
Chapter 8

Approximation Methods for
Large Datasets

As we have seen in the preceding chapters a significant problem with Gaus-
sian process prediction is that it typically scales as O(n3). For large problems
(e.g. n > 10, 000) both storing the Gram matrix and solving the associated
linear systems are prohibitive on modern workstations (although this boundary
can be pushed further by using high-performance computers).

An extensive range of proposals have been suggested to deal with this prob-
lem. Below we divide these into five parts: in section 8.1 we consider reduced-
rank approximations to the Gram matrix; in section 8.2 a general strategy for
greedy approximations is described; in section 8.3 we discuss various methods
for approximating the GP regression problem for fixed hyperparameters; in sec-
tion 8.4 we describe various methods for approximating the GP classification
problem for fixed hyperparameters; and in section 8.5 we describe methods to
approximate the marginal likelihood and its derivatives. Many (although not
all) of these methods use a subset of size m < n of the training examples.

8.1 Reduced-rank Approximations of the Gram
Matrix

In the GP regression problem we need to invert the matrix K+σ2
nI (or at least

to solve a linear system (K + σ2
nI)v = y for v). If the matrix K has rank q (so

that it can be represented in the form K = QQ> where Q is an n× q matrix)
then this matrix inversion can be speeded up using the matrix inversion lemma
eq. (A.9) as (QQ>+σ2

nIn)−1 = σ−2
n In−σ−2

n Q(σ2
nIq +Q>Q)−1Q>. Notice that

the inversion of an n× n matrix has now been transformed to the inversion of
a q × q matrix.1

1For numerical reasons this is not the best way to solve such a linear system but it does
illustrate the savings that can be obtained with reduced-rank representations.

172 Approximation Methods for Large Datasets

In the case that the kernel is derived from an explicit feature expansion with
N features, then the Gram matrix will have rank min(n,N) so that exploitation
of this structure will be beneficial if n > N . Even if the kernel is non-degenerate
it may happen that it has a fast-decaying eigenspectrum (see e.g. section 4.3.1)
so that a reduced-rank approximation will be accurate.

If K is not of rank < n, we can still consider reduced-rank approximations to
K. The optimal reduced-rank approximation of K w.r.t. the Frobenius norm
(see eq. (A.16)) is UqΛqU

>
q , where Λq is the diagonal matrix of the leading

q eigenvalues of K and Uq is the matrix of the corresponding orthonormal
eigenvectors [Golub and Van Loan, 1989, Theorem 8.1.9]. Unfortunately, this
is of limited interest in practice as computing the eigendecomposition is an
O(n3) operation. However, it does suggest that if we can more cheaply obtain
an approximate eigendecomposition then this may give rise to a useful reduced-
rank approximation to K.

We now consider selecting a subset I of the n datapoints; set I has size
m < n. The remaining n−m datapoints form the set R. (As a mnemonic, I is
for the included datapoints and R is for the remaining points.) We sometimes
call the included set the active set. Without loss of generality we assume that
the datapoints are ordered so that set I comes first. Thus K can be partitioned
as

K =
(

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

)
. (8.1)

The top m×n block will also be referred to as Kmn and its transpose as Knm.

In section 4.3.2 we saw how to approximate the eigenfunctions of a kernel
using the Nyström method. We can now apply the same idea to approximating
the eigenvalues/vectors of K. We compute the eigenvectors and eigenvalues of
Kmm and denote them {λ(m)

i }mi=1 and {u(m)
i }mi=1. These are extended to all n

points using eq. (4.44) to give

λ̃
(n)
i ,

n

m
λ

(m)
i , i = 1, . . . ,m (8.2)

ũ(n)
i ,

√
m

n

1

λ
(m)
i

Knmu(m)
i , i = 1, . . . ,m (8.3)

where the scaling of ũ(n)
i has been chosen so that |ũ(n)

i | ' 1. In general we have
a choice of how many of the approximate eigenvalues/vectors to include in our
approximation of K; choosing the first p we get K̃ =

∑p
i=1 λ̃

(n)
i ũ(n)

i (ũ(n)
i)>.

Below we will set p = m to obtain

K̃ = KnmK
−1
mmKmn (8.4)

using equations 8.2 and 8.3, which we call the Nyström approximation to K.Nyström approximation

Computation of K̃ takes time O(m2n) as the eigendecomposition of Kmm is
O(m3) and the computation of each ũ(n)

i is O(mn). Fowlkes et al. [2001] have
applied the Nyström method to approximate the top few eigenvectors in a
computer vision problem where the matrices in question are larger than 106×106

in size.

8.1 Reduced-rank Approximations of the Gram Matrix 173

The Nyström approximation has been applied above to approximate the
elements of K. However, using the approximation for the ith eigenfunction
φ̃i(x) = (

√
m/λ

(m)
i)km(x)>u(m)

i , where km(x) = (k(x,x1), . . . , k(x,xm))> (a
restatement of eq. (4.44) using the current notation) and λi ' λ

(m)
i /m it is

easy to see that in general we obtain an approximation for the kernel k(x,x′) =∑N
i=1 λiφi(x)φi(x′) as

k̃(x,x′) =
m∑

i=1

λ
(m)
i

m
φ̃i(x)φ̃i(x′) (8.5)

=
m∑

i=1

λ
(m)
i

m

m

(λ(m)
i)2

km(x)>u(m)
i (u(m)

i)>km(x′) (8.6)

= km(x)>K−1
mmkm(x′). (8.7)

Clearly eq. (8.4) is obtained by evaluating eq. (8.7) for all pairs of datapoints
in the training set.

By multiplying out eq. (8.4) using Kmn = [KmmKm(n−m)] it is easy to
show that Kmm = K̃mm, Km(n−m) = K̃m(n−m), K(n−m)m = K̃(n−m)m, but
that K̃(n−m)(n−m) = K(n−m)mK

−1
mmKm(n−m). The difference

K(n−m)(n−m) − K̃(n−m)(n−m) is in fact the Schur complement of Kmm [Golub
and Van Loan, 1989, p. 103]. It is easy to see that K(n−m)(n−m)−K̃(n−m)(n−m)

is positive semi-definite; if a vector f is partitioned as f> = (f>m, f
>
n−m) and f

has a Gaussian distribution with zero mean and covariance K then fn−m|fm
has the Schur complement as its covariance matrix, see eq. (A.6).

The Nyström approximation was derived in the above fashion by Williams
and Seeger [2001] for application to kernel machines. An alternative view which
gives rise to the same approximation is due to Smola and Schölkopf [2000] (and
also Schölkopf and Smola [2002, sec. 10.2]). Here the starting point is that we
wish to approximate the kernel centered on point xi as a linear combination of
kernels from the active set, so that

k(xi,x) '
∑
j∈I

cijk(xj ,x) , k̂(xi,x) (8.8)

for some coefficients {cij} that are to be determined so as to optimize the
approximation. A reasonable criterion to minimize is

E(C) =
n∑

i=1

‖k(xi,x)− k̂(xi,x)‖2H (8.9)

= trK − 2 tr(CKmn) + tr(CKmmC
>), (8.10)

where the coefficients are arranged into a n ×m matrix C. Minimizing E(C)
w.r.t. C gives Copt = KnmK

−1
mm; thus we obtain the approximation K̂ =

KnmK
−1
mmKmn in agreement with eq. (8.4). Also, it can be shown that E(Copt) =

tr(K − K̂).

Smola and Schölkopf [2000] suggest a greedy algorithm to choose points to
include into the active set so as to minimize the error criterion. As it takes

174 Approximation Methods for Large Datasets

O(mn) operations to evaluate the change in E due to including one new dat-
apoint (see exercise 8.7.2) it is infeasible to consider all members of set R for
inclusion on each iteration; instead Smola and Schölkopf [2000] suggest find-
ing the best point to include from a randomly chosen subset of set R on each
iteration.

Recent work by Drineas and Mahoney [2005] analyzes a similar algorithm
to the Nyström approximation, except that they use biased sampling with re-
placement (choosing column i of K with probability ∝ k2

ii) and a pseudoinverse
of the inner m ×m matrix. For this algorithm they are able to provide prob-
abilistic bounds on the quality of the approximation. Earlier work by Frieze
et al. [1998] had developed an approximation to the singular value decomposi-
tion (SVD) of a rectangular matrix using a weighted random subsampling of its
rows and columns, and probabilistic error bounds. However, this is rather differ-
ent from the Nyström approximation; see Drineas and Mahoney [2005, sec. 5.2]
for details.

Fine and Scheinberg [2002] suggest an alternative low-rank approximation
to K using the incomplete Cholesky factorization (see Golub and Van Loan
[1989, sec. 10.3.2]). The idea here is that when computing the Cholesky de-
composition of K pivots below a certain threshold are skipped.2 If the number
of pivots greater than the threshold is k the incomplete Cholesky factorization
takes time O(nk2).

8.2 Greedy Approximation

Many of the methods described below use an active set of training points of size
m selected from the training set of size n > m. We assume that it is impossible
to search for the optimal subset of size m due to combinatorics. The points
in the active set could be selected randomly, but in general we might expect
better performance if the points are selected greedily w.r.t. some criterion. In
the statistics literature greedy approaches are also known as forward selection
strategies.

A general recipe for greedy approximation is given in Algorithm 8.1. The
algorithm starts with the active set I being empty, and the set R containing the
indices of all training examples. On each iteration one index is selected from R
and added to I. This is achieved by evaluating some criterion ∆ and selecting
the data point that optimizes this criterion. For some algorithms it can be too
expensive to evaluate ∆ on all points in R, so some working set J ⊂ R can be
chosen instead, usually at random from R.

Greedy selection methods have been used with the subset of regressors (SR),
subset of datapoints (SD) and the projected process (PP) methods described
below.

2As a technical detail, symmetric permutations of the rows and columns are required to
stabilize the computations.

8.3 Approximations for GPR with Fixed Hyperparameters 175

input: m, desired size of active set
2: Initialization I = ∅, R = {1, . . . , n}

for j := 1 . . .m do
4: Create working set J ⊆ R

Compute ∆j for all j ∈ J
6: i = argmaxj∈J∆j

Update model to include data from example i
8: I ← I ∪ {i}, R← R\{i}

end for
10: return: I
Algorithm 8.1: General framework for greedy subset selection. ∆j is the criterion
function evaluated on data point j.

8.3 Approximations for GPR with Fixed Hy-
perparameters

We present six approximation schemes for GPR below, namely the subset of
regressors (SR), the Nyström method, the subset of datapoints (SD), the pro-
jected process (PP) approximation, the Bayesian committee machine (BCM)
and the iterative solution of linear systems. Section 8.3.7 provides a summary
of these methods and a comparison of their performance on the SARCOS data
which was introduced in section 2.5.

8.3.1 Subset of Regressors

Silverman [1985, sec. 6.1] showed that the mean GP predictor can be ob-
tained from a finite-dimensional generalized linear regression model f(x∗) =∑n

i=1 αik(x∗,xi) with a prior α ∼ N (0,K−1). To see this we use the mean
prediction for linear regression model in feature space given by eq. (2.11),
i.e. f̄(x∗) = σ−2

n φ(x∗)>A−1Φy with A = Σ−1
p + σ−2

n ΦΦ>. Setting φ(x∗) =
k(x∗), Φ = Φ> = K and Σ−1

p = K we obtain

f̄(x∗) = σ−2
n k>(x∗)[σ−2

n K(K + σ2
nI)]

−1Ky (8.11)

= k>(x∗)(K + σ2
nI)

−1y, (8.12)

in agreement with eq. (2.25). Note, however, that the predictive (co)variance
of this model is different from full GPR.

A simple approximation to this model is to consider only a subset of regres-
sors, so that

fSR(x∗) =
m∑

i=1

αik(x∗,xi), with αm ∼ N (0,K−1
mm). (8.13)

176 Approximation Methods for Large Datasets

Again using eq. (2.11) we obtain

f̄SR(x∗) = km(x∗)>(KmnKnm + σ2
nKmm)−1Kmny, (8.14)

V[fSR(x∗)] = σ2
nkm(x∗)>(KmnKnm + σ2

nKmm)−1km(x∗). (8.15)

Thus the posterior mean for αm is given by

ᾱm = (KmnKnm + σ2
nKmm)−1Kmny. (8.16)

This method has been proposed, for example, in Wahba [1990, chapter 7], and
in Poggio and Girosi [1990, eq. 25] via the regularization framework. The name
“subset of regressors” (SR) was suggested to us by G. Wahba. The computa-
tions for equations 8.14 and 8.15 take time O(m2n) to carry out the necessary
matrix computations. After this the prediction of the mean for a new test point
takes time O(m), and the predictive variance takes O(m2).

Under the subset of regressors model we have f ∼ N (0, K̃) where K̃ isSR marginal likelihood

defined as in eq. (8.4). Thus the log marginal likelihood under this model is

log pSR(y|X) = −1
2

log |K̃ + σ2
nIn| −

1
2
y>(K̃ + σ2

nIn)−1y − n

2
log(2π). (8.17)

Notice that the covariance function defined by the SR model has the form
k̃(x,x′) = k(x)>K−1

mmk(x′), which is exactly the same as that from the Nyström
approximation for the covariance function eq. (8.7). In fact if the covariance
function k(x,x′) in the predictive mean and variance equations 2.25 and 2.26
is replaced systematically with k̃(x,x′) we obtain equations 8.14 and 8.15, as
shown in Appendix 8.6.

If the kernel function decays to zero for |x| → ∞ for fixed x′, then k̃(x,x)
will be near zero when x is distant from points in the set I. This will be the case
even when the kernel is stationary so that k(x,x) is independent of x. Thus
we might expect that using the approximate kernel will give poor predictions,
especially underestimates of the predictive variance, when x is far from points
in the set I.

An interesting idea suggested by Rasmussen and Quiñonero-Candela [2005]
to mitigate this problem is to define the SR model with m + 1 basis func-
tions, where the extra basis function is centered on the test point x∗, so that
ySR∗(x∗) =

∑m
i=1 αik(x∗,xi) + α∗k(x∗,x∗). This model can then be used to

make predictions, and it can be implemented efficiently using the partitioned
matrix inverse equations A.11 and A.12. The effect of the extra basis function
centered on x∗ is to maintain predictive variance at the test point.

So far we have not said how the subset I should be chosen. One sim-
ple method is to choose it randomly from X, another is to run clustering on
{xi}ni=1 to obtain centres. Alternatively, a number of greedy forward selection
algorithms for I have been proposed. Luo and Wahba [1997] choose the next
kernel so as to minimize the residual sum of squares (RSS) |y−Knmαm|2 after
optimizing αm. Smola and Bartlett [2001] take a similar approach, but choose
as their criterion the quadratic form

1
σ2

n

|y −Knmᾱm|2 + ᾱ>mKmmᾱm = y>(K̃ + σ2
nIn)−1y, (8.18)

8.3 Approximations for GPR with Fixed Hyperparameters 177

where the right hand side follows using eq. (8.16) and the matrix inversion
lemma. Alternatively, Quiñonero-Candela [2004] suggests using the approxi-
mate log marginal likelihood log pSR(y|X) (see eq. (8.17)) as the selection cri-
terion. In fact the quadratic term from eq. (8.18) is one of the terms comprising
log pSR(y|X).

For all these suggestions the complexity of evaluating the criterion on a new
example is O(mn), by making use of partitioned matrix equations. Thus it is
likely to be too expensive to consider all points in R on each iteration, and we
are likely to want to consider a smaller working set, as described in Algorithm
8.1.

Note that the SR model is obtained by selecting some subset of the data-
points of size m in a random or greedy manner. The relevance vector machine
(RVM) described in section 6.6 has a similar flavour in that it automatically comparison with RVM

selects (in a greedy fashion) which datapoints to use in its expansion. However,
note one important difference which is that the RVM uses a diagonal prior on
the α’s, while for the SR method we have αm ∼ N (0,K−1

mm).

8.3.2 The Nyström Method

Williams and Seeger [2001] suggested approximating the GPR equations by
replacing the matrix K by K̃ in the mean and variance prediction equations
2.25 and 2.26, and called this the Nyström method for approximate GPR. Notice
that in this proposal the covariance function k is not systematically replaced
by k̃, it is only occurrences of the matrix K that are replaced. As for the
SR model the time complexity is O(m2n) to carry out the necessary matrix
computations, and then O(n) for the predictive mean of a test point and O(mn)
for the predictive variance.

Experimental evidence in Williams et al. [2002] suggests that for large m
the SR and Nyström methods have similar performance, but for small m the
Nyström method can be quite poor. Also the fact that k is not systematically
replaced by k̃ means that embarrassments can occur like the approximated
predictive variance being negative. For these reasons we do not recommend the
Nyström method over the SR method. However, the Nyström method can be
effective when λm+1, the (m+ 1)th eigenvalue of K, is much smaller than σ2

n.

8.3.3 Subset of Datapoints

The subset of regressors method described above approximated the form of the
predictive distribution, and particularly the predictive mean. Another simple
approximation to the full-sample GP predictor is to keep the GP predictor,
but only on a smaller subset of size m of the data. Although this is clearly
wasteful of data, it can make sense if the predictions obtained with m points
are sufficiently accurate for our needs.

Clearly it can make sense to select which points are taken into the active set
I, and typically this is achieved by greedy algorithms. However, one has to be

178 Approximation Methods for Large Datasets

wary of the amount of computation that is needed, especially if one considers
each member of R at each iteration.

Lawrence et al. [2003] suggest choosing as the next point (or site) for in-
clusion into the active set the one that maximizes the differential entropy score
∆j , H[p(fj)] − H[pnew(fj)], where H[p(fj)] is the entropy of the Gaus-
sian at site j ∈ R (which is a function of the variance at site j as the poste-
rior is Gaussian, see eq. (A.20)), and H[pnew(fj)] is the entropy at this site
once the observation at site j has been included. Let the posterior variance
of fj before inclusion be vj . As p(fj |yI , yj) ∝ p(fj |yI)N (yj |fj , σ

2) we have
(vnew

j)−1 = v−1
j + σ−2. Using the fact that the entropy of a Gaussian with

variance v is log(2πev)/2 we obtain

∆j = 1
2 log(1 + vj/σ

2). (8.19)

∆j is a monotonic function of vj so that it is maximized by choosing the site with
the largest variance. Lawrence et al. [2003] call their method the informative
vector machine (IVM)IVM

If coded näıvely the complexity of computing the variance at all sites in R
on a single iteration is O(m3 + (n−m)m2) as we need to evaluate eq. (2.26) at
each site (and the matrix inversion of Kmm + σ2

nI can be done once in O(m3)
then stored). However, as we are incrementally growing the matrices Kmm

and Km(n−m) in fact the cost is O(mn) per inclusion, leading to an overall
complexity of O(m2n) when using a subset of size m. For example, once a site
has been chosen for inclusion the matrix Kmm + σ2

nI is grown by including an
extra row and column. The inverse of this expanded matrix can be found using
eq. (A.12) although it would be better practice numerically to use a Cholesky
decomposition approach as described in Lawrence et al. [2003]. The scheme
evaluates ∆j over all j ∈ R at each step to choose the inclusion site. This
makes sense when m is small, but as it gets larger it can make sense to select
candidate inclusion sites from a subset of R. Lawrence et al. [2003] call this the
randomized greedy selection method and give further ideas on how to choose
the subset.

The differential entropy score ∆j is not the only criterion that can be used for
site selection. For example the information gain criterion KL(pnew(fj)||p(fj))
can also be used (see Seeger et al., 2003). The use of greedy selection heuristics
here is similar to the problem of active learning, see e.g. MacKay [1992c].

8.3.4 Projected Process Approximation

The SR method has the unattractive feature that it is based on a degenerate
GP, the finite-dimensional model given in eq. (8.13). The SD method is a non-
degenerate process model but it only makes use of m datapoints. The projected
process (PP) approximation is also a non-degenerate process model but it can
make use of all n datapoints. We call it a projected process approximation
as it represents only m < n latent function values, but computes a likelihood
involving all n datapoints by projecting up the m latent points to n dimensions.

8.3 Approximations for GPR with Fixed Hyperparameters 179

One problem with the basic GPR algorithm is the fact that the likelihood
term requires us to have f -values for the n training points. However, say we only
represent m of these values explicitly, and denote these as fm. Then the remain-
ing f -values in R denoted fn−m have a conditional distribution p(fn−m|fm), the
mean of which is given by E[fn−m|fm] = K(n−m)mK

−1
mmfm.3 Say we replace the

true likelihood term for the points in R byN (yn−m|E[fn−m|fm], σ2
nI). Including

also the likelihood contribution of the points in set I we have

q(y|fm) = N (y|KnmK
−1
mmfm, σ2

nI), (8.20)

which can also be written as q(y|fm) = N (y|E[f |fm], σ2
nI). The key feature here

is that we have absorbed the information in all n points of D into the m points
in I.

The form of q(y|fm) in eq. (8.20) might seem rather arbitrary, but in fact
it can be shown that if we consider minimizing KL(q(f |y)||p(f |y)), the KL-
divergence between the approximating distribution q(f |y) and the true posterior
p(f |y) over all q distributions of the form q(f |y) ∝ p(f)R(fm) where R is positive
and depends on fm only, this is the form we obtain. See Seeger [2003, Lemma 4.1
and sec. C.2.1] for detailed derivations, and also Csató [2002, sec. 3.3].

To make predictions we first have to compute the posterior distribution
q(fm|y). Define the shorthand P = K−1

mmKmn so that E[f |fm] = P>fm. Then
we have

q(y|fm) ∝ exp
(
− 1

2σ2
n

(y − P>fm)>(y − P>fm)
)
. (8.21)

Combining this with the prior p(fm) ∝ exp(−f>mK
−1
mmfm/2) we obtain

q(fm|y) ∝ exp
(
− 1

2
f>m(K−1

mm +
1
σ2

n

PP>)fm +
1
σ2

n

y>P>fm
)
, (8.22)

which can be recognized as a Gaussian N (µ, A) with

A−1 = σ−2
n (σ2

nK
−1
mm + PP>) = σ−2

n K−1
mm(σ2

nKmm +KmnKnm)K−1
mm, (8.23)

µ = σ−2
n APy = Kmm(σ2

nKmm +KmnKnm)−1Kmny. (8.24)

Thus the predictive mean is given by

Eq[f(x∗)] = km(x∗)>K−1
mmµ (8.25)

= km(x∗)>(σ2
nKmm +KmnKnm)−1Kmny, (8.26)

which turns out to be just the same as the predictive mean under the SR
model, as given in eq. (8.14). However, the predictive variance is different. The
argument is the same as in eq. (3.23) and yields

Vq[f(x∗)] = k(x∗,x∗)− km(x∗)>K−1
mmkm(x∗)

+ km(x∗)>K−1
mmcov(fm|y)K−1

mmkm(x∗)

= k(x∗,x∗)− km(x∗)>K−1
mmkm(x∗)

+ σ2
nkm(x∗)>(σ2

nKmm +KmnKnm)−1km(x∗). (8.27)
3There is no a priori reason why the m points chosen have to be a subset of the n points

in D—they could be disjoint from the training set. However, for our derivations below we
will consider them to be a subset.

180 Approximation Methods for Large Datasets

Notice that predictive variance is the sum of the predictive variance under the
SR model (last term in eq. (8.27)) plus k(x∗,x∗)−km(x∗)>K−1

mmkm(x∗) which
is the predictive variance at x∗ given fm. Thus eq. (8.27) is never smaller than
the SR predictive variance and will become close to k(x∗,x∗) when x∗ is far
away from the points in set I.

As for the SR model it takes time O(m2n) to carry out the necessary matrix
computations. After this the prediction of the mean for a new test point takes
time O(m), and the predictive variance takes O(m2).

We have q(y|fm) = N (y|P>fm, σ2
nI) and p(fm) = N (0,Kmm). By integrat-

ing out fm we find that y ∼ N (0, K̃ + σ2
nIn). Thus the marginal likelihood

for the projected process approximation is the same as that for the SR model
eq. (8.17).

Again the question of how to choose which points go into the set I arises.
Csató and Opper [2002] present a method in which the training examples are
presented sequentially (in an “on-line” fashion). Given the current active set I
one can compute the novelty of a new input point; if this is large, then this point
is added to I, otherwise the point is added to R. To be precise, the novelty of
an input x is computed as k(x,x)−km(x)>K−1

mmk(x), which can be recognized
as the predictive variance at x given non-noisy observations at the points in I.
If the active set gets larger than some preset maximum size, then points can
be deleted from I, as specified in section 3.3 of Csató and Opper [2002]. Later
work by Csató et al. [2002] replaced the dependence of the algorithm described
above on the input sequence by an expectation-propagation type algorithm (see
section 3.6).

As an alternative method for selecting the active set, Seeger et al. [2003]
suggest using a greedy subset selection method as per Algorithm 8.1. Com-
putation of the information gain criterion after incorporating a new site takes
O(mn) and is thus too expensive to use as a selection criterion. However, an ap-
proximation to the information gain can be computed cheaply (see Seeger et al.
[2003, eq. 3] and Seeger [2003, sec. C.4.2] for further details) and this allows the
greedy subset algorithm to be run on all points in R on each iteration.

8.3.5 Bayesian Committee Machine

Tresp [2000] introduced the Bayesian committee machine (BCM) as a way of
speeding up Gaussian process regression. Let f∗ be the vector of function val-
ues at the test locations. Under GPR we obtain a predictive Gaussian distri-
bution for p(f∗|D). For the BCM we split the dataset into p parts D1, . . . ,Dp

where Di = (Xi,yi) and make the approximation that p(y1, . . . ,yp|f∗, X) '∏p
i=1 p(yi|f∗, Xi). Under this approximation we have

q(f∗|D1, . . . ,Dp) ∝ p(f∗)
p∏

i=1

p(yi|f∗, Xi) = c

∏p
i=1 p(f∗|Di)
pp−1(f∗)

, (8.28)

where c is a normalization constant. Using the fact that the terms in the
numerator and denomination are all Gaussian distributions over f∗ it is easy

8.3 Approximations for GPR with Fixed Hyperparameters 181

to show (see exercise 8.7.1) that the predictive mean and covariance for f∗ are
given by

Eq[f∗|D] = [covq(f∗|D)]
p∑

i=1

[cov(f∗|Di)]−1E[f∗|Di], (8.29)

[covq(f∗|D)]−1 = −(p− 1)K−1
∗∗ +

p∑
i=1

[cov(f∗|Di)]−1, (8.30)

where K∗∗ is the covariance matrix evaluated at the test points. Here E[f∗|Di]
and cov(f∗|Di) are the mean and covariance of the predictions for f∗ given Di,
as given in eqs. (2.23) and (2.24). Note that eq. (8.29) has an interesting form
in that the predictions from each part of the dataset are weighted by the inverse
predictive covariance.

We are free to choose how to partition the dataset D. This has two aspects,
the number of partitions and the assignment of data points to the partitions.
If we wish each partition to have size m, then p = n/m. Tresp [2000] used
a random assignment of data points to partitions but Schwaighofer and Tresp
[2003] recommend that clustering the data (e.g. with p-means clustering) can
lead to improved performance. However, note that compared to the greedy
schemes used above clustering does not make use of the target y values, only
the inputs x.

Although it is possible to make predictions for any number of test points
n∗, this slows the method down as it involves the inversion of n∗×n∗ matrices.
Schwaighofer and Tresp [2003] recommend making test predictions on blocks of
size m so that all matrices are of the same size. In this case the computational
complexity of BCM is O(pm3) = O(m2n) for predicting m test points, or
O(mn) per test point.

The BCM approach is transductive [Vapnik, 1995] rather than inductive, in
the sense that the method computes a test-set dependent model making use
of the test set input locations. Note also that if we wish to make a prediction
at just one test point, it would be necessary to “hallucinate” some extra test
points as eq. (8.28) generally becomes a better approximation as the number of
test points increases.

8.3.6 Iterative Solution of Linear Systems

One straightforward method to speed up GP regression is to note that the lin-
ear system (K + σ2

nI)v = y can be solved by an iterative method, for example
conjugate gradients (CG). (See Golub and Van Loan [1989, sec. 10.2] for fur-
ther details on the CG method.) Conjugate gradients gives the exact solution
(ignoring round-off errors) if run for n iterations, but it will give an approxi-
mate solution if terminated earlier, say after k iterations, with time complexity
O(kn2). This method has been suggested by Wahba et al. [1995] (in the context
of numerical weather prediction) and by Gibbs and MacKay [1997] (in the con-
text of general GP regression). CG methods have also been used in the context

182 Approximation Methods for Large Datasets

Method m SMSE MSLL mean runtime (s)
SD 256 0.0813 ± 0.0198 -1.4291 ± 0.0558 0.8

512 0.0532 ± 0.0046 -1.5834 ± 0.0319 2.1
1024 0.0398 ± 0.0036 -1.7149 ± 0.0293 6.5
2048 0.0290 ± 0.0013 -1.8611 ± 0.0204 25.0
4096 0.0200 ± 0.0008 -2.0241 ± 0.0151 100.7

SR 256 0.0351 ± 0.0036 -1.6088 ± 0.0984 11.0
512 0.0259 ± 0.0014 -1.8185 ± 0.0357 27.0
1024 0.0193 ± 0.0008 -1.9728 ± 0.0207 79.5
2048 0.0150 ± 0.0005 -2.1126 ± 0.0185 284.8
4096 0.0110 ± 0.0004 -2.2474 ± 0.0204 927.6

PP 256 0.0351 ± 0.0036 -1.6580 ± 0.0632 17.3
512 0.0259 ± 0.0014 -1.7508 ± 0.0410 41.4
1024 0.0193 ± 0.0008 -1.8625 ± 0.0417 95.1
2048 0.0150 ± 0.0005 -1.9713 ± 0.0306 354.2
4096 0.0110 ± 0.0004 -2.0940 ± 0.0226 964.5

BCM 256 0.0314 ± 0.0046 -1.7066 ± 0.0550 506.4
512 0.0281 ± 0.0055 -1.7807 ± 0.0820 660.5
1024 0.0180 ± 0.0010 -2.0081 ± 0.0321 1043.2
2048 0.0136 ± 0.0007 -2.1364 ± 0.0266 1920.7

Table 8.1: Test results on the inverse dynamics problem for a number of different
methods. Ten repetitions were used, the mean loss is shown ± one standard deviation.

of Laplace GPC, where linear systems are solved repeatedly to obtain the MAP
solution f̃ (see sections 3.4 and 3.5 for details).

One way that the CG method can be speeded up is by using an approximate
rather than exact matrix-vector multiplication. For example, recent work by
Yang et al. [2005] uses the improved fast Gauss transform for this purpose.

8.3.7 Comparison of Approximate GPR Methods

Above we have presented six approximation methods for GPR. Of these, we
retain only those methods which scale linearly with n, so the iterative solu-
tion of linear systems must be discounted. Also we discount the Nyström ap-
proximation in preference to the SR method, leaving four alternatives: subset
of regressors (SR), subset of data (SD), projected process (PP) and Bayesian
committee machine (BCM).

Table 8.1 shows results of the four methods on the robot arm inverse dy-
namics problem described in section 2.5 which has D = 21 input variables,
44,484 training examples and 4,449 test examples. As in section 2.5 we used
the squared exponential covariance function with a separate length-scale pa-
rameter for each of the 21 input dimensions.

8.3 Approximations for GPR with Fixed Hyperparameters 183

Method Storage Initialization Mean Variance
SD O(m2) O(m3) O(m) O(m2)
SR O(mn) O(m2n) O(m) O(m2)
PP O(mn) O(m2n) O(m) O(m2)
BCM O(mn) O(mn) O(mn)

Table 8.2: A comparison of the space and time complexity of the four methods
using random selection of subsets. Initialization gives the time needed to carry out
preliminary matrix computations before the test point x∗ is known. Mean (resp.
variance) refers to the time needed to compute the predictive mean (variance) at x∗.

For the SD method a subset of the training data of size m was selected at
random, and the hyperparameters were set by optimizing the marginal likeli-
hood on this subset. As ARD was used, this involved the optimization of D+2
hyperparameters. This process was repeated 10 times, giving rise to the mean
and standard deviation recorded in Table 8.1. For the SR, PP and BCM meth-
ods, the same subsets of the data and hyperparameter vectors were used as had
been obtained from the SD experiments.4 Note that the m = 4096 result is not
available for BCM as this gave an out-of-memory error.

These experiments were conducted on a 2.0 GHz twin processor machine
with 3.74 GB of RAM. The code for all four methods was written in Matlab.5

A summary of the time complexities for the four methods are given in Table
8.2. Thus for a test set of size n∗ and using full (mean and variance) predictions
we find that the SD method has time complexity O(m3) + O(m2n∗), for the
SR and PP methods it is O(m2n) + O(m2n∗), and for the BCM method it
is O(mnn∗). Assuming that n∗ ≥ m these reduce to O(m2n∗), O(m2n) and
O(mnn∗) respectively. These complexities are in broad agreement with the
timings in Table 8.1.

The results from Table 8.1 are plotted in Figure 8.1. As we would expect,
the general trend is that as m increases the SMSE and MSLL scores decrease.
Notice that it is well worth doing runs with small m so as to obtain a learning
curve with respect to m; this helps in getting a feeling of how useful runs at
large m will be. In terms of SMSE we see that (not surprisingly) SD is inferior
to the other methods, which all have similar performance. For MSLL again SD
is inferior to the other methods, although here the PP method is inferior to SR
and BCM for larger m.

These results were obtained using a random selection of the active set. Some
experiments were also carried out using active selection for the SD method
(IVM) and for the SR method but these did not lead to significant improve-
ments in performance. For BCM we also experimented with the use of p-means
clustering instead of random assignment to partitions; again this did not lead
to significant improvements in performance. Overall on this dataset our con-

4In the BCM case it was only the hyperparameters that were re-used; the data was parti-
tioned randomly into blocks of size m.

5We thank Anton Schwaighofer for making his BCM code available to us.

184 Approximation Methods for Large Datasets

256 512 1024 2048 4096
0

0.05

0.1

S
M

S
E

m

SD
SR and PP
BCM

256 512 1024 2048 4096

−2.2

−1.8

−1.4

M
S

LL

m

SD
PP
SR
BCM

(a) (b)

Figure 8.1: Panel(a): plot of SMSE against m. Panel(b) shows the MSLL for the four
methods. The error bars denote one standard deviation. For clarity in both panels
the BCM results are slightly displaced horizontally w.r.t. the SR results.

clusion is that for fixed m SR is the method of choice, as BCM has longer
running times for similar performance. However, notice that if we compare on
runtime, then SD for m = 4096 is competitive with the SR and BCM results
for m = 1024 on both time and performance.

In the above experiments the hyperparameters for all methods were set by
optimizing the marginal likelihood of the SD model of size m. This means that
we get a direct comparison of the different methods using the same hyperparam-
eters and subsets. However, one could alternatively optimize the (approximate)
marginal likelihood for each method (see section 8.5) and then compare results.
Notice that the hyperparameters which optimize the approximate marginal like-
lihood may depend on the method. For example Figure 5.3(b) shows that
the maximum in the marginal likelihood occurs at shorter length-scales as the
amount of data increases. This effect has also been observed by V. Tresp and
A. Schwaighofer (pers. comm., 2004) when comparing the SD marginal likeli-
hood eq. (8.31) with the full marginal likelihood computed on all n datapoints
eq. (5.8).

Schwaighofer and Tresp [2003] report some experimental comparisons be-
tween the BCM method and some other approximation methods for a number
of synthetic regression problems. In these experiments they optimized the ker-
nel hyperparameters for each method separately. Their results are that for fixed
m BCM performs as well as or better than the other methods. However, these
results depend on factors such as the noise level in the data generating pro-
cess; they report (pers. comm., 2005) that for relatively large noise levels BCM
no longer displays an advantage. Based on the evidence currently available
we are unable to provide firm recommendations for one approximation method
over another; further research is required to understand the factors that affect
performance.

8.4 Approximations for GPC with Fixed Hyperparameters 185

8.4 Approximations for GPC with Fixed Hy-
perparameters

The approximation methods for GPC are similar to those for GPR, but need
to deal with the non-Gaussian likelihood as well, either by using the Laplace
approximation, see section 3.4, or expectation propagation (EP), see section
3.6. In this section we focus mainly on binary classification tasks, although
some of the methods can also be extended to the multi-class case.

For the subset of regressors (SR) method we again use the model fSR(x∗) =∑m
i=1 αik(x∗,xi) with αm ∼ N (0,K−1

mm). The likelihood is non-Gaussian but
the optimization problem to find the MAP value of αm is convex and can be
obtained using a Newton iteration. Using the MAP value α̂m and the Hessian
at this point we obtain a predictive mean and variance for f(x∗) which can be
fed through the sigmoid function to yield probabilistic predictions. As usual
the question of how to choose a subset of points arises; Lin et al. [2000] select
these using a clustering method, while Zhu and Hastie [2002] propose a forward
selection strategy.

The subset of datapoints (SD) method for GPC was proposed in Lawrence
et al. [2003], using an EP-style approximation of the posterior, and the differ-
ential entropy score (see section 8.3.3) to select new sites for inclusion. Note
that the EP approximation lends itself very naturally to sparsification: a sparse
model results when some site precisions (see eq. (3.51)) are zero, making the cor-
responding likelihood term vanish. A computational gain can thus be achieved
by ignoring likelihood terms whose site precisions are very small.

The projected process (PP) approximation can also be used with non-
Gaussian likelihoods. Csató and Opper [2002] present an “online” method
where the examples are processed sequentially, while Csató et al. [2002] give
an expectation-propagation type algorithm where multiple sweeps through the
training data are permitted.

The Bayesian committee machine (BCM) has also been generalized to deal
with non-Gaussian likelihoods in Tresp [2000]. As in the GPR case the dataset
is broken up into blocks, but now approximate inference is carried out using the
Laplace approximation in each block to yield an approximate predictive mean
Eq[f∗|Di] and approximate predictive covariance covq(f∗|Di). These predictions
are then combined as before using equations 8.29 and 8.30.

8.5 Approximating the Marginal Likelihood and ∗
its Derivatives

We consider approximations first for GP regression, and then for GP classifica-
tion. For GPR, both the SR and PP methods give rise to the same approximate
marginal likelihood as given in eq. (8.17). For the SD method, a very simple

186 Approximation Methods for Large Datasets

approximation (ignoring the datapoints not in the active set) is given by

log pSD(ym|Xm) = − 1
2 log |Kmm +σ2I|− 1

2y
>
m(Kmm +σ2I)−1ym− m

2 log(2π),
(8.31)

where ym is the subvector of y corresponding to the active set; eq. (8.31) is
simply the log marginal likelihood under the model ym ∼ N (0,Kmm + σ2I).

For the BCM, a simple approach would be to sum eq. (8.31) evaluated on
each partition of the dataset. This ignores interactions between the partitions.
Tresp and Schwaighofer (pers. comm., 2004) have suggested a more sophisti-
cated BCM-based method which approximately takes these interactions into
account.

For GPC under the SR approximation, one can simply use the Laplace or EP
approximations on the finite-dimensional model. For SD one can again ignore all
datapoints not in the active set and compute an approximation to log p(ym|Xm)
using either Laplace or EP. For the projected process (PP) method, Seeger
[2003, p. 162] suggests the following lower bound

log p(y|X) = log
∫
p(y|f)p(f) df = log

∫
q(f)

p(y|f)p(f)
q(f)

df

≥
∫
q(f) log

(p(y|f)p(f)
q(f)

)
df (8.32)

=
∫
q(f) log q(y|f) df −KL(q(f)||p(f))

=
n∑

i=1

∫
q(fi) log p(yi|fi) dfi −KL(q(fm)||p(fm)),

where q(f) is a shorthand for q(f |y) and eq. (8.32) follows from the equation
on the previous line using Jensen’s inequality. The KL divergence term can
be readily evaluated using eq. (A.23), and the one-dimensional integrals can be
tackled using numerical quadrature.

We are not aware of work on extending the BCM approximations to the
marginal likelihood to GPC.

Given the various approximations to the marginal likelihood mentioned
above, we may also want to compute derivatives in order to optimize it. Clearly
it will make sense to keep the active set fixed during the optimization, although
note that this clashes with the fact that methods that select the active set
might choose a different set as the covariance function parameters θ change.
For the classification case the derivatives can be quite complex due to the fact
that site parameters (such as the MAP values f̂ , see section 3.4.1) change as
θ changes. (We have already seen an example of this in section 5.5 for the
non-sparse Laplace approximation.) Seeger [2003, sec. 4.8] describes some ex-
periments comparing SD and PP methods for the optimization of the marginal
likelihood on both regression and classification problems.

8.6 Appendix: Equivalence of SR and GPR using the Nyström Approximate Kernel 187

8.6 Appendix: Equivalence of SR and GPR us- ∗
ing the Nyström Approximate Kernel

In section 8.3 we derived the subset of regressors predictors for the mean and
variance, as given in equations 8.14 and 8.15. The aim of this appendix is to
show that these are equivalent to the predictors that are obtained by replacing
k(x,x′) systematically with k̃(x,x′) in the GPR prediction equations 2.25 and
2.26.

First for the mean. The GPR predictor is E[f(x∗)] = k(x∗)>(K+σ2
nI)

−1y.
Replacing all occurrences of k(x,x′) with k̃(x,x′) we obtain

E[f̃(x∗)] = k̃(x∗)>(K̃ + σ2
nI)

−1y (8.33)

= km(x∗)>K−1
mmKmn(KnmK

−1
mmKmn + σ2

nI)
−1y (8.34)

= σ−2
n km(x∗)>K−1

mmKmn

[
In −KnmQ

−1Kmn

]
y (8.35)

= σ−2
n km(x∗)>K−1

mm

[
Im −KmnKnmQ

−1
]
Kmny (8.36)

= σ−2
n km(x∗)>K−1

mm

[
σ2

nKmmQ
−1
]
Kmny (8.37)

= km(x∗)>Q−1Kmny, (8.38)

where Q = σ2
nKmm +KmnKnm, which agrees with eq. (8.14). Equation (8.35)

follows from eq. (8.34) by use of the matrix inversion lemma eq. (A.9) and
eq. (8.38) follows from eq. (8.36) using Im = (σ2

nKmm + KmnKnm)Q−1. For
the predictive variance we have

V[f̃∗] = k̃(x∗,x∗)− k̃(x∗)>(K̃ + σ2
nI)

−1k̃(x∗) (8.39)

= km(x∗)>K−1
mmkm(x∗)− (8.40)

km(x∗)>K−1
mmKmn(KnmK

−1
mmKmn + σ2

nI)
−1KnmK

−1
mmkm(x∗)

= km(x∗)>K−1
mmkm(x∗)− km(x∗)>Q−1KmnKnmK

−1
mmkm(x∗) (8.41)

= km(x∗)>
[
Im −Q−1KmnKnm

]
K−1

mmkm(x∗) (8.42)

= km(x∗)>Q−1σ2
nKmmK

−1
mmkm(x∗) (8.43)

= σ2
nkm(x∗)>Q−1km(x∗), (8.44)

in agreement with eq. (8.15). The step between eqs. (8.40) and (8.41) is obtained
from eqs. (8.34) and (8.38) above, and eq. (8.43) follows from eq. (8.42) using
Im = (σ2

nKmm +KmnKnm)Q−1.

8.7 Exercises

1. Verify that the mean and covariance of the BCM predictions (equations
8.29 and 8.30) are correct. If you are stuck, see Tresp [2000] for details.

2. Using eq. (8.10) and the fact that Copt = KnmK
−1
mm show that E(Copt) =

tr(K − K̃), where K̃ = KnmK
−1
mmKmn. Now consider adding one data-

point into set I, so that Kmm grows to K(m+1)(m+1). Using eq. (A.12)

188 Approximation Methods for Large Datasets

show that the change in E due to adding the extra datapoint can be
computed in time O(mn). If you need help, see Schölkopf and Smola
[2002, sec. 10.2.2] for further details.

