
CHAPTER

Geometry - A Phenomenological Discussion

I

1. The axiomatic geometer demands nothing of his reader except the
ability to draw a logical conclusion . He sets up a number of axioms , containing 

words that sound like geometry , and then from these axioms he
undertakes to derive theorems of many different kinds . On the other hand ,

the analytic (or better , the algebraic ) geometer attaches geometric names to
certain algebraic objects and then proves by algebraic methods that they
have certain properties . But in both cases some sort of groundwork should
be laid ; there should be some discussion of the particular choice of axioms
and of the geometric names for the given algebraic objects .

Since the concepts of geometry have been taken from the space of our
everyday experience and visualization , and since conversely they often find
applications there, we can proceed a surprisingly long way with a purely
phenomenological analysis of this empirical space before making any start
on a more or less clean-cut axiomatic or analytical treatment . In school the

intuitive approach is never entirely abandoned , and Euclid himself , in spite
of all his rigor , did not set up an unobjectionable system of axioms . Thus ,
in dealing with any particular part of geometry , the teacher must clearly
realize why and how far he is willing , or compel led, to base his instruction
on the intuitive powers of his students ; he must know what further steps,
and what choice of axioms , would be necessary to make his instruction

entirely independent of intuition . In short , both for his own knowledge of
the subject and for his instruction of others , he must undertake an analysis
of our intuition of space. Only then can he teach with a good conscience;
only then will he be able to lead his pupils , who at the beginning of the journey 

are at the mercy of their intuition , across its treacherous shoals onto

higher ground .
The discussion in the present chapter is entirely phenomenological , al-
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though we assume that the reader knows his geometry. In our analysis of
space we unhesitatingly make use of concepts analyzed in later chapters and
do not give any proofs, often assuming that the reader can easily prove
certain simple statements for himself.

4 FOUNDATIONS OF GEOMETRY

Order

Fig . la Fig . Ib
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2. In our intuition of space the concept of a segment precedes that of a
straight line . In fact , we arrive at the concept of a straight line by continually
extending a segment in both directions . The straight line contains many
segments, each of which is determined by its two endpoints . Every segment
is an infinite set but can be determined by two data , namely , its endpoints .

By the segment AB we obviously mean the points of the straight line AB
lying bet~'een A and B (exclusive). The relation ofbetlt 'eenness, which underlies 

the concept of a segment, is a relation " C lies between A and B" among

three (arbitrary ) points ofa (fixed) line . Euclid , giving free rein to intuition ,
paid no attention to a relation of this sort , and Pasch was the first to recognize 

its importance . In the early stages of geometry , recognizing the

similarity of two figures such as la and Ib, which differ only in their order
properties , represented a difficult feat of abstraction , so difficult indeed
that even today many beginners are confused by it .

In the time of Pasch, on the other hand , it was a bold deed to free oneself
from the Euclidean tradition and recognize the mathematical importance
of these neglected questions of order .

Betweenness is one of the concepts of order . With its help, for example ,
we can describe the intuitive order which is imposed on the set of points in a
straight line when we traverse the line in one direction ; in a passage in the
direction A ~ B the points bet~'een A and B are those which come before B .

But this relation of betweenness is quite inconvenient , since it is a relation
among three things (a three-place relation ), so that any nontrivial statement
about it must take at least four things into account ; for example , one of
Hilbert 's axioms runs as follows : " Iffour points are given on a line , they can



subsequently
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I This axiom was derived from axioms of order in the plane.

always be denoted by A , B, C, D in such a way that B lies between A and C
and also between A and D , and C lies between A and D and also between B
and D ." l

It is much more satisfactory if we proceed not from our intuition of betweenness 
but from the idea of passage along a straight line . Here the relation 

" A before B," which we shall also write as A < B, is meaningful and ,

fortunately , is a two -place relation , so that we can make nontrivial statements 
about it by considering only three things .

A set on which the relation " before " is defined is thereby made into a
totally ordered set. More precisely , a set is said to be ordered if for every
pair of distinct elements A and B exactly one of the relations

A < B, B < A

is satisfied in such way that for every three elements A . B, C it follows from

A < B, B < C
that

A < C.

Instead of A < B we also write B > A .

Of course, a set can be ordered in many different ways. But on a straight
line we intuitively distinguish two special orders , one of them being the
opposite of the other ; i .e., if A < B in one of them , then B < A in the other .
Instead of the axioms of betweenness, as they are to be found in Hilbert , we
can postulate : on every straight line (i .e., oriented, or clirectedstraight line)
two (opposite ) orders are distinguished .

Every point A on a line determines two haljlines , the set of points B < A
and the set of points B > A , and it does not matter which of the two orders
is adopted . Two points A and B on a line determine four halt1ines and then,
if A < B, the segment AB is defined as the intersection of the sets C < Band
C > A .

If a halfline is distinguished , the line is thereby oriented ; for if A is the
point determining the halfline and B is any point belonging to it , we may
distinguish the order in which A < B.

3. There is not much more of importance to say about order on a line .
But there is also a certain natural order in the plane.

Every line divides the plane into two parts , namely , two halfplanes ,. every
point of the plane that does not lie on the line lies in exactly one of its two
halfplanes . A halfplane has the property that two arbitrary points in it can
be joined by a segment lying entirely in the halfplane . On the other hand , two
points in different halfplanes determined by the same line I cannot bejoined
by a line segment that does not cross I.



This situation can be described in another way, in terms of convexity . A
set is said to be con}'ex if with every pair of points A , B in it the whole segment 

ABbelongs to the set. Thus a line , a halftine , a segment, a disk , and the
surface of a triangle are convex sets.

Then the above property of the two halfplanes ofa line Ican be described
by saying that each of the two halfplanes is convex , but if to either of them
we add a single point not on I from the other halfplane , the resulting set
is no longer convex .

4. Like the line , a plane ~ can also be oriented . For let us choose an
oriented line I in (X and decide which of the two resulting halfplanes is to be
called the left side of I (in (X). Then we shall say that the plane (X has been
oriented , or directed, since we have now distinguished between the two sides
of it as a plane in space; for when we are looking along the directed line I, our
choice for its left -hand side will obviously depend on which side of the plane
we are on in space. A plane in space has exactly two sides.

But the concept of an oriented plane can also be understood intuitively
without any reference to space. For we need only consider , in addition to
the oriented line I, a second line m, crossing I from right to left ; i .e., the
orientation ofm is such that on it the points of the right halfplane oflcome
before those of the left halfplane . Or conversely , if we begin with the pair
1,111 of oriented lines in (x, we know which side of I is to be regarded as the
left ; it is the side into which the line m points . (Automobiles on m have the
right -of -way over those on I.)

Thus the choice of two intersecting oriented lines I,m in ~ orients the plane
(x. Let us note the importance here of the order in which lines I,m are taken .
I f the order is reversed, the plane (X is given the opposite orientation ; for if
m crosses I from right to left , then I crosses m from left to right . Thus an
ordered pair of intersecting oriented lines I,m in a plane (x, or alternatively an
ordered pair of intersecting halftines (such a pair will be called a bilateral ),
orients the plane (x. This orientation is reversed if I and m are interchanged ,
or if either lor misreversed in direction . The orientation of a plane can also
be described by means of an oriented triangle A BC, where B is the intersection 

of I and m and B < A , B < Con I and m respectively . The same orientation 
is determined by the triangles ABC , BCA , CAB and the opposite one by

the triangles ACB , CBA , BAC , so that in an oriented triangle we are interested 
only in the sense in which the triangle is traversed . In an oriented plane

the area of a triangle can be given a sign, which is positive or negative according 
to whether or not the triangle determines the given orientation of

the plane .
If for an oriented line I in a plane ~ we have determined which is its left

side, then from the above discussion we also know which is the left side of

any oriented line m intersecting I (Fig . 2) ; for if m crosses I from right to
left , then I will cross m from left to right . The manner in which the left
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Fig. 2

side ofm is determined by the left side of I is clear from the two sketch es in
Fig . 2. Also , it is intuitively clear that if the oriented line I moves continuously 

into the position of the oriented line m, its left side is " carried

along with it " ; i .e., its left side remains its left side in any continuous motion .
(Ifm is parallel to I, we can determine the left side of m either by means ofa
third line cutting both I and m or by a continuous motion .)

Instead of an oriented line I and its left side, we may continuously transport 
a pair of oriented lines I,m (a bilateral ), which will then constantly

determine the same orientation of the plane.
Thus an affine transformation with which the identical transformation is

continuously connected within the set of (non degenerate) affine transformations 
takes a bilateral into another bilateral determining the same orientation 

of the plane . But there also exist affine transformations of the plane into

itself (for example , reflections ) that reverse its orientation . A given bilateral
cannot be transported continuously in the plane into a bilateral determining 

the opposite orientation ; at some stage the two lines of the moving

bilateral must coincide , but then it ceases to be a bilateral .

5. From the algebraic point of view the situation is as follows ; in the
oriented plane let us choose an orienting bilateral , whose oriented lines can
now be taken as the x -axis and the y -axis. The equation of a straight line is

I == ax + by + c = O.

Taking las a symbol for the oriented line , we let pi denote the same oriented
line , for all p > 0, or the oppositely directed line , for all p < O. We then take
the left side off to be the set of points (x , y ) with I > 0, and note that under
multiplication with p > 0 or p < 0 the sides are in fact preserved or interchanged

. .

The reader may verify that the line I == - .X' + Y points from the lower
halfplane into the upper , and the line I == x - y from the upper , and the
line I == x - y from the upper into the lower .

Instead of operating with ordered pairs of real numbers we can also co-
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ordinatize the plane by means of the complex numbers . After choice of an
oriented line as the " real axis" and assignment of its points in the usual way
to the real numbers , we choose another line , perpendicular to the first , as
the " imaginary axis," whose points correspond to the pure imaginary
numbers . If the points 0 and 1 have been chosen, the real axis and its co-
ordinatization are thereby determined . But now we must fix the position of
i . Here there are the two possibilities that i may lie on the left or right of the
real axis. If the given plane is already oriented , we take i on the left side of
the real axis, traversed in the sense of increasing numbers ; or conversely , we
orient the plane in such a way that i lies on the left side of the real axis.

A circle centered on the origin consists of the set of points re;ip (r > 0
fixed , <p a real variable ). If <p traverses the real axis in the positive sense (i .e.,
if <p increases), then re;ip traverses the circle in the sense I , i , - I , - i , which
we agree to call the positive sense, where it is to be noted that the positive
sense depends on the orientation of the plane . Or conversely , we may orient
the plane by stating which is the positive sense of traversal on the circumference 

of the circle .

If the circle is traversed in the positive sense, the origin (together with the
whole interior of the circle ) lies to the left of the direction of traversal , i .e.,
to the left of the tangent directed at each point in the sense of the traversal .
We have already spoken about the sense of traversal of a triangle . Here
again the interior of the triangle lies in each case to the left of the positive
direction of traversal . More generally , we can define a positive traversal for
arbitrary convex curves ; the interior must always lie to the left of the direction 

of traversal .

6. The situation in space is analogous . A plane divides the space into two
halfspaces. Each of these two halfspaces is convex and becomes nonconvex
when a single point (not on the plane) of the other halfspace is added to it .
The space becomes oriented (Ieft - and right -handed screws are distinguished

) iffor an oriented plane a we state which is its left side. Or we may
choose an oriented plane a and an intersecting oriented line . Or again we
may orient the space by means of a trilateral , i .e., an ordered triple of distinct 

oriented lines (for example, all of them through the same point ) or of

halflines . Interchange of two elements of the trilateral produces the opposite
orientation , but cyclic permutation of its three elements leaves the orientation 

unchanged . Again , in place of all these methods , we may take an
oriented tetrahedron ABCD (where A is the intersection of the three lines
and in each case A < B, A < C, A < D). An even permutation of the vertices 

preserves the orientation of the space, and an odd permutation reverses
it .

It is a remarkable fact .that the space can be oriented by means of an
ordered pair of oriented lines I,m, provided I,m are skew. For we have only to
draw a third oriented line n intersecting I and m and pointing from I to m.
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Of course, the orientation of space obtained in this way is independent of
the choice of n.

A continuous rotation about an oriented line 1 in an oriented space can
take place in either the positive or the negative sense; if we construct a plane
a perpendicular to 1 in such a way that 1 passes through a from right to left ,
the given rotation will take place in the positive sense if it moves a point
of a in the positive sense (see 5 above).

Ifwe combine a rotation about Iwith a steady motion along I, we obtain a
scre~', which will be positive if the rotation about 1 takes place in the same
sense (for example , in the positive sense) as the motion along I. The points
of the space then describe helical lines like the thread on a screw. The
ordinary screws of everyday life are right -handed . In the space of physics
the right -handed sense is called positive .

The above discussion for the plane can be repeated here, and we can
proceed analogously in higher dimensions . The n-dimensional space is
oriented by an ordered set ofn -oriented lines (an n-lateral ), the even or odd
permutations of which preserve or reverse the orientation of the space.

class
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Cyclic Order

ail ' ai2' . . . , aip' aip+ I' . . . , ai..

and

2In the symmetric group Sn this equivalence
cyclic subgroup generated by {i - i + I } .

: is a left coset with respect to the

7. In the oriented plane it is obvious that there also exists an order
among the halflines issuing from a given point (pencil ofhalflines ) and that
this order is different in character from the order of the points on a straight
line (see 2 above). The order among the halflines is said to be cyclic , and the
same sort of order is to be found on the face of a clock or in the cycle of
months in a year. On the oriented line we were able to ask whether A
comes before B or not , but we cannot ask whether noon comes before midnight 

or summer before winter . Of course, we can say that the sequence

" morning , noon , evening," or " summer , autumn , winter " is correct and the
reverse sequence is wrong ; but the sequence " noon , evening, morning ,"
for example , or " winter , summer , autumn " is also correct .

Then object sal , a2, . . . , an can be arranged inn ! ways. Two arrange ments
such as

aip' aip+ I' . . . , ain, ail ' ai2' . . . , ai ,,- 1

are said to be cyclically equivalent and are assigned to the same (cyclic )
equivalence class.2 To provide a cyclic order for a finite set means simply to
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aix i Yiai+ 1 Z i+ lai + 2

is to be cyclic, where x < y is defined asjust above by means ofa fixed element 
a.

The set Z can also be oo-times covered, but then the result is an ordered
set (i .e., not cyclically ordered). To do this we define, for every Z E Z, a
sequence of elements Zj (where i is an integer) and agree that (for x < y,
Z =F a)

ai < xi < Yi < ai +1 < Zi+ lo

These " coverings " are essentially independent of the choice of a.
8. The lines through a point in the oriented plane can be so ordered as

to form a cyclically ordered set (a cyclically ordered pencil of lines) ; for let
us orient one of these lines a arbitrarily and then orient the others in such a
way that they cross a from right to left . For two such lines .Y, y let us set
.Y < y if and only if x is crossed by y from right to left , and then regard
ax.}'z . . . as a cyclic order if .\" < y < z < . . . . This order is independent of
the choice of the line a and of the orientation given to it , but is reversed by a
reversal of the orientation of the plane .

The oriented lines or halflines through a point in the oriented plane can
also be cyclically ordered , and in fact as a double covering of the cyclic order
of the pencil of (un oriented ) lines described above. It is easy to see how
this is done.

The cyclic order of the pencil of lines or of halflines can also be called a
sense of rotation . Orienting a plane is thus equivalent to determining a sense
of rotation .

distinguish one equivalence class among all its (cyclic ) equivalence classes.
If Vand Ware arbitrary sets with W c V, each cyclic order in V generates
the cyclic order in W obtained by simply discarding all the elements not in
W. To provide a cyclic order for an arbitrary set Z means providing a cyclic
order for all its finite subsets in such a way that for W c V c Z (where Vis

finite ) the cyclic order in W is the one determined by V (in the subset W).
A triple a, b, c admits two cyclic orders : abc = bca = cab and acb =

cba = bac, and it can be shown that the cyclic order of any set is already
determined by the cyclic order of each of its triples .

By omitting a fixed element a we can interpret a cyclically ordered set Z as
an ordered set Z ' ; we have only to write x < y ifaxy is a triple in the cyclic
order of Z . If we do this , the transitive law does in fact hold ; for if .x- < y ,

y < z, then the triples axy and ayz correspond to the cyclic order of Z , and
this result admits only the cyclic order axyz for the quadruple , so that x < z
as desired .

A cyclically ordered set Z admits an n-fold " covering ," as follows . For
every z E Z we define a set of elements Zj (where i is an integer mod n) and
agree, for example , that for x < y , z =F a the order
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Magnitude

sistent.

9. The basic statements in Euclid fall into two classes: postulates
( al -r1},ua-ra) and axioms (Yvolval lvvolal , common notions ) . The postulates
are geometric in nature , whereas the axioms refer to magnitudes in general .3
The first of these statements is : " Things that are equal to the same thing are
equal to each other ." Nowadays we would say: equality is a two -place relation 

a = b with the property of comparativity ; namely , from a = c and

b = c it follows that a = b. The words " equal to each other " imply that this
relation is also symmetric ; i .e., from a = b it follows that b = a. We also
assume that the relation is reflexive ; i .e., every magnitude is equal to itself .
(The axiom of symmetry is then superfluous .)

A relation with these properties is nowadays called an equivalence. Examples 
of such relations are : equally long , equally heavy, equally old . An

equivalence relation in a set generates a partition into classes. A definite
length , weight , or age is an example of equivalence class (a class of equally
long , equally heavy, equally old things ). But in this respect present-day
language is usually somewhat careless. Concerning a segment AB , for
example , people say that AB = 3 cm. But " 3 cm" is not a segment; it is an
equivalence class of segments (which are 3 cm long ). A segment is not equal
to an equivalence class of segments but is at most contained in it . When AB
denotes a segment, we should say something like AB E 3 cm.

Things can be compared not only with respect to equality but also with
respect to " greater and smaller ," whereupon the equivalence classes become 

an ordered set. But we arrive at the concept of magnitude only when

we are able to add and subtract (the smaller from the greater) . In general, we
cannot add segments but only their lengths, i .e., we can only add equivalence
classes. A system of magnitudes is thus an ordered set with an addition that
has certain properties (such as commutativity ). The exact definition is rather
complicated , and it is easier to begin in the first place with an ordered
Abelian group (I Bl ,   2.5 and 2.3). Its positive elements constitute exactly
what is meant by a system of magnitudes .

10. We can also take multiples of magnitudes : if x is a magnitude and n
is a natural number , then nx = x + . . . + x (with n summands) . Given
two magnitudes , it may happen that neither of them is a multiple of the
other ; in fact , they do not even need to have a common multiple ; for example

, the diagonal and side of a square are incommensurable, i .e., they have
no common measure and thus no common multiple .

This situation becomes quite unpleasant when we wish , for example, to
prove that the areas of the rectangles A B B ' A ' and A  C C' A ' (with equal altitudes

) are to each other as their bases A B and A C (Fig . 3) ; or again (Fig . 4)

3But the tradition on this division into postulates and axioms is by no means con-
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a < b

we have

a : a > a : b,

 ma > nb and ma ' > nb ' ,

ma = nb and ma ' = nb ' ,

ma < nb and ma ' < nb '

are either both correct or both incorrect , whereupon the proof of the desired
proportions follows at once.

Eudoxus continues in the natural way by defining

a : b > a ' : b '

to mean the existence of a pair m, n such that

ma > nb , but ma ' ~ nb ' .

However , we are now involved in a new difficulty . If we wish to show, for
example, that for

that OA :OB = OA ' :OB '. If the segments are proportional to integers (i .e.,
if they are commensurable ), it is easy to give a proof by subdividing the two
rectangles and using the theorems on congruence . But how are we to
proceed in general ?

Eudoxus (in the Fifth Book of Euclid 's Elements) avoids this difficulty in
a very ingenious way . He simply states that by definition

a : b = a' : b'

means that for all positive integers m and n the two relations in each of the
three pairs of relations
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we must find m , n such that

ma > na , but ma ~ nb .

If we try to do this by setting m = n + ] , we have

(n + ] )a ~ nb
or

a ~ n(b - a).

In other words , for the magnitudes a and d (with d = b - a) we must find a
positive integer n such that

nd ~ a .

The requirement that " for two magnitudes a and dthere exists an n such that
nd :?;; a" is called the Axiom of Archimedes,4 although , disguised as a definition

, it was already formulated by Eudoxus . A system of magnitudes satisfying 
this axiom is called an Archimedean system.

The concepts of Eudoxus are closely related to those of Dedekind . The
ratio a :b of two magnitudes determines two sets of rational numbers m/n
such that ma > nb if m/n is in the first set and ma ~ nb if m/n is in the second
set. These sets have the properties that Dedekind requires for the upper and
lower classes of a cut . The definition given by Eudoxus for the equality of
two ratios means that a cut determines at most one (real) number . For
Dedekind a cut must also, by definition , determine at least one number .
Dedekind is seeking to define the real numbers in terms of the rational
numbers . On the other hand , for Eudoxus , magnitudes are already given
geo metric ally . Unlike Dedekind , he has no need to provide a definition
for .)2, for example; for him this magnitude already exists as the ratio of
the diagonal to the side of a square.

An Archimedean system of magnitudes is isomorphic to a subset of the
system of real numbers . An Archimedean system that satisfies Dedekind 's

postulate is isomorphic to the system of real numbers .
11. In one respect the concept of a magnitude , formulated in this way,

is still too restrictive . Angles are an example of a cyclic magnitude , at least
if we count up to 360  and identify 360  with 0   (i .e., if we calculate mod
360 ), so they do not form an ordered set but , like the halflines in a pencil ,
a cyclically ordered set (and furthermore an Abelian group ). Let us look at
what we mean by an angle.

Angle

l2 . In elementary geometry the concept of an angle is ambiguous and

hazy . Euclid defines it as an inclination of lines ( including curved lines ) to

4 Compare here also I Bl ,  3 .4 .
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each other, where he is obviously thinking of halflines, since otherwise he
could not distinguish an angle from its adjacent angle. But in the next definition 

he goes on to speak of the lines (straight lines) enclosing an angle, where
it is clear that he is (also) thinking of a part of the plane.

Euclid does not recognize zero angles, straight angles, or reflex angles.
But this procedure is often inconvenient; for example, given an obtuse angle
at the circumference of a circle, what becomes of the theorem that it is half
as great as the angle at the center; or what about the sum ofa set of angles
that add up to more than 180O?

In the theory of the measurement of angles (i.e., in goniometry) angles are
considered as being at the center ofa circle, say with unit diameter, and are
related to the corresponding arcs (Fig. 5) ; in fact, the angle is even measured
by the arc, with the result that, unlike line segments, angles have a natural
unit of measure (the complete circumference, corresponding to 360  or
2n). Thus angle magnitudes are dimensionless.

In goniometry angles are measured, not up to 180 , but up to 360 .
Then we can either go on or else neglect multiples of 360 ; in other words,
we can calculate mod 360  (mod 2n). But even this latter procedure, though
it is the most satisfactory one from a logical point of view, does not get us
out of all our difficulties; in the statement that the sum of the angles in a
quadrilateral is equal to 360  it is not convenient to replace 360  by 0 .

Moreover, the goniometric definition of an angle deals with arcs of a
circumference and not with angles between halflines. For if we are given
only two halflines (with common endpoint) we cannot say which of the two
circular arcs a and 2n - a should be regarded as measuring the angle
between them; nothing in the appearance of the halflines themselves will
settle this question. Of course, we mean the arc that lies ""between" the sides
of the angle. But what is meant by the word ""between" ? Again the answer
depends on which of the two sides is taken as the first. The goniometric
angle is a function of the ordered pair ofhalflines, and the corresponding arc
is the one that begins on the left of the first halfline and ends on the right of
the second.

But again we must be cautious. The left side and the right side of a straight
line are meaningful only in an oriented plane, and it is only in such a plane
that angles are defined at all in goniometry.

14
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tg IX = 11.

The concept of an ordered pair of halflines is reminiscent of the bilateral
but is more inclusive. For we now allow the halflines to coincide or to point
in opposite directions, with corresponding angles 0 and n whereas in  4
matters were so arranged that a bilaterial agreeing with the given orientation
of the plane corresponds to an angle between 0 and n. But if we reverse the
orientation, the angle Ii becomes the angle 2n - Ii, which means that in an
unoriented pl.1ne we cannot distinguish between these two angles. In this
case it is better to deal with angles only from 0 to n, so that Euclid was quite
right in not admitting greater angles. For then he would have had to begin
by orienting the plane, a procedure quite foreign to his way of thought,
since the choice of orientation is arbitrary . This inability to distinguish
between Ii and 2n - Ii can also be interpreted as meaning that an angle is no
longer a function of an ordered pair of halflines but of an unordered pair,
since interchange of the order of the halflines takes Ii into 2n - Ii.

The formula for calculating the angle Ii between two unit vectors.X" and y
IS

(1) cas IX = Xt).

This formula is symmetric in I and 1). So we are dealing here with the angle
between an unordered pair of vectors, in agreement with the fact that the
value of the cosine does not indicate whether it comes from cx or from 27r - cx.
To be sure, we have another formula

(2) sin IX = XIY2 - X2Yl,

which seems to help us if we are trying to decide between a and 2n - a.
But this help is only apparent. For the right side of (I) does not depend on
our choice of (rectangular) coordinate system, whereas the right side of (2)
changes sign if we replace one of the axes by the oppositely oriented line (say
Xl ~ - Xl ' Yl ~ - Yl)' The choice of axes has oriented the plane, and the
angle a calculated from (2) depends on this orientation. Thus formulas (1)
and (2) together determine the goniometric angle in the oriented plane.

Confusion about the concept of an angle is particularly troublesome in
plane analytic geometry, where it is customary to talk about the angle between 

two lines (instead of two halflines), so that apparently we cannot even
distinguish between an angle and its adjacent angle. But again things are
not so bad as they seem. In analytic geometry an angle between two lines
I and misdetermined by its (trigonometric) tangent, which is of period n,
so the angle is determined only mod n. Let us look at this more closely.

Ifin the X Ixl -plane we choose the one line las the X I-axis and describe the
other line m by the equation Xl = /lXI ' the angle a between m and the X 1-
axis is given by the formula



We are dealing here with an ordered pair of halflines, the first of which
lies on xl -axis and the second on m. Two of the fourgoniometric angles thus
obtained are equal to each other and the other two (also equal to each other)
differ from them by n (Fig. 6).

More generally, the angle between an ordered pair of lines I,m in the sense
of analytic geometry is the goniometric angle (in the oriented plane) of an
ordered pair of halflines, the first of which lies on I and the second on m.
This angle is determined mod n. Here the plane is oriented by the choice of
coordinate system (the bilateral consisting of the positive X I-axis and the
positive x2-axis).

In addition to these three concepts for an angle there is still a fourth , commonly 
used in elementary solid geometry, where it is remarkable that we

speak not of the angle between a pair of (unoriented) halflines but of a pair
of (unoriented) lines. The lines may be skew, but in order to determine the
angle they are translated into the same plane.

Let us set up a table for these four concepts of an angle (Fig. 7).
The reader should not assume from this table that in analytic geometry,

for example, it would be impossible to consider any other concept of an
angle. On the contrary, we have already seen in  5 that an oriented line can
be defined in analytic geometry, so that the goniometric concept is quite
possible there. Similarly, in solid geometry we could very well consider the
angle between halflines (see 14below) ; the table (Fig. 7) merely represents the
usual procedure in elementary instruction.

13. The angles of elementary geometry form an ordered set in which

16 FOUNDATIONS OF GEOMETRY

Fig. 6
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addition is not yet un restrict edly possible , and calculation with angles
greater than 1800 is rather hard to justify . The system of angles mod 3600 is
a double covering of the system mod 1800 and is cyclically ordered in the
same way as the lines or halflines in a pencil . The oo-fold covering produces
exactly the kind of angles needed in the statement that the sum of the angles
in n-gon is (n - 2)7r.

14. Ifa space is already oriented , its planes are not necessarily oriented
thereby . On the contrary , by a rotation in space it is possible to take an
oriented plane into the plane with opposite orientation . Thus we cannot
meaningfully define an angle mod 27r for an ordered pair of halflines of a
plane in space; the angles (X and 27r - (X are necessarily indistinguishable .
Similarly , we cannot define the angle mod 7r between two co planar lines in
space; i .e., we cannot distinguish between an angle and its adjacent angle.

The situation is quite different if we confine our attention to skew lines or
halfiines I,m in oriented space. A plane c; parallel to I and m can be oriented
by postulating that an oriented line n (intersecting land m and pointing from
I to m) crosses c; from left to right (see also  6.) The lines I and m can then be
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translated into this oriented plane so as to determine the various types of
angles; in particular , the " goniometric " angle is the angle by which I must
be twisted , in the direction prescribed by the orientation of the space, in
order to reach m.

In oriented space the angle cp between the line I and an oriented plane Ct
can be reduced by definition to the angle 1/1 between I and the normal to Ct
oriented toward the left side of Ct, and the angle between two oriented planes
can be defined analogously .

Spaces of higher dimension give rise to complications . The relative position 
of two nonparallel planes in four -dimensional space can no longer be

described in terms of one angle.
15. Up to now we have considered an angle as a magnitude , in agreement 

with Euclid 's first notion of it as the " inclination of two lines." But

other procedures are possible . Compare , for example , our treatment of a
line segment, not as a length , but as the set of points between its two endpoints

, which completely determine the segment. Similar possibilities are
available for angles, if we wish to avoid considerations of magnitudeal -
together .

Thus two intersecting lines I,m determine four angles (sets of points ) in
the plane, all of them logically on a equal footing . But ifin an oriented plane
we consider I,m as an ordered pair of oriented lines we can assign a unique
angle to this pair , namely , the set of points to the left of I and (at the same
time) to the right of m. All the angles defined in this way are convex , since
they are the intersections of two (convex) halfplanes , but it is easy to see how
we may introduce nonconvex angles (Fig . 8).

18 FOUNDATIONS OF

Area and Volume

16. In elementary instruction , areas and volumes are introduced
numerically , i .e., as numbers for which certain rules of calculation are pre-

Fig. 8
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scribed . But in Euclid , and to some extent in the schools today , th Oe interest
lies not in calculating areas and volumes but in comparing them . Among
Euclid 's axioms (more precisely , his xolvallfvvolat - COmmon notions ), in
addition to those concerning the general notion of magnitude there is one
that reads : " Things that can be superposed on each other are equal ."

Thus we consider congruent figures to be equal in area or volume . But
we also make use of Euclid 's axiom : " If equals are added to equals, the
wholes are equal ," and are thereby led to Hilbert 's concept of decomposable
equality (Zerlegungsgleichheit ) : two figures that can be decomposed into
pairwise congruent figures are said to be equal , like the rectangle and
rhombus in Fig . 9. But this concept is not yet adequate if we wish to
prove , for example , that parallelograms with equal bases and altitudes
are equal in area. The method is successful for the parallelograms ABDC
and A B D' C' in Fig . 10, each of which is the sum of the same trapezoid and
of congruent triangles , but it will no longer work for Fig . II , where we
must argue differently : the parallelograms can be obtained by subtraction
from the trapezoid A B D' C ; in the first case by subtraction of the triangle
BDD ' and in the second of the congruent triangle A C C' . Here we are making
use of Euclid 's axiom " If equals are subtracted from equals, the remainders
are equal ," and are thereby led to Hilbert 's concept of supplementwise
equality (Erganzungsgleichheit ) : two figures are said to be supplementwise
equal ifby the adjunction of decomposably equal figures they can besupple -
mented in such a way as to become decomposably equal . (The case of Fig . II
could also be dealt with by reducing it to Fig . 10 by means ofa step-by-step
insertion between the two parallelograms of a sequence of parallelograms
each of which is in the same position with respect to the next as the two
parallelograms in Fig . 10; but then it would be necessary to make use of the
Axiom of Archimedes , without which the concept of supplementwise
equality is actually more inclusive than that of decomposable equality .)

c c' 0 0'

\ ,~~ - - - - - -j / /
A B

Fig. 10
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J. von Neumann, Fundamenta Math. (1929), 73- 116.
6M. Dehn, Math. Ann. 55 (1902).
7W. Suss, Math. Ann. 82 (1921), 297-305.

Since the relation of supplementwise equality has the properties of an
equivalence , we can combine supplementwise equal figures into a class,
which we shall call the area (or in three dimensions , the l'olume) of these
figures. For these areas (equivalence classes) we can now define an order
relation and an addition , whereupon they will form a system of magnitudes .
But this system is not yet altogether satisfactory , since up to now we do not
even know whether or not all geometric figures have the same area. In fact ,
some extremely pathological cases can arise. For example , it is possible to
decompose the surface of a sphere into three congruent sets such that two of
them , rearranged in a suitable way , again produce the whole surface of the
sphere.5

But if as " figures" we admit only planar polygons we can show that all
such figures are supplementwise equal to rectangles with a fixed altitude and
that two such rectangles can be supplementwise equal to each other only if
they have the same base. The base of the corresponding rectangle can then
be taken as a measure for the area of the figure , whereby we return to the
elementary notion of area.

But in space, with its polyhedral surfaces, this method is no longer successful
. Two pyramids with bases of equal area and with equal altitudes are no

longer necessarily supplementwise equal to each other .6 In order to establish
a theory for the volumes of polyhedra it is customary in the schools to refer
to a principle usually named after Cavalier i but already to be found in
Democritus and Archimedes ; namely , if two three-dimensional figures are
such that their intersections with any plane parallel to a given plane are equal
in area (supplementwise equal), then the figures themselves are equal in
volume (Ca}'alieri equal). This concept , together with the concept of supplementwise 

equality in space, is sufficient for the theory of volumes of polyhedra 
in space.7

The Cal 'alieriprinciple can in its turn be based on a passage to the limit ,
and such limiting process es are necessary if we wish to consider figures
bounded by curved lines.

The problem of showing that the areas of circles C, C' are to each other as
the squares of their radii r , r ' is hardly more difficult than the proof that the
areas of rectangles with the same height are to each other as their bases. For
example, if we had C :C' > r2 :r ,2, there would exist positive integers m,n
such that

(3) mC > nC ', but mr2 ~ nr ,2

(see 10), and we could find a regular polygon inscribed in C with an area V

SF . Hausdorff . Grundz  Qge der Mengenlehre . 1. Aufl .. Berlin - Leipzig 1914 . S . 469 .



such that also
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Fig. 12

(4) mV > nC ' .

Such a polygon can be found in the following way : let Vi be the area of the
inscribed regular polygon with 2i-sides. Then it is easy to see (Fig . 12) that

c - Vi + l < 1(C - VJ ,

and thus

C - v p < 2 - (p- 2)(C - v 2) .

The axiom of Archimedes now guarantees the existence of a q such that

2Q- 2(mC - nC ') ~ m(C - V2).

For this q ,

(mC - nC') > m(C - Vq),

and thus

mVq > nC',

so that (4) is satisfied with V = V q. Then if V' is the area of the regular
2Q-gon inscribed in C ' , we have

mV > nV ' ,

and , on the other hand ,

V : V ' = , 2 : , ' 2,

in contradiction to the second half of (3). The assumption C :C' > , 2 :, ,2 is
thus refuted , and similarly for the opposite inequality .

Here we have made use of continuity only in the sense of the axiom of
Archimedes , but if we wish to show that for a given circle , for example, there
exists a rectangle , with prescribed altitude , that is equal in area to the circle ,



Grundlagenkrisis der Mathematik . Pan-8Sce also H. Hasse and H. Scholz, Die
Bucherei, Gruppe: Philosophie, Nr. 3, 1928.
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we must make use of Oedekind continuityS and in fact in analysis, the
area of arbitrary figures is treated systematically from a modern point
of view .

17. Up to now we have based the concept of area on congruence
C" Things that can be superposed on each other are equal " ). But this is not the
only possibility , and from the algebraic standpoint it is not even the most
convenient . The concept of area is less closely related to congruence than to
affine transformations , under which the ratio of areas is invariant .

We first replace the requirement of in variance of area under congruence by
in !'ariance of area uncler translation , since translation is itself an affine-
invariant concept . The area of a parallelogram ABCD in the plane is then
completely determined by the vectors AB and AD ; it is a functionf (a, b) of
the two vectors a,b forming the sides. We next require , as is natural , that if
one side is multiplied by a factor c (multiplication ofa vector by a number is
also an affine-invariant concept ) the area is thereby multiplied by the same
number , and then it is desirable to admit negative factors , which lead to the
concept of negative areas, removing the difficulty that the side of aparallelogram 

determines not one vector but rather two (opposite ) vectors .

But what does it mean intuitively that the parallelograms ABCD and
A B C' D ' (Fig . 13) have opposite areas? We see that in the plane they determine 

opposite orientations , so that the area must be a function of an orclered
pair of vectors and must change sign with interchange of the vectors :

(5) f (a, b) = - f (b, a),

and we must also have

(6) f (cab ) = f (a, cb) = cf (a, b).

Furthermore , the parallelograms A B D Cand C D F Etaken together (Fig . 14)
have the same area as ABFE ; for we may subtract the triangle BDF , move
it to the position A CE and then add it again . Now the three parallelograms
have one side (AB = CD) in common , and the fourth side of ABFE is the
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sum of the corresponding sides of A B D Cand CDFE ; i .e., for the vector A E
we have AE = AC + CEo So we must also require :

(7) f {a, b + b/) = f {a, b) + f (a, b/)

and

(8) f (a + a/, b) = f (a, b) + f (a/, b) .

The equations (5) through (8) can be summed up as follows : area, regarded
as a function of two vectors , is antisymmetric and linear in each of its arguments

.

But this function is not completely determined until we have chosen a
unit of area. To do this , we take an arbitrary parallelogram , with the vectors
c and f for sides, and set and

(9) f (c, f) = 1,

  by definition . The unique existence of such a functionfis shown in algebra
(183 ,  3.4) .

18. The procedure in three-dimensional space (or in n-dimensional ) is
entirely analogous , the analogue of a parallelogram being a parallelepiped
(in n dimensions , a parallelotope ). By definition , the volume is an antisymmetric 

function of three (or n) vectors , linear in each of its arguments , and

uniquely dftermined by means of a standard figure.

Groups

19. How many of the elements of a triangle are necessary to determine
it completely ? In elementary geometry the answer is three, but in plane analytic 

geometry it is the six coordinates of the three vertices . How does the
contradiction arise ?

With the six coordinates of the vertices we determine the triangle not only
in shape and size but also in position (with respect to the coordinate system).
But in elementary geometry we often regard a triangle as already constructed
if , in a class of congruent triangles , we have found one triangle that satisfies
the requirements of a given problem . But even in elementary geometry the
usage varies . Consider the two theorems :

I . A triangle is completely determined by the lengths of its three sides.
2. Two triangles ABC and A ' B 'C' are congruent if AB = A ' B ', BC =

B ' C ' , CA = C ' A ' .

If the word " triangle " is to have precisely the same meaning in these two
sentences , then the second sentence , while not in contradiction to the first ,

is trivial and superfluous ; for by the first theorem the two triangles ABCand
A ' B 'C' are already identical with each other .

But in fact the word " triangle " means something quite different in the two
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theorems. In the first theorem (and more generally in many construction
problems) congruent triangles are regarded as not essentially different, or,
as it is usually expressed nowadays, the word " triangle" means a class
of congruent triangles, in the sense of the second theorem.

Construction of classes is a logical process of widespread use fulness.
Usually it rests on an equivalence relation, i .e., on a two-place relation
( . . . ,...., . . .) with the properties that a ,...., a and that a ,...., c, b ,...., c implies
a ,...., b. In a set in which such a relation has been established among the pairs
of elements, we can combine equivalent elements into a " class." Since congruence 

is an equivalence, congruent figures in the plane can be combined
into classes. A congruence class of segments is simply a length, and acongruence 

class of triangles is a " triangle" in the sense of (most) construction
problems. Similarity and equality of area are other concepts often regarded
as equivalences.

20. From the logical point of view a geometry is a system of elements
(i.e., the elements of a set) and relations among them. The elements may
(intuitively) be points, lines, circles, angles, distances, and so forth . The
relations may be one-place (X is a point), two-place (X is incident with Y),
three-place (Ylies between Xand Z ), or four-place (the distance from Xto Y
is the same as from Z to V), and so forth .

To every geometry there belongs a group, its automorphism group, i.e.,
the totality of all mappings of the set of elements onto itself under which all
the relations are preserved.

For example, if we regard the plane as a set of points and for every p consider 
the relation " X and Y are at a distance p from each other," we obtain

the group of rigid mappings (direct and opposite isometries), in which two
points at a distance p are taken into two points at the same distance p. But if
for our relation we take " X and Yare the same distance apart as Z and U,"
we obtain the group of similarities, namely, the transformations that leave
invariant the ratios of distances.

Conversely, a geometric concept of equivalence (see 19) often depends on
a group oftransfornlations G. Two figures <I> and <1>' are said to be equivalent
if there exists a transformationfin G taking one of them into the other; thus

<I> ,.... <1>' ifand only if 1<1> = <1>'

for a suitably chosen! E G. From the axioms for a group it follows that this
relation is actually an equivalence.

21. We have already mentioned the group B of rigid mappings obtained
by transforming the plane (or space) as a rigid body, i.e., by requiring that
distances remain invariant. Iffor a triangle ABC (or tetrahedron ABCD) we
prescribe the position of its (congruent) image A' B'C' (A' B'C' D'), the
transformation is completely determined, but if only the segment AB (the
triangle ABC) has a prescribed image A' B' (A' B'C'), then for the image



C'(D') ofa point C(D) not on the line AB (the plane ABC ) two positions are
still possible , one on each side of A B (ABC ). However , if we require that in
addition to distances the transformationfmust leave invariant the orientation 

of the plane (or space), there is only one possibility for C'(D ') ; by prescribing 
the image of  A B (ABC ) we have already completely determined the

transformationf . The set of rigid mappings that preserve orientation forms
a subgroup Bo of B. (For the definition of Bo it is of no importance how we
orient the plane (or space) ; all that matters is the fact that we can orient it .)

22. " This segment is 3 cm long " and " This parallelogram has an area of
12 cm2" are statements invariant under the group B. Nevertheless, such
statements are hardly regarded as being part of geometry (but rather of
geodesy). When they occur in geometry , they are regarded as references to a
certain unit of measurement ( I cm, I cm2), which may in fact be chosen in a
completely arbitrary way (on a blackboard usually about 10 times as large
as in a notebook ). Consequently the group B of rigid mappings is much less
important than the group A of similarities , i .e., transformations that leave
invariant the ratios of distances (and therefore angles, and ratios of areas).
If to a triangle ABC (tetrahedron ABCD ) we assign its (similar ) image
A ' B ' C' (A ' B ' C' D '), it is again true that the correspondingf E A is completely
determined . Here also we can add the requirement of invariance of the
orientation of the plane (or space) and thus arrive at a subgroup Ao of A .

23. By parallel projection we can map a plane onto another plane. A
pair of parallel lines is then taken into a pair of parallel lines, and parallel
segments are multiplied by the same factor . If by a further sequence of
parallel projections we finally bring the images back into the original plane,
we obtain a mapping in the plane which preserves parallelism and the ratios
of parallel segments. Such a mapping is said to be affine. The affine mappings
of the plane onto itselfform a group F. Ifwe prescribe the image A ' B'C ' ofa
triangle ABC , the corresponding affine mappingf E F is thereby completely
determined . For it follows from the invariance of ratios of segments that
every point on the lines AB and AC has a predetermined image on A ' B' and
A ' C' , while an arbitrary point X can be regarded as the vertex of aparallelogram 

A Bt X Ct (Bt on AB , Ct on AC ) and its image X ' as a vertex of the
corresponding parallelogram A ' Bt X ' Ct (Fig . 15).

The group A of similarities is a subgroup of the group F of affine transformations 
and A is certainly a proper subgroup ofF , since under the map-

pings of A all ratios of segments remain invariant , whereas under F (in
general) only the ratios of parallel segments remain invariant . The group
F has another subgroup Fo consisting of those affine transformations that
preserve orientation . Ratios of areas of parallelograms remain invariant
under all the transformations of F, since their definition depends only on
parallelism and on the ratios of intervals , both of which are affine-invariant .

Affine transformations in space are defined in exactly the same way as in

25GEOMETRY- A PHENOMENOLOGICAL DISCUSSION



the plane ; a tetrahedron and its image completely determine an affine transformation
. Ratios of volumes of parallelepipeds are invariant , but this statement 

is not necessarily true for areas of parallelograms in nonparallel planes

or for nonparallel segments.
24. If a plane is mapped by a central projection (i .e., a perspectivity )

onto another plane, straight lines will be mapped into straight lines, as will
again be the case if we project back (from another center) onto the original
plane . Yet there are difficulties here. Even for one projection there will be
points that have no images, and points in the image plane that are not
images of any point , i .e., when the projecting ray is parallel to one of the
planes. In order to avoid these " exceptions ," we supplement the plane by
ideal points (parallel lines being considered to pass through the same ideal
point ) and thereby obtain the projectil 'e plane.

Let us take four points A , B, C, D in the plane , no three of them on the
same straight line , draw the six lines joining them in pairs , construct the
intersections of these lines, and then proceed by successively joining points
and taking the intersections of lines. The configuration thus obtained is
called the Moblus net (for A, B, C, D). It does not contain every point in the
plane ; for example , if A , B, C, D have rational coordinates , then only points
with rational coordinates can be obtained . But the points of the net come
arbitrarily close to every point of the plane.

In a mapping <p of the projective plane that takes lines into lines in such a
way that the points A , B, C, D have prescribed images A ' , B', C' , D ' (no three
of them on the same straight line ), every point of the Moblus net for A , B,
C, D , will have a unique image in the net for A ', B' , C' , D ' . If <p is continuous ,
the <p-image of every point in the plane is uniquely determined .

A continuous mapping of the projective plane onto itself that takes lines
into lines is called apr ~jectil 'ity . If we prescribe the images of four points in
general position , the corresponding projectivity is completely determined .

In space the situation is precisely analogous ; a projectivity is completely
determined by prescribing the images of five points in general position .

Adjunction of the ideal elements to the projective plane (space) destroys
the order properties of the ordinary plane (space). Order on the projective
line is the same as in a pencil of Jines; in other words , it is cyclic . A point does
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not divide the projective line into two parts , a line does not "divide the
projective plane , and a plane does not divide projective space.

I t is possible to construct a model of the projective plane that lies entirely
in a bounded part of the Euclidean plane , in the following way . From the
center M of a sphere let us project the projective plane onto the sphere,
delete the northern hemisphere as being superfluous , identify diametrically
opposite points of the equator (since they correspond to the same point of
the projective plane) and then project vertically onto the equatorial plane ,
thereby providing a model of the projective plane in the form of a circular
disk with identification of opposite points on its boundary .

In the same way the ball (solid sphere) with identification on its boundary
is a model of projective space.

25. From Euclid up to the end of the 19th century , every textbook in
geometry began with definitions like " A point is that which has no part ,"
and these definitions were followed by axioms (or postulates ) like " A
straight line may be drawn from any point to any point " and " If equals are
added to equals, the wholes are equal ." In general , such so-called definitions
played no role in any proof , and many more axioms were used than were
actually stated. A reason ably complete system of axioms for Euclidean
geometry is to be found for the first time in Pasch ( 1882),9 who explicitly
requires that " the process of deductive proof must everywhere be independent

, not only of the figures, but of the meaning of the geometric concepts.
Poincare ( 1902), in his description of Hilbert 's " Grundlagen der Geo-
metrie ," express es himself more brusquely : we must be able to insert the
geometric axioms into a machine , which will then produce the whole of
geometry .

The question " What is space?" was much debated in the 19th century 
and was finally settled by Hilbert . The answer is that this question is

of no concern to the geometer . What are points , lines, and circles ? The
answer is that the meaning of these words is implicitly determined by the
axioms in which the words occur . Whether there exists anything in nature
that satisfies the axioms and what it looks like are questions for the physicist ,
not the mathematician . The mathematician requires from his system of
axioms only that it shall not produce contradictions ; but the physicist
requires that it shall have useful applications to the external world .

The axiomatic method goes further ; it investigates the mutual relationship
of the axioms . For example , can we omit Axiom 7, i .e., can we deduce it
from the other axioms ? Or is it independent of the others ? To prove its
independence, we must construct a consistent system in which all the axioms
except Axiom 7 are valid and Axiom 7 itself is false. It was in this way that
the independence of the parallel axiom was proved by means of non -

27
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Euclidean geometry , and the method has given rise to a great number of new
geometries .

The axiomatic method has proved valuable in many fields ; it brings into
clear relief exactly what is necessary in the proof of a theorem and often
allows us to combine many branch es of mathematics into one.

But we must note that the natural approach does not begin with axioms .
We discover certain relations in the physical world , or in some already
mathematicized system, and register their properties . When we have carried
this process sufficiently far , we select as " axioms " some of the properties
that appear to be of fundamental importance , and then we operate with
this system of axioms in a purely deductive way ; that is, we draw conclusions 

from it . The resulting mathematical system can then be applied ,

either in the situation from which it was originally derived , or elsewhere.
Discrepancies between the consequences of the mathematical theory and
the observations of the physicists do not demonstrate any error , either in
mathematics or in physics ; they only show that the mathematical theory
does not fit the observable world .


