CHAPTER 1

THEORETICAL PRELIMINARIES

Although our world has three spatial dimensions, the projection of light rays onto
the retina presents our visual system with an image of the world that is inherently
two-dimensional. We must use such images to physically interact with this three-
dimensional world, even in situations new to us, or with objects unknown to us.
That we accomplish this task casily implies that one of the functions of the human
visual system is to reconstruct a three-dimensional representation of the world
from its two-dimensional projection onto our eyes. The study described in this
book constitutes a computational theory of this process: creating representations
of surface shape from their images. An example of a process which the human
visual system uscs to construct this three-dimensional representation is stereopsis,
which refers to the use of the two viewpoints, provided by the left and right
eyes, to cstablish the depth of surfaces around us. Illustrated in Figure 1.1 is a
stereogram; the top two images represent two different viewpoints of a surface.
In this case, we cannot see the surface in either image alone but when presented
separately to the left and right eyes, (for example, under a stereoscope), a vivid
impression of surfaces lying at different depths is perceived. The bottom figure
illustrates a three-dimensional reconstruction of the perceived surfaces.

The principal question to be investigated is: how does this three-dimensional
reconstruction také place? And, in particular, how does this three-dimensional
reconstruction take place in the human visual system? There are many levels at
which we could attempt to answer this question. Traditional methods have in-
cluded neurophysiological approaches, which have sought to identify the neural
structures that perform the reconstruction, and psychophysical approaches, which
have sought to identify the perceptual processes involved in the reconstruction.
In contrast, this book presents a new approach to the question of “how the
processing takes place”. This approach is the computational paradigm of visual
processing [Marr, 1976a, 1976b, 1981; Marr and Poggio, 1977a], which we will
outline in greater detail in the rest of this chapter. One of its basic tenets is that
the human visual system can be regarded as an information processor, performing
computations on internal symbolic representations of visual information. As a
consequence, we can distinguish between abstract computations and the meaning
of the symbols embodied in those representations on the one hand, and the physi-
cal manifestation of those symbols on the other. In other words, we can make a
distinction between aspects of the visual process which are specific to biological
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Figure 1.1
Random Dot Stereogram and Its Interpolation. Each image in the top pair is a collection

of black and white dots, constructed in such a way that they represent two viewpoints
of a set of surfaces in space. When the images are viewed stereoscopically, a series
of squares is perceived as separated in depth from the rest of the pattern, although
each monocular image contains no cue to this effect. The lower figure represents a
perspective view of the surface reconstructed by analyzing the top pair of images with
the visual processing algorithms that we will develop in this book.



hardware, and aspects of the process which are specific to the problem being
solved, independent of the particular implementation of that process.

Because of this distinction, we can concentrate on the computational process
that is occurring independent of the means by which that process is incorporated
into the human brain. Our goal is to understand the reconstruction of three-
dimensional surfaces from two-dimensional images at the level of computational
theories and algorithms. While more precise definitions of computational theory
and algorithm will be given in Section 1.1, we can informally consider our goal
in the following manner. We begin by investigating the symbolic representations
and the transformations between representations that are involved in a computa-
tional theory of the construction of surface shape. Next, we consider specific algo-
rithms for performing these transformations, where by algorithm, we mean an or-
dered set of simple instructions to be performed. In general, there could be many
algorithms for solving a particular computational problem. We will attempt to
concentrate on the algorithm used by the human visual system. Neurophysiology
and psychophysics play an important role in our investigation, by providing in-
formation about the architecture of the algorithms which are used to perform
the computation, the form of the symbolic representations, and constraints on
the transformations that convert one representation into another. It is my hope
that computational studies such as this will help to focus rescarch attention in
the study of the human early visual system, and will provide a bridge between
psychophysics, neurophysiology, mathematics and other areas that can contribute
to an understanding of the visual system.

1.1 The Stages of Visual Processing

Information about the three-dimensional geometry of the visible surfaces of a
scene is encoded in an image in a variety of ways. Hence, there are several sources
of information in the retinal images that can be used for this three-dimensional
reconstruction. One of the crucial insights of vision research is that this informa-
tion can be decoded by independent processes. This will allow us to concentrate
on specific modules of the visual system, such as stereopsis, without requiring an
understanding of the entire system.

A schematic of the basic stages of analysis involved in early visual processing
is presented in Figure 1.2. This architecture has evolved through many computa-
tional studies of vision [Marr, 1978, 1981; Marr and Poggio, 1977; Marr and
Nishihara, 1978; Barrow and Tenenbaum, 1978]. It can be divided into three
stages. The first stage transforms the images into a representation of the loca-
tions in an image at which there is a change in some physical property of the
corresponding surface in the scene. This representation has been labelled the
Primal Sketch, and constitutes the primary source of information for all later
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Human Early Visnal Processing. This diagram schematically illustrates the different
representations in the early visual system and the transformations between them. The
images obtained by each eye are transformed into Primal Sketch descriptions, consisting
of those image positions at which a change of intensity takes place. The Primal
Sketch descriptions are then processed by stereo, motion, texture, and other modules
of the system. Each computes explicit surface information at the demarked locations
of the Primal Sketch. The information from these modules is combined into a single
representation. This representation is interpolated, in order to compute explicit surface
information at all points in the scene, yielding a representation of the shapes of the
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stages of processing. From the Primal Sketch, we would like to compute infor-
mation about the surface shape at points in the image. A number of modules
of the visual system, which to a first approximation arc considered independent,
perform this computation. Two of the main ones are sterco vision (using Primal
Sketch descriptions from the two eyes, which are obtained at different points in
space) and motion correspondence (using Primal Sketch descriptions from images
which are obtained at different points in time). All of these modules feed a rep-
resentation, which has been labelled the raw 2%—[) Sketch, and which consists
of explicit surface information at those locations demarked in the Primal Sketch.
Finally, in order to compute explicit surface information at all points in the scene,
the raw 24-1D Sketch is interpolated to yield a representation of the shapes of the
visible surfaces, which has been labelled the full 24-D Sketch.

In this book, we will concentrate on aspects of cach of the three stages: com-
puting the basic form of the Primal Sketch {Marr and Hildreth, 1980; Hildreth,
1980}; computing surface information based on the Primal Sketches of the left
and right eye, using a theory of sterco vision {Marr and Poggio, 1979; Grimson,
1980b, 1981a); and interpolating the raw 24-1) Sketch to obtain a complete sur-
face description [Grimson, 1981b]. There arc other sources of visual informa-
tion that arc important, of course. For cxample, one can obtain shape from
shading information [Horn, 1970, 1975; Woodham, 1978; lkeuchi, 1979; Silver,
1980]; the motion of objects over time [Miles, 1931; Johansson, 1964, 1975;
Wallach and O Connell, 1953; Wallach, 1959; Braunstcin, 1976; Ullman, 1979a;
Longuct-Higgins and Pradzny, 1981]; surface contours [Stevens, 1979; Barrow
and Tenenbaum, 1981]: rexture [Helmholtz, 1925; Gibson, 1950a, 1550b, 1966;
Purdy, 1960; Bajcsy, 1972; [laber and Hershenson, 1973; Rosinski, 1974; Bajesy
and Licherman, 1976 Stevens, 1979; Kender, 1978, 1979; Ikecuchi, 1980; Witkin,
1980]); focusing [Horn, 1968). occluding contours [Marr, 1977]; or stereo vision
[Kamal al-Din Abul-Hasan al-Farisi, 1433; Wheatstone, 1838, 1852; Helmholtz,
1925; Julesz, 1971; Quam, 1971; Hannah, 1974; Dev, 1975; Marr and Poggio,
1979: Binford, 1979; Barnard and Thompson, 1980; Mayhew and Frisby, 1981;
Baker and Binford, 1981]. Although all of thesc processes transform repre-
sentations of the images into representations of the surface shapes, the concentra-
tion in this book will be on sterco vision. ‘Thus, while the method we will describe
for transforming images into surfaces is not the most gencral possible (since it
neglects sources of surface information other than sterco, for example, motion
parallax, shading information, and so forth). the techniques discussed for obtain-
ing the Primal Sketeh, and the methods developed for interpolating the raw 24-D
Sketch are gencerally applicable.
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1.2 The Computational Approach

Although our most immediate goal is to investigate the process of creating three-
dimensional representations of surface shape, we also have a more global goal
of illustrating a computational approach to the study of vision. In the following
section, we describe in more detail the characteristics of a computational theory
of visual processing, as developed by Marr [1976a, 1976b, 1981, also Marr and
Poggio, 1977a).

The motivation for this study of visual processes arose from a desire to under-
stand and model the human visual system. As a result, the theories developed
are designed to be both consistent with known evidence about that system and
feasible for implementation in a biological system. Although the human system
forms the basis for our study, a distinction can be made between components of
the computation that are specific to the demands of implementation in a biologi-
cal system and components that must be performed by any visual processor.
Marr’s computational approach stresses the importance of distinguishing between
these two components when considering computational theories of visual process-
ing. The human visual system can thus serve as a tool for understanding the
general processing involved in computing surface descriptions, without enmiring
us with details of a specific ncural model for such processing in the human sys-
tem. If an accurate model of the human visual system can be formed, it may
also provide a mcthod for solving the visual problem in general situations. In this
book, we shall be primarily concerned with the more general questions, that is,
with those elements of visual processing which apply to any visual processor.

For the computational paradigm of the visual system as an information
processing system to be cffective, the representations on which it performs its
computations must be useful descriptions of the visible environment. Any informa-
tion that can be obtained from the previous description of the image and that
is uscful for the construction of the next representation is made cxplicit at cach
stage. ‘Thus, every proposced representation is judged by two criteria: the comput-
ability of this description, and its suitability for higher level processing (see Marr
and Nishihara [1978] for a study of the application of these criteria to judging
shape representations).

Marr [1978] and Marr and Nishihara [1978] arguc for at least three such repre-
scntations in the course of visual processing:

1. ‘I'he Primal Sketch, in which propertics of the intensity changes in the image
arc made explicit,

2. The 24-ID Sketch, which describes properties of the visible surfaces for every
location in the image, and

3. T'he 3D Modecl, which makes explicit the three-dimensional shape of objects
in the scene, in object-centered coordinates.



In this book, we will investigate the first two representations, formed by creating
a description of image locations at which the corresponding scene location un-
dergoes a change in a physical property, and then processing the Primal Sketch
descriptions to create a description of the surface gecometry.

1.2.1 Levels of Description

Ciritical to the computational approach is the distinction between scveral levels of
description of a process. Since one is dealing with the manipulation of symbolic
information, one can distinguish between the meaning of the symbols and the
physical embodiment of thosc symbols. In other words, one can study the com-
putation performed by the system (almost) independently of the mechanisms that
actually perform the computation. Although a physical system, and the computa-
tion it supports, are related (by the very fact that one is computing the other),
they cannot be equated. To illustrate this point, I borrow the example of an
clectronic calculator from Ullman {1979a, page 2]:

Some of the events in the clectronic calculator have their meaning in the
domain of arithinctic, Other events and components, ¢.g. those inside the power
supply do not have such a mecaning. ‘I'he theory of the clectronic calculator
and the theory of the computation it performs are conscquently distinct and
non-isomorphic. But the distinction between mechanisim and computation runs
deeper than this non-isomorphism: the logic governing the computation is not
entirely expressible in terms of the physical system. IFor example, the fact that a
standard pocket calculator presents only the first cight digits of the square root of
the number 2.0 is a property of the particular device in question. The fact that
this number cannot be represented by any finite decimal belongs to a different
rcalm, i.c. to the theory of arithmetic. Furthermore, the theory of the mechanism
and the theory of the computation deal with different entitics. The theory of the
calculator deals with clectronic circuits, currents, and voltages. ‘The theory of what
is being computed, on the other hand, deals with arithmetic objects.

In applying the computational approach, we will study the processing of the
visual system at three different levels: the computational theory, an algorithm to
solve the theory, and the underlying implementation of the computation [Marr
and Poggio, 1977a].

At the Tevel of the computational theory, we must determine the physical con-
straints that restrict the problem sufficiently to allow the process to do what it
docs. In gencral. the problems faced by modules of carly visual processing ap-
pear to be insoluble if one attempts to solve them from the image alone. But
if we can identify additional constraints en the process, imposed naturally as a
consequence of the way the world is made. we can restrict the result sufliciently
to allow a correct solution to be found. For example, Ullman's [1979a] rigidity as-
sumption in the interpretation of three-dimensional structure from motion, Marr
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and Hildreth's [1980] condition of linear variation and spatial coincidence assump-
tion in the analysis of intensity changes and Marr and Poggio’s [1979] assumptions
of uniqueness and continuity arc instances of physical constraints that restrict the
problem at hand. This enunciation of additional valid or plausible constraints is a
crucial step in the formulation of the computational theory.

Once the additional information has been isolated, one can incorporate it into
the design of a process. There are a number of ways in which a process may
utilize a constraint. The constraint may be treated as an assumption that is taken
always to be truc with or without verification (optical illusions often illustrate
situations where these assumptions are not valid). An cxample of this is the case
of lincar variation [Marr and Hildreth, 1980]. In contrast, some other process
might explicitly “look for” the satisfaction of the constraint; if it is consistent
with visual input, the constraint is assumed to be true. An example of this is the
rigidity constraint [Ullman, 1979a]. Alternatively, the constraint may be explicitly
embedded in the process, such as the continuity and uniquencss assumptions in
stereo [Marr and Poggio, 1979].

At the level of the computational theory, we must consider representations as
well as constraints. All the processes of early vision take propertics of the image as
their input and compute propertics of surfaces, either relating to their geometry
or their reflectance, as their output. In the sterco process, it is important to deter-
mine the representation of the input to the process, the means of transforming
this information into a representation of surfaces, and the nature of this surface
representation. Although these questions can be addressed for visual processing
in general, it is desirable to have the theory be consistent with processing in the
human system. Thus, psychophysical evidence concerning the nature of these
representations, and the processes by which they are transformed, will be impor-
tant for answering these questions.

A fundamental assumption is being made at the level of the computational
theory: that the human visual system is an inherently modular system, allowing
us, for example, to study the process of sterco vision in isolation. At first
glance, it is not clear to what extent stercoscopic processing is independent of
the monocular analysis of cach image. One method for testing whether a process
can be studied in isolation is to present the visual system with images in which,
as far as possible, all but one type of information have been removed. The
objective is to determine whether one can make use of just that one type of in-
formation. For sterco this can be demonstrated by the random-dot stercogram,
invented by Julesz [1960]. Each of the images in Figure 1.1 is a collection of black
and white dots, identical cxcept that a centrally located square-shaped region is
shifted horizontally in one image relative to the other. Other than this disparity,
the images contain no information about visible surfaces. Yet, when the pair
is viewed stereoscopically and fused (the two images are brought into correspon-
dence), one clearly and vividly perecives a square floating in space above the



planc of the background. This illustrates that disparity alone can cause the sensa-
tion of depth. The fact that ncither image contains any recognizable monocular
organization implics that the sterco process may be studied in relative isolation
from other visual processcs.

The idca that a large computation should be divided and implemented as a
collection of small sub-parts that are as ncarly independent of one another as
the overall task allows, is what Marr [1976b, 1981] calls the principle of modular
design. ‘This principle forms a cornerstonce to the approach. Its importance lics
in its heuristic value, that is, without modularity, a small change in one place in
a process could have consequences in many other places. This means that the
process as a whole becomes extremely cumbersome, and difficult to debug and
analyze. While the main role of the principle of modular design is to cnable
us to derive computational algorithms for particular visual problems, it is worth
noting that many of the components of the human visual system exhibit, to a
first approximation, some aspects of modularity. The example of the random dot
stercogram (Figure 1.1) in sterco vision, and the two cylinders demonstration in
the structure-from-motion computation [Ullman, 1979a] both scrve to illustrate
that the human carly visual system can, as a first approximation, be considered
a modular one. Of course, we do not necessarily imply that the human visual
system is strictly modular, since clearly computations performed by one visual
component can influence the computations performed by another. We shall use
the principle of modular design as a basic guide for first creating computational
algorithms that arc modular, and will then consider extensions of the system to
account for intcraction among the modules.

Having developed a computational theory of the processing involved in a visual
task, onc can then turn to the design of a particular algorithm to achieve the task.
We arc ultimately intcrested in the algorithm used by the human visual system.
However, a sccond purpose for studying an algorithm is that it serves as an ex-
cellent source of review for the computational theory. Any implementation of a
theory uncovers otherwise unnoticed difficultics with the task and demonstrates
the adequacy of the theory. Furthermore, any assumptions made by the theory
are tested not just by having an implementation, but by running the implementa-
tion on examples. Chapter 4 of this book will detail how a particular implementa-
tion of a theory of human sterco vision helped to refine the theory, both through
the act of implementation and through the use of the implementation on trial
data.

Marr [1976D, 1981} outlines two other criteria that can also be used to guide the
design of algorithms, and that ought to be satisfied by any serious candidate for
an carly process in the human visual system. The first, the principle of graceful
degradation, says that whenever possible, degraded or impoverished data should
not prevent the delivery of at least some of the answer. The sccond, the principle
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of least commitment, says that nothing should ever be done that may later have to
be undone.

It is important to note that there may be several possible algorithms for em-
bedding a particular computational theory. In many cascs, onc can distinguish
between the acceptability of different algorithms. For models of the human visual
systemn, 1 shall adopt a sct of algorithmic criteria, outlined in Chapter 7, that
support biological feasibility [Ullman, 1979b].

The third level of description is that of the implementation. We are ultimately
interested in understanding the ncural implementation used by the human
system. It would be nice to be able to give general rules about processes at the
level of the neural implementation. Unfortunately, only a few theories have been
developed to the point where specific neural implementations can be proposed
[for example, Marr, 1969), and none have been confirmed experimentally in every
detail. Thus, it is not yet possible to formulate such rules.

Although 1 have outlined the three levels of description in order from com-
putational theory through algorithm to implementation, this should not be taken
as an implication that the process of solving a computational problem also fol-
lows this order. Rather, as in any scientific endeavor, the different levels inter-
act in a wide varicty of ways, cach one scrving to provide useful feedback for
the other levels. For example, when considering algorithms for solving a par-
ticular problem, it is useful to keep in mind the types of architecture which the
human system has available for implementing its algorithms. Similarly, while
the computational theory is important in providing constraints on an algorithm,
the development of the algorithm itself can serve to illuminate constraints on the
computational theory which might otherwise have been overlooked. The impor-
tance of the levels of description is to identify which questions are particularly
relevant to the different aspects of the entire computational problem.

Finally, I wish to note that for a particular computational theory, there may
be many algorithins, even with the overall structure that we will derive here, and
many more implementations of the algorithims. The algorithms that are developed
in this book are one possible set of methods for constructing three-dimensional
representations from pairs of images, and there may be many ways of modifying
or improving these algorithms, The computational theory is expected to have
somewhat more permancency, however. ‘The intent of the computationat theory,
especially the constraints derived as a part of that theory, is to capture those
aspects of the problem that are inherent to any solution of that problem. We
now turn to a brief outline of the derivation of a computational theory of three-
dimensional surface representations, and specific algorithms for performing the
surface reconstruction.
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1.3 Overview

The remainder of this book is devoted to a discussion of computational theorics
of the processing of the human carly visual system. Figure 1.2 illustrated
schematically the stages of processing used by the human system to transform
retinal images into a representation of surface shape.

Inidally, the images obtained by cach eye are transformed into Primal Sketch
descriptions. which make explicit those places in an image at which some physical
property of the underlying surface changes in a noticeable manner [Marr, 1976b,
Marr and Hildreth, 1980, Hildreth, 1980]. In Chapter 2, we examine this process
within the context of stereo vision.

We first illustrate the basic problem of sterco, which is to locate points in the
images of the right and left cye that correspond to the same location on a sur-
face. We show that if such locations can be found, the difference in the positions
of the two retinal locations can be used to compute the distance to the surface.
We argue that to perform this correspondence computation, we nced to describe
image attributes that can be unambiguously identified with specific surface loca-
tions. In general, positions on a surface at which a physical property, such as
surface material, surface texture, or surface shape, changes radically will satisfy
our requirement and such surface locations can be identified in the image by a
sudden change in image irradiance. We then derive a method for extracting a
description of these image locations, specifically by isolating the zero-crossings of
the convolution of the image irradiances with a filter whose form is a Laplacian
of a Gaussian (Scction 2.3). We also show that this processing is consistent with
current psychophysical information about the human carly visual system.

Given these basic descriptions of the images, we must address the problem of
dctermining the correspondence between descriptors in cach image. We state
two simple rules, based on the physical structure of objects, to apply to the com-
putation. These are: cach descriptor from one image should match at most one
descriptor from the other image, and the difference in retinal position of matching
descriptors should change smoothly over the image. To apply thesc rules, we must
face the false targets problem: since the basic descriptors are relatively simple,
there may be several possible descriptors in one image which could correspond
to a particular descriptor in the other image. The false targets problem is directly
proportional to the range and resolution of depth information over which a match
is sought. We show that we may solve the false targets problem without sacrificing
cither, by matching descriptions obtained at several levels of resolution, and using
the rough depth information obtained at a coarse resolution to guide the match-
ing at a finc resolution, by changing the orientation of the cyes. 'The algorithm we
use, derived in Section 2.5, is that proposed by Marr and Poggio [1979]. In the



Overview 12

remainder of Chapter 2, we show the relationship between the Marr-Poggio algo-
rithm and currently available psychophysical and neurophysiological information
about the human sterco system.

Having developed the stereo problem and an algorithm for solving it, we turn
in Chapter 3 to an implementation of the algorithm, first discussed in Grimson
[1981a]. Each step of the algorithm is specified in detail. In Chapter 4, we examine
the performance of the Marr-Poggio stereo algorithm using the implementation
described in Chapter 3. Since the algorithm was developed as a model of the
human sterco system, we evaluate its performance by comparing the results of the
algorithm to human perception for a wide range of random dot stercograms, (see
also [Grimson, 1980a, 1980b, 1981a]). We further demonstrate the capabilities
of the algorithm by considering its performance on a serics of natural images.
Scctions 4.3 and 4.4 discuss various aspects of the algorithm and its implementa-
tion. Finally, we develop the computation of depth from disparity.

While our first few chapters focus on the process of sterco vision, there are
other carly visual modules, such as structure-from-motion [Ullman, 1979a], which
also compute descriptions of surface shape from Primal Sketch descriptions. Both
of these algorithms compute specific surface information only at certain isolated
points in the images — in this case, the zero-crossings of the convolved images.
(Note that the important point here is not whether zero-crossings or some other
descriptor are used as the basic representation on which the computation is per-
formed, but rather that explicit surface information is available only at such
points.) In Chapter 5, we argue that such a surface description is not sufficient.
We show both computationally and psychophysically that the representation of
surface shape should be complete, in the sense of containing a specific depth
value everywhere in the representation, rather than just at a set of scattered
points. The problem we consider in Chapters S through 9 is how to create a
complete surface representation, given the results of the sterco algorithin (or the
structure-from-motion algorithm).

In principle, there arc infinitely many surfaces which could fit any given set
of boundary conditions, as provided by the sterco algorithm. In Scctions 5.3
and 5.4 we show that most of these surfaces are not consistent with the known
information. In particular, a surface whose oricntation undergoces a series of radi-
cal changes should generally give rise to image irradiances which also undergo a
series of radical changes. Such changes would then give rise to zero-crossings in
the convolved image. If there are no corresponding zero-crossings in the Primal
Sketch, such a surface is inconsistent with the information in the image. We use
this argument to derive the surfuce consistency constraint [Grimson, 1981b] which
states that

The absence of zero-crossings constrains the possible surface shapes.
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In Scction 5.5, we review the factors which combine to form the image irradiances
and derive Horn's image irradiance equation [Horn, 1970, 1975, 1977]. In Scction
5.6, we use this equation to make the surface consistency constraint precise, by
the surface consistency theorem that relates the probability of a zero-crossing to
the variation in surface orientation [Grimson, 1981b].

The surface consistency constraint states that to find a complete surface to fit
through the known points, we should choose a surface which is most consistent
with that known information. The surface consistency theorem of Scction 5.6
indicates that one way of measuring surface consistency is to measure the amount
of variation in surface orientation over a region of the surface. In Chapter 6,
we consider the problem of measuring this variation. In gencral, the problem is
to determine, given two possible surfaces, which one is more consistent with the
zero-crossings. A traditional method for comparing two surfaces is to assign to
each surface a real number. Then, in order to compare two surfaces, one need
only compare the corresponding rcal numbers. To do this, we need to define a
functional, mapping the space of possible surfaces into the space of real numbers,
©:X — %. This functional should be such that the more consistent the surface,
the smaller the real number assigned to it. In this case, the most consistent surface
is that which is minimal under the functional. The development of Chapter 5
leads to a functional that measures variation in surfacc orientation.

We also require that the problem of finding a most consistent surface be well-
defined, that is, that there be a unique most consistent surface. This is not just a
mathematical nicety, but follows from the notion that if we create a local, parallel,
iterative algorithm to compute the most consistent surface, we need to guarantee
that the computation will converge to a unique answer. In Chapter 6 we derive
a simple set of mathematical conditions on the functional which guarantee a
unique family of solutions. We also show that there are many possible functionals
which measure surface consistency and satisfy these conditions. To determine
the best functional to use, we investigate the differences in the solution surfaces
corresponding to cach of these functionals. We also consider the conditions under
which the family of solutions will consist of only a single minimal surface. Based
on these facts, we arguc in Section 6.5 that the best functional to use is the quad-
ratic variation. We claim that the visual surface interpolation problem is solved by
finding the unique surface which minimizes the quadratic variation, while passing
through the known points provided by the sterco algorithm (or the structure-
from-motion algorithm).

In Chapter 7, we consider what types of algorithms are best applicd to solving
the interpolation problem. Based on a scrics of algorithmic constraints, we
suggest that the techniques of mathematical programming are appropriate to our
problem. We review the conjugate gradient method, appropriate to the problem of
approximating the surlace, and the gradient projection method, appropriate to the
problem of interpolating the surface.
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In Chapter 8, we create explicit algorithms, based on both of these methods, for
solving the visual surface interpolation problem. We demonstrate the suitability
of the surface interpolation theory by testing the algorithms on a set of synthetic
examples. Finally, we complete our original task, by processing a serics of stereo
images with the Marr-Poggio algorithm, and then creating a complete surface
description by applying the interpolation algorithm. Thus, we complete the task
of computing surfaccs from images.

To complete our discussion, in Chapter 9, we analyze the performance of the
algorithm and sketch additional modifications which should improve the perfor-
mance of the system. We consider the possible benefits of improving the initial
input to the stereo algorithm, the interactions between the sterco module and
other components of the carly visual system, and the problem of detecting discon-
tinuitics and their role in the interpolation process. Finally, we indicate some of
the implications of this theory for neurophysiology and psychophysics.

Thus, we will develop a theory of stereo vision, which transforms the images
into Primal Sketch representations and then transforms these representations into
the Raw 211> Sketch, and a theory of visual surface interpolation, which trans-
forms the Raw 24-D Sketch into the Full 2§-1) Sketch. Throughout this study,
our focus will be on the development of computational theorics and algorithms,



