lines.

two parallel lines is not defined, and where using the general formula for computing
their intersection point leads to a division by zero. In projective geometry, we don’t
have this problem and therefore we don’t need to handle particular cases. All this
makes it possible to deal generally with the intersection and union of geometric
objects very simply.

If we move to P?, a number of things are similar, although duality and the
representation of lines are more complex [Chapter 3]. A plane is represented by a
vector with four coordinates defined up to a scale factor, exactly like a 3-D point:
IT = [y, 72, T3, 74]” represents the projective equation of the plane m X + mY +
737 + w4 = 0, which means that a point M = [X,Y, Z,1]7 belongs to a plane II
if and only if II"M = 0. In PP3, the points [X,Y, Z,0]” therefore form a plane of
equation [0,0,0,1]7, called the plane at infinity, and denoted Il.,. Intuitively, this
plane represents directions of the usual planes, since the intersection of II,, with
a plane IT = [ry, T2, 73, ma]T gives [m1, 72, m3]7 which corresponds to the normal
of the plane II, all parallel planes having the same normal. When a point in R?
tends to the point at infinity M, for example a point on a line receding towards
the horizon, its projection tends to the projection of M., which is usually a finite
point of Py called a wvanishing point, just as we had seen in Figure 1.2. Now we see
another reason why projective geometry will be a useful tool to describe projection:
projective transformations mix finite and infinite points, therefore there are less
special cases since the points at infinity, which in fact represent directions, are
handled just like ordinary points.
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Euclidean | similarity | affine | projective
Transformations
rotation, translation X X X X
isotropic scaling X X X
scaling along axes, shear X X
perspective projections X
Invariants
distance X
angles, ratios of distances X X
parallelism, center of mass X X X
incidence, cross-ratio X X X X

Table 1.1: An ordering of geometries: particular transformations and properties
left invariant by the transformations. Each geometry is a subset of the next. More
general transformations mean weaker invariants.

points lines
coordinates of m m = [z,y, 2] coordinates of { 1=[a,b,c]"
incidence m € { m”1=0 incidence [ 3 m "m=0
line obtained by join m X m’ point obtained by meet Ix1
points in join am + Bm’ pencil containing meet al + 81
collinearity |m, m', m" |=0 | concurrence 1L1,1" |=0
points at infinity me = [z,v,0]7 | line at infinity lo = [0,0,1]F

Table 1.2: Summary of the properties of points and lines in the projective plane.

1.3 2-D and 3-D |[Section 4.1.1]

It is quite easy to describe the geometric aspects of image formation for a single
image, which is inferring positions of points in one image from positions in the
world. In fact, these laws were already understood by the Italian painters of the
Renaissance, who studied geometry in order to reproduce correctly the perspective
effects in the images of the world that they where observing. Following them,
the transformation from the three-dimensional space to the two-dimensional plane
performed by a camera can be described using the pinhole model (Figure 1.3):

e a plane R, called the retinal plane, or image plane,
e a point C which does not belong to R: the optical center,

The projection m of a point of the space M is the intersection of the optical ray
(C, M) with the retinal plane. The optical azis is the line going through C' and
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A

Figure 1.10: The pinhole model expressed in the camera coordinate system where
the world coordinate system is aligned with the camera and the image coordinate
system.

perpendicular to the retinal plane. It pierces that plane at the principal point c.
If we consider an orthonormal system of coordinates in the retinal plane, centered
at ¢, we can define a three-dimensional orthonormal system of coordinates, called
the camera coordinate system, centered at the optical center C' with two axes of
coordinates parallel to the retinal ones and the third one parallel to the optical
axis. The focal length is the distance between the point C' and the plane R. We
choose here as unit in the world coordinate system the focal length. Changing this
unit corresponds to a simple scaling of the image.

In these two systems of coordinates, the relationship between the coordinates of
M, [X,Y,Z]T, and those of its projection m, [u,v]”, is given by Thales theorem:

U == v=—. (1.2)

Vision is about inferring properties of the world from its images. A central
problem of 3-D vision is therefore to invert the projection, which is quite difficult,
since one tries to go from a poorer representation (2-D) to a richer representation
(3-D). A point m in an image represents a whole incoming light ray, called the
optical ray of m. By definition, the optical ray contains the optical center, therefore
to define its position in 3-D in the camera coordinate system, we just need to
specify another point along the ray, say of coordinates [X,Y, Z]7. However, any
point of coordinates [AX, \Y, \Z]T represents the same ray, since both of them are
projected to the same 2-D point m. There is an ambiguity along the optical ray,
and the consequence of this observation is that using geometry alone we cannot
infer the 3-D depth of a point from a single image using geometry alone. This
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essential ambiguity is best described by considering [AX, A\Y,AZ]T to be projective
coordinates of the optical ray. Because of our choice of unit, Z = 1 on the image
plane, and therefore the point m of usual coordinates [u, v] has the 3-D coordinates
[u,v,1]T. Projective coordinates of m are [u,v,1]7, so we see that these projective
coordinates represent a point in 3-D on the optical ray of m. This property remains
true if another triple of equivalent projective coordinates are used.

Using projective coordinates, the projection equation (1.2) can be written

x 1000 ;(
m=|y|=]0100 = PoM. (1.3)

z

z 0010 pe

Po

The reward of using projective coordinates is that we have obtained a linear
equation instead of a nonlinear one. The usual coordinates are related to projective
coordinates by: u =z/z,v=y/zand X = X/T,Y =Y/T,Z = Z]T.

Moreover, we can see that the description with projective coordinates is richer
than the one with affine coordinates: the points for which ¢t = 0 or 7 = 0 do not
have affine correspondents. The points 7 = 0 are points at infinity (in space),
which have been found to be of great utility by such artists-theorists as Piero Della
Francesca, Leonardo, and Diirer, when they first formalized perspective projection.
As explained in Section 1.2, they are obtained by the intersection of parallel lines
and are treated like other points in projective geometry. In particular, they are
mapped correctly by the projection matrix producing in general a real vanishing
point.

Using projective geometry leads to a simpler, more unified expression of the
problem. This make it possible to design more efficient multiple-view algorithms
than before. However, the main reward is the ability to deal with a class of problems
which couldn’t be tackled before, because they depended on camera calibration,
which we describe next.

The matrix P, was particularly simple because of our particular choice of co-
ordinate systems. In general the image coordinate system is defined by the pixels,
and the world coordinate system is not aligned with the camera: The general form
of the projection matriz is

fas v w] n
P~ 0 a, vy |Po o7 1}:A[Rt], (1.4)
Lo 0 I R

where

e A describes the characteristics of the camera or, more precisely, the imaging
system. As a 3 x 3 matrix it represents a change of retinal coordinate system.
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Its five entries are called the camera intrinsic parameters. «, and a, represent
the focal length expressed in pixel units in each direction. They describe the
total magnification of the imaging system resulting from both optics and image
sampling. Their ratio, called the aspect ratio, is usually fixed, but is not always
equal to 1 due to the digitalization phase. (ug,vo) represents the coordinates
of the principal point, which usually are not (0,0) because we count pixels
from a corner. The parameter 7, called the skew, is zero except for some very
particular imaging situations: non-orthogonal pixels, images of images, and
analysis of shadows?.

e D describes the location and orientation of the camera with respect to the
world coordinate system. It is a 4 x 4 displacement matrix describing the
change of world coordinate system as a rotation R and a translation t (the
pose of the camera), called the extrinsic parameters.

A general projection matrix, being 3 x 4, depends on eleven parameters (twelve
minus a scale factor), which is the number of the intrinsic and extrinsic parameters
combined. The decomposition P ~ A[Rt] is unique because of the QR theorem,
which states that a non-singular matrix can be factored uniquely as the product of
a triangular matrix A and an orthogonal matrix R.

1.4 Calibrated and uncalibrated capabilities

In the camera coordinate system (the particular coordinate system defined at the
beginning of Section 1.3), the projective coordinates of a pixel represent a 3D point
on its optical ray, and therefore give us the position of this optical ray in space in
the coordinate system of the camera. In general it is not sufficient to measure pixels
in order to infer from a pixel m the position of the optical ray in space. The matrix
A is used to transform pixel coordinates into camera coordinates. A camera for
which A is known is said to be calibrated. It then acts as a metric measurement
device, able to measure the angle between optical rays. Furthermore, if D is known,
then it is possible to relate the camera coordinate system to the world’s or other
camera’s coordinate systems.

The classical (model-based) way to calibrate a camera is by determining its
projection matrix using known control points in 3D. Let U, V, W represent the
three row vectors of P. For each correspondence m < M from 2-D to 3-D, we

3The two latter situations are adequately described by the full projection matrix because the
product of two perspective projections, although not always a perspective transformation, is al-
ways a projective transformation. Similarly, the product of two perspective projections with a
particular change of retinal coordinates (for example an orthogonal one) is not necessarily a per-
spective transformation with the same particular change of coordinates, but is always a projective
transformation.



1.4 Calibrated and uncalibrated capabilities 15

Figure 1.11: The calibration grid used at INRIA and the associated model.

obtain two linear equations in the entries of P:

{ﬂ :m:PM:{gfvzl\Ml\/i]; therefore { Z&Viﬁigiﬁig

The reference points M are measured in some 3-D coordinate frame, and their
projections m detected. Usually a special object, like the one shown in Figure 1.11,
is engineered so that both operations can be done with a good accuracy [Section 4.6].
Because P has 11 independent entries, from at least six 2-D to 3-D correspondences
in general position it is possible to determine the projection matrix. Once P is
known, it can be decomposed back into A and D, which are the basis for 3-D
measurements from images.

Model-based calibration is not always possible. First, many images such as those
available in image libraries or from hand-held video come without calibration data
at all or with calibration data which is imprecise (such as the reading of the focal
length on the barrel of a zoom lens). Second, even if we have calibrated a system,
the calibration data might change either because of involuntary reasons such as
mechanical or thermal variations, or because of active controls such as focus or
vergence, which add greatly to the flexibility and adaptivity of a vision system.
While the first computer vision applications used robotic systems which could be
pre-calibrated off-line, the trend today is towards the use of massive and ubiquitous
imagery from all kinds of sources.

Because the usual world is Euclidean, a projective framework might seem at first
unnecessarily abstract and complicated, but besides allowing us to understand and
express the geometry of the problem in a much simpler way, it makes it possible to
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consider the world as a redundant superposition of projective, affine, and Euclidean
structures, and to deal with these three structures simultaneously. This better
understanding of the problem makes it possible:

e To propose linear or analytical approaches, using minimal data if necessary,
to problems (such as the bundle adjustment, [Section 10.2]) which have in the
past been dealt with only by large-scale minimization, with all the associated
global convergence problems. In particular, the previous methods require a
precise initialization point which the projective methods can provide.

e To characterize those configurations of points and of cameras which cause
degeneracy and instability in the estimation process, and more generally, to
improve the stability, robustness and precision of the estimation.

Thanks to the projective approach, we will be able to achieve the same metric
results as model-based calibration in many circumstances without the need to use
a calibration object or known reference points. For example, we can perform the
following photogrammetric tasks.

e Using only constraints such as instances of parallelism and orthogonality in
the scene, we obtain a metrically correct reconstruction of a scene (up to a
global scale factor) from an arbitrary number of images taken by arbitrarily
different cameras [Section 7.3 and 7.4].

e Using only simple constraints about a moving camera (such as zero-skew or
constant aspect ratio), we track the 3-D motion and recover the internal para-
meters of this camera even when they vary over time [Section 11.4 and 11.5].

In a complementary way, we will see that for many applications such as

e the navigation and obstacle avoidance for an autonomous robot or vehicle
[Section 7.2.6] and the detection of independent motion, and

e the synthesis of novel images from existing images [Section 7.2.7 and Sec-
tion 8.1.1],

there is not even a need for metric representations or 3-D reconstruction. Instead,
a non-metric description is more general, easier to obtain, and can capture more
precisely the properties which are relevant to a given task.

1.5 The plane-to-image homography as a projective
transformation [Section 4.1.4]

We begin by introducing an important example of projective transformation, the
homography between a plane II in space and the retinal plane.
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Figure 1.12: The homography between a plane in space and the retinal plane. The
world coordinate system is aligned with plane II.

I1

If we choose the world coordinate system so that the first two axes define the
plane, as illustrated in Figure 1.5, the projection of points of IT can be viewed as a
transformation between two spaces IP?, since for those points

X
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Each point correspondence (m, p) yields two independent proportionality equa-

tions:
T huX+hY+hisT y  hoa X+ hopd + hosT

2 hyt X+ hgeY +hasT 'z hy X+ hgeY + has T’
which can be linearized in the entries of H:

hllzX + hlzZy + hngT — hgll‘X — h321'y — hggl‘T = 0,
ho12X 4 hoozd + hpzzT — hg1yX — haayY — hazyT = 0.

H has eight entries (nine minus a scale factor), therefore from four correspondences
m, p in general position, H is determined uniquely by solving a linear system of
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equations. Here “general position” means that no three points are collinear, be-
cause if that was the case the equations would not be linearly independent. Once
H is computed, we can use it to determine positions of points on II from a single
image. This simple example illustrates the power of projective geometry: the map-
ping between the two planes is done using just linear operations and four reference
points, without the need to refer to more complicated representations like rotations,
translations and camera parameters.

The transformation H is called a homography, or projective transformation® of
P2. Generally speaking, a homography is any transformation H of P which is linear
in projective coordinates (hence the terminology linear projective) and invertible
(thus it conserves globally the space, a fact we denote: H(P™) = P™). It can be
shown that these properties are equivalent to the fact that collinearity is preserved
and subspaces mapped into subspaces of the same dimension. A homography can
be described by an (n 4 1) X (n 4+ 1) non-singular matrix H, such that the image of
x is x':

'
x ~ Hx.

Like in P? we needed four corresponding points in general position to define a
homography, in P"* we need two sets of n 4+ 2 points such that no n + 1 of them
are linearly dependent to define a homography. Each such set is called a projective
basis, and it corresponds to the choice of a projective coordinate system.

1.6 Affine description of the projection [Section 4.2]

The projection matrix P has to be of rank 3, otherwise its image would be a
projective line instead of a projective plane. Since it has 4 columns, its nullspace is
thus of dimension 1; any vector C of this nullspace defines a projective point C' for
which the projection is not defined; this point is the optical center.

Let us now partition the projection matrix P into the concatenation of a 3 x 3
sub-matrix P and a 3 x 1 vector p. The origin of the world coordinate system, the
point [0, 0,0, 1], is projected onto p.

The optical center is also decomposed by separating its last coordinate from the
first three:

= C
P =[P p], C = { } (1.5)

c

The equation determining the optical center is PC =0. Using the decomposi-
tion just introduced, PC = PC + pc, thus PC = —cp. Therefore, if det(P) # 0,

4A perspective transformation of P2 is obtained by using a projection matrix in camera coor-
dinates, or in other words, such that its first 3 X 3 sub-matrix is orthogonal. Unlike projective
transformations, perspective transformations do not form a group: the product of two perspective
transformations is not necessary a perspective transformation.
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then the solution is given by

-1
C [ _Pl P } (1.6)
so the optical center is finite. When det(P) = 0, it can be verified, using the fact
that P has rank 3, that the optical center lies in the plane at infinity (i.e. ¢ = 0).

Any projection matrix arising from a physical system has to satisfy det(P) # 0,
since the optical center has to lie in the affine space (we refer to that as perspective
projection). For simplicity, we will assume that this is the case in this introductory
Chapter. The alternative class of models (parallel projection) can be considered as
approximations to the pinhole model in some particular viewing situations. These
include orthographic, weak perspective, and the affine camera [Section 4.4]. They
yield a simpler geometry which is affine instead of being projective. The beauty
of the projective model is that it handles perspective cameras and parallel cameras
equally well. There is no need to distinguish between the two cases. However, it
leaves open the possibility to specialize the analysis, which we do now.

At this affine level of description, we can introduce directions of optical rays.
Since the projection of each point at infinity [d”', 0] is the vanishing point v = Pd,
P can be considered as the homography between the plane at infinity II,, and the
retinal plane R. Note that parallel lines have the same direction, hence the same
point at infinity, thus their projection is a set of lines of R which contains the
vanishing point projection of this point at infinity. The optical ray corresponding
to the pixel m thus has the direction P~'m. This is illustrated in Figure 1.6.

From the decomposition Equation 1.4, it can be noticed that P depends only
on the orientation of the camera and its intrinsic parameters, not on its position.
Therefore we obtain the fact that we had pointed to at the beginning of this Chap-
ter, that the projection of points at infinity is invariant under translation. The
dependence of the finite points on the translation is embodied in the vector p,
which represents the projection of the origin of the world coordinate system.

Table 1.3 summarizes the descriptions of the projection matrix in the perspective
projection case.

1.7 Structure and motion

Let us now add a second image. Two points, m in the first image, and m' in the
second image, are said to be corresponding if they are the projections of the same
3-D point M in space. Having more than one image opens new possibilities and
raises the following questions:

e Given a point m in the first image, where is its corresponding point m' in the
second image?

e What is the 3-D geometry of the scene?
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.

Figure 1.13: The first submatrix P of the projection matrix represents a homog-
raphy between the plane at infinity and the retinal plane. It projects intersections
of parallel lines in space to a vanishing point in the image. Its inverse gives the
direction of the optical ray.

e What is the relative position of the two cameras?

Note there are several ways of representing the 3-D geometry of a scene. We could
recover the depth of a point which is its distance to the image plane, we could
recover the 3-D coordinates of a point, or we could recover the relative depths of
two points.

We have seen that from a single image, even if we know the parameters of the
camera model, we can infer only the position of the optical ray of m, not the position
of the 3-D point M. With two images, given the correspondence (m,m'), we can
intersect the optical rays of m and m’, and so determine M. This is the principle
of binocular stereopsis: when two images are taken from different positions, the
difference in position of corresponding image points is related to the 3-D position of
the object point. To actually infer that 3-D position requires that we can infer the
position of the two optical rays in a common coordinate system. We need to know
the relative position of the second camera with respect to the first one, which we
call its motion. Algebraically, if we knew the projection matrices P and P’, then
we could compute M from m and m’ by solving the system of four equations (each
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level decomposition interpretation
projective P P: projection from object space P? to retinal
plane R.
affine [P p] P: homography between plane at infinity I,
and R., .
p: projection of the origin of the world coor-

dinate system.

Euclidean A[Rt] A: change of coordinates in R (5 intrinsic pa-
rameters).
(R, t): camera pose in world coordinates.

Table 1.3: Descriptions of the projection matrix.

proportionality vector equation gives two independent equations):

~ m,
~ / (1.7)

m .

PM
P'M

Therefore, in order to be able to determine the 3-D structure of the scene, we
also need to be able to determine the projection matrices P and P’ which encode
the geometry of the cameras. The two problems of motion determination and
structure determination are inter-related, and we will designate them collectively
as the reconstruction problem.

In the system of equations (1.7), we notice that we have three unknowns (the
coordinates of M) and four equations. For a solution to exist, the coordinates of
m and m' must satisfy a constraint; in other words, given m, the point m’ cannot
be an arbitrary point of the second image. In fact, in some particular cases that
we are going to examine in Section 1.8 and Section 1.9, it is possible to predict the
position of the point m' from the position of the point m.

1.8 The homography between two images of a plane
[Section 5.1.1]

We first examine the particular situation when the 3-D points lie on a plane II.
Planes are important entities: in practice because they appear naturally in many
scenes and in theory because they are subspaces which have the same dimension
as the images. As we have seen in Section 1.5, there is a homography between the
retinal plane of the first camera and the plane IT and also a homography between the
retinal plane of the second camera and the plane II; therefore by composition there
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is a homography H between the two retinal planes called a planar homography,
because it is induced by the plane II and described by a 3 x 3 matrix H. This
homography is illustrated in Figure 1.8. If m and m’ are projections of a point M
which belongs to II, then

m’ ~ Hm.

Reversing the roles of the two images transforms H into its inverse. Asin Section 1.5,
H can be determined in general from 4 correspondences. Once H is known, for any
projection m of a point of IT, it is possible to predict the position of its correspondent
in the other image. Some care must be taken if IT goes through either of the two
optical centers [Section 5.1.1].

Cl

Figure 1.14: The planar homography between two images is obtained by composi-
tion of single view homographies.

An important special case occurs when II is the plane at infinity II,,. Then,
H.. has a particularly simple expression in terms of the two projection matrices P
and P’, obtained using the decomposition in Section 1.6:

H,~PP L (1.8)

1.9 Stationary cameras [Section 5.1.2]

A related situation occurs when the two optical centers are identical, i.e. when the
two images are taken from the same viewpoint with the camera rotated. Let m and
m' be arbitrary corresponding points, i.e. the images of a point in the scene. For
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any plane II, not going through the optical center, they are also the images of the
point of intersection of their common optical ray with the plane. They are therefore
related by H, which in this case is independent of the plane II. The homography
H can be used to merge the images and to build image mosaics, as illustrated in
Figure 1.15. By applying it to the whole first image, we transform it into a new
image which, when overlaid on the second image, forms a larger image representing
the scene as it would have appeared from the point of view of the second image
but with a larger field of view. If we have several images taken from the same
viewpoint, we can iterate the process of choosing one of the images as the reference
image and warping all of the other images onto it by applying the corresponding
homographies. Note that in this process, we have begun to address the problem of
generating new views from existing images: by applying a homography to a single
image, we can generate a new view obtained from the same viewpoint but with a
rotation of the camera. This process does not handle translation of the camera to
a new viewpoint.

Two images taken from the same viewpoint cannot be used to recover the 3-
D structure: since the optical ray of two corresponding points is the same, the
ambiguity along this ray remains, just like when we have a single image. Therefore,
there must be a non-null translational component of the motion for us to be able
to recover structure from two images. In the reminder of this section, we assume
that the points do not lie on a plane and that the optical centers are distinct.

1.10 The epipolar constraint between corresponding
points [Section 5.2.1]

When the points in space and the two cameras are in general position, it is not
possible to predict the position of the correspondent m’ of a point m, because this
position depends on the depth of the 3-D point M along the optical ray. However,
geometrically, this position is not arbitrary: M has to lie along the optical ray of
m, and therefore m’ is necessarily located on the projection of that optical ray in
the second camera. This line is called the epipolar line of the point m in the second
image. See Figure 1.10. If we are able to compute this line, then when looking for
the correspondent of m, we need not search the whole second image, but only this
line, hence reducing the search space from 2-D to 1-D.

There is another way to view the same construction, by considering it as a way
to constrain the cameras rather than the correspondence. Assuming that we know
a valid correspondence, m < m/, the relative position of the cameras must be such
that optical rays L,, and L,  intersect. Another way to formulate this is to say that
the two optical rays and the line between the optical centers (called the baseline)
are coplanar. The common plane is called the epipolar plane.

Algebraically, because the point M depends on three coordinates, and the cor-
respondence m < m' depends on a total of four parameters, there must be an
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Figure 1.15: Two images taken from the same viewpoint, and the composite image
obtained by applying a homography to the second image and superimposing it to
the first image.

algebraic constraint linking the coordinates of m and m'. We will see next that this
constraint is remarkably simple.

1.11 The Fundamental matrix [Section 5.2.1]

The relationship between the point m and its epipolar line I/, in the second image is
projective linear, since the optical ray of m is a linear function of m, and projection
is also linear. Therefore, there is a 3 x 3 matrix which describes this correspondence,
called the Fundamental matriz, giving the epipolar line of the point m: 1, = Fm.
If two points m and m' are in correspondence, then the point m’ belongs to the
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! =Fm

m

Figure 1.16: Epipolar geometry. Given m, the point m' has to lie on its the epipolar
line I,. Given a valid correspondence m < m/, the intersection of the optical rays
L,, and L,, is not empty, and they are coplanar with the baseline CC".

epipolar line of m, therefore they satisfy the epipolar constraint:
m'” Fm = 0, (1.9)

which is bilinear in the coordinates of the image points. Reversing the roles of the
two images transforms F into its transpose. Figure 1.11 shows two images and a
few epipolar lines.

The Fundamental matrix depends only on the configuration of the cameras (in-
trinsic parameters, position and orientation) and not on the 3-D points in the scene.
In the generic case where we do not assume any spatial relationship between the
points in space, the only information available comes from projective correspon-
dences, the correspondence of points undergoing linear projection. The epipolar
constraint fully describes the correspondence of a pair of generic corresponding
points in each image, the ambiguity along the epipolar line being caused by the
ambiguity along the optical ray of the projection operation. Since the fundamental
matrix depends only on camera geometry, it describes all the epipolar constraints,
so it encodes all the information available from projective correspondences. There-
fore, no other general constraint is available. This will be confirmed later, with a
parameter counting argument, when we will see that it is sufficient to build a 3-D
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Figure 1.17: Two images with a few corresponding points and epipolar lines.

reconstruction of points and cameras compatible with projective correspondence.

Since all the optical rays contain the optical center C' of the first camera, all the
epipolar lines contain the projection of C' in the second image (the point where the
first camera is seen by the second camera), called the epipole. See Figure 1.10. The
fact that the epipole in the second image belongs to all the epipolar lines implies
e TFm = 0 for any m, and therefore e’F = 0, or equivalently, F7e’ = 0. By
reversing the role of the two images, Fe = 0. We conclude that F is a matrix of
rank two:

det(F) = 0.

Since it satisfies this algebraic constraint and is only defined up to a scale factor
(like all the projective quantities), F depends on seven parameters.

1.12 Computing the Fundamental matrix [Chapter 6]

Each point correspondence (m, m') yields one equation (1.9), therefore with a suffi-

cient number of point correspondences in general position we can determine F. No

knowledge about the cameras or scene structure is necessary. The first step for all

the algorithms that we discuss in the book is almost always the computation of the

Fundamental matrix, which is of utmost theoretical and practical importance.
Equation 1.9 is linear in the entries of F. It can be rewritten as

UTf =0,
where m = [u,v,1]T and m’ = [u/,v',1]T so
U = [ud,vu v, uw’, o0, v u,v,1]7,
f = [Fu1, Fio, Fis, Fo1, Fay, Fog, Fyy, F3o, Fi3)".

Combining the rows U for each correspondence provides a linear system of the form
Uf = 0. Using seven points, it is possible to compute F using the rank constraint
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m

1=F'm’

Figure 1.18: Error function used for the computation of the Fundamental matrix:
sum of epipolar distances d* + d'>.

det(F) = 0, however because this constraint is cubic there can be three solutions.
With eight correspondences in general position, there is a unique solution which is
obtained linearly. In practice, we have more than eight correspondences, but they
are not exact, so we can seek a least-squares solution:

mfin||fJf|| subject to [|f]] = 1. (1.10)

The constraint ||f|| =1 is necessary because F is defined up to a scale factor.

This approach suffers from two difficulties. First, unlike the case of seven points,
we notice that the rank constraint is no longer satisfied. Second, the error func-
tion in Equation 1.10 was obtained algebraically but has no geometric relevance.
However, this approach can give acceptable results if care is taken in renormalizing
the pixel coordinates to the interval [—1, 1] to improve the numerical conditioning
of matrix U. It has the advantage of simplicity. Practice has shown that the most
precise results with noisy data are obtained by using nonlinear minimization tech-
niques which rely on a symmetrized geometric error criterion and enforce the rank
constraint by an adequate parameterization. A proven such approach is to minimize
the error function illustrated in Figure 1.12:

Z {d(mfm Fmi)2 + d(miv FTm;)Q}v

where d(.,.) is the perpendicular distance of a point to a line. In practice, it is
also important to use robust techniques to reject false correspondences. All these
algorithmic refinements are the subject of Chapter 6.

Although eight correspondences are in general sufficient to determine the Fun-
damental matrix, there are some configuration of 3-D points, called critical surfaces
for which even with an arbitrarily large number of correspondences, the Funda-
mental matrix is not uniquely determined. These configurations are important in
practice because if the scene is close to such a configuration, the determination of
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the Fundamental matrix is quite unstable. Planes are a particular case of critical
surfaces, which are quadrics examined in more detail in Section 5.5.

1.13 Planar homographies and the Fundamental
matrix [Section 5.2.4]

We have seen in Section 1.8 that for a given plane II, the correspondence is entirely
determined by a planar homography H; in other words, H can be used to compute
corresponding points in the second image from points in the first image. We have
just seen that for points in general 3-D position, the Fundamental matrix can be
used to constrain correspondences along one direction, that of the epipolar line.
There is an important relation between these two matrices, the planar homography
H and the Fundamental matrix. As will be seen later, this relation is at the heart
of techniques for positioning 3-D points in space from their projections.

Given the two cameras, and therefore the Fundamental matrix, a planar homog-
raphy is defined by its associated plane. Since a plane depends on three parameters,
and a homography on eight parameters, not all 3 x 3 invertible matrices define a pla-
nar homography, so H must satisfy six constraints, given F. On the other hand, the
planar homography constrains the Fundamental matrix because it can be used to
generate a point on the epipolar line of any point: if m is a point of the first image,
then its optical ray intersects the plane IT at M. Hm represents the projection
of My into the second image. Since by construction the point My belongs to the
optical ray of m, the point Hm belongs to the epipolar line of m. Therefore, given
H, it is sufficient to know the epipole ¢’ to determine the Fundamental matrix: the
epipolar line [/, contains Hm and the epipole €', therefore, I/, = ¢’ x Hm. Since
by definition of F, 1, = Fm, we conclude that

F~ ], H (1.11)

This is illustrated in Figure 1.13. Conversely, it can be shown that any matrix H
which satisfies this constraint is a planar homography generated by some plane.

Applying both sides of Equation (1.11) to the vector e, and using the fact that
Fe =0 and [e'] xe' = 0 shows that

He ~¢€';

therefore, once the Fundamental matrix is known, the correspondence of three points
is sufficient to define a planar homography® since the correspondence (e, ') provides
the needed fourth point.

The decomposition (1.11) of the Fundamental matrix is not unique, since it is
obtained for any planar homography. Considering two planar homographies H; and
H,, Equation 1.11 implies that there exist scalars A; and Ay such that [e']x (A Hy +

5Again, the case where the plane goes through either optical center is special; see Chapter 5.
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Figure 1.19: Relation between the Fundamental matrix and a planar homography.
The points Hm and €’ define the epipolar line of m.

A2H>) = 0. It can be shown by inspection that if a matrix H is such that [¢'] «H = 0,
then there exists a vector r such that H = e'r”. We therefore conclude that

H, ~H, +e'r’. (1.12)

This equation can be understood geometrically by applying both of its terms to
the point m of the first image. Because r’m is a scalar, it says that the point
of coordinates Hom in the second image belongs to the line defined by e’ and the
point of coordinates Hym. This is true because, as discussed in the derivation of
Equation 1.11, it is the epipolar line of m. In fact, the direction of the vector r
represents the projection in the first image of the intersection of the planes corre-
sponding respectively to H; and to Hs. To see that, note that a point belongs to
both planes if and only if Hom ~ H;m, and therefore r”m = 0. This is illustrated
in Figure 1.13. The consequence of this equation is that the family of planar homo-
graphies is parameterized by a vector of dimension three, which is expected since
the family of planes of P? has this dimension. Knowing any of these homographies
make it possible to generate all of them.

At this point, one could wonder how to obtain a planar transformation without
relying on some prior knowledge of the scene to identify a plane. The trick is that
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Figure 1.20: Relation between two planar homographies. Left: generic point. The
points €', Hym, and Hom are aligned. Right: L,, intersect the line IT; NII,. Hym,
and Hom are identical. m lies on the line r, projection of ITy N II,.

from just F, we can always obtain one by using the special matriz defined as

S = [e/]F. (1.13)

It can be verified that S satisfies F ~ [e/] S, using the identity I ~ vvT —[v]«[v]«;

therefore it is equivalent to know F or S. The small price to pay for this “free”
planar transformation is that it is singular, since the two matrices which appear in
Equation 1.13 are singular. It can be shown that the plane generating S is through
the optical center C' (hence the singularity) and projects to the line of equation
e’ in the second image. Because it is attached to the system of two cameras, it is
called the intrinsic plane Ilg.

We end this section by giving an expression of the Fundamental matrix as a
function of the projection matrices, which can can be used on a calibrated stereo
rig to guide the correspondence process by limiting it to epipolar lines. We write
the two projection matrices P = [P p] and P’ = [P’ p’]. We place ourselves in
the perspective case (as opposed to the parallel case, see Section 1.6) by assuming
det(P) # 0. The epipole €’ is the projection P'C of the optical center C given by
Equation 1.6; therefore

5 _p-1
e ~P'C~[P'p] [ Pl p ] ~p — PP !p.

Now that we know the epipole, to apply Equation 1.11 in order to determine F, we
need only a planar homography between the two images. One such homography
is the one induced by the plane at infinity, given in Equation 1.8. Using this, we



1.14 A stratified approach to reconstruction 31

obtain an expression of the Fundamental matrix as a function of the projection
matrices:

F = [pl _ PIP—lp]XP/P—l

1.14 A stratified approach to reconstruction

The reconstruction problem can be stated as that of determining the projection
matrices P and P’, as well as the 3-D points M;, given a set of N correspondences
(m;, m}). The solution is not unique because it depends on the choice of a coordinate
system, expressed by the 4 x4 matrix H. If (P, P’', My, -, My) is a solution to the
reconstruction problem, then (PH ', P'"H ', HM,,--- , HMy) is also a solution,
since

» (1.14)

{m ~ PM = (PH ')(HM),
"~ P'M = (PH Y(HM).

In other words, all the pairs of projection matrices of the form (PH, P'H), where
‘H is an arbitrary projective transformation, are potentially equivalent. However,
if we have some constraints about the correspondences, then we can hope to limit
the ambiguity H by enforcing that these constraints have to be satisfied by the pair
(PH,P'H).

We will see in Section 1.15 that from uncalibrated images, there are no further
restrictions. We can recover only a projective reconstruction, which means recon-
struction of points up to a general projective transformation H of space. To obtain
an Fuclidean reconstruction (i.e. up to a Euclidean transformation plus scale), we
need to use either some a priori information about the world, which makes it possi-
ble to determine in succession the plane at infinity (Section 1.17) and the intrinsic
parameters of a camera (Section 1.18), or either some a prior: information about
the camera, which makes it possible to perform self-calibration (Section 1.23). The
flow chart of the approach to recover Euclidean reconstruction from uncalibrated
images is summarized in Figure 1.21.

1.15 Projective reconstruction [Section 7.2]

Point correspondences (m;, m}) are the only information that we have in this section.
The projective correspondence information can be summarized by the Fundamental
matrix F of the pairs of images, that we compute from the correspondences. Any
pair of projection matrices (P, P') is a valid solution to the reconstruction problem
if and only if its Fundamental matrix is compatible with the point correspondences
(m,m}), or in other words if its Fundamental matrix is F.

It can be shown [Section 7.2] that any pair (P, P’) has Fundamental matrix F
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Trifocal tensors

Projective
reconstruction

Affine information
about the scene:
3D parallel lines
ratios of lengths of parallel segments
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about the scene: intrinsic parameters
3D angles —» | Estimate the intrinsic of the cameras:
ratios of lengths of 3D segments parameters of a camera constant parameters
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Figure 1.21: Euclidean reconstruction from images can be achieved using informa-
tion either about the world or about the cameras.
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if, and only if it is of the form
{ P
P’

e P is an arbitrary projection matrix (11 parameters) II is the projective equa-
tion of an arbitrary plane (3 parameters), p is an arbitrary constant (1 pa-
rameter), which is in fact the common scale of P and II in the matrix H.
Together, these 15 parameters represent the projective ambiguity in recon-
struction: the arbitrary choice of the projective basis in 3-D, or, equivalently,
of the matrix H.

(I3 03]H,
[H pe'lH,

1R

. P
with H = [ i’ ] , (1.15)

where

e The remaining elements in P’ are: the epipole e’ of F in the second image
and the homography H, compatible with F and generated by the plane II.
These entities are uniquely determined by F and II. This shows that given
the Fundamental matrix F, once a projective basis in P? is chosen by fixing
the 15 previous parameters, P’ is uniquely determined.

So we have partitioned the 22 = 11 x 2 parameters of a pair of projection matrices
into two types of parameters: the projective correspondence of the pair of cameras
embedded in the Fundamental matrix (7 parameters), and a projective transfor-
mation (15 parameters), which represents the ambiguity in reconstruction. The
Fundamental matrix is invariant to the choice of the projective basis in P3. From
the decomposition in Equation 1.15, it is easy to verify that

(P1,P}) and (P2, P,) have the same Fundamental matrix
iS4
P1 =P2H and P} = P,H, where H is a projective transformation of P?

which shows that when the only constraints on the matches come from the Fun-
damental matrix, all of the reconstructions up to a projective transformations are
acceptable. The basic steps of the projective reconstruction are as follows:

e Obtain pairs of correspondences m;,m}.
e Solve for the Fundamental matrix with Equation 1.9
e Compute the special matrix S = [¢/]«F (e’ is given by FTe/ = 0).

e Compute a particular pair of projection matrices, called the projective canon-
ical representation, obtained by choosing the “simplest” pairs among those in
Equation 1.15 using S as a particular instance of H:

{7’ f (I3 0],

P’ S pe]. (1.16)
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This pair is an invariant representation in the sense that its elements do not
depend on the choice of projective coordinates in P3.

e Solve for M; with Equation 1.7.

Figure 1.22: Three projective reconstructions, seen from a similar viewpoint. Each
reconstruction can be transformed into another by a projective transformation of
P3. Although the deformation can be large, incidence (coplanarity, alignment, and
intersection) is preserved.

The previous algorithm will often yield a reconstruction with a very significant
projective distortion because a projective transformation does not even preserve
depth ordering, let alone relative distances. This means in particular that we cannot
make meaningful measurements in such a reconstruction.
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1.16 Reconstruction 1is not always necessary
[Section 7.2]

There are applications for which the projective distortion is not a problem because
we are not interested in reconstructing the 3-D shape.

A first example is the detection of obstacles for the navigation of a robot or the
generation of alarms in a surveillance system, for which we need only qualitative
measurements. This can often be achieved by positioning points with respect to
a reference plane, assuming that we can identify three correspondences of points
lying on this plane so that we can compute its planar homography H. Points above
the ground plane or points closer to the robot than a predefined frontal plane can
be identified as obstacles. Using the projective canonical form, we can write the
reconstructions equations as

m~ [[303]M, m'~[Hpue' M.

The first equation implies M = { I;l ] where p is an unknown related to the

position of the point M in a certain projective coordinate system. The substitution
into the second equation yields the relation

m' ~ Hm + ppe’, (1.17)

where k = up is a quantity called projective parallaz. This quantity can be computed
from the correspondence (m,m'), knowing H and €', for example by taking the
cross-product of both terms with m’. See Figure 1.16. The projective planar
parallax turns out [Section 7.2.4] to be proportional to the distance of the point
M to the plane IT and inversely proportional to the depth of the point M, which
is its distance to the optical center C'. This double dependency is illustrated in
Figure 1.16. Although projective transformations do not preserve depth ordering,
it can be sufficient to know that x changes sign when M crosses the plane, being
zero if M belongs to I1. This observation makes it possible to position a set of points
on one side of a reference plane, once again without the need for reconstruction.
A second example is the synthesis of new images from two reference images.
Here, the end result is a new image, so the intermediary representation of shape is
not important. Once the point M is reconstructed in a projective frame, we could
reproject it with any projection matrix P", generating a new image. In fact, no
actual reconstruction is necessary. If Fi5 is the Fundamental matrix from image
1 to the new image, and Fs3 is the Fundamental matrix from image 2 to the new
image, then given a point m in image 1 and a point m’ in image 2, the point in
image 3 is obtained in general as the intersection of the epipolar lines Fiom and
Fy3m’. This operation is called transfer: points m and m’ are transferred to the
third image using the knowledge of the epipolar geometry. This idea makes it



36 A tour into multiple image geometry

My e II

C

Figure 1.23: Projective parallax. The points Hm, €', and m' are aligned. The ratio
of their distances is the projective parallax, proportional to the distance of M to II
and inversely proportional to the depth of M.

possible to represent a scene as a collection of images rather than as a 3-D model.
We have made some progress towards our goal of generating synthetic views, but to
insert a Euclidean model and follow a given camera trajectory we need to recover
further information.

1.17 Affine reconstruction [Section 7.3]

Projective reconstruction depends only on the Fundamental matrix, which can be
computed from point correspondences. We have just seen that in the general case,
from two images we are able to reconstruct points and projection matrices which are
obtained from the “true” points by a projective transformation. If, in addition, we
have some affine information, we can reduce the ambiguity in reconstruction from
a general projective transformation of P? to an affine transformation of P?, which
means that we are able to reconstruct points and projection matrices which are
obtained from the “true” points by a transformation which is more constrained, and
therefore induces less deformations and preserves more properties. However, the
affine information has to come from some additional knowledge about the world or
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Figure 1.24: Planar parallax. The third image is obtained by warping the second
image by the homography of the ground plane, so that points on this plane are
mapped to their position in the first image, and superimposing with the first image.
The projective parallax is the length of the vector between original and warped
points. It is zero for points of the reference plane, increases with height above this
plane, and decreases with depth. Remark that the vectors all point towards the
epipole in the image, which is near infinity in the direction X.

the system of cameras. Correspondences alone can not provide affine information.
An affine transformation is a particular projective transformation which pre-
serves the plane at infinity I1.,. It is easy to see that a transformation .4 conserves
I, if, and only if the last row of the matrix of A is of the form [0,0,0, u], with
i # 0. Since this matrix is defined only up to a scale factor, we can take u = 1,
then the transformation A is fully described by its first 3 x 3 sub-matrix A and the

3 first coordinates of the last column vector b:
A b

a=o V]

which yields the classical description of a transformation of the affine space R3:
x' = Ax + b. We have seen that points at infinity represent directions. An affine
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transformation therefore preserves parallelism: parallel subspaces are transformed
in subspaces which are still parallel. Other properties [Chapter 2] are that depth
ordering and the ratios of distances of three aligned points are also preserved. This
limits the amount of distortion introduced in the reconstruction.

The affine space is characterized by the plane at infinity II, in P3, which has
three parameters. Affine information between two images is encoded as the corre-
spondence of projections of points of II.,. The correspondence of points of 1,
like the correspondence of points of any plane, is described by a planar homogra-
phy matrix called the infinity homography H., whose expression as a function of
the projection matrices was given in Equation 1.8. Once F is known, the three
additional parameters necessary to describe H., are in the vector r:

H, ~S+erl.

As a particular case of Equation 1.12, in this equation the vector ro, represents the

projection in the first image of the intersection of the intrinsic plane IIg with the
plane at infinity, which is the vanishing line of I1g, containing the vanishing points
of all sets of parallel lines of IIg.

Once F is known, three correspondences of points at infinity are necessary to
determine H.,. One way to obtain them is to consider three corresponding vanishing
points. Since parallel lines in P? intersect on the plane at infinity, a vanishing point,
which is the intersection of projections of parallel lines, is the projection of one point
of II,. Other ways to obtain one constraint on the plane at infinity include using
the correspondence of one horizon point which lies at a large distance from the
cameras and using knowledge of the ratio of distances for three aligned points.

When affine correspondence is known, we can restrict further the pairs (P, P’)
of possible projection matrices. We require, in addition to the fact that it has F
as its Fundamental matrix, the fact that H, is its infinity homography. In fact,
this requirement is redundant: if H., is known, then using Equation 1.11, it is
sufficient to specify one epipole to define F and to complete the description of affine
correspondence. It can be verified that the pairs of projection matrices which have
infinity homography H,, and epipole €’ are of the form

P
Pl

This decomposition is a particular case of Equation 1.16, obtained with II =
[0,0,0,1]7. The crucial remark is that the transformation of space is an affine
transformation rather than a projective one. This decomposition separates the
total 22 parameters into two types of parameters:

[13 03]-A7

B e, with A:[ P ] (1.18)

071

112

e 12 correspond to the affine ambiguity in reconstruction: the arbitrary choice
of the affine basis (11 obtained by fixing P, 1 is )
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e 10 describe the affine correspondence: 8 as the infinity homography H., and
2 as the epipole e’. That is, given affine correspondence as an infinity homog-
raphy and an epipole, once an affine basis is chosen by fixing the 12 previous
parameters, P’ is uniquely defined.

From the decomposition in Equation 1.18 it is easy to verify that

(P1,P}) and (P2, PS,) have the same infinity homography
and Fundamental matrix
-~
P1 = P2A and P] = P,.A, A being an affine transformation of P3.

To summarize, when we have identified the plane at infinity I, a pair of images
with epipole €' and infinity homography H,, determines a reconstruction up to an
affine transformation of P (see Figure 1.25 for an example). The reconstruction can
be performed using one particular pair of projection matrices, the affine canonical
representation, whose elements do not depend on the choice of the affine basis in
P3. We remark that it can be obtained from the projective representation described
in Equation 1.16 by multiplication by the matrix QZI:

P o= [0] = [L03]Q; . 1| Is 05
7 2 i 2 lwelay wead=| g 0

According to Equation 1.14, to upgrade the projective reconstruction of the points
to an affine reconstruction, we need only to apply the transformation Q4. Because
affine transformations include shear and different scalings along axes, the relative
distances of points are not preserved. However, the relative distances of aligned
points are preserved, so we can begin to make quantitative measurements, such as
locating the middle of a segment.

1.18 Euclidean reconstruction [Section 7.4]

We now go one step further and reach more familiar ground by examining the
case when in addition to the affine correspondence, we have Euclidean information.
This information makes it possible to reduce the ambiguity to a similarity trans-
formation (displacement plus scale) and to obtain the reconstructions illustrated
in Figure 1.26, in which we can measure angles and relative distances. Just like
affine transformations are particular projective transformations, similarity transfor-
mations are particular affine transformations for which the first 3 x 3 sub-matrix
satisfies AAT = sI3. It will be seen in Section 1.23 that this algebraic condition
corresponds to the invariance to transformation of a geometric object which is a
subset of the plane at infinity, the absolute conic €2, just as the affine transforma-
tions are characterized by the invariance of II,,. Therefore there is a hierarchy
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s —

Figure 1.25: Three affine reconstructions, seen from a similar viewpoint. Each
reconstruction can be transformed into another by an affine transformation of P3.
There are shear and different scalings along axes, but parallelism is preserved.
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of transformations: similarity is a subset of affine, which is a subset of projective.
Each time we restrain the transformation, we further constrain the reconstruction,
but to do so, we need more information.

Figure 1.26: A Euclidean reconstruction, seen from a viewpoint similar to the pro-
jective and affine reconstructions. Other reconstructions would be transformed into
this one by a Euclidean transformation, which is equivalent to a change of view-
point and a global scaling. Angles and relatives distances are correct (the slight
convergence is due to projection).

Euclidean information in an image is encoded as the projection of {2, or more
concretely, as the matrix of intrinsic parameters of the camera which we will call
A. In general, this matrix represents five parameters which are known when the
camera is calibrated. They can be determined from a combination of knowledge
about the camera (for example most real cameras have a zero skew and known
aspect ratio, which reduces the number of parameters to three) and of knowledge
about the world (such as angles and ratios of distances).

When A is known, we can restrict further the pairs (P,P’) of admissible recon-
structions. We first note that if we decompose each projection matrix into intrinsic
and extrinsic parameters, we have the classical decomposition for any pair of pro-
jection matrices:

[A 03]S
A'[R jit]S

{ P f A[R; t]

. R t
P’ A'[Rs to] with 5:{ ), ]

05 1/



42 A tour into multiple image geometry

where R = RoRT and t = t; — RoRTt; represents the relative displacement
between the two camera coordinate systems. Let’s count again: of the total 22
parameters:

e 7 correspond to a similarity transformation representing the arbitrary choice
of the Euclidean basis (6 obtained by fixing the coordinate system of the first
camera through R and t1, and 1 being p which represents the scale),

e 15 describe the intrinsic parameters (5 for each camera) and the relative
Euclidean transformation R, t (position and orientation) of the two cameras.

The direction of the translation is determined, but its norm is not because of the
depth-speed ambiguity: one cannot distinguish between a close point moving slowly
and a distant point moving proportionally faster.

Computing from the projection matrix, we obtain with easy algebra

e =At, Ho = A’'RA L.

From that result, we conclude that we can characterize the Euclidean correspon-
dence by either one of the two sets of fifteen parameters:

e the affine correspondence plus intrinsic parameters of one camera: H.,, €', A

e the intrinsic parameters of both cameras and the displacement between two
cameras: A, A', R, t.

Similarly to the previous situations:

(P1,P7) and (P2, P5) have the same Euclidean correspondence
iS4
P =P3S and P} = P,S,
where S is a Euclidean (similarity) transformation of P3.

We can now obtain a Fuclidean canonic representation as a specialization of
affine and projective strata. In this case, this particular pair of projection matrices
are obtained just by using as 3-D coordinate system the first camera’s coordinate
system.

P o~ [A0)] = [;05Q,'Qy" (1.19)
P~ ARut] = [Spe)Q;'Qp '

with
R G

Starting from a projective reconstruction, which requires only point correspon-
dences, we can upgrade to an affine reconstruction when r, is known (3 degrees
of freedom) by applying Q4 to the points M;, and to a Euclidean reconstruction
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PROJECTIVE homography (incidence, P?3)
T'eCOT.lStT.'UCt’l,OTL H = P ‘H non-singular 15
ambiguity a’
invariant S : special matrix 7
description e': epipole
canonical form P = [ OS]HT 22
P ~ [S+e'r]pe|H
AFFINE affine transformation (parallelism, I1..)
reconstruction A= P p P non-singular 12
ambiguity o7 1/p
mvariant H : infinity homography
description e': epipole
. ~ [I
canonical form ’P, [T 03]"4, 22
P~ [HepelA
EUCLIDEAN similarity (angles, Q)
TeCO??StTjUCtZOTL _ R, t R. orthogonal 7
ambiguity 0} 1/u
) . A A’ : intrinsic parameters 5+5
invariant K
o R : rotation between cameras 3
description
t : direction of translation between cameras 2
. ~ [A
canonical form ’P, [ ,0318 22
P =~ A'[Rput]S

Table 1.4: Canonical forms for the geometries of two images: for each level of
description, we have a partition of the 22 parameters describing two projective
images into an invariant representation, which represent the correspondence, and
the ambiguity in reconstruction. The last column indicates the number of degrees

of freedom.
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when A is known (5 DOF) by applying Qg. Q. is a projective transformation
which moves the plane at infinity, and Qg is an affine transformation which moves
the absolute conic in the plane at infinity. Each upgrade reduces the reconstruction
ambiguity, first from a general homography (15 DOF) to affine (12 DOF), then from
affine to similarity (7 DOF). The representations and ambiguities in reconstruction
are summarized in Table 1.4.

We have come a bit closer to our goal of building metric models and generating
synthetic augmented images, provided that some information about the scene is
available. However, from a practical point of view, using only two images does
not afford a lot of robustness towards image noise and imprecision. Moreover, for
complex objects, it is necessary to integrate several viewpoints to cover all of the
parts which would be occluded from just two views.

1.19 The geometry of three images [Section 8.1]

Although two images make it possible to perform a reconstruction of the scene
from point correspondences, adding a third image has two significant geometrical
benefits.

First, the point correspondence problem becomes entirely constrained, because,
as remarked in Section 1.16, the point in the third image can be transfered from
the correspondence in the first two images m < m’, and the fundamental matrices,
as

m’ ~ F12m X Fzgm’, (121)

where F5 (respectively Fa3) is the Fundamental matrix between view 1 and view 2
(respectively 3). While the epipolar constraint is bilinear in the coordinates of the
two image points, this equation is trilinear in the coordinates of the three image
points.

We note that this method of transfer fails if the two lines represented by Fi3m
and Fa3m’ are identical. This can happen if the 3-D point M of which m,m’, m' are
projections belongs to the plane containing the three optical centers (called Trifocal
plane) or if the three optical centers are aligned. We are going to see that the three
Fundamental matrices F12, Fo3, and Fi3 are not independent but are linked by three
constraints which express that all the epipoles belong to the Trifocal plane. F3;es2,
the epipolar line of e3s in the first image, is the intersection of the trifocal plane
with the first retinal plane. The epipoles e;5 and e;3 also belong to this plane and
to the first retinal plane, thus: e;s X e;3 ~ F3;e35. The two other equations follow
by a circular permutation of indices. This is illustrated in Figure 1.19. Therefore
the system of Fundamental matrices depends on at most 18 = 7 x 3 — 3 parameters.
It can be shown [Section 8.1] that this number is exact. The degeneracy of transfer
and the non-independence of the Fundamental matrices suggest that they might
not be the best way to represent the geometry of three images.
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Figure 1.27: The six epipoles of three images lie on the trifocal plane defined by the
three optical centers.

Second, it is possible to use line correspondences, unlike in the case of two images.
As we have discussed in Section 1.10 in general two optical rays L,, and L,, do not
intersect. Therefore the correspondence of two points yields one constraint which
we described in the image as the epipolar constraint, and is formulated in space
as the concurrency of L,, and L,,,. Knowing the projection [ of a line L in space
constrains L to lie on a plane IT; going through the optical center. For any two lines
[ in the first image and I’ in the second image, the planes II; and II] will always
intersect on a certain line L;; which projects back to I and I’. Contrast Figure 1.10
and Figure 1.19. Therefore the correspondence of two lines in just two images does
not yield any constraint. Let assume we have three images, and the correspondence
[ < 1" < 1" of aline in each image. We can construct as before a line L;;» which
projects into [’ in the second image and [” in the third image. We can pick any
point m on the line | and consider its optical ray L,,. Now that we have two
lines, L,, and L;;, we can obtain a constraint on the cameras called the Trifocal
constraint by writing that they are concurrent, generalizing the construction we did
with points in two images. See Figure 1.19. Note that unlike the case of two images,
this construction is not symmetric. One image, the one where we have picked the
point, plays a special role, while the two others play symmetric roles.

1.20 The Trifocal tensor [Chapter 8]

Let’s put some algebra behind this geometric intuition. In two images, the corre-
spondence of points is described by the 3 x 3 Fundamental matrix. We will see in
this section that in three images, the correspondence of points and lines is described
by a 3 x 3 x 3 tensor 7, of entries Tijk, called the Trifocal tensor.
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Figure 1.28: A line-line correspondence in two images. For any I’ and [”, there is
always a valid reconstruction L+, obtained by intersecting the planes II;; and II;».

We adopt the usual summation convention for tensors (FEinstein convention),
that any index repeated as subscript and superscript implies a summation over the
range value, which in this section will always be 1..3. Any formula involving indices
holds for any choice of values of the indices which are not repeated. Because of
that, the order in which the terms are listed is unimportant. For instance, the
correspondence of points through a homography matrix H = (H);; is written as
(m')" = Hjym’. Superscripts designate contravariant indices (coordinates of points,
row index of matrices), subscripts designate covariant indices (coordinates of lines,
column index of matrices). These transform inversely under changes of basis, so that
the contraction (dot product, or sum over all values) of a covariant-contravariant
pair is invariant.

It can be shown [Section 8.2] that given the lines I’ in the second image and
" in the third image, the line [, which is the projection in the first image of their
reconstruction, is given by

L = UIT". (1.22)

The Trifocal tensor lets us predict the position of a line in a third image from its
position in two images.
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Figure 1.29: A point-line-line correspondence in three images. The optical ray L,
must intersect the line IT;r N II;.

The basic Trifocal constraint, obtained with a correspondence m < I’ < " of a
point in the first image and lines in the other images, is obtained by considering a
point m on the the line I: .

m' TN = 0. (1.23)
It expresses the concurrency of the optical ray of m and the 3-D line projected to I’
and [”. This constraint is the analogue for three images of the epipolar constraint
for two images. While the epipolar constraint was bilinear in image coordinates,
the Trifocal constraint is trilinear. It yields a considerably richer and more complex
geometry. In the case of two images, the only geometric operation we could do
with the Fundamental matrix was to apply it to a point and obtain the epipolar
line. There are more possibilities with the Trifocal tensor, which we detail next and
summarize in Table 1.5.

If we apply 7 only to the line I, i.e. fix it, we obtain a 3 x 3 matrix H' which
maps a point from the first image to a point in the third image. Equation 1.23 can
be read

"y,
m F

,_4/%
m T = 0.
~——
HE
This equation is true for any line [ containing the projection in the third image of
the intersection of the optical ray L,, of m with the plane II; defined by the line
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1 2 3 | resulting object

m G, correlation from image 2 to image 3
I H", homography from image 1 to image 3
" | H', homography from image 1 to image 2
m Il m/', point in image 3
m I" | m', point in image 2

I' 1" |1 line in image 1
m 1" 1" | scalar

Table 1.5: Contractions of the Trifocal tensor. This table shows the geometric
objects resulting from applying the Trifocal tensor in different ways.

I'. See Figure 1.20. Therefore, the matrix H' is a planar homography from the first
image to the third image, generated by the plane II;;. The Trifocal tensor lets us
predict the position of a point in a third image from a point in the first image and a
line in the second image. A similar result is obtained by exchanging images 2 and 3.
In the more frequent case when we have two points m < m/’, the projections of M,
we can choose a line through one of the points and do the transfer. We notice that
this construction always works provided that the point M does not lie on the line
joining the optical centers of the two first cameras, whereas the transfer based on
the Fundamental matrices described by Equation 1.21 suffered from several other
degeneracies.

Last, if we apply 7 only to the point m, i.e. fix it, we obtain a 3 x 3 matrix G
which maps a line I’ from the second image to a point m” in the third image. Such
a mapping is called a correlation. Equation 1.23 can be read

"y
m

07 m' TR = 0.
——

Git

All the points m’ are projections of a point of the optical ray L,,, therefore as
I' varies, its mapping by G describes the epipolar line of m in the third image.
Remark that no other points of the third image than this line are reached by G,
therefore the range of G has dimension 1, and we conclude that G has rank 2. See
Figure 1.20. This result indicates that there is a connexion between the Trifocal
tensor and the Fundamental matrices. In fact, the three Fundamental matrices can
be computed from the Trifocal tensor [Section 8.2.4].

As a particular case of those results, the entries 7;/ " of the Trifocal tensor can
themselves be interpreted as homographies or correlations by remarking that those
entries are obtained by applying the tensor to the three entities [1,0,0]%, [0,1,0]%,
[0,0,1]%. Considering them as lines in the second image yields the three intrinsic
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Figure 1.30: The line {" defines the plane II}, which generates an homography H'
between the first image and the third image.

homographies H”“, of entries (Hlk){ = ’];jk. The tensor can be viewed as a stack
of these three homographies. Considering them as points in the first image yields
three matrices, the Trifocal matrices G of entries (G*)7* = T7*.

As discussed in Section 1.19, the Trifocal tensor depends on 18 independent
parameters. 7 has 27 = 3 x 3 x 3 entries defined up to a scale factor. Therefore,
like the Fundamental matrix had to satisfy one constraint det(F) = 0, the Trifocal
tensor has to satisfy eight algebraic constraints [Section 8.4]. We have seen three of
them: the matrices G* have zero determinant. Like the Fundamental matrix could
be expressed as a function of the epipole and a homography, we have the relation
[Section 8.2]

TM = ('Y (H")] = () (H"),
where €’ (respectively €”’) is the epipole in the second (respectively third) image
with respect to the first image, H' is a planar homography of a plane II between
the first and the second image, and H" is the planar homography of the same plane
IT between the first and the third images.

1.21 Computing the Trifocal tensor [Chapter 9]

If we have the correspondence of one point m in the first image and two lines [’ and
I" respectively in the second and third images, then the basic Trifocal constraint of
Equation 1.23 gives one equation which is linear in the entries of 7. In practice,
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Figure 1.31: The point m defines the optical ray L,,, which generates a correlation
G between the second image and the second image.

however, we are more often given the correspondence of three lines or of three points.

The first case, [ < I' <> " is quite simple: we write that the first line /; and the
line %1/ T7 ¥ transferred from I’ and " are identical, which can be expressed by the
fact that their cross-product is zero. This gives three equations, two of which are
independent.

In the second case, we notice that the Trifocal constraint holds for any line I’
going through the point m' in the second image, and also for any line ["” going
through the point m” in the third image. Since lines through a point form a
projective space of dimension one, there are two independent choices for ', as well
as for [”, which yield a total of four independent equations. One possible choice is
to consider the horizontal and vertical lines going through the points m’ and m”,
as illustrated in Figure 1.21

7T has 27 = 3 x 3 x 3 entries defined up to a scale factor. Since each correspon-
dence of lines (respectively points) gives 2 (respectively 4) linear equations in the
entries ’];jk, provided that 2nines + 4 Npoints > 26 (Niines and Npoints represent the
numbers of lines and points respectively), we can solve linearly for the entries of
7] * by constraining them to have sum 1.

Even more than for the Fundamental matrix, data normalization is crucial for
the linear method to yield correct results. However, the best methods are obtained
by minimizing a symmetrized geometric error function while enforcing algebraic
constraints. The problem of correctly parameterizing the Tensor to enforce those
constraints is quite tricky, and the symmetrization of the error function is also more
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Figure 1.32: A point-point-point correspondence gives four point-line-line corre-
spondences using the cross-hair directions.

difficult to express than for the Fundamental matrix.

1.22 Reconstruction from /N images [Chapter 10]

We have seen in Section 1.15 that from two images, with no more information than
point correspondences, it is possible to obtain only a projective reconstruction. This
situation does not change when more views are added. The reasoning in Section 1.14
still holds, and the new views do not help obtain more constraints. Going from two
views to three views, the number of parameters describing the correspondence goes
from 7 for the Fundamental matrix to 18 for the Trifocal tensor, while the number of
unknown camera parameters grows from 22 = 2 x 11 to 33 = 3 x 11. The remaining
ambiguity is just the same 15 parameters for the projective transformation.

With a fourth view, one might consider quadrilinear constraints as a general-
ization of the trilinear constraints (Trifocal tensor) and bilinear constraints (Fun-
damental matrix). However, it turns out [Section 10.2] that the quadrilinear con-
straints can always be expressed as an algebraic combination of trilinear and bilinear
constraints, so they wouldn’t help. Moreover, beyond four views there are no further
entities.

The projective geometry of N views can be represented using a canonical rep-
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resentation which extends the one introduced for two views in Section 1.15:

P1 = [I304],

P2 = [P2p2],

Ps = [P3ps), (1.24)
Px =[Pxpn]

where P, is the homography between views 1 and 2 associated with a plane II,
which is determined by the projective basis chosen, and ps is the second epipole.
As we have just discussed at the beginning of this section, while the first two matri-
ces depend on a total of seven parameters to describe the geometry of the cameras
(four additional parameters, the relative scale of Py and ps, and II are part of the
projective ambiguity), all of the remaining matrices P3 ... P, depend on 11 para-
meters each and therefore do not require a particular parameterization other than
by their entries, hence our notation. However, there is a simple geometric interpre-
tation of those entries, illustrated by Figure 1.22. p; represents the coordinates of
the epipole in the image ¢ with respect to the first image, and P; is the homography
generated by Il between image one and image ¢. To see this, let us consider the
point m in the first image, projection of a point M of II. Because its planar parallax

I(I)l ] Therefore, P,M = P;m.

The affine case is obtained as the particular case when the plane II is the plane
at infinity I, and the Euclidean case is obtained by replacing the homographies
by rotations and the epipoles by translations, and using camera coordinates in the
images.

(see Equation 1.17) is zero, we have M = {

We now use the more familiar Euclidean case to illustrate that the local repre-
sentations (based on pairs of views) 1-2 and 2-3 are not sufficient to determine the
representation 1-3, and therefore the global representation for three views 1-2-3,
but that on the other hand, this global representation can be recovered from the
three local representations, 1-2,1-3,2-3. Since a similarity has 7 degrees of freedom
(see Table 1.4), the representation 1-2-3 has 33 — 7 = 26 parameters, consisting
of 3 x 5 intrinsic camera parameters, 2 X 3 rotation parameters, 3 x 3 translation
parameters, minus the global scale yu:

P1 = A4[I; 03],
P2 = As[Ri2 uti2], (1.25)
Ps = Az[Ry3 ptys)].

This scale factor p must be the same for P, and P3 because when we have three
views, there is only a global scale indetermination, but the ratio of the local scale
factors is completely determined, as we shall see soon. Each local (two-view) rep-
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Figure 1.33: In the projective canonical representation for N views, P; = [I3 03],
P; = [P; pi], P; is the homography generated by II, and p; is the epipole in the
image.

resentation ¢ — j is written as

{ Pri=A;[I303],
Prj = Aj[Rij pijtisl,

where t;; is the translation from the camera coordinate system of image ¢ to the
camera coordinate system of image j, and p;; is an unknown scale factor which arises
from the fact that from correspondences, one cannot determine the absolute trans-
lation between two views, but only its direction. Let’s try to obtain the direction
of t13 from the representations 1-2 and 2-3. The relation between the translations
is

pistizs = piaRostio + pastos. (1.26)
Because the scale factors 12 and ue3 are unknown, it is not possible to determine

the direction of t;3 and therefore to build the representation 1-2-3. This is not
surprising because we have here 3 x 5 intrinsic camera parameters, 2 X 3 rotation
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to3 a3/ f12
Figure 1.34: From the directions of Ro3t12 and to3 alone, it is not possible to recover
the direction of t3. Their relative scale is necessary and sufficient. Reciprocally this
relative scale can be recovered if the three directions are known.

parameters, 3 x 3 translation parameters, minus the two local scales p;; which totals
only 25! However, if we know also the representation 1-3, i.e. t13, then the ratios
p23 /12 and piz/p12 can be computed by expressing the coplanarity of the three
vectors involved, which recovers the translations up to a global scale factor. This is
illustrated in Figure 1.22.

The affine case is very similar. In the projective case, the reasoning is just the
same, but instead of one unknown scale, four parameters are implied (remember
that the system of three fundamental matrices depend on 18 parameters, while two
independent fundamental matrices have 14 parameters). It is found [Section 10.2]
that from the three Fundamental matrices or from the Trifocal tensor, one can
recover a representation of the form (1.24). From that result, one can devise an
incremental method which starts from a canonical representation of an N — 1-tuple
of projection matrices and incorporates an Nth view, yielding a representation for
N views.

Adding more views in general does not make it possible to upgrade from a
projective to an affine or Euclidean representation without specific knowledge (such
as for instance the fact that the cameras are identical, as discussed in the next
section); however, it improves the robustness of the estimation and makes it possible
to deal with more complex scenes. Several algorithms for reconstruction from N
views are examined in Chapter 10.

1.23 Self-calibration of a moving camera using the
absolute conic [Sections 2.3, 4.3.2]

We have explained how using some knowledge about the world made it possible to
upgrade a projective reconstruction to affine and Euclidean. This knowledge has
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to be supplied to the system interactively by the user. An alternative, and more
automatic, way to supply this information is to use constraints about the camera’s
intrinsic parameters, such that the fact that they are partially known (for instance
for most cameras the skew is zero since the pixel grid is orthogonal, and the aspect
ratio is known) or constant across images.

In order to use these constraints for this purpose, we now give a projective
encoding of Euclidean structure, using the absolute conic. Let us consider the
projective plane P?. When we move from an affine to a Euclidean representation,
we gain the notion of angles and distances, and can define geometric entities such
as circles. In projective geometry all the second order loci (ellipses, parabolas,
hyperbolas) lose their distinction and are called conics, with an equation of the
form m”Qm = 0, where Q is a square matrix. Their projective equivalence is
illustrated by the fact that any form can be projected into any other form. Using
the duality of points and lines, a conic can be considered not only as a locus of
points, but also as a locus of lines, the set of lines which are tangent to the conic.
For a given conic of matrix Q, its dual conic (the set of its tangents) has matrix
the adjoint matrix of Q:

Q' = det(Q)Q™! (1.27)

In the projective plane P2, just like two lines always intersect provided that we add
to the affine points the line at infinity, so do two circles, provided that we add to
the affine points two complex points in the line at infinity. Indeed, we encourage
the reader to verify by simple algebra the surprising fact that all the circles contain
the two particular points I = [1,,0] and J = [1, —¢, 0], called circular points, which
satisfy #? + y? = z = 0. Similarly, the Euclidean space P? is characterized by the
absolute conic 1, which is the set of points [X, Y, Z, T] satisfying X?+Y2+22 =0
and T = 0. In other words €2 is the conic in Il of matrix I3. Like the plane at
infinity was used to characterize affine transformations, the absolute conic can be
used to characterize similarity transformations. It can be verified that a projective
transformation is a similarity transformation if and only if it leaves the absolute
conic invariant.

Because the change of pose corresponds to a Euclidean transformation, which, as
a particular case of a similarity transformation, leaves the absolute conic invariant,
we conclude that its projection w which is also a conic with only complex points,
does not depend on the pose of the camera. Therefore, its equation in the retinal
coordinate system does not depend on the extrinsic parameters and depends only
on the intrinsic parameters. Computing in the camera coordinate system, it is easy
to see that its matrix is B = A~TA~!, whereas its dual conic has matrix, using
Equation 1.27,

K =B" =det(B)B™' ~ AAT.

When the camera is calibrated, in the camera coordinate system, the projection of
the absolute conic is just an imaginary circle of radius one. The general uncalibrated
case is illustrated in Fig. 1.23. The matrix K is called the Kruppa matriz. It
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Figure 1.35: The way the five intrinsic parameters of Equation 1.4 affect the image
of the absolute conic in the imaginary plane.

is symmetric and defined up to a scale factor, and therefore it depends on five
independent parameters which can be recovered uniquely from K.

The principle of self-calibration is to use the absolute conic as a calibration
object. It has the advantage of being always available for free, however since it
is a rather inaccessible object, all we can do with it is to write constraints across
images. The knowledge of the infinity homography or of the Fundamental matrix
makes it possible to write equations relating the intrinsic parameters of the two
images. When we move a camera, we can obtain several such equations. Combining
enough of them with the constraints on intrinsic parameters make it possible to
recover the intrinsic parameters. Therefore just by moving a camera, observing
its environment, and establishing point correspondences, we are able to calibrate
the camera and eventually perform a FEuclidean reconstruction of the environment,
without ever needing a calibration object.

1.24 From affine to Euclidean [Section 11.1]

We first start with the simpler case when the infinity homography is known. A
practically important situation when this occurs is the case of a stationary camera
which rotates and zooms while staying at a fixed position. While this situation
does not make it possible to recover structure, it is the most favorable to recover
the calibration because, as we shall see soon, in this case the constraints take a
particularly simple form.

We remark that in H,, ~ A'RA~!, H,, depends on eight parameters, and
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the rotation on three parameters, so we should be able to write five constraints on
the intrinsic parameters. To express them, we eliminate the motion using the fact
that a rotation matrix is orthogonal: RR? = I5. This step yields a linear relation
between the infinity homography and the intrinsic parameters:

H. KH! ~K’, (1.28)

where K and K’ are the two Kruppa matrices. One could think that this is sufficient
to solve for the five intrinsic parameters when they are constant (K = K’), but it
turns out that one of the equations in this case is redundant because the infinity
homography satisfies the additional constraint det(H.,) = 1. More precisely, it
can be verified that there is a two dimensional space of solutions, spanned by the
expected solution K = AAT and the spurious solution K = AU(AU)?, where U
is the axis of the rotation. Two rotations along different axis are therefore necessary
to solve for all of the intrinsic parameters.

We can remark that self-calibration depends only on the rotational component
of the motion: it relies on the absolute conic, which being an object at infinity, has
an projection not affected by translations but only by rotations. In particular, if
there is no rotation, then Equation 1.28 becomes a tautology. In order to recover
camera calibration from H., it is therefore necessary to have a motion with a
non-null rotational component. We will see that these conclusions extend to the
recovery of camera calibration from F, since it uses equations which are derived
from Equation 1.28.

1.25 From projective to Euclidean [Section 11.2]

We now consider the general case when only a projective representation is available.

We note that the representation of Euclidean correspondence consisting of A,
A’, F is redundant since it contains seventeen parameters, while a minimal rep-
resentation has only fifteen parameters, so there must be two constraints between
the Fundamental matrix and the intrinsic parameters. Another way to see it is to
remark that the Fundamental matrix can be expressed as

F=A"T[t],RA™".

F depends on seven parameters and the motion on five parameters (the scale of the
translation is not determined), so there must be two constraints, obtained again by
eliminating the displacement. They can be obtained algebraically by multiplying
Equation 1.28 by [e']« left and right,

€]« K'[e']x ~ [e']xHoo KHL [],

and using Equation 1.11:
FKF! ~ [¢'].K'[e/]«,
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which is equivalent to two polynomial equations of degree 2 in the coefficients of K
and K’. These equations are called the Kruppa equations. Examples of applications
of these equations are:

e Computing the focal lengths of the two cameras from the Fundamental matrix
of a pair of images, assuming that the other intrinsic parameters are known.

e Computing all of the intrinsic parameters of a moving camera with constant
intrinsic parameters from three images.

The Kruppa equations make it possible to perform self-calibration from the
Fundamental matrices by solving only for the intrinsic parameters using polynomial
methods. While this is interesting when we have few images, when we have a
large number of images, it is advantageous to start from the projective canonical
representation, because being global, it is numerically a more stable representation.
We recover affine and Euclidean information at the same time by solving for the
eight parameters of the projective transformation of Equation 1.20:

—1-1 A 03
M=Q;'Qp ‘[rZ;A h ]
According to Equation 1.19, this transformation maps the set of canonical perspec-
tive projection matrices P; into canonical Euclidean projection matrices:

We use the same trick as we did in the affine case: we multiply the first 3 x 3
submatrix (remember that only the rotational motion is relevant for self-calibration)
by its transpose, eliminating the unknown rotation matrices R,;:

K Kr,,

T .
P ~K: <71 <n.
rTK rTKr. ? i 2sisn

P
These equations make it possible to generalize self-calibration to the case of variable
intrinsic parameters. Any constraints on the intrinsic parameters A; translates into
constraints on the Kruppa matrices K;. For instance, it can be verified with easy
algebra that when the pixels are orthogonal, K;3K23 — K33K12 = 0. If enough
constraints are available, we can solve for K and r., by nonlinear minimization.
Since there are 8 unknowns, it is crucial to have a good starting point, which can
be obtained with the Kruppa equations. This approach was used to self-calibrate
the cameras and obtain the results presented at the beginning of the Chapter.
Like there are critical configurations of points which do not allow us to obtain
a unique solution for the estimation of the Fundamental matrix, there are critical
sequences of motions which do not allow us to obtain a unique solution for the
estimation of the camera parameters. We have seen one of them, motions with
parallel rotation axis and arbitrary translations. Other configurations are examined
in Section 11.6.
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1.26 References and further reading

Three dimensional problems involving several images have traditionally been stud-
ied under the assumption that the cameras are calibrated, with a few exceptions
(the first use of projective geometry to analyze two-view geometry seems to be
an unnoticed paper by Thompson (Thompson, 1968)). In the early 90’s, Forsyth,
Mundy et al. (Forsyth et al., 1990) in the context of object recognition, Koenderink
and Van Doorn (Koenderink and van Doorn, 1991) in the context of structure from
motion, and Barrett et al. (Barrett et al., 1992) in the context of image transfer,
discovered that useful tasks could be performed using non-metric representations.
Following the results of Faugeras (Faugeras, 1992) and Hartley et al. (Hartley et al.,
1992) on projective reconstruction, an enormous burst of research was launched.

A decade later, there are so many papers that it has not been possible to cover all
the important topics. In this book, we concentrate on the geometry of reconstruction
and positioning from finite correspondences.

Invariants and object recognition The approach developped in this book re-
lies on the fact that the appearance of an object changes as the viewpoint changes
in order to reconstruct the object and the camera motion. On the other hand this
variation is one of the fundamental difficulties in recognizing objects from images.
Another approach, which one might call the invariance program, seeks to overcome
the problem that the appearance of an object depends on viewpoint by using geo-
metric descriptions which are unaffected by the imaging transformation. These
invariant measures can be used to index a library of object models for recognition.
Many papers representative of this line of research can be found in the book edited
by Mundy and Zisserman (Mundy and Zisserman, 1992). The follow-up of this book
(Mundy et al., 1994) also has several papers which deal with the reconstruction ap-
proach. The two approaches are complementary in the sense that one of them
concentrates on relations within the system of cameras while the other concentrates
on relations within configurations of 3-D points.

There are numerous invariant descriptions which can be measured from images
without any prior knowledge of the position, orientation and calibration of the
camera. However, a fundamental limitation of the approach is that no general
invariants of point sets can be measured from a single image (Burns et al., 1993;
Barrett et al., 1991; Clemens and Jacobs, 1991). This means that we need either
additional knowledge about the object (such as symmetry (Rothwell et al., 1993),
which is the same as having two mirrored images of the same object, or planarity
(Forsyth et al., 1990)) or multiple views. A significant part of the survey paper
on object recognition using invariance of Zisserman et al. (Zisserman et al., 1995b)
is a summary of results on the construction of invariants for 3-D objects from
a single perspective view. Using continuous invariant descriptors can yield other
difficulties. For example, all curves map arbitrarily close to a circle by projective
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transformations (Astrom, 1995).

If multiple views are used, the approach that we describe in the book can be
applied. An important unifying result of Carlsson and Weinshall (Carlsson and
Weinshall, 1998; Carlsson, 1995; Weinshall et al., 1996) is the fundamental duality
of the 3-D motion estimation and structure estimation problem. They show that for
points and cameras in general position, the problem of computing camera geometry
from N points in M views is equivalent to the problem of reconstructing M + 4
points in N — 4 views.

Infinitesimal displacements In this book, we concentrate on the general case
when the displacements are finite. The appropriate data is discrete point corre-
spondences. When the displacements are small, the cameras are closely spaced and
some of the image projections are nearly the same. Then some quantities become
infinitesimal so that the approximation by a differential analysis is appropriate.
Verri and Trucco (Verri and Trucco, 1999) propose a differential technique based
on optical flow for estimating the location of the epipole. The method requires a
minimum of six points. It is based on a new rewrite of the optical flow equations
in terms of a generalization of the time-to-impact, and without decoupling rotation
and translation.

The relationship between optical flow and 3-D structure is well understood in the
calibrated case (Koenderink and van Doorn, 1975; Longuet-Higgins and Prazdny,
1980; Maybank, 1987). The uncalibrated case was first investigated by Viéville and
Faugeras (Viéville and Faugeras, 1996), who used the first-order expansion of the
motion equation between two views and analyzed the observability of the infini-
tesimal quantities. A more ambitious approach was taken by Astrom and Heyden
(Astrom and Heyden, 1998). They consider the N-views case and take a Taylor
expansion of the projection equations By gathering the projection equations by the
powers of At using a principle similar to the one described in Section 10.2, they ob-
tain multi-linear constraints which link corresponding points and their derivatives.
Recently, Triggs (Triggs, 1999a) proposed a more tractable approach to the N-views
case, which bridges the gap between the differential and the discrete formulation,
using finite difference expansions.

Brooks et al. (Brooks et al., 1997) derived, similarly to Viéville and Faugeras,
a differential epipolar equation for uncalibrated optical flow. This equation incor-
porates two matrices which encode information about the ego-motion and intrinsic
parameters of the camera. Given enough points, the composite ratio of some entries
of these matrices are determined and, under some conditions, a closed form formula
is obtained from these ratios. In (Brooks et al., 1998), a method is presented for
the robust determination of the two matrices. The problem of self-calibration from
image derivatives was also addressed by Brodsky et al (Brodsky et al., 1998).



1.26 References and further reading 61

INlumination and photometry In this book, we concentrate on geometry, which
is only one of the attributes of the 3-D world. Some researchers have begun to
combine geometry and photometry. For example, Belhumeur and Kriegman show
that from perspective images of a scene where the camera is in fixed viewpoint,
but where point light sources vary in each image, one can only reconstruct the
surface up to a family of projective transformations from shadows (Kriegman and
Belhumeur, 1998), whereas from orthographic images and light sources at infinity,
the family of transformation is restricted to affine transformation, and that for
Lambertian surfaces one can only reconstruct the surface up to this family of affine
transformations (Belhumeur et al., 1997).






