
CHAPTER 1

THEORETICAL PRELIMINARIES

Although our world has three spatial dimensions, tl1e projection of light rays onto
the retina presents our visual system witl1 an image of the world that is inherently

two-dimensional. We must use such images to physically interact with this three-
dimensional world , even in situations new to us, or with objects unknown to us.

That we accomplish this task easily implies that one of the functions of the human
visual system is to reconstruct a three-dimensional representation of the world
from its two-dimensional projection onto our eyes. The study described in this
book constitutes a computational theory of this process: creating representations

of surface shape from their images. An example of a process which the human
visual system uses to construct this three-dimensional representation is stereopsis,
which refers to the use of the two viewpoints, provided by the left and right

eyes, to establish the depth of surfaces around us. Illustrated in Figure 1.1 is a
stereo gram; the top two images represent two different viewpoints of a surface.
In this case, we cannot see the surface in either image alone but when presented

separately to the left and right eyes, (for example, under a stereo scope), a vivid
impression of surfaces lying at different depths is perceived. The bottom figure
illustrates a three-dimensional reconstruction of the perceived surfaces.

The principal question to be investigated is: how does this three-dimensional
reconstruction take place? And, in particular, how does this three-dimensional
reconstruction take place in the human visual system? There are many levels at
which we could attempt to answer this question. Traditional methods have included 

neurophysiological approach es, which have sought to identify the neural
stnlctures that perform the reconstruction, and psychophysical approach es, which
have sought to identify the perceptual process es involved in the reconstruction.
In contrast, this book presents a new approach to the question of "how the

processing takes place" . This approach is the computational paradigm of visual
processing [Marr , 1976a. 1976b, 1981; Marr and Poggio, 1977a], which we will
outline in greater detail in the rest of this chapter . One of its basic tenets is that

the human visual system can be regarded as an infonnation processor, performing

computations on internal symbolic representations of visual information . As a
consequence, we can distinguish between abstract compumtions and the meaning
of the symbols embodied in those representations on the one hand, and the physical 

manifestation of those symbols on tl1e other. In other words, we can make a

distinction between aspects of the visual process which are specific to biological
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Figure 1.1
Random Dot Stereo gram and Its Interpolation. Each image in the top pair is a collection
of black and white dots, constructed in such a way that they represent two viewpoints
of a set of surfaces in space. When the images are viewed stereoscopically, a series
of squares is perceived as separated in depth from the rest of the pattern, although
each monocular image contains no cue to this effect The lower figure represents a
perspective view of the surface reconstructed by analyzing the top pair of images with
the visual processing algorithms that we will develop in this book.



hardware, and aspects of the process which are specific to the problem being
solved, independent of the particular implementation of that process.

Because of this distinction, we can concentrate on the computational process
that is occurring independent of the means by which that process is incorporated
into the human brain. Our goal is to understand the reconstruction of three-
dimensional surfaces from two-dimensional images at the levcl of computational
theories and algorithms. While more precise definitions of computational theory
and algorithm will be given in Section 1.1, we can infonnally consider our goal
in the following manner. We begin by investigating the symbolic representations
and the transformations between representations that are involved in a computa-
tional theory of the construction of surface shape. Next, we consider specific algorithms 

for performing these transformations, where by algorithm, we mean an ordered 
set of simple instructions to be performed. In general, there could be many

algorithms for solving a particular computational problem. We will attempt to
concentrate on the algorithm used by the human visual system. Neurophysiology
and psychophysics play an important role in our investigation, by providing information 

about the architecture of the algorithms which are used to perform
the computation, the form of the symbolic representations, and constraints on
the transfonnations that convert one representation into another. It is my hope
that computational studies such as this will help to focus research attention in
the study of the human early visual system, and will provide a bridge between
psychophysics, neurophysiology, mathematics and other areas that can contribute
to an understanding of the visual system.

1.1 The Stages of Visual Processing

Infonnation about the three-dimensional geometry of the visible surfaces of a
scene is encoded in an image in a variety of ways. Hence, there are several sources
of information in the retinal images that can be used for this three-dimensional
reconstruction. One of the crucial insights of vision research is that this infonna-
tion can be decoded by independent process es. This will allow us to concentrate
on specific modules of the visual system, such as stereopsis, without requiring an
understanding of the entire system.

A schematic of the basic stages of analysis involved in early visual processing
is presented in Figure 1.2. This architecture has evolved through many computa-
tional studies of vision [Marr, 1978, 1981; Marr and Poggio, 1977; Marr and
Nishihara, 1978; Barrow and Tenenbaum, 1978]. It can be divided into three
stages. The first stage transfonns the images into a representation of the locations 

in an image at which there is a change in some physical property of the

corresponding surface in the scene. 111is representation has been la belled the
Prima] Sketch, and constitutes the primary source of information for all later
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images obtained by each eye are transfoffi1ed into Primal Sketch descriptions, consisting
of those image positions at which a change of intensity takes place. The Primal
Sketch descriptions are then processed by stereo, motion, texture. and other modules
of the system. Each computes explicit surface infoffi1ation at the demarked locations
of the Primal Sketch. The information from these modules is combined into a single
representation. This representation is interpolated, in order to compute explicit surface
information at all points in the scene, yielding a representation of the shapes of the
visible surfaces, called the 2! D Sketch.



stages of processing . From the Primal Sketch , we would like to compute information 
about tile surface shape at points in the image . A number of modules

of tile \lsual system, which to a first approximation are considered independent ,

perform tilis computation . l 'wo of the main ones are stereo vision (using Primal

Sketch descriptions from the two eyes, which are obtained at different points in

space) and motion correspondence (using Primal Sketch descriptions from images

which are obtlincd at different points in time ). All of tllesc modules feed a rep -

rescntation, which has been la belled tile raw 2 ~-D Sketch, and which consists
of cxplicit surface information at tll0se locations dcmarked in tile Primal Sketch .

I.~inally , in ordcr to compute explicit surface infonnation at all points in tile scene,

the raw 2 ~ -1) Sketch is interpolated to yield a representation of the shapes of the
visible surfaces, V I'hich has bccn labellcd tllC full 2 ~ - D Sketch.

In this book , we VI"ill conc(;ntrate on aspects of each of the three stages: computing 
the basic form of tJle Primal Sketch [Marr and llildreth , 1980; Hildreth ,

1980] ; computing surface information based on tile Primal Sketch es of tile left

and right eye, using a theory of stereo vision [Marr and raggio , 1979; Grimson,

1980b, 1981a]; and interpolating tile raw 2~-1.) Sketch to obtain a complcte surface 
description [Grimson, 1981b]. Thcre are other sources of visual infonna-

tion tllat are important , of course . For exampic , one can obtain shape from

shading infomlalion [Horn , 1970, 1975; Woodham , 1978; Ikcuchi , 1979; Silver ,

1980]; Ihe nlolion of objecls over lilile [Milcs, 1931; Johansson, 1964, 1975;
Wallach and O ' Conllcll , 1953 ; Wallach , 1959 ; 13raunstein , 1976 ; Ullman , 1979a ;

l_onguct-I-liggins and Pradzny, 1981]; suI) ice conlours [Stevens, 1979; narrow
and "l 'enenbaum , 1981] ; lex lure [t Iclnlllo1u ", 1925; Gibson , 1950a, 1950b, 1966;

Purdy , 1960; I~ajcsy. 1972; I l .1ucr .Ind I Icrshenson , 1973; I~osinski , 1974; najcsy

and I _icbcrman , 1976 : Stcvcns , 1979 ; Kender , 1978 , 1979 ; Ikeuchi , 1980 ; Witkin ,

1980]; fi Jcusillg [tlorn , 1968]; occlu Jillg coillours [M.1rr, 1977]; vr slereo \ir;ion
[Kanial all ) in Abul-Ha:;an all :arisi, 1433; Wheatstone, 1838, 1852; I Iclmholtz ,
1925; Julesz, 1971; Quam , 1971; I Iannah , 1974: 1) cv, 19'15; Marr and Poggio ,

1979; I~inford , 1979; 1~~lrnard and ' Ioompson , 1980; MJyhew alld Frisby , 1981;

I~akcr ,Ind 13inford, 1981]. Although all of thcsc proce~jscs transfonn rcpre -

scntations of thc images into rcprescntations of the surf .ice sh.1pes, tile conccntra -
tion in tlli ~ l )ollk will bc on stcrc () \ ' ision . ' I 'hus , \" hile tllC mctllod we will describe

f()r Iran ~rl' rming im .1gcs int () surfaces is not tllC most general possible (since it

ncglcct5 s()tlrccs or surf ,lcc inl ( )rm Jtion olllcr than SlCrC(), for example , motion

p;lrJII ;IX, S11;I Ui11g illforlllati ()JI, Jnd so forth ). thc tccllniqucs discussed for obtJin -

ing tllC l)rilll ,ll Skctcll, and thc mctllods dc\"cl()I)cd u)r illtcrp(ll;l!illg tllC raw 2 ~-D
Skctch arc generally applicable .
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Computational .\pproach

Although our most immcdiatc goal is to invcstigatc the proccss of creating thrcc -

dimcnsional rcprcscntations of surface shape, wc also have a more global goal

of illustrating a computational approach to t11C study of vision . In thc following

scction , we describe in more dct .1il t11C characteristics of acomput .1tional theory

of \ isual proccssing, as dcvelopcd by Marr [1976a, 1976b, 1981, also ~farr and
Poggio, 1977a].

' I 'he motivation for this study of visual process es arose from a desire to understand 
and model t11C human vis U Jl system . I\ S a result , the t11corics developed

arc dcsigned to bc both consistent with known evidence about that system and

feasible for implemcntation in a biological systcm . Although t11C human system

forms t11C basis for our study , a distinction can be madc bctwcen componcnts of

t11C comput .1tion that arc specific to t11C demands of implementation in a biological 

systcm and componcnts that must bc perf ()lmcd by any visual pr ()Cessor.

Marr 's computational approach stresscs the importance of distinguishing bctwccn

thcsc two componcnts whcn considcring computational thcorics of visual processing
. l 'hc human visual system can thus serve as a tool for understanding the

general processing involvcd in compllting surface descriptions , without enmiring

us V I'ith dct.1ils of a spccific neural model for such processing in the human system
. If an accurate model of the human visual system can bc formed , it may

also provide a mct110d for solving t11C visual problem in gencral situations . In this

book , we shall bc primarily conccrncd ~'ith the more gcncral questions , t11at is,

V I'ith t110SC elcmcnts of , isual pr ()Ccssing which apply to any visual processor .

I~'or the computational paradigm of t11C visual system as an infonnation

processing system to bc cffectivc , t11C rcprcscntations on which it performs its

compu ~ltions must bc uscjul de script io /Is of the visible el/Viro/l/llent . Any information 
that can bc obtaincd from t11C previous description of the image and that

is uscful for t11e construction of the next rcprcscntation is made explicit at each

SL.1ge. 'I 'hus, every proposcd rcpresentation is judged by two criteria : the computability 
of t11is description , and its suit .1bility for higher level pr ()Ccssing (sce Marr

and Nishihara [1978] fur a study of the application of these criteria to judging
shape rcprcscntations ). .

M<1rr [1978] and f\1arr and Nishihara [1978] arguc for at least t11ree such reprc-
scntations in the coursc ofvis  U Jl processing :

1. ' I 'I1c Primal Skctch , in which properties OCt11C intensity changcs in the image

are made cxplicit ,

2. 'l 'I1c 2 ~ -I) Sketch, which dcscribcs propcrtics of the visible surfaces for every
1()cc1tion in thc imc1gc, and

3. ' l 'I1c 31) Modcl , \\'hich Illakcs explicit the thrcc -dimcnsional shape ofubjccts

in tl1C sccnc, in ()bjcct -ccntcrcd coordinates .
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In this book, we will investigate U1e first two representations, formed by creating
a description of image locations at which the corresponding scene location undergoes 

a change in a physical property, and then processing the Primal Sketch
descriptions to create a description of the surface geometry.

7

1.2.1 uvcls of Description

critical to Tile comput  Jtiona1 approach is the distinction between scvcrallevcls of

dc script  ion of a process . Since one is dca1ing with the manipulation of symb01ic

information , one can distinguish between Tile meaning of the symbols and the

physical embodiment of those symbols . In other words , one can study the com -

putatiolz performed by the systcm ( almost ) indcpcndcnt1y of the mechal1isms that

actually perform the computation . Althougll a physical system , and tllC computation 

it supports , are re1atcd ( by tllC " cry fact t1lat one is computing tllC other ) ,

they cannot bc equated . To i1lustratc tilis point , I borrow tllC example of an

electronic calculator from Ullman [ 1979a , pagc 2 ] :

Some of the events in t11C electronic calculator have t11eir meaning in t11C

domain of , lrithmetic . Other e \ 'ents and components , e .g . those inside t11C power

supply do not have such a meaning . ' lllC theory of the electronic calculator

~lnd tl1e thcory of tile comput ~ltionitperforms are consequently distinct and

non - isomorphic . I ~ut tl1C distinction bctwccn mechanism and computation runs

deepcr tl1an tilis non - isomorphi ~m : tllC l ()gic govcrning t11C computation is not

cntircly cxprcssiblc in tcrms of tllC physical system . I '-or cxample , the fact t11at a

standard pockct calcula  U) r prcscnts only tllC first cigl1t dir , its of t11C square root of

tl1e numbcr 2 . 0 is a propcrty ( )f the particular dc \ icc in questioll . ' I 'hc fact that

t11is numbcr CaJ1n ()t bc rcpresentcd by all ) ' finite decimal hclongs to a different

realm , i .e . to the theory of arithmctic . l--' urthcrmorc , tl1e t11eory of t11C mcchanism

and thc thcory of the compllt ,ltion dcal \ \ ' itll diffcrcnt cntitics . ' ll1c t11eory of t11C

calculator deals \\ ith clcctronic circuits , currcnt <;, and \' () I Lig  C S. ' I 'hc thcory of what

is bcing computcu , on t11C otllcr hand , dcals with arit11mctic objccts .

Inappl ) ' ing thc computati ( )na I approach , \IiC will study thc processing of the

visual systcm ,It thrcc diflcrcllt Ic \ 'cls : tI1C computcltional th C' ory , an algorithm to

Soi \ 'c tllC t  ilcory , and t11C ulldcrlying implcmcnt ; ltion ()f tll '~ colnpu  Ultion [ Marr

and Poggio , 1977a ] .

,' \ t thc Icycl of thc comput  Jtional theory , wc Inlist dctcrminc tllC physical con -

str Jillts tilal restrict the pr ( )blcm sumcicntly to allow tI1C pr ()ccss to do what it

U()cs . In general , tl1C problcms fJccd by m (JJulcs of carl ) ' visual pr (x: cs ~; ingap -

pc ,lr to be ins ()lllbic if one attcll1pl  S to s()1\ c thcm Fri )ln thc imagc <ilonc . nut

if wc can iucntify adJiti ( )nJl Cl ) ll ' ;traints on tllC process , impl )~;cd n ;ttur ,11ly as a

Cl Jllscqucncc ( If tl1C way the world is Inadc , \\ 'C C,I'll restrict tllc rc ~;Lilt sllf1lcicnt1y

to J1]ow a c ( )rrCCl s01uti (J!1 t () hc ft Jl111d. I '-or CX;llnl ) 1c, Ullll1 ; ln ' s 11979 ,1] rib i Jil ) , G.S--

.~'l {111J)li {)11 in thc illtcrprc  Ulti () ll l )f thrcc - di  Jllell ~i (Jna1 structurc li '()111 111(Jtil ) l1, t\ 1arr



and I Iildreth 's [1980] CO Jlditio Jl of li Jlear variatiolz and spatial coi Jlcidc Jlce assump-
tioJl in t11e analysis of intensity changcs and Marr and Poggio's [1979] assumptions
of ulziquelze.\'s and co Jlti Jluil Y arc instanccs ol~ physical constraints thJt rcstrict t11C
problem at hand. l 'his enunciation of addition31 valid or plausible constraints is a
crucial stcp in the fornlul Jtil)n ofthc complltational thcory.

Once t11C additional information has been isolatcd, one can incorporate it into

the design of a proccss. '('herc arc a number of ways in which apr ()Ccss may
utilize a constraint. l 'he constraint may be trcatcd as an assumption that is takcn
always to be true with or without verification (optical illusions oftcn illustrate
situations whcrc tJ1CSC assumptions arc not valid). An cxamplc of tJ1is is the case
of linear variation [Marr and l-lildrcth , 1980]. In contrast, some other process
might explicitly " look for" the satisfaction of the constraint; if it is consistent
v.-ith visual input, tJ1C constraint is assumed to bc true. An exam pIc of tJ1is is the
rigidity constraint [U Illilt \n, 1979a]. ,'\ltcrnatively, the constraint may be explicitly
cmbcddcd ill the process, such as tJ1C continuity and uniqucncss assumptions in
stcrco [Marr and Poggio, 1979],

At the level of tJ1e computational t J1eory, we must consider representations as
wcll as constraints. All the process es of early vision take propcrties of the image as
thcir inpllt and compute propcrtics of surfaccs, either rclating to tJ1cir geometry
or tl1cir rcflcctancc, as their output . In the stcrco proccss, it is imporulnt to dctcr-
mine the rcprcscntation of tJ1C input to the process, tJ1C means of transfonning
this information into a rcpresentation of surfaccs, and tJ1C naturc of tJ1is surface
rcpresent..1tion. Although tJ1esc questions can be addressed for visual processing
in general, it is desirable to have thc t Jlcory be consistcnt with processing in the
human systcm. l 'hus, psychophysical evidence conccrning tJ1C nature of these
rcprcscntations, and tJ1e pr()Cesses by which tJ1CY arc transformcd, will bc important 

f()r answcring tJ1CSC qucstions.

A fundamental assumption is being made at the level of tJ1C computational
theory: t1lat tJ1C human visual system is an inhercntly modular system, allowing
us, for cxamplc, to study tJ1e proccss of stcrco visioll in isolation. At first
glance, it is not clear to what extcnt stercoscopic proccssing is indcpcndent of
tJ1C m()nocular analysis of cach image. Onc mcthod for tcsting whcther a process
can be stlldicd in is()lation is lO prcscnt tJ1C visual systcm with im Jgcs in which,

as far as possible, all but onc type of inforlnation ha\'e been rcmoved. 111e
objcct.ivl.' is to detcnnil1c whether one CJn make use (If just tJlat one type of information

. Iior sterco this can bc dcmonstrated by the random-dot stercogram,

in\'enteo by Jules/. [1900], I':ach ofthc im:1ges in (.-igurc 1.1 is a collcction of black
and white duts, idcntical except t11at a ccntrally locatcd square-sllapcd region is
shifted h()rii'ontally in Olll' imagc rclative to till ' otller. Othlir than tl1is disparity,
tJ1e im:lgcs c()nL:lill no illit )rm Jtion ab()ut visible surfaces. Yct, whell the pair
is vie\\ cd stercoscopic~llJy al1J fuscd (tllC tW() imagcs arc br()ught illto corrcspon-
dence), ()ne clearly al1J vivi Jly percei\ es a square n()alillg in space above t11C
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plane of the background. 'I'his i11ustratcs tl1at disparity a1onc can cause the sensation 
of dcptl1. 'Inc fact tl1at ncithcr image contains any rccognizab1c monocular

organization implics tl1at the stcrco process may be studied in rclativc isolation
from other visual proccsscs.

'I"he idea tl1at a large colnputation should be dividcd and implemented as a
c()1lection of small sub-parts tl1.lt are as ncar1y indcpcndcnt of one another as
the ovcra11 task allo\\'s, is wh:lt t\1arr [1976b, 1981] ca11s the pri /lciple Ofl1 I Odular
dc.s"igl/. lisprincipeforms    a cornerstone to thc approach. Its import.lI1cc lies
in its hcuristic V Jluc, that is, without modularity , a sma11 changc in one placc in
a proccss could have conscqucnccs in many othcr places. l 'his means tl1at the
proccss as a \\;holc bccomes cxtrcmcly cumbcrs()mc, and difficult to dcbug and
ana1yzc. While tl1C main ro1c of the principle of modular dcsign is to cnable
us to dcrivc comput:.ltiona1 algoritl1ms for particul Jr visual prob1cms, it is worth
noting tl1at many of tllC componcnts of tl1C human visual system exhibit, to a
first approximation, some aspects of modularity . "I'hc cxamp1c of tl1C random dot
stereo gram (I-'igurc 1.1) in stereo vision, and tl1C two cylindcrs demonstration in
tl1C structure-from-motion computation [UI1man, 1979a] both serve to il1ustratc
tl1at the human early visual system can, as a first approximation, bc considcrcd
a ml)dular one. Of course, we do not ncccssari1y imply that tl1C human visual
systcm is strictly modular, since c1car1y comput.ltions pcrformcd by one visual
componcnt can in Oucncc tl1C comput.ltions pcrformcd by another. Wc shallusc
tllC principlc of modular design as a bJsic guide for first creating computational
algorithms tl1at arc modular, and wi11 then consider extensions of the system to
account for intcraction among the modules.

Ilaving dcvclopcd acomput:.ltion.11 tl1eor Y ofthc proccssing invo1vcd in a visual
task, one can thcn turn to the design ofa particular algorithm to achieve tl1C task.
Wc arc 111timatcly intcrcstcd in tl1C algorithm llscd by tl1C human visual system.
Howcvcr, a sccond purpose for studying an a1goritl11n is that it serves as an cx-
ccllcnt source of review for tl1C computationa1 thcory. Any implcmcnt:.ltion of a
tllcory uncovers otherwise unnoticcd difficultics with tl1C task and demonstrates
tl1e adequacy of Tile theory. l~-urthcrmore, any a Ssllmptions made by tl1C tl1cory
are tested not just by having an implemcntation, but by running the imp1cmenta-
tion on exampics. Chaptcr 4 ()f this book will dCt.lil how a particular imp1emcnta-
tion of a theory of hilman stcrro vision helped to rcfi nc tl1C thcory, botl1 tl1rough
tllC act of implcmcnt:.ltion and through the use of tl1e implementation on trial
data.

Marr [1976h, 1981] ()ut1incs t\'r'O other criteria that can also be llscd to guide the
dcsign of algoritllms, Jnd tl1at ought to bc satisficd hy any scrious candidate for
an carly pr()ccss ill the hum Jn visllal systcln. 'Il1c first, Tile pril I Cij)le ~r graceful
d('t;railal;()/1, says that \\ hcnc\'cr pl)ssihlc, dcgradl' tl or impo\'crishcd dat.l Silould
nol prcvenl the Jclivcry of ~lt Ie. 1st s()mc of tl1C .111~wcr. 'I'he S C COlld, the pril /c;Pie
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of least commitment, says that nothing should ever be done that may later have to
be undone.

It is important to note tllat there may be several possible algorithms for embedding 
a particular computational theory. In many cases, one can distinguish

between tllC acccptability ofdiffcrcnt algoritllms. For mod cIs of the human visual
system, I shall adopt a set of algorithmic criteria, outlined in Chapter 7, that
support biological feasibility [Ullman, 1979b].

l 'hc tl1ird lcvcl of description is tllat of the implementation. We are ultimately
interested in understanding the neural implementation used by tl1C human
system. It would bc nice to be able to give general rules about process es at the
lcvcl of tllC neural implementation. Unfortunatcly , only a few tl1corics have been
dcvclopcd to the point v. hcre specific neural implementations can be proposed
[for example, Marr , 1969], and none have been confirmed experimentally in every
dctail. l "hus, it is not yet possible to formulate such rules.

Although I have outlined tl1C tl1rce lcvcls of description in order from com-
putational theory tl1rough algorithm to implementation, tl1is should not be taken
as an implication that tl1C process of solving acomput Altional problem also follows 

this order. l{ athcr, as in any scientific endeavor, tl1C different levels intcr-

act in a wide variety of ways, each one serving to pro\'idc useful feedback for
the other levels. For example, when considering algoritl1ms for solving a particular 

problem, it is uscflll to kccp in mind the types of architecture which the
human systcm has a\'ailablc for implcmcnting its algorithms. Similarly, while
the computational tllcory is important in providing c Ol1straints on an algorithm,
the dcyclopll1cnt oftl1c alg{)rithm itsclfcan serve to illuminate constraints on Tile
computational tl1cory whicl1 might otherwise have bccn ovcrlookcd. The impor-
tAlncc of tl1C levels of description is to identify which questions arc p Jrticularly
relevant to tl1C different aspccts ofthc entire comput Altional problem.

r--inally. I wish to note tllat for a particular compuultion Jl tllcory , tllcre may
be many algoritllms, cvcn with tllC ovcrall structurc that wc will dcrivc here, and
mall Y ml1rc implcmcntations of the algoriu1l1ls.1'hc algorithms ulat Jre dcvclopcd
in tilis book arc onc possible set of mctll0ds for constrllcting tl1rcc-dimcnsional
rcprcscnt Jti{)ns from pairs of imagcs, and thcrc may be many WJYs of modifying
or impro \'ing thcsc algoritl1lns. l 'hc c{)mputation~11 tllcory is expected to have
somc\\ hat mlJrC pcrmancncy, however. 'lllC intent of the computational ulcory,
cspccially U1C c{)nstraints <.Icrivcd as a part of that theory, is to capture those
aspccts of thc problem lh:lt arc inhcrcnt to allY solutil Jn {)f th~lt problcl11. We
nov.' tllrn to a brief outline {)f the dcrivati{)n of a complll ;ttional thcory of U1rcc-

dimcnsional surface rcpr C S C!llations, and spccific algorithms for pcrfonning the
surface rc construct ion.
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1.3 O\'crvicw

Thc rcm Jindcr of t11is book is dcvotcd to a discussion of computation Jl theories
of the pr()Cessing of t11C human cJrly visual system. I:igure 1.2 illustrated
schcmatically the S~\gcs of proccssing used by the human systcm to transform
retinal imagcs into a reprcsentation of surface shape.

Initi Jlly, t11C im Jgcs obtaincd by cach cye are transformcd into Primal Sketch
dcscriptions. \\:hich mJkc cxplicit those placcs in an im Jge Jt which somc physical
propcrty of thc undcrlying surface ch Jnges in a noticcable manncr [Marr, 1976b,
!\1Jrr and I1ildrctl1, 1980, 11ildrcth, .1980]. In Chaptcr 2, we examine this process
within thc contcxt ofstcrco vision.

\\ 'c first illustratc t11e basic problcm of sterco, which is to locatc points in the
ilnagcs of the right and lcft cye t11at corrcspond to t11C same location on a sur-
facc. We show t11at if such locations CJn be found, t11e diffcrcnce in t11e positions
of thc t\\ O rctin J I locations can bc used to computc the distance to t11e surface.
We arguc t11at to pcrform this corrcspondcnce compu~\tion, we nccd to describe
imagc attributcs t11Jt can be unambiguously idcntiflcd with specific surface locations

. In gencr Jl, positions on a surface at which a physical property, such as

surfacc matcrial, surface tcxture, or surt:Ice sh Jpc, changes radically will satisfy
our requiremcnt and such surface locations can bc idcntified in thc image by a
suddcn changc in image irradiance. We then derive a mct110d for extracting a
dc script ion of t11esc image locations, specifically by isolating the zero-crossings of
the convolution of the image irradiances with a filtcr \\'hosc form is a Laplacian
of a Gal Issian (Scction 2.3). \\'e also show that tilis processing is consistent with
currcnt psychophysical information abo\lt the human carly visual systcm.

Givcn t11cse basic dcscriptions of t11C imagcs, wc must address the problcm of
dctcrmining thc corrcspondcncc bctwccn descriptors in each image. Wc state
two simple rulcs, bascd on thc physical structure of objccts, to apply to the computation

. Thcsc arc: each dc script or from one imagc should match at most one

dc script or from the other imagc, and t11C diffcrcncc in rctinal position ofmatching
dcscriptors should changc smootl1ly over the imagc. 1' 0 apply t11CSC rulcs, wc must
facc t11e fal .S'e largctii problem: sincc the basic dcscriptors are rclativcly simplc,
thcrc may be sevcral possible descriptors in one im Jgc which could correspond
to a particular dc~;criptor in t11C othcr imagc. The falsc targcts problcm is directly
proportional to the rallgc and rcsollition ofdcpt11 inf()rmation over which a match
is s()ught. We show that wc may Soi\'c t11C f~llsc targcts problcm without sacrificing
cithcr, by matching dc script i()ns obtaincd at scvcrallcvcls of rcsoluti()n, and using
t11C rollgh dCplh inf()fl1l;ltion ()btaincd at a coarse rcsollltion to glliuc the matching 

at a finc rcs()illtion , by changing t11C oricntation oft11e cycs. '111C algoriu1m wc

use, dcrivcd in Section 2.5, is that proposcd by fl,larr and Poggio [1979]. In the



remainder of Chapter 2, we show the relationship between the Marr -Poggio algo-
rit Ilm and currently available psychophysical and neurophysiological infonnation
abollt tI1C human stereo system.

Having devcloped tI1C stereo problem and an algorithm for solving it, we turn
in Chapter 3 to an implementation of tI1C algorithm, first discllssed in Grimson
[1981a]. ~ich step ofthc algorit Ilm is specificd in detail. In Chapter 4, we examine
the performance of tile i\-1arr-Poggio stereo algorithm using tile implementation
described in Chapter 3. Since the algorithm was developed as a model of the
hilman sterco system, we evalllate its performance by comparing tile results of the
algorithm to hilman perception for a wide range of random dot stcreograms, (see
also [Grimson, 1980a, 1980b, 1981a]). We fllrther demonstrate tile capabilities
of tile algorithm by considering its pcrfolmance on a serics of natural images.
Sections 4.3 and 4.4 discuss variolls aspects of tile algoriulm and its implcmcnta-
tion. Finally , we dcvelop the complltation of depth from disparity.

While our first few chapters focus on tI1C process of stcrco vision, there are
other early visual modules, such as structllrc -from-motion [Ullman, 1979a], which
also compu tc descriptions of surface shape from Primal Sketch descriptions. l3oth
of tI1CSC algorit I1ms compute specific surface infonnation only at certain isolatcd
points in the images - in tilis case, tl1C zero-crossings of the convolved images.
(Note that the important point here is not whether zero-crossings or some other
descriptor arc used as the basic representation on which the computation is performed

, but rather tI1at explicit surface information is available only at such

points.) In Chapter 5, we argue that st Ich a surface description is not sufficient.
We show both complltalionally and psychophysically tI1at the representation of
surface shapc should bc complctc, in tJ1C scnsc of cont.lining a specific depth
value everywhere in the rcprcscntation, rather than jllst at a set of scattered
points. 111c problem we cc)nsider in Ch~1ptcrs 5 t J1rough 9 is how to crcate a
complctc sl Irface representation, givcn tJ1C rcsults of tI1C stcrco algorit jim (or tJle
structurc-fr()m-motion algoritllm ).

In princil)lc, tJ1cre are infinitcly many surfaces which colild fit any givcn sct
of bc)lindary conditions, as providcd by tI1C stereo algorithm. In Sections 5.3
and 5.4 we show U1at m(Jst of tl1esc surfaces ~lrc not consistent with tJle known

inf()rmation. In particular, a surface whose orientation underg()es a series ofradi -
cat ch~lnges SI1()illd gcner;illy give rise to image irradial1ccs which also undergo a
serics or r~ldic~11 changl's. Sllch changes w(Juld then gi\'c rise to zero-crossings in
tl1C con\'olvcd imagc. I f there are no c()rrcsr (Jnding lero -crc)ssings in tl1e Primal
Sketch, such a sllrracc is inc()ilsistent witl1 t]1C inrl)Lin~ltion ill U1C image. Wc use
this ~Irgllmcnt to deri\'e the .~Il Ij (Ice co/lsi5"{{,/lQ' CO115{Raj/ll [Grilll S()ll , 198 lb ] which
Sl'-1tes th~lt

'llIl ' ;I O Sl' Il Cl' of zl'ro-crossings constraill S the possihll' surface sllapes.
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In Section 5.5, we review the factors which combine to form the image irradiances
and derive ~Iorn's image irradiance equation [ilorn , 1970, 1975, 1977]. In Scction
5.6, we use tl1is equation to make the surface consistcncy constraint precise, by
the 's"uiface collsistell C Y theoreln that rclatcs tl1C probability of a zero-crossing to
the variation in surface orientation [Grimson, 1981b].

l 'hc surface consistency constraint states tl1at to find a complete surface to fit

u1rough thc known points, we should choose a surface which is most consistent
with that known information . The surfacc consistency theorem of Section 5.6

indicatcs that one way of measuring surface consistency is to mcasurc the amount
of variatil )n in surface orientation ovcr a region of thc surface. III Chapter 6,

\.."e consider tl1e problcm of measuring this variation. In gencral, the problcm is
to dcterminc, given two possible surf Jccs, which onc is more consistent with tl1e
zero-crossings. A traditional method for comparing two surfaces is to assign to
each surface a real number. 'I'hcn, in order to compare two surfaccs, one nccd

only compare thc corresponding real numbcrs. '1'0 do this, we need to dcfine a
functional, mapping the space of possiblc surfaces into tl1C spacc of re J I numbers,
8 :X ~ ~ . 'l'his functional should be such that tl1C more consistcnt the surface,

the smaller tl1C real number assigncd to it . In this casc, thc most consistent surface
is tl1at ","hich is minimal undcr tl1C functional, n1C dcvclopmcnt of Chapter 5
le Jds to a functional that measures variation in surfacc oricnt..1.tion .

We also rcquirc tllat tl1C problem of finding a most consistcnt surface be wcll -
defined, tl1at is, that tl1erc bc a unique most consistcnt surface. This is not just a
mathematical niccty, but follows from the notion ulat if we create a local, parallel,
iterative algoriu1m to compute tl1C most consistent surface, we need to guarantee
tllat the computation will convcrgc to a unique answer. In Chaptcr 6 we derive
a simplc sct of mathematical conditions on tl1C functional v,"hich guarantee a
uniquc family of solutions. We also show tl1at tl1erc arc many possiblc functionals
", hich mcasurc surface consistency and satisfy thcse conditions. '1'0 dctcrmine
the bcst functional to use, we invcstigatc tl1C differcnccs in tl1e solution surfaces

corresponding to cach of U1CSC functionals. We also consider tl1C conditions undcr
which thc family of solutions will consist of only a single minimal surface. I3ascd
on thcse facts, ",'e arguc in Section 6.5 that tl1C best functional to llSC is tl1C quadratic 

variatioll. Wc claim that tl1C vi,S'lla! surface illte/po!atioll prob!eln is solvcd by

finding tl1C uniquc surface which millimizcs the quadratic variatil)n, while passing
through thc known points providcd by tl1C stcrco algoriu1m (or tl1C structure-
from-motion algorithm).

] n Chapter 7, we collsidcr what typcs of algorithms arc best applicd to solving
thc -intcrpolation pr()blcm. ]Jascd on a series of algorithmic constraints, we
suggcst tl1at U1e techniqucs of mathcl11 Jtical progralnming arc appropriatc to our
prohlem. Wc rcyicw tl1C (,o1/jugate grn Jicllt 11/CtII0 !, appropri Jtc to tl1C problem of
approximating the sllrl :1cc, and tllC grn(Llc/lt pr(Jje('tio/1 l1ICth(Jd, appropriatc to t11C
problcln of interpolatillg the surface.

13
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In Chapter 8, we create explicit algorithms, based on both oft11ese mefuods, for
solving t11C visual surface intcrpolation problem. We demonstrate fue suitability
of fue surface intcrpolation theory by testing the algorifums on a set of synt11etic
exampics. finally , we completc our original task, by processing a series of stereo
images with the Marr -Poggio algorithm, and then creating a complete surface
description by applying t11e interpolation algorithm. " hus, wc completc t11e task
of computing surf~lccs from images.

"1'0 complete our discussion, in Chapter 9, we analyzc t11C performance of the
algorit11m and skctch additional modifications which should improve t11e perfor-
mancc of the system. We consider t11C possible benefits of improving t11e initial
input to t11C stereo algorithm, tJ1C interactions bctv"cen tile stereo modulc and
other components of tl1e early visual system, and t11C problem of detecting discon-
tinuitics and thcir role in t11C interpolation process. ~-inally, we indicate some of
the implications oft11is theory for neurophysiology and psycl10physics.

Thus, wc will develop a t11cory of stereo vision, which transforms the images
into l>rimal Sketch representations and tlcntransforms  t11CSC representations into
tllC I{ aw 21 - I ) Sketch, and a thcory of visual surface intcrpolation , which trans-
folms Tile I~aw 2~-D Sketch into the I:ull 2~-1) Sketch. l 'hroughout this study,
our focus will bc on fuc dcvclopmcnt of computational t11corics and algorithms.


