
ICHAPTER

   Convergence

I . Introduction

Analysis is essentially the mathematics of approximation . Mathematical
entities that are difficult to deal with directly are approximated by others
that are more convenient , and an attempt is made to apply to the original
entities the results obtained for the approximate ones. Our first task will
be to illustrate this statement for sequences, which involve the most
elementary but also the most basic concepts of analysis. Many of the
theorems about sequences can be generalized in far -reaching ways and
can be set in a much broader framework .

It is not our intention here to repeat well -known details . Rather we are
interested in bringing to the foreground certain dominating aspects of the
subject . Thus from the very beginning the relevant concepts will be presented 

in a somewhat more general (and therefore more abstract ) form

than is customary in textbooks . From the pedagogical point of view it
would be desirable to make as much use as possible of concrete examples,
but in a systematic treatment of the subject we must not lose sight of the
advantages offered by abstraction ; it enables us to break up the longer
proofs into shorter steps and thereby gain a better understanding of their
logical structure .

Let us give a brief summary of the organization of the present chapter.
For the description of limit process es in analysis it is customary to introduce

sequences. Our purpose is to analyze the resulting concepts and theorems from
several points of view with the idea in mind that in mathematics such a
procedure always leads to valuable insights into the structure of the subject
and to productive generalizations.

The concept of convergence does not in itself require the whole structure of
the real or complex numbers but can already be formulated in arbitrary
topological spaces ( 2.1). But even the condition that a convergent sequence
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shall have only one limit already forces us to introduce our first restriction :
this condition holds only in so-called Hausdorffspaces ( 2.2) .

We are accustomed to the idea of calculating with the limits of numerical
sequences, but in a general topological space such calculations may not be
possible , since none of the relevant operations are necessarily defined in such
a space . But if they are defined , then calculation with limit values has a
meaning , and the question arises : under what circumstances can we prove
the well - known theorems about interchange of a limit process with addition

or multiplication ? In other words , when are addition and multiplication consistent 
with the topology of the space ? This question leads to the concept of a

topological group and to related concepts (  2.3 to 2.6) .
The order structure of the real numbers makes them into a topological

space with striking properties ; consequently the sequences of real numbers
(and also , to some extent , of complex numbers , which can be reduced to them )
have properties that require the special structure of this topological space for
their very formulation (  3) .

The filndamental Cauchy theorem for numerical sequences, which is proved
in  3, does not make use of the full order structure of the real numbers but
only of its weaker metric structure ; but even the latter is definitely stronger
(that is, more special ) than a merely topological structure , in which the
Cauchy condition cannot even be formulated . In a metric space, however , this
condition has meaning and the validity of the fundamental Cauchy theorem
is an additional property , called completeness . An important criterion for
completeness is given at the close of this section ( 4) .

In the following section ( 5) we focus our attention , not on the set of values
of a sequence , but on its index set . For a sequence in the classical sense this

index set is the set of natural numbers , which proves for many purposes to

be far too " thin " : for example . in the symbol Jim f (x ) the " index " x runs
x - - a

through all the numbers in a neighborhood of a. Of course this particular
example of a " continuous " limit process can be reduced to the convergence
of sequences in the classical sense , but that fact does not make it any more
natural to insist that index sets must be countable . The natural generalization
is provided by the Moore -Smith sequences, or by the equivalent , and often
more convenient , concept of a filter .

From the theoretical point of view the most important application of filters
is the following : just as the topological properties of a space can be described
without reference to any metric but merely in terms of subsets of the space,
we may also introduce a general structure in which the Cauchy condition can
be formulated without reference to a metric . Such a " uniform structure "
induces a natural topology and allows us, in particular , to give the most
general formulation ( 6) of the extremely important concept of uniform
convergence .

2. Sequences

2.1. The Limit Concept

The definition of a sequence involves three entities : the index set, namely
(in the classical case) the set N of non -negative whole numbers 0, I , 2, . . . ;
the set of values M , which may be any non -empty set, and finally a mapping
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of N into M .l Thus to each number n from N there corresponds a well -
defined element of M , denoted by an, A sequence is not merely a subset; it
is an indexed (enumerated ) subset. If the elements of M are numbers , we
speak of a numerical sequence, if they are functions , we speak of a
sequence of functions , and so forth . If no further properties are assigned
to the set M , the sequences are of no great interest , but the situation is

quite different if M is a topological space, a concept that arises in the
following way . Certain subsets of M are distinguished , in the manner
described below , as neighborhoods, whereupon M is said to have a topo-
logical structure ; or equivalently , the set M , along with the topological
structure thus defined for it , is said to be a topological space.2 The elements
of such a set are usually called points , so that these " points " may, for
example, be functions . In the set M we distinguish certain subsets which ,
as already mentioned , are called neighborhoods . They are required to
have the following properties .

H 1) EL'ery point a EM has at least one neighborhood U(a) and is contained 
in each of its neighborhoods: a EU (a) .

H 2) For any two neighborhoods U(a) and V(a) there exists a neighborhood
W(a) which is contained in the intersection of U(a) and V(a) :
W(a) c U(a) n V(a) .

H 3) For eL'ery point b in the neighborhood U(a) there exists at least one
neighborhood U(b) ~'hich is contained in U(a).

Thus a set, together It'ith a system oj subsets, which satisfies H 1 through
H 3 is called a topological space.

It is now possible to introduce one of the most important concepts of
analysis, namely that of a limit . It may happen that the elements of the
sequence (which , as we have seen, are points of the topological space M )
are ultimately contained in an arbitrarily chosen neighborhood of a point
a of the space . We then say that the sequence converges to the point a or

that a is a limit of the sequence . The situation can be described more

precisely as follows : we say that the sequence an(an EM , nE N ) converges
to the point a EM if for every neighborhood U(a) of a there exists a number
no such that an EU (a) for all n ~ no.

Thus convergence is a so-called infinitary property of the sequence. In
other words , any valid statement about the sequence remains valid if only
finitely many elements are changed or omitted . We shall often regard a
given property as valid for all the elements ofa sequence, even though there
may be finitely many exceptions , since it is usually irksome to keep
mentioning the exceptional cases.

1 For the concept of " mapping " see lA ,  8.4 .
2 A set can be given a topological structure in many different ways , so that one and

the same set can be interpreted as a topological space in many ways .
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3 The symbol eJ denotes the empty set.
4 For simplicity we shall assume below (often tacitly ) that the space is Hausdorff .
5 For the axioms defining a group see IB2 ,  1.1.

2 . 2 Uniqueness of the Limit

In a completely general topological space it is possible for a sequence to

have several limits , an undesirable feature of the space which can be

eliminated only if we specialize further to a so - called Hausdorff space ,

that is , if we also require the following Hausdorff separation axiom .

H 4 ) For any two distinct points a and b there exist mutually exclusive

neighborhoods U ( a ) , U ( b ) , with U ( a ) nU ( b ) = . e5 . 3

A topological space with the properties H 1 ) through H 4 ) is called a Haus -

dorff space . As mentioned above , the following theorem holds in such a

space :

Theorem 1 . In a Hausdorff space any sequence has at most one limit .

The proof is very easy . If a and a ' are limits of a sequence an , n EN ,

and U ( a ) and U ( a ' ) are arbitrary neighborhoods of a and a ' , there exist

numbers nl , n2 such that an EU ( a ) for all n f ; ; nl , and an EU ( a ' ) for all

n ~ n2 . If no is the greater of the two numbers nl , n2 , then an is in the

intersection U ( a ) nU ( a ' ) , for all n ~ no . Thus no two neighborhoods

have an empty intersection , which by H 4 ) is possible only if a and a '

coincide .

In a Hausdorff space 4 the uniquely determined limit of a sequence is

denoted by

( I ) a = Jim an -
n - oa >

An alternative notation is

( 2 ) an - + a for n - + 00 .

As a final remark we note that the elements of a sequence may be considered 

as approximations to the limit , so that in the sense of the topology

of M the limit can be approximated with arbitrary exactness .

2 . 3 . Topological Groups

A great deal more can be said about sequences if the space M , in

addition to being a Hausdorff space , has an algebraic structure that is

" consistent " with its topology . A good example is given by the real

numbers , which form not only a Hausdorff space but also a field , so that

we can speak of a topological field . In the same way we can also speak of

topological groups , topological rings , and so forth .

Before giving an exact definition of a topological group , let us introduce

the following useful notation :

If A and B are subsets of the group  S M , we denote by AB the set of



5SEQUENCES

" points " ab with a E A , bE B . Similarly , IIA = A - 1 denotes the set of

" points " I / a = a - 1 inverse to a , with a E A . Compare the rules for

calculation with complex  es in IB2 ,  3 . I .

When we say that the group property is " consistent " with the topology

of M we mean that the group operations are continuous mappings of the

space into itself , in the following precise sense :

G I ) If c = ab and U ( c ) is an arbitrary neighborhood of c , there exist

neighborhoods U ( a ) , U ( b ) ofa and b such that U ( a ) U ( b ) c U ( c ) .

G 2 ) For an arbitrary neighborhood U ( lja ) of Ila there exists aneighborhood 

U ( a ) ofa such that IjU ( a ) c U ( lja ) .

In more intuitive language the meaning of G 1 ) and G 2 ) is as follows : the

product z = xy is arbitrarily close to c if x is sufficiently close to a and y

is sufficiently close to b ; and the inverse I Jx is arbitrarily close to I Ja if x

is sufficiently close to a .

Definition 1 . A topological space which is also a group and which

satisfies the axioms G 1 ) and G 2 ) is called a topological group .

Note . These remarks are independent of the notation used for the operation 

of the group . For example , in Abelian groups it is customary to regard

the operation as addition and to denote it by + , and consequently ( cf . IB2 ,

 1 ) to write - a for a - 1 .

2 . 4 . Calculation with Limits

Theorem 2 . Let M be a topological group , the group operation being

written multiplicatively . If the sequences an and bn ( an , bn EM , nE N ) are

convergent , then the sequence Cn = anbn is also convergent and has the limit

c = ab ; or : Jim Cn = Jim an Jim bn .

Proof . Let U ( c ) be an arbitrary neighborhood of c . In view of the

continuity of the product operation , there exist neighborhoods U ( a ) , U ( b )

of a and b such that U ( a ) U ( b ) c U ( c ) ; that is , xy EU ( c ) , if x EU ( a ) ,

yE U ( b ) . By hypothesis , there exist numbers nl , n2 such that an EU ( a ) for

n > ni and bn EU ( b ) for n > n2 . For all n > no = max ( nl , n2 ) we then

have Cn = anbn EU ( c ) , as was to be proved .

Remark . If the group operation is written additively , the theorem

becomes :

Theorem 3 . Jim ( an + bn ) = Jim an + Jim bn .

Theorem 4 . Let M be a topological group . If the sequence an converges

to a ( an , a EM ; n EN ) , then the sequence lJan is also convergent and has

the limit I Jan that is , Jim ( I Jan ) = I Jlim an .

Proof . For an arbitrary neighborhood U ( I Ja ) of I Ja there exists a

neighborhood U ( a ) of a such that IJ U ( a ) c U ( I Ja ) ; that is , I Jx EU ( I  Ja ) ,

if x EU ( a ) . Moreover , there exists a number no such that an EU ( a ) for

n > no and also such that I Jan EU ( I Ja ) .
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a jim an
Jim ~ = Irm-b: '

Since ~ can be written in the form an ~, theorems 2 and 4 imply thenn

following theorem for a topological group M with multiplicatively written
group operation :

Th 5 1. an Jim an if I. . h .d .eorem . im -b = 1. bit Ie rig t Sle exists.n im n

2.5. Topological Fields

If we proceed still further with this specialization of the space M and
require that it be a topological field , we mean thereby that the following
conditions are satisfied :

1. M is a Hausdorff space;
2. 1\,1 is afield (cf . IB5 ,   1.2 and 1.10) ; in other words, M is an additive

group, M * = M - 0 is a multiplicative group, and the two group
operations are connected by the distributive laws;

3. The consistency conditions G 1) and G 2) are satisfied, both for addition
and for multiplication , }~'here in G 2) we must, of course, assume a # O.

In a topological field ~'e ha L'e the formulas

Jim (an + bn) = Jim an + Jim bn,

Jim anbn = Jim an Jim bn,

(3) bn # 0, b = Jim bn # 0,

if the sequences an and bn converge ; and in each case the limit is uniquely

determined .

2 . 6 . Application to the Field C of Complex Numbers

It is natural to ask why the proofs in the textbooks are so much more

complicated than the ones given here . The explanation is that in the proofs

of the theorems about limits it is customary to include , in implicit form , a

proof of the continuity of the two operations , addition and multiplication .

Let us illustrate in more detail for the case of the field C of complex numbers .

It is clear that the limit theorems from  2 . 5 will have been proved if we show

that this field is a topological field . Regarded as a metric space it is certainly

also a Hausdorff space , and thus we need only prove that the addition and

multiplication are continuous .

Continuity of addition . Let c = a + b and let E be a given positive number .

The E - neighborhood of c is then the set U ( c ) of numbers z with Iz - cl < E .

For U ( a ) we take the set of numbers x with Ix - al < ~ and for U ( b ) the

set of numbersy with Iy - bl < ~ . From I ( x + y ) - ( a + b ) 1 = I ( x - a ) +
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(y - b)1 ~ Ix - al + I y - bl < ~ + ~ = E" it follows at once that z = x + Y

to take the numbers

improper elements.
For monotone sequences it is easy to establish convergence a priori ,

without knowing the value of the limit , where, as usual , we say that a
sequence an, nE N is monotone increasing if an ~ an + 1 for all n, and monotone 

decreasing if an ~ an+l for all n (where it is obviously convenient to
allow a finite number of exceptions to these inequalities ) .

The fundamental theorem on monotone sequences runs as follows :

is contained in the  -neighborhood of c = a + b ; that is,

U (a) + U(b) EU (a + b) .

Continuity of multiplication . After choice of the arbitrary positive number
  we choose two other positive numbers  1 and  2 in the manner described
below. We note that Ixy - abl = Ib(x - a) + a(y - b) + (x - a)(y - b)1 ~
Ibllx - al + lally - bl + Ix - ally - hi . Let U(a) be an  l -neighborhood
of a and U(b) an  2-neighborhood of b. For x EU (a) and yE U (b) we have
Ibllx - al ~ Ibl l ' lally - bl ~ lal  2 (with equality if either a or b is equal
to 0) and Ix - ally - bl <  1 2. If we take  1 = 1 /( lbl + 1),  2 = 1 /( lal + 1)
with  2 < 1, then obviously Ixy - abl < 1  + 1  + 1 , which completes the
proof .

Continuity of the operation of forming the inverse . Assume a :I: 0 and let '7
be a positive number to be determined below. If we first assume '7 < tlal ,
then for every number x in the '7-neighborhood U(a) of a we have the inequality 

Ix - al < tlal , and consequently Ixl > tlal . Thus the numbers in
U (a) are different from O. Furthermore ,

11 11 Ix- al '7x - 'Q = -jXTTGj- < tj";jj2'

If we now take '7 < tlaI2  , the proof is complete.
The above proof is a good illustration of the remark in   1 to the effect that

a proof can often be divided up into shorter steps.

3. Monotone Sequences and limits of Indeterminacy

3.1. Monotone Sequences

We shall make use of the fact (see IB1 ,  4.4) that in the field of real
numbers every set A that is bounded above has a least upper bound

(4) jL = sup X,
xeA

and every set B that is bounded below has a greatest lower bound

(5) ,\ = inf x .
xeB

If the sets are unbounded above or below , then for jL, ,\ it is convenient

+ 00 and - 00, which are adjoined to the field as
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n -+cx>

3.2. Limits of Indeterminacy

All sequences of real numbers , including those that do not converge,
display certain regularities closely connected with monotone sequences.

Let ,uk be the least upper bound of the set of terms an, n ~ k in a given
sequence an , n EN ; that is ,

(6) ,uk = sup an, k = 0, 1, 2, . . . .
n ?;. k

If the sequence is not bounded above , we set ,uk = + 00 . Otherwise the

numbers ,uk are the terms of a monotone decreasing sequence, the majoriz -
ing sequence of the given sequence. The number

(7) ,u = inf ,uk
keN

is either - 00 or the limit of the sequence ,uk. This number is called the

upper limit (limes superior ) of the sequence an. We write

(8) ,u = Jim sup an.
n - + CXI

If one of the ,uk = + 00 , we write , u = + 00 .

Correspondingly we can form

(9) Ak = inf an, k = 0, I , 2, . . .
n ?;. k

and

(10) A = sup Ak.
keN

The sequence Ak, kEN is called the minorizing sequence of the given
sequence if the Ak are finite . The number (10) is equal to - 00 if a Ak = - 00,
is equal to + 00 if the sequence Ak is unbounded above, and is otherwise
the limit of the monotone sequence Ak. This number is called the lower
limit (limes inferior ) of the sequence an. We write

( I I ) A = Jim inf an.

Theorem 6. If a monotone increasing sequence is bounded above, then
the sequence is convergent, and similarly for a monotone decreasing sequence
bounded be/ow.

It will be sufficient to prove the first part of the theorem . Since the set of
numbers an, nE N is bounded above, it has a least upper bound

a = sup anneN

Thus for all n we have an < a +  , with arbitrary positive  , since it is
true that an ~ a. Furthermore , there exists a number no with ana > a -  
and thus , since the sequence is monotone , an > a -   for all n ~ no.
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It is easy to show that

inf an ~ne N

jim sup an ~ ,e.n-+<X)
Jfa number a is such that ultimately

then

1im inf an = - 1im sup ( - an ) .
n - + <x> n -+ <x>

' \ 0 ~ ' \ k ~ fLk ~ fLo , kEN ,

' \ 0 ~ , \ ~ fL ~ fLo ,

1. . f < 1. <im In an = im sup an = sup an .
n -+ <X> n -+ <X> ne N

an > < X - E " ,

1 . . f >
im III an = < X .

n - + cx >

It is sufficient to prove the first part of the theorem . If ,8 = + 00, the
assertion is trivial . But if ,8 is finite , then by hypothesis the sequence is
bounded above and thus the majorizing sequence exists. We can find a
number no with an < ,8 + E for all n ~ no. Thus ,8 + E is an upper bound
for the set of numbers an, n ~ no, and consequently fl-k ~ ,8 + E, for
k ~ no, and a fortiori fl- ~ ,8 + E. But since E is arbitrarily small , we have
fl- ~ ,8. The proof requires only slight changes for the case ,8 = - 00, since
the hypothesis then states that ultimately the numbers are less than any
preassigned bound and consequently are unbounded below .

It is easy to show that A is the smallest and fl- is the largest number with
the property stated in the hypothesis of the preceding theorem . Equivalently 

we have

Theorem 8. Let E be an arbitrary positive number. If A and fl- are the
limits of indeterminacy of the sequence an, nE N , then ultimately

an > ~ - E, an < fL + E

and infinitely often

an < ~ + E, an > fL - E.

(12)

Since

we have

and thus

( 13)

The upper and lower limits of a sequence are called its limits o/ indeterminacy
. They are not necessarily identical with the least upper and greatest

lower bounds .

The following theorem is useful in many applications :
Theorem 7. / fa number f3 is such that ultimately

an < ,8 +  ,

for every fixed choice of the positive number  , then
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Again it is sufficient to consider the case of the upper limit . Since IL is
the greatest lower bound of the numbers I Lk' there exists a number k with

ILk < IL + E, so that certainly an < IL + E for n ~ k . If it were not true
that an > IL - E infinitely often , then ultimately we would have an ~ IL - E,
or in view of the preceding theorem IL ~ IL - E, which is impossible .

The connection between limits of indeterminacy and convergence can
be stated as follows .

Theorem 9. A sequence is convergent if and only ifits limits of in determinacy 
are fi '!ite and are equal to each other. Then the sequence converges to

this common value .

The condition stated in the theorem is necessary , since if an converges

to a, then ultimately an > a + E, so that IL ~ a and an > a - E, and thus
,\ ~ a. Since ,\ ~ IL, we thus have ,\ = IL = a. Conversely , if ,\ = IL = a,
then ultimately an > ,\ - E = a - E and ultimately an < IL + E = a + E,
so that a is the limit of the sequence .

3.3. The Fundamental Theorem of Cauchy

This theorem states a criterion for the convergence of a sequence of

complex6 numbers .
Let Cn, nE N, be a sequence of complex numbers . We first formulate a

necessary condition for convergence . Let c denote the limit of the sequence .

Then if E" is a preassigned positive number , there exists a number no such
that I Cn - cl < ! E" for n ~ no. Thus

Icm - cnl ~ Icm - cl + Icn - cl < -!E" + -!E" = E"

for all m , n ~ no .

But this necessary condition , to the effect that ultimately the terms must
remain arbitrarily close to one another , is also sufficient . The two assertions
constitute the fundamental theorem of Cauchy :

Theorem 10. For the conl.~ergence of a sequence cn, nE N, of complex
numbers it is necessary and sufficient that for an arbitrarily preassigned
positive E there exists a number no such that

(14) Icm - cnl < E"

for all m, n ~ no.
It remains to prove the sufficiency of the condition . If we write

Cn = an + ibn, with real an and bn, then obviously en, nE N, is convergent
if both the sequences an and bn, n EN , are convergent. From I Cm - cnl ~
lam - an! + Ibm - bn! and lam - ani ~ !Cm - cnl, Ibm - bnl ~ !Cm - cnl
we see that the Cauchy condition for cn implies the same condition for an
and bn, and conversely . Thus it is sufficient to prove the theorem for real
sequences .

6 And thus , in particular , of real numbers .
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4.2. Complete Metric Spaces
If a sequence an converges to a point a in a metric space, then by the

triangle inequality (cf .  4.1, M 3)) and the definition of convergence we

4. Metric Spaces

4.1. Axiomatic Definition
In III 2,  1.2 we shall be making use of special topological spaces,

namely metric spaces. They are characterized by the fact that for every
two points there is defined a real non-negative number dCa, b), called the
" distance" between a and b, with the following properties:

M 1) dCa, b) = 0 if and only ifa = b,
M 2) dCa, b) = d(b, a),
M 3) For every choice of elements a, b, c we have

dCa, b) ~ dCa, c) + d(c, b) (triangle inequality).

The connection here with the classical arguments of analysis is obvious.
As an example of a metric space let us take the set of rational numbers,

or the set of real numbers, with the distance function dCa, b) = la - hi.
The axioms M 1) to M 3) can be verified at once. Thus theorem 1 in  2.2
is valid if we are dealing with sequences of rational or real numbers.

have, as in  3.3, the following necessary condition for convergence:

(15) d(am am) ~ d(an, a) + dCa, am) ~ E for n, m > no, E > O.

If the space is such that (15) is also a sufficient condition for convergence
of sequences, it is said to be complete. Thus a sufficient condition for the
completeness of a space is that in it every bounded infinite subset has at
least one limit point, i .e., a point such that every neighborhood of it
contains infinitely many points of the set.

Let an, nE N , be a real sequence satisfying the Cauchy condition . If E
is an arbitrary positive number , there exists a number no such that for
some In ~ no and every n ~ no we have lam - ani < E or am - E < an <
am + E. If In is regarded as fixed , these inequalities hold for all numbers an
with finitely many exceptions . But this statement means that the sequence
is bounded and that the two limits of indeterminacy are finite . By  3.2,
theorem 8 , we have am - E ~ Jim inf an and Jim sup an ~ am + E, so

n - + ( X) n - + ( X)

that

Jim sup an - Jim inf an ~ 2E".
n - + CX) n - + CX)

But since the positive number E is arbitrary , the two limits of indeterminacy
must be equal , which completes the proof of convergence.
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5. Filters

d(an, am) + d(am, a) < E for all n > no,
converges to a .7

This criterion for convergence in an arbitrary metric space is obviously a

generalization of the Cauchy criterion for convergence in classical analysis .

5.1. Moore -Smith Sequences

A sequence is a mapping of the set N of natural numbers into a set of
values M . This mapping determines a structure in M , which can be
described in terms of the set of segments an, n ~ no, of M , where no is an

arbitrary non -negative number .
But in the above discussion the order properties of the set N have not

been used to their full extent . Our statements remain correct if for the

index set N we take a set in which there is defined a relation p with the

following properties :

gM 1) If p p q and q p r , then p p r .. namely, the relation is transitive .
gM 2) For any two elements p and q in N there exists in N an element r

with p p rand q p r .

gM 3) We have p pp for all p .

Such a set is called a directed set. For the non -negative integers the

relation " p" usually means " ~ ," but for the same set of numbers we can
easily define other relations with the above properties , e.g., the relation
" divisible ," in which p p q means that q is divisible by p .

A set M , a directed set N and a mapping of N into M define a Moore -
Smith sequence. If for M we take a topological space R, the sequence is
said to be convergent to a point a iffor every neighborhood U(a) ofa there
exists an element no in the index set such that an EU (a) for all n with no p n.

The following examples show that we are dealing here with an essential
extension of the concept of a sequence .

7 G . Aumann , Reelle Funktionen . Springer , Berlin -Gottingen -Heidelberg 1954 ,

p . 126 .

We can now prove the following theorem:
Theorem 11. If in a metric space eL'ery bounded infinite subset has at

least one limit point, then the space is complete.

The proof is as follows. For a sequence an let d(am, an) < ~ for arbitrary

E: > 0 and n, m > no(E:). Then it follows that the sequence is bounded and

thus has a limit point a. Consequently, dCa, am) < ~ for infinitely many m;

and by hypothesisd(an, am) < ~ for n, m > no. Consequently d(an, a) ~
which means that the sequence an
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Let the index set be a ( non - empty ) set X of real numbers with a limit

point a . The set becomes a directed set if we agree that p p q means

Ip - al ~ Iq - al . The above conditions are then easily verified . A

mapping f of the set X into another set Y of real numbers , or in other

words a real function , determines a Moore - Smith sequence . The terms of

the sequence are the values f ( x ) of the function . In the sense of Moore -

Smith convergence this sequence has a limit b if for every assigned number

E there exists a number Xo E X such that If ( x ) - bl < E for all x with

Xo P x , which means that Ixo - al ~ Ix - ai , or in other words Ix - al ~ S ,

with S = Ixo - al . Since the definition would otherwise be trivial , we

assume that a is not an element of X . Then S > 0 , and we have the usual

definition of the limit of a function for x --' 7' - a . Of course it is also possible

thatf ( a ) exists . If the value of the function at this point coincides with the

limit , then f ( x ) is said to be continuous for x = a .

Another striking example 8 is provided by the Riemann integral . Here

we let the function f be defined in the interval a ~ x ~ b and for a

partition 5 of the interval defined by the intermediate points .

a = Xo ~ x ! ~ Xl ~ X ~ ~ X2 ~ . . . ~ Xn - l ~ X : ~ Xn = b

we consider the Riemann sum

n

S ( f , 5 ) = L : f ( xr ) ( Xt - Xt - J .
t = l

Then the set . 8 of all partitionsforms  a directed set if by the norm of the

partition 5 we mean

d3 = max Ixi - xi - II
I ~ i ~ n

and define the relation 5 P 5 ' by d3 ~ ~ ; ' . Consequently S ( f , 5 ) is a Moore -

Smith sequence with the index set . 8 and the image set R of real numbers .

If this sequence converges , the function f is said to be integrable in the

sense of Riemann .

5 . 2 . Filters

The concept of a Moore - Smith sequence can be translated into purely

set - theoretic language , since the ordering relation p can be replaced by

relations between sets .

Let there be given a sequence an , n EN , where N is a directed set . In the

image set M we consider a nonempty system ~ of subsets with the following

property : a subset U of M is an element of the system ~ if and only if the

8 cr . G . Pickert , Folgen und Filter in der Infinitesimalrechnung , Der mathe -

matische und naturwissenschaftliche Unterricht 13 , pp . 150 - 153 ( 1960 ) .
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elements of the sequence " ultimately " belong to U, e.g., ifin the index set
there exists an element no such that an EU for all n with no p n.

The system ~ obviously has the following properties :

F 1) The empty set is not an element of ~ .
F 2) Every set that includes an element of ~ is an element of ~ .
F 3) The intersection oft  J1-'o elements of ~ is an element of ~ .

Such a system is called afilter . Let us give some examples.
In the set of non -negative integers we consider the subsets whose complements 

have only finitely many elements. This filter is called a Freclzet

filter and is denoted symbolically by n - 7 00. A similar filter arises in any
set M in which a sequence an, nE N, is defined if as subsets we admit those
subsets of n that contain " almost " all terms of the sequence, i .e., all terms
with the exception of at most finitely many .

In a topological space we may consider the system of subsets that
include a neighborhood ofa given point a. This filter is called the neighborhood 

filter of a and is denoted symbolically by x - 7 a.

We now wish to show conversely that for a given filter 0- in a set M we
can always construct a Moore -Smith sequence related to 0- in the above
way.

Thus our first task is to construct from 0- a suitable index set N . We
construct this set in the following manner , which is natural enough but
may seem somewhat artificial at first sight .

Let the elements of N be the pairs (a, A), where A is an element of 0-
(and is thus a subset of M ) and a is an element of M that is contained in A .
In N we define an order as follows :

(a, A) p (b, B) means A ::> B,

so that N is now a directed set. Since the properties gM 1) and gM 3) are
immediately clear, we need only verify gM 2) : for A E g. , BEg . we see by
F 3) that C = A n BEg . , and by F 1) the set C contains an element c ;
thus if n = (a, A) and m = (b, B) are two elements of N , then p = (c, C)
is also an element of N and we have an pp and m pp . We now obtain a
Moore -Smith sequence by means of the mapping

n = (a, A) ~ a of N into M .

It remains to show that the filter consisting of those subsets U of N which
" ultimately " contain all the elements of the sequence is identical with the
given filter ~ . For such a U there exists a 110 EN such that an EU follows
from 110 P 11. If 110 is the pair (ao, Ao) and if a E Ao, then in particular we
have 110 P 11 for 11 = (a, Ao) ; consequently a EU for every a E Ao, so that U
contains Ao. Since Ao E ~ we see from F 2) that U E ~ . Conversely , every
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element A of the filter is a subset of M " ultimately " containing all the

elements of the sequence , and for ao E A and no = ( ao , A ) we see that for

n = (b , B ) the relation no p n means precisely that B c A , so that in fact

an = bE B c A for no p n .

Two Moore - Smith sequences corresponding to the same filter obviously

behave in the same way with respect to convergence , so that it must be

possible to express convergence or nonconvergence solely in terms of
filters .

In fact , a Moore - Smith sequence converges to the limit a if and only if

every neighborhood U (a) of a " ultimately " contains all the elements of

the sequence ; in other words , if and only if every U (a) belongs to the filter

~ ; or expressed still differently , if and only if ~ includes the neighborhood

filter ll (a ) of a . This statement remains meaningful if ~ is an arbitrary

filter , not necessarily .arising from a sequence . Thus it is natural to regard

convergence not as a property of sequences but of filters and to make the

following definition .

A filter ~ in a topological space M is said to be convergent to a EM if it

is finer 9 than the neighborhood filter U (a ) .10

Thus a sequence f : N ~ M is convergent if and only if the corresponding

filter converges .

We have interpreted the behavior of a sequence in terms of filters in the

image space M . But the structure of the index set N can also be defined by

means of a filter : in N the subsets that " ultimately " contain all elements

of N form a filter ~ o which is obviously a natural generalization of the

Frechet filter for the set of natural numbers .

The image filter ~ in M generated by the mapping f : N ~ M of the

" direction filter " ~ o in Ncan now be described as the set of all subsets of

M that contain images of sets in ~ o. These image sets themselves form a

system of sets ~ in M with the properties

FB 1) The empty set does not belong to ~ ,

FB 2 ) The intersection of any two sets in Q3 contains a set in Q3.

Such a system of sets Q3 is called aft / fer basis . Thus the mapping ! : N - + M

maps the sets of a filter g. o in N onto a filter basis Q3 in M , and the image

filter g. arises from Q3 by the adjunction of all the sets that include sets
in Q3.11

9 A filter 1Y1 is said to be finer than the filter 1Y2 if it contains more sets, i .e., if
1Y1 ::> 1Y2.

10 If the space M is a Hausdorff space (cf .  2.2) the filter IY has at most one limit ;
for then U(a) C IY, U(b) C IY with b :;.!: a is impossible , since for the two disjoint
neighborhoods U (a) and U (b) it would follow from F 3 that f2J = U (a) f"\ U (b) E IY,
in contradiction to F 1.

11 A filter is itself a filter basis and as such generates itself .



It is obvious that a real filter is convergent if and only if J1, = A.

CONVERGENCE16

/" = jim sup ~ = inf /"u, A = Jim inf ~ = sup Au.UEIJ UEJ

6. Uniform Spaces

6.1. Our discussion up to now has served the purpose of generalizing
the elementary concept of convergence in such a way that it can be defined,
not only for metric spaces, but in purely topological terms.

However, the concept of convergence as defined in terms of a metric
accomplish es somewhat more than the purely topological definition, as
we may show by the example of sequences of real numbers: the fundamental
Cauchy theorem ( 3.3) allows us to express the convergence of a sequence
in such a way that the limit itself is not mentioned.

The statement contained in formula (14) in  3.3, namely that " ultimately
" two elements of the sequence in question are arbitrarily close to

each other, is immediately expressible in terms of a metric but cannot be
formulated in terms of convergence alone: for neighborhoods of one
point it is meaningful to assert that one neighborhood is greater than
another (namely, if one of them includes the other), but we cannot make
any such comparison between neighborhoods of distinct points. Acomparison 

of this sort, as it occurs in the formulation of the fundamental
Cauchy theorem, can nevertheless be made without any reference to a
metric, provided that the space M has a so-called uniform structure, which
means simply that we have some way of measuring the " nearness to each
other" of two points.

In order to distinguish the various concepts as clearly as possible, we at
first pay no attention to the topology of M , regarding it merely as a set

12 Thus the definition assumes that M is a topological space, which is not necessarily
true for N.

Since a sequence is a mapping f : N - + M in which a filter ~o is distinguished 
in N, the concept of convergence in the sense of Moore-Smith

is subsumed in the following definition :
The mappingf : N - + M is said to be convergent on theftlter ~o in N if

the imageftlter ~ of ~ o under lis convergent.12
Finally, the concept of limits of indeterminacy of sequences can be taken

over for ftlters of real numbers:
If B- is aftlter in the set R of real numbers and if

/LA and AA

denote, respectively, the least upper and greatest lower bounds of a set
A c R, we define
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without structure . The definition we now proceed to develop for the

concept of a uniform structure as the totality of nearness relations in M will

then define a topology in M in a natural way . Only those topologies that

arise from a uniform structure , in a sense to be made more precise below ,

allow us to formulate the fundamental Cauchy theorem .

In order to construct the desired definition of nearness we allow ourselves 

to be guided by the special case of a metric space M . The statements

of interest are those that refer to pairs of points , so that it is convenient to

formulate them as statements concerning the product space M x M consisting 

of the ordered 13 pairs ( a , b ) of points a and b in M . If dCa , b ) is the

distance function that makes M into a metric space , the pairs Cab ) with

dCa , b ) < E for a preassigned E > 0 form a set V   in M x M . The system

of these sets V   has the following properties , which are only restatements

of the properties of the distance function :

Since dCa , a ) = 0 for every point a EM , every set V   contains the set J

of all pairs ( a , a ) ; this set is called the " diagonal . "

The equality dCa , b ) = d ( b , a ) states that every set V   is symmetric :

V  - 1 = V  , where V - I is the set arising from V by reflection in the diagonal :

( a , b ) E V - I if and only if ( b , a ) E V .

Finally , the triangle inequality dCa , c ) ~ dCa , b ) + d ( b , c ) states that

( a , c ) E V   if ( a , b ) E V  / 2 and ( b , c ) E V  / 2 . This latter statement suggests

that we should introduce the following operation ( called composition ) for

the subsets of M x M :

For A c M x M and B c M x M let A 0 B be the subset of M x M

consisting of those pairs ( a , c ) for which there exists a bE M such that

( a , b ) E A and ( b , c ) E B .

The above assertion then has the following form :

V  / 20 V  / 2 C V  .

The system of sets V € obviously forms a filter basis , since in view of

V € : ) L1 no set V € is empty and also V € l ( " ) V € 2 = V min (€ l ' € 2) ' Thus if to

every V € we adjoin all the sets that include it , we obtain a filter ~ of subsets

U from M x M with the following properties :

F * 1 ) Every U E Q) contains the diagonal J .

F * 2 ) If U E Q) , then also U - I E Q) .

F * 3 ) For every U E Q) there exists a V E Q) with V 0 V C U .

In this way we have gained a vantage point from which we can make

the following definition , without reference to any metric :

Let M be a set and let & be aftlter in M x M with the properties F * 1 )

13 I .e . , the pairs ( a , b ) and ( b , a ) are distinct if a : f ; b .



14 When the uniform structure arises from ametricd (x, y) on M and U = V€ is
an  -entourage, this definition of U(a) obviously means that U(a) is an  -neighborhood
ora .
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following way :
Every Cauchy filter converges.

to F * 3 ) ; then a uniform structure is thereby defined in M ; a set U in ill is

called an entourage .

If a uniform structure has been defined on a set M , we can formulate

the Cauchy condition ( as was our original purpose ) for sequences , or

more generally for filters :

A filter a- in Miscalled a Cauchy filter if it contains arbitrarily " small "

sets , i . e . , iffor every entourage U there exists a set A E a- with A x A c U .

Finally , in order to state the desired generalization of the fundamental

Cauchy theorem we must define what we mean by saying that a Cauchy

filter converges ; in other words , we must convert the set M into a topo -

logical space . As was pointed out above , the given uniform structure will

enable us to define the desired topology in a natural way :

For every point a EM and every entourage U E ill let U ( a ) be the set of

those x EM for which ( a , x ) EU . 14 These sets U ( a ) will then form the

system of neighborhood filters for the desired topology on M . Thus we

make the following definition :

A set A c M is said to be open if for every a E A there exists a U ( a ) with

U ( a ) c A ; the empty set is also said to be open .

This definition satisfies the axioms under which the system of open sets

on M defines a topology , namely :

The entire space M is open , since M x ME ill and M = ( M x M ) ( a ) .

The union of arbitrarily many open sets is obviously open ; and finally ,

the intersection of two open sets A and B is also open , since for a EAn B

and U1 ( a ) c A , U2 ( a ) c B we have

A ( ) B ~ UI ( a ) ( ) U2 ( a ) = ( UI ( ) U2 ) ( a ) ,

and with VI and V2 their intersection VI n V2 also belongs to OJ .

Thus from the uniform structure we have constructed on M the topology

known as the uniform topology , under which the space M itself becomes a

uniform space .

The question of deciding when a given topological space is uniform will

not be discussed here . Let us simply state that every metric space , and thus

in particular the space R of real numbers , is uniform ; moreover , we shall

later construct important examples of function spaces that are uniform

and shall use them to illustrate the far - reaching importance of these

concepts .

For the present , let us fix our attention again on the fundamental Cauchy

theorem , which for certain uniform spaces can now be stated in the
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y -   ~ ~Uf ~ ~ ~ fL ~ fLu€ ~ Y +   and thus 0 ~ fL - ~ ~ 2 .

This theorem establish es a particular property 15 of those uniform spaces
in which it is valid, namely their completeness. Here again we shall not
investigate the criteria for completeness in a uniform space but shall
content ourselves with the most important example:

Theorem 12. The space R of real numbers, regarded as a uniform space,
is complete.16

Proof. Let g. be a real Cauchy filter . For E" > 0 let V€ again be the
E"-entourage in R x R. Since g. is a Cauchy filter, there exists for every
E" > 0 a U€ c g. with U€ x U€ C V€, i .e., Ix - yl < E" for x, yE U€. If Y
is kept fixed, we have yE " < X < y + E" for all x EU €. Consequently,

Since this result holds for arbitrary E > 0, it follows that fil. = t\, so that
the filter is convergent .

Thus we have laid the basis for all the general applications of the
fundamental Cauchy theorem in analysis. As an example let us again
consider a real function f defined on a set of real numbers with the limit
point a. The images of neighborhoods of a and sets including them in R
are the elements of a filter , which is a Cauchy filter if for preassigned
E > 0 we can always find a o-neighborhood Uo(a) ofa such thatf (Uo(a)) x
f (Uo(a)) c V , where V  is the set of pairs of numbers ( f (x), ICy )) with
If (x) - f (y) ! < E. But this condition obviously means that If (x) - ICy) ! < E
for all x , y for which Ix - al < 0, Iy - al < o. Thus under these con-
ditions Jim f (x) exists.x-+a

Although the Cauchy condition is not sufficient for convergence in all
uniform spaces, still it is always necessary:

A convergence filter g. in a uniform space M is a Cauchy filter .

Proof . Let G be the entourage filter in M x M and let a be the limit
of B- . Then B- is finer than the neighborhood filter U(a), i .e., for every
neighborhood V(a) of a there exists a set A E B- with A c V(a). Let U E Q)
be arbitrary and let V E Q) be such that V 0 V c U. Here we may take
V- I = V, since with V the inverse V - I and consequently the intersection
V n V- I also belong to Q) . Then if A E B- and A c V(a), it follows that
A x A c U, since for arbitrary elements x E A , YEA we have (a, x ) E V
and (a, y) E V, and thus (x , a) E V- I = V, so that (x , y ) E Vo V C U.

15 For example, in the space of rational numbers with the usual metric, the Cauchy

sequence (1 + ~) n- and consequently the Cauchy filter generated by it- is not
convergent.

16 It would be easy to reduce this theorem to theorem 11 by showing that every
metrically complete space is also complete when regarded as a uniform space.



6.2. Uniform Convergence
Letfn , nE N, be a sequence of real functions of a real variable x . Let the

sequence be convergent for every value of x in a certain domain . Then the
limit values are the values g(x) of a well -defined function g. For given x
and given positive E" we can find a number no such that Ig(x) - fn(x) I < E"
for n ~ no. But these inequalities are not necessarily satisfied for a different
value of x . Thus to every value of x there corresponds a suitable number no.
If all these numbers have a (finite) upper bound m, then I g(x) - fn(x) I < E"
for all n ~ m, where m no longer depends on x . In this case we say that
the sequencefn converges uniformly to g .

This situation can be put in a general setting by means of the concepts
introduced in the preceding sections.

Let X be an arbitrary set and Ya uniform space. The mappings f of X
in Y will again simply be called functions . They form the elements of a
new set F . We shall show that Fcan be converted into a uniform space in a

natural way . For this purpose we must make a sharp distinction between
functions and their values . A function is an element ofF , but the value ofa

function is an element of Y. To an element x of X and an elementfof F
there is assigned an element f (x) of Y, namely the value of the function
for the argument x .

We again let ~ denote the filter of the uniform structure of the space Y.
If U is a given subset of Y x Y, we let U * denote the subsetofF x F
such that (f , g) is an element of U * if and only if the element ( f (x), g(x))
belongs to U for every choice of x from X . It is clear that U c V implies
U * c V * . We now let U run through the filter ~ . Then U * runs through
a system of subsets in F x F which together with the sets that include
them form a filter ~ * . We now prove that ~ * defines a uniform structure

in F .

Every set U * obviously includes the diagonal in F x F, since ( f (x), f (x))
is always an element of U, independently of the choice of x .

Moreover , (U - I)* = U * - I and ( Uo V)* = U * 0 V* , since U * - I consists
of the pairs (f , g) with (g, f ) EU * , i .e., (g(x), f (x)) EU or ( f (x), g(x)) EU - I
for all values of x . Then (f , g) belongs to U * 0 V * if and only if there
exists an h with (f , h) EU * and (h, g) E V * , which means that ( f (x), h(x)) EU
and (h(x), g(x)) E V forever yx , i .e., ( f (x), g(x)) E UO Vor (fig ) E(Uo V)* .

The uniform structure defined by ~ * defines a uniform topology for the
function space F. Thus it is now possible to define the concept of uniform
convergence, since it can now be reduced to ordinary convergence :

Aftlter <P in the function space Fconverges uniformly to afunction g if <P
converges in the uniform topology ofF .

Let us analyze this definition . A neighborhood U *(g) of g is the set of
functions f with (f , g) EU *, and thus ( f (x), g(x)) EU for all x , where U
denotes an element in the filter of the uniform structure of Y. Convergence

20 CONVERGENCE
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means that in the filter (/> there exists an element A such that for Alife A

( f (x), g(x)) EU for all x E X .

Let us now suppose that we are dealing with a sequence, in other words
with a mapping of the set N of natural numbers into the function space F.
The function corresponding to the number n will be denoted , as usual ,
by In . We obtain a filter ~ if we take those subsets of the sequence which
contain all but finitely many of its elements. If X and Y denote the set of
real numbers , the above definition of uniform convergence means , in terms

of the usual uniform structure , that a sequence In ' n EN , has the limit g if
for every positive number E" there exists a number no such that

Ifn(x) - g(x) I < e:

for x E X and n ~ no .

But now the set A in the above discussion is exactly the set of functions
f n with n ~ no, so that this specialization to the case of a sequence of real
functions is identical with the classical definition with which we began
our investigation of uniform convergence.


