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as it avoids transgressing the viability boundary (Figure 1)
(Ashby . 1952; Sibly & McFarland . 1976) .
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Figure 1 . Viability zone associated with two e!;'sential
variables , Vi and V2. The animat 's behavior is adaptive
because corrective action has been taken at point B, so as to
avoid crossing out the corresponding viability zone at point A.

Such behavior can be generated by means of several
different or complementary abilities and architectures . For
example , the laws governing the animat 's operation may
rely upon various homeostatic mechanisms thanks to
which , if the reference point alluded to earlier moves away
from an adapted point of equilibrium -- adapted because it is
suitably located within the viability zone - -. this process
tends to return it to its original position , thereby decreasing
the risk that it will pass outside the limits of the zone .
Other ways in which to lower this risk involve the use of
high -quality sensory organs or motor apparatus that allow
the animat to detect as early as possible that it is
approaching these limits and/ or to move away from them
quickly and effectively . In this line of reasoning , it is
obvious that the equivalent of a nervous system is
mandatory in order to connect the animat 's perceptions with
its actions and that reflex circuits activated as quickly as
possible increase the adaptive nature of its behavior . It is

Following a general presentation of the numerous means

whereby animats - - i . e . simulated animals or autonomous

robots - - are enabled to display adaptive behaviors , various

works making use of such means are discussed . This

review cites 176 references and is organized into three parts

dealing respectively with preprogrammed adaptive

behaviors , with learned adaptive behaviors , and with the

evolution of these behaviors . A closing section address  es

directions in which it would be desirable to see future

research oriented , so as to provide something other than

proofs of principle or ad hoc solutions to specific problems ,

however interesting such proofs or solutions may be in

their own right .

1 . INTRODUCTION

In a changing , unpredictable , and more or less threatening

environment , the behavior of an animal is adaptive as long

as the behavior allows the animal to survive . Under the

same conditions , the behavior of a robot is considered to be

adaptive as long as the robot can continue to perform the

functions for which it was built . Now , the survival of an

animal is intimately involved with its physiological state

and the successful operation of a robot depends upon its

mechanical condition . Under these circumstances , it is

obvious that one can associate with an animat - - whether

the term indicates a simulated animal or an autonomous

robot ( Wilson , 1985 , 1987a ) - - a certain number of state

variables upon which its survival or successsful operation

depend , and that each of these state variables is characterized

by a range of variation within which the animat ' s continued

survival or operation are preserved . Such variables were

referred to as essential variables by Ashby ( 1952 ) long ago .

Their variation ranges describe a viability zone inside the

given state space , and the animat can be referenced at any

instant by a point within this zone . Under the influence of

environmental or behavioral variations affecting the animat ,

the corresponding reference point moves and may at times

come close to the limits of the viability zone . In this

case , the animat ' s behavior can be called adaptive so long
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2. PREPROGRAMMED BEHAVIORS

likewise clear that additional adaptive potential is afforded
to any animat capable of responding with more than simple
reflex es. particularly when it is able to choose from among
several possible reactions the one that proves best adapted
to the situation at hand. Such a behavioral control can in

particular result from changes in the animat's motivation
brought on by this situation. Lastly . it is understandable
that the capacity of memorizing the perception/action
sequences that have shown themselves to be useful or
harmful in the past is of considerable adaptive value for any
animat obliged to decide what to do in a given situation.
and that this adaptive value is enhanced should the animat
also be capable of more or less sophisticated forms of
planning.

The intent of this article is to review significant approach es
that make use, separately or in combination , of these
various adaptive solutions, whether they were proposed by
ethologists, computer scientists or roboticists . We hope
that such a variety of concepts and techniques will
encourage a dialogue between specialists with different
scientific perspectives and that, from an interdisciplinary
approach of adaptive behavior. both a better understanding
of animal behavior and the conception of really autonomous
robots will arise. This review will be concerned with
computer simulations and real robots and will deal with
innate -- because they are programmed or wired in -- and
acquired -- because they result from learning or evolution --
adaptive solutions. However, a simple inventory of these
approach es will be made here, as more detail led descriptions
thereof are given in Meyer and Guillot (1990).

Many simulation models exhibit adaptive behaviors because
they were purposely programmed that way. The most
classical models belonging to this category are cybernetic
models that use suitable feedback loops to maintain an
animat's essential variables inside a specific region of its
viability zone. Thus Booth 's feeding behavior model
(Booth. 1978) is founded on the hypothesis that the
initiation and termination of feeding in rats depends on the
intantaneous value of the energy flow entering or exiting
from lean tissues. An hysteresis loop explicitly governs the
margin of variation of this flow . and therefore the animal's
hunger. Likewise . in the drinking behavior model proposed
by Toates & Oatley (1970). another hysteresis loop restricts
the variations of the thirst signal . Numerous other
instances of this type of cybernetic model are to be found in
McFarland (1971. 1974. 1985) and Toates (1980. 1986).

Work by various authors in the field of biomimetic signal
processing (Busnel & Fish, 1980; Nachtigall & Moore ,
1988; Rivamonte & Dral , 1990) show promise as to the
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possibility of increasing the adaptive capacities of an animat
by providing it with sensors that work more or less like the
sensory organs of animals . For example , use has been
made of knowledge gained about the compound eye of the

fly (Franceschini et ai, 1989) in the development of an onboard 
electrooptical system for the guidance of an

autonomous mobile robot (Pichon et ai ., 1990) . Likewise ,

Wang et ai . (1990) obtained insights into the vision system
of the rattlesnake which they then used to carry out fusion
of multisensor data in a robot .

A markedly different approach , but one that is also expected
to improve the efficiency of an animat 's sensory -motor
system , is the one developed by Agre and Chapman (Agre ,
1988 ; Agre & Chapman , 1987 ; Chapman , 1989) involving
deitic representations . The basic idea is that it is
unnecessary to equip the animat with a sensory apparatus
capable, at all times, of detecting and distinguishing
between all the objects in its environment in order to ensure
its adaptive competence. All that is required is that it be
able to register information only about objects that are
relevant to the problem to be solved . That is , at any
moment , the animat 's internal representation should register

only the features of a few key objects and ignore the rest .
Also , those objects should be indexed according to the
intrinsic features and properties that make them significant.
Such an approach gives rise to the -design of systems that
actively control their sensory apparatus , since they must
mark relevant objects and change their focus of attention as
new objects make their appearance in the environment
and/or that the objects previously marked cease to be of
interest .

The efficiency of this approach is illustrated by the Pengi

system , which is capable of attaining remark ably high
scores on a popular video game. In this game, a penguin
must survive as long as possible in a world containing ice
blocks and bees, the ice blocks being moveable so as to

serve as protection against a bee, or to smash it .

Various approach es achieve an adaptive sensory -motor
integration by means of devices more or less directly
suggested by natural nervous systems and notably from
knowledge gained in the area of neuroethoiogy (Camhi ,
1984 ; Ewert . 1980 , 1987 ; Ewert et ai . 1983 ) . These
devices -- at least in their simulated version -- implement

artificial neural networks similar , for the most part . to those

made popular by the Parallel Distributed Processing Group
(Rumelhart & McClelland , 1986) .

As an example of the use of an artificial neural network for
controling behavior, Beer (1989) has developed a model
enabling an artificial insect to display a variety of behaviors
--locomotion , wandering, edge following and feeding--
ensuring its survival in a simulated environment .
Considering that the same neurons are involved in the
initiation and control of these behaviors , it is evident that a
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3. LEARNED BEHAVIORS

Many simulation models implement individual learning
process es by means of which an animal or a robot can
improve the adaptivenesss of their behaviors.

proper organization must preclude the simultaneous
occurrence of incompatible actst that is those calling upon
the same motor units or the same behavioral final common
path, to use the expression of McFarland & Sibly (1975).
The solution retained is a hierarchical organization where
the consumatory part of feeding behavior takes precedence
over the orientation -towards -food behaviort which in turn is

dominant with respect to the obstacle -avoidance behavior .

According to such an organizationt exploration is the
behavior engaged in by defaultt while locomotion is

activated in the course of every behavior entering into this
hierarchy .

This type of organization , in which a dual perception / action
hierarchy is implemented , is quite similar to those proposed
by Tinbergen (1951) in a purely ethological context, or by
Simon (1982) in a more general perspective. Moreover, its
capacity to generate adaptive behaviors has been studied at
length by Albus ( 1979 , 1981) .

Other examples of hierarchical control are afforded by Jacobs
( 1972) and by Meyer ( 1986) . This latter work describes
how the rat Psikharpa .x makes use of a symbolic model of
its world so as to survive in a familiar environment .

Notably . Psikharpa .x is capable , in order to avoid dying of
hunger, of fetching the keys that open the various doors
giving access to its food . More generally , this work
address es the way in which artificial intelligence and
ethology may contribute mutual insight , particulary in the
realm of heuristic problem -solving .

Various studies of robot navigation also rely on explicit
models of the outer world , these robots generally being run
by appropriate planning programs to determine what path
should be followed to go from one point to another (Giralt
et ai ., 1984 ; Koch et ai ., 1985 ; Lin et ai . , 1989 ; Nilsson ,

1984) . To solve the problems that can arise from such an

approach when an unforeseen obstacle hinders the normal
operation of the plan , Arkin proposes the Au R A
(Autonomous Robot Architecture ) architecture that is based

both on an a priori world model and on mechanisms
allowing rapid and effective reaction to changes occurring
within the world (Arkin , 1989a; Arkin & Taylor , 1990) . In
particular , this architecture has recourse to motor schemas
(Arbib , 1989a; Arkin , 1987) which are the basic units of
motor behavior in AuRA . In Arbib and House ( 1987) and

in Arbib ( 1989b) other applications of such schemas are to
be found concerning models of worm acquisition by toads
and frogs in an obstacle-cluttered environment that entails
detour behavior .

For Brooks ( 1987) , the use of a world model is not essential

to the generation of intelligent behavior, in particular when
carrying out navigational tasks. This viewpoint is
illustrated by the construction of ten or so autonomous
robots of highly varied sizes and missions (Flynn &
Brooks , 1988 ) , but all characterized by the same

subsumption architecture (Brooks, 1986). This architecture
represents a parallel and distributed computational
formalism for connecting sensors to actuators in robots.
Instead of fusing sensory data into an internal world model
of the robot's environment and using this model to plan
intelligent action, subsumption architecture provides an
alternative way of writing intelligent control programs for
robots in which sensors are more directly linked to action-
suggestion modules. Fusion, here, happens at the actuator-
plan level, rather than at the sensor-perception level.

One writes a subsumption program by specifying layers of
networks of finite -state machines augmented with various
timers and registers. For examplet this architecture makes
it possible for the robot Geng his to chase infrared sources
over rough terrain (Brooks t 1989) . Likewiset it permits
Squirt -- "the world 's largest one-cubic-inch rob,ot" (Flynn
et ai .. 1989) -- to act as a "bug"t hiding in dark comers and
venturing out in the direction of noises only after the
noises are long gone.

Another parallel and distributed structure is proposed by

Maes ( 1989 ) to control the behavioral sequences of an

animat . Instead of being governed by a hierarchy and

according to a top - down design , the various acts making up

the sequence follow each other in an order that is an

emerging property displayed by a network of competence

modules , according to a bottom - up design derived from

Minsky ' s Society of Mind theory ( Minsky , 1986 ) . For a

comparison of such an approach with more traditional

studies about behavioral sequences in animals , one should

consult Guillot ( 1986 , 1988 ) .

The idea of using different agents that cooperate to achieve

tasks without specific coordination or communication is

carried to its limit in the proposition of sending to the

moon a colony of small robots for building a permanent

base ( Brooks & Flynn , 1989 ) . An example is to be found

in Brooks et al ( 1990 ) of the simple behaviors that must

be exhibited by each individual robot in order for the whole

colony to be able , firstly , to select a promising area in

which to construct the lunar base and , secondly , to level the

ground in the construction site and pile up the soil in a

small number of piles . Similar parallels between artificial

self - organizing systems and insect societies are mentioned

in Deneubourg & Goss ( 1989 ) , Moyson & Manderick

( 1988 ) and Steels ( 1987 , 1989 ) .
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The simplest sort of learning thus used is conditioning
that modifies the behavior of the animat as a result of

certain temporal relationships between events. Many
models describe how such conditioning could arise at the

single neuron level (Barto & Sutton , 1982 ; Sutton & Barto ,
1987 ) . In Sutton & Barto ( 1989 ) , for examplet such a
model -- called the temporal dij Jerence model -- is compared
with animal learning theories of reinforcement from Mowrer
(1960) and Rescoria & Wagner (1972).

Other models make use of several neurons to simulate

conditioning experiments. LIMAX (Gelperin et alit 1985)
is an example of a model enabling one to simulate
Pavlovian conditioning in a slug which learns to avoid
plants containing bitter or toxic chemical substances .
Under these condition st the plant 's odor constitutes the
conditioned stimulus (CS) while the bitter flavor is the
unconditioned stimulus (US) .

Other varieties of learning can occur within artificial neural
networks, as examplified by the work of Grossberg and his
school (Grossberg , 1987 , 1988 ; Grossberg & Kuperstein ,
1989 ; Grossberg & Schmajuk . 1989) and by many other
simulations .

In the work of Pomerleau ( 1989) , for example , a supervised

learning procedure has been used for training a three -layer
neural network to govern the movements of N A VLAB . the

Carnegie Mellon autonomous vehicle . Likewise , an
unsupervised learning procedure has been used by Salu
( 1984) to simulate the manner in which a young cat learns
to behave in its environment and how the corresponding

pertinent information is memorized and recalled.

Many models call upon a different variety of learning,
known as reinforcement learning , that prompts the animat
to discover for itself which actions it must perform in order
to maximize an external gain , or reinforcement signal .

The Barto & Sutton model (1981) pertains to this category.
It allows an animat to learn to use odorous landmarks to

orient itself in a two - dimensional universe . In this

universe , a central landmark is surrounded by four others ,
each of which emits an odor the strength of which decreases

with distance . The purpose of the animatis to make use of
these odors to reach the central landmark . This task is

carried out by means of an Associative Search Network that
is endowed with special neurons drawn from Klopfs
theories (Klopf , 1980). The point to be emphasized in
connection with this is that the animat works out , in the

course of its learning phase, a kind of rudimentary cognitive
map, and that this capacity is to be compared with various
experiments that may imply the use of such maps by
animals (Ellen & Thinus -Blanc , 1987 ; Gould , 1986 ;
Griffin , 1982 ; Menzel , 1978 ; O ' Keefe & Nadel , 1978 ;

Pearce , 1987 ; Roitb1at , 1987 ; Tolman , 1948 ; ) . Two

models, for example, are to be found in O' Keefe (1989) and
in Mc Naught on (1989) that describe how spatial data might
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be memorized and used by the neuronal structures of the
hippo campus .

In line with this notion of cognitive map , a number 'of

papers describe adaptive networks of neuron -like elements
that use and dynamically adjust an internal world model.
Sutton & Barto ( 1981) , for example , describe a simulation

effecting a kind of latent learning in a network. Likewise,
Barto et al . ( 1983) demonstrate how a single element can be
used to model the reinforcement of the environment Such

a model makes it possible then to facilitate learning under
conditions where the environment affords only an
intermittent reinforcement signal . When this signal occurs
after the animat has several successive actions , a

fundamental credit assignment problem arises (Minsky ,
1963): that of deciding what portion of the corresponding
reward or punishment is to be assigned to each of these
actions . Obviously , an elegant solution to this problem is
afforded if a model can be used that will predict what
reinforcement the environment could have furnished in

response to each action .

The possibility for an animat to have access to a world
model that allows it to carry out fictitious experiments and
to plan its behavior through trial -and-error learning has, for
example , been examined by Sutton ( 1990 ) . Thus this
author has studied a class of simple architectures called
DYNA that apply various machine learning algorithms to

approximate conventional dynamic programming control .

A DYNA architecture relies essentially upon four

interacting components:
- The real world , that changes state in relation with the
animat 's behavior and that distributes rewards and

punishments ;
- The world model that the animat elaborates for itself and

that is intended to mimic the one-step input /output behavior
of the real world ;

- The policy function relied on by the animat to determine
what action to engage in response to each possible state of
the world ;

- The evaluation function to which the animat has recourse

in order to assess the reward associated with each state ,

when its object is to maximize the long -term average reward
per time step .

The world model, the policy function , and the evaluation
function are progressively modified as the animat
experiments with the operational laws of its world . These
modifications depend upon two type of experiments that the
animat may alternate between: actual experiments carried
out on the real world -- that bring about updates by
temporal difference reinforce me.nt learning -- and fictitious
experiments -- that make use of the model world and give
rise to updates by relaxation planning . In either case, the
algorithm applied is related to dynamic programming
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inasmuch as the credit is propagated from one step to the
preceding one within action sequences.

Simulations effected on different variants of this
architecture indicate that the corresponding animats are not
only capable of learning how to move around in a labyrinth
while minimizing their navigational errors by simple trialand

-error learning, but further that this learning is expedited

when they also avail themselves of the. planning
possibilities afforded by their world models. What is more,
certain of these architectures are easy to adapt for use in
changing environments.

A similar approach has been put into practice by Thrun et
al . (1990) on an adaptive connectionist planning method.
In this work , an ani mat's world model is progressively
elaborated in the light of interactions between this animat
and its environment, and this world model is used to work
out a look -ahead plan expected to maximize future
reinforcements. A special back-propagation method has
been conceived for the purpose, which effects a gradient
descent in the space of all possible actions.

Another approach conceived in this line of thought is that
of Schmidhuber (1990). In this work, two neural networks
are used to govern the actions of an ani mat, with one of the
networks being responsible for the sensory-motor
integration. while the other models environmental changes
and reinforcements resulting from the animat's actions.

Possibilities of learning through reinforcement as well as
of planification are exhibited by the AGAR system
(Travers, 1989), the architecture of which is not directly
inspired by a neural network , but rather is based upon
Minsky 's Society of Mind theory cited earlier . In this
system, behavior control is carried out by entities called
agents, comparable to production rules in that they are
characterized by conditions and actions. The conditions
required to activate an agent may depend on the state of
various sensors, as they may also depend on the activity of
other agents. The actions arising from an activation can be
any behaviors whatsoever t as long as they are capable of
being expressed in a high level programming language such
as LISP . They may, among other things, activate or
supress other agents, activate a motor function, activate a
script (Schank & Abelson, 1977), memorize the activation
status of other agentst or create or modify agents. For
examplet a set of instructions is to be found in the paper of
Travers that makes it possible to create the agents necessary
to simulate the courting behavior of the stickleback.

The works that have just been mentioned are all based on
the same implicit and simplifying hypothesis that the
animat's sensory equipment allows it to elaborate a model
of its world the states of which correspond unequivocally
with those of the real world . Such an hypothesis is first of
all more or less unrealistic and secondly results in models
that are generally too complex to be usable in practice, save

for certain simple academic cases. This is why Whitehead
& Ballard (1990) have studied an adaptive -control
architecture that integrates active sensory-motor systems --
based on the deitic representation paradigm referred to earlier
-- with decision systems based on reinforcement learning .
Such an architecture learns not only how to solve a task
like block manipulation , but also where to focus its
attention in order to collect the necessary sensory

information . In particular , it makes it possible to solve the

problem of perceptual aliasing generated by the active
perception mechanisms thus brought into play , problem
that occurs because the animat 's internal representation often
confuses external world states with one another .

Reeke and Edelman 's Darwin III model (Reeke and
Edelman , 1988 ) likewise represents the mind as an

unsupervised learner in which much of the clustering of
stimuli into classes is not readily inherent in the stimuli
and must be performed by the individual according to what
is adaptive for its species and its own particular
circumstances . Furthermore , the categories constructed by
an organism aren't fixed , but constantly change in response
to new experiences on its part of the environment . Thus , to

carry out tasks involving categorization , recognition ,
generalization , and association with respect to moving
objects, Darwin III uses a multijoined arm and a moveable
head with one or two eyes to refine its perceptions by
means of simple motor actions, such as saccades and visual
tracking , reaching , touching , and tracing . The
corresponding architecture is a direct implementation of
Edelman 's neuronal group selection theory (Edelman , 1987),
whereby the individual 's behavioral repertoire arises out of a
selection among diverse preexisting groups of cells --
accomplished by differential modification of synaptic
strengths -- according to what is of adaptive value to it in
its econiche . This selection is elaborated without change in
the connectivity pattern within and between cell groups ,
which has been fixed during the prenatal period of the
brain's development.

Another organization , called a classifier system, was
elaborated by Holland ( 1971) so that individual learning
could be carried out. Many descriptions of this organization
have been made, notably in Booker et al . (1989), Goldberg
( 1989) , Grefenstette ( 1985,1987) , Holland ( 1986) , Holland
et al . (1986) and Schaffer (1989) .

However , because a classifier system is generally applied in
conjunction with a genetic algorithm , specific simulations
that implement such a system will be mentioned in the
following section only . It should however be noted that a
critical review of the way in which classifier systems

function is given in Wilson & Goldberg (1989) and that
changes in the basic structure of these systems are proposed
by Wilson ( 1987b ) in the interest of achieving a better
control of behavioral sequences by a hierarchical structure .

Such a structure , in addition to the similarities it presents
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with the hierarchical control models used by ethologists
(Baerends et ai .. 1970; Dawkins . 1976; Tinbergen. 1951).
should materially accelerate the learning. Let us also
mention that the work of Holland et ai . (1986) interprets in
terms of classifier systems the results of many classical
experiments in animal conditioning and learning.

4. EVOLVED BEHAVIORS

The idea that an animal's behavior is partially determined by
its genome and that this behavior is accordingly capable of
evolving through natural selection implicitly underlies
many optimization models proposed by ethologists and
ecologists (Alexander , 1982; Clark , 1990; Krebs &
McClery , 1984; Lendrem, 1986; Mangel & Clark , 1988;
McFarland, 1982; Meyer, 1980), in the framework of what
is known as afunctional analysis of behavior. This type of
analysis postulates that the behavior currently exhibited by
an animal stems from successive improvements it has
benefited in the past, from generation to generation.
Provided the process has been going on a sufficiently long
time, the behavior's selective value can be expected to have
reached its maximum value or , in other words, to be
optimized. In this context, the selective value of a behavior
is bound up with its adaptive nature. Indeed, it estimates
the extent to which this behavior influences the animal's

capacity to produce a large number of fertile descendents,
and this capacity obviously requires not only that the
animal be able to keep itself within its viability zone, but
further that it remain in a more restricted zone compatible
with its reproductive needs.

In these perspectives, a static optimization model was, for
example, proposed by Belovsky (1978) for predicting food
selection in the moose. Likewise , a dynamic optimization
model was proposed by McFarland (1977) to predict the
optimum order of occurrence of three stereotyped acts in the
courting behavior of the male newt: retreat displays, pursuit
motions, and spermatophore transfers.

Other dynamic optimization models of behavior make use
of dynamic programming techniques. This, for instance, is
the case with McNamara & Houston's model (1986) which
describes the relationships between short-term behavior and
lifetime reproductive success for a bird , with Nollet 's model
(1988) which describes the queen's egg-laying cycle in bees
and social wasps, with Guillot 's model (1988) which
describes ultradian activity cycles in mice, and with Mangel
& Clark's model (1988) which describes the social hunting
behavior of lions.

The optimization models just mentioned all call for just one
decider. The extension of this approach to the case of two
or more deciders entails, from a technical point of view ,
using of models that are formulated in terms of game theory

and, from a theoretical standpoint , calling upon the
important concept of evolutionarily stable strategy
(Maynard-Smith, 1974).

This notion concerns a strategy which is optimized -- in the
sense that it cannot be replaced by another more efficient --
and which has proven particularly fruitful in the area of
behavioral ecology (Colgan, 1989; Maynard-Smith, 1982;
McFarland , 1985; Parker , 1984, 1985) . Houston &
McNamara (1987) or Mangel & Clark (1988) are to be
consulted for its extension to dynamic models.

If these optimization models make it possible to test the
hypothesis under which a given animal' s behavior is the
result of a long evolutionary process -- in other words that,
if it had been different , it would have been eliminated by
natural selection -- it is clear that these models do not
purport to explain by what means this behavior evolved. In
particular , these models are unable to handle genotype-
phenotype relationships that are instrumental in the
evolutionary process thus hypothesized (Jamieson, 1986).

In this connection, the approach favored by Holland (1975) -
- in search of an adaptive plan making it possible to
improve the adaptation of any given system -- appears to be
entirely complementary with respect to the preceding
approach es, for it enables optimization problems to be
solved by using explicit genotype-phenotype relationships.
More specifically , this approach calls for a genetic
algorithm which consists in the parallel management of a
population of chromosomes such that each one of them
codes -- generally in the form of a chain of binary symbols
-- a possible solution to a particular optimization problem.
Each of these chromosomes can therefore be assigned a
fitness that assess es the corresponding solution . The
application of the genetic algorithm accordingly consists in
causing this population to evolve from generation to
generation while rendering the probability of reproduction of
each chromosome proportional to its fitness and using
genetic operators such as mutations and crossing-over to
give rise to new solutions in the population. Under these
circumstances, this type of evolutionary process causes
chromosomes of ever-increasing fitness to be generated until
the optimum value is reached, or sufficiently nearly so for
all practical purposes.

Many applications of algorithms of this kind are to be
found in Goldberg (1989), Grefenstette (1985, 1987) , or
Schaffer (1989) and a critical review is available in Schaffer
& Grefenstette (1990). A special application, designed for
the study of the behavior of a population of interactive
animats, has been elaborated by Sannier & Goodman
(1987). In particular, this work shows that it is possible to
evolve, through hybridization, a composite genome capable
of producing and organizing a distributed system of
independent animats which work towards a common goal.
The model of Packard ( 1989) is also intended to simulate
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an equivalent to this practice is to be sought in naturet it
may be considered that -- within the so-called "Michigan
approach " - - the genetic algorithm is used to recombine
thoughts in a given mental modelt whereas -- within the
"Pittsburgh approach " -- its purpose is rather to simulate
the evolution of a behavioral program coded in a genome .

Whatever the case, the first application of a classifier
system to the simulation of an animat 's behavior was that

of Holland & Reitman ( 1978 ) . In this work , an animat

learns to solve a double survival problem : avoid dying of
hunger or thirst . To do this , it must move around in a
monodimensional universe containing food at one of its
extremities and drink at the other . However , due to the fact

that its hunger and thirst evolve at different rates , it must
learn to adjust accordingly the frequency of its visits to the
spots where food and drink are distributed .

The animat simulated by Wilson ( 1985) also makes use of a
classifier sytem to find food and avoid obstacles on a two -

dimensional grid.

Another classifier system has been developed by Booker
( 1982 , 1988) to allow an ani mat called GOFER to learn to
produce goal -seeking behavioral sequences through the use
of rules that manipulate objects, goals, and object/goal
associations , rather than rules that code simple
stimulus/response associations. From this point of view,
this work specifically calls upon a cognitive approach to
behavior , as opposed to a behaviorist one (Bower &
Hilgard , 1981) .

In closing this review . let us mention the work of Ackley
& Litman (1990) that explicitly combines the two natural
process es by means of which behavior is optimized for

survival : learning -- as the adaptation of the individual --
and evolution - - as the adaptation of a population . This
work draws upon a strategy called evolutionary
reinforcement learning (ERL) that makes use of genetic
evolution techniques to allow effective learning based solely
upon natural selection .

The corresponding simulations concern an animat
population that struggles for existence in a simulated world
where the only feedback mechanism is natural selection .

The fate of these animats in their environment depends on
their capacity to learn to find food , to avoid obstacles , and
to escape from their predators . Their behavior is governed
by a neural network and a learning process which relies on a
special reinforcement algorithm . The network and the
evaluation function used by the algorithm are coded in these

animats ' genome and accordingly may evolve as the
simulation progress  es .

Under these conditions , the ERL strategy displays better
performance -- measured in terms of mean population
survival times - - than control populations of randomly -
moving animats, or than populations that employ just

Likewise in the work of Viola (Viola , 1988) is to be found
an original utilization of a genetic algorithm so as to cause
a modification of the internal architecture of a robot to take
place.

Lastly, let us mention the work carried out by Bertin (1990)
who studies the evolution of behavior in aquatic animats
called paddlers, that must seek out and feed on other animalS
called glowballs . Each paddler's behavior depends on a
neural network the purpose of which is to translate the
visual inputs affecting the animat into suitable navigational
responses, in this case appropriate paddle frequencies. The
architecture of these networks is invariable, but the behavior
they give rise to is strongly dependent on a variety of
numerical parameters characterizing each animat's visual
system. The evolutionary experiments deal with these
parameters, that undergo random mutations from generation
to generation. However, in contrast with the procedures
called on in a classical genetic algorithm, these experiments
do not involve any crossing-over and therefore presuppose
simple asexual reproduction.

The results obtained do not manifest any significant
improvement of the animats' performances with time, due
to the purely random exploration of the space of the
parameters implied by these experiments. This point is
obviously related to the secondary role these mutations
would seem to play in the evolutionary process (Holland ,
1975) and to the limited results achieved by other asexual
mutation experiments that attempt to solve the problems of
adaptive systems by merely "saving and mutating the best"
(Dawkins, 1986; Fogel et at., 1966; Hicklin , 1986).

As was mentioned previously , a classifier system is
generally used in conjunction with a genetic algorithm. If

the evolution of animats in interaction in the framework of
a spatial ecosystem. In this model, each animat's genome
contains two genes, one coding the food threshold required
for reproduction , and the other coding the number of
offsprings. The results obtained indicate that the dynamic
characteristics of the evolution of the simulated population
strongly depend on the mode of driving the system with
food , and notably on the size of the corresponding
fluctuations.

Other applications of genetic algorithms, notably to the
study of animat behavior, are presented in Koza (1990). In
particular . this text describes how to generate a plan
allowing an artificial ant to traverse a trail with gaps of
various types. It also shows how to find the minimax
strategy for the pursuer to catch an evader in the differential
game of simple pursuit played on the plan.

Still other applications of genetic algorithms make it
possible to simulate various interesting co-evolution
phenomena (Axelrod , 1987; Hillis , 1990; Holland, 1990;
Miller , 1989).
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program's sensitivity to these instructions and, more
generally, a comparison of the program's behavior with that
actually displayed by the animal should enable the validity
of the corresponding interpretations to be assessed.

We are convinced that most of these controversies would

automatically work themselves out as soon as
interdisciplinary approach es will begin to prevail . For
example, while Booker (1982, 1988) explicitly places his
work in a cognitive perspective, our belief is that nothing
in GO F E R's program mentioned earlier is in contradiction
with the classical concepts of ethology . Likewise , the
expressions "world model" or "planning" used to describe a
program's behavior often implement data structures and
procedures that are probably less at variance with certain
ethologists ' concepts than these latter may at first be
inclined to believe. After all , starting with Walter (1950,
1951) or Wiener (1961), it has long been accepted that very
simple mechanisms can generate many "goal-directed"
behaviors (Ackoff & Emery ,1972; Weir ,1984).

Naturally this discussion is not unrelated with those
devoted to symbolic and sub-symbolic approach es to
artificial intelligence (Fodor & Pylyshyn , 1988; Lloyd ,
1989; Smolensky , 1988; Waltz , 1988), nor is it
unconnected with the controversy that divides the
proponents of reactive control from those of knowledge-
based planning in the area of robot navigation (Arkin ,
1989b). In all these respects, the animat approach should
eventually prove enlightening , if only through the
experimentation it allows and the opportunity it affords to
ascertain which model or which minimal architecture
results in what type of adaptive behavior being exhibited.

It nevertheless appears to us that these advancements would
be all the more explicit and useful if the aforesaid
interdisciplinary approach es were to center around a minimal
number of anchor points, the groundwork of which has yet
to be laid.

In view of the extreme diversity of the approach es reviewed
in this text, it indeed seems essential to seek a typology of
the problems dealt with , on the one hand, and a typology of
the proposed solutions, on the other hand, in order to find
out -- among other things -- whether or not simple
correspondances exist between the former and the latter. In
this perspective -- which is closely allied with Wilson 's
proposal (1990) for a theory of environments -- it would
certainly be interesting to discover that one specific type of
problem is analogous to another specific type for such and
such a reason and that, accordingly, the said problem stands
a good chance of being solved by a specific type of solution
or architecture rather than by another one.

However, for it to be likely that such knowledge will be
available some day, current practice ';,Jiill definitely have to
be superceded in which each published article is just
embodying a proof of principle . Besides the fact that it is

evolution or just individual learning . This result is

obviously to be borne in mind when considering the various

recent studies addressing the Baldwin effect (Belew , 1989 ;

Du chateau et al ., 1990 ; Hinton & Nolan , 1987 ; Maynard -

Smith , 1987 ; Nolfi et al ., 1990 ) , or , more generally , the

conjunction of a genetic algorithm and a neural network

(Caudell & Dolan , 1989 ; Harp et ai , 1989 ; Miller et ai ,

1989 ; Resnick , 1990 ; Todd , 1988 ; Whitley & Hanson ,

1989 ) .

5 . OVERVIEW AND PROSPECT

The first remark that comes to mind at the end of this

review is that the majority of the works alluded to were

performed in the course of the past five years . It is therefore

quite clear that the study of adaptive behaviors exhibited by
simulated animals or autonomous robots is a theme of

current concern . This sudden popularity can doubtless be

explained by the fact that the subject promises to be fertile

in theoretical innovations - - notably as concerns the

relationships between individual learning and species

evolution - - and practical accomplishments - - particularly as

regards the construction of robots capable of carrying out

various custodial services or exploratory tasks .

Furthermore , it so happens that natural animals afford the

principle proof that adaptive behaviors -- certain of which

may be extraordinarily efficient - - can be elicited by systems

that have been properly organized , and that a great deal of

knowledge has been accumulated by ethologists since they

began to take an interest in the scientific study of animal

behavior (Richard , 1984 , 1985 ) .

From this new -found interest in artificial animals or from

this longstanding knowledge of natural animals , it can

reason  ably be hoped a growing interest in an

interdisciplinary approach to adaptive behaviors .

It is probable , for instance , that ethologists will profit to a

greater extent from the possibilities offered by simulation

models . One of the advantages afforded by these models

(Meyer & Guillot , 1986a ) is indeed that their functioning

laws are set forth in the corresponding programs in perfectly

unambiguous form , whatever the scientific or philosophical

blases of the one observing the behavior of these programs .

Under these conditions , it can be expected that

controversies as to the role of possible cognitive process  es

in the determinism of animal behavior (Colgan , 1989 ;

Griffin , 1984 ; Hoage & Goldmant 1986 ) will soon no

longer be hampered by mere statements of principle and

ambiguous terminology , in which they have so often

become mired down in the past . The availability of

simulation programs makes it possible to identify which

instructions devolve from a purely ethological interpretation

and which from a cognitive one . An analysis of the
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only a systematic comparison of several different versions

of the same problem with a range of solutions as varied as

possible can allow an evaluation of the respective

advantages and the degree of originality of these solutions .

This last type of knowledge is , in particular , the one that

would prove the most useful to ethologists for interpreting

a given animal ' s behavior as mobilizing the same solution

as that which enables an animat to solve the same type of

adaptive problem . Among the very large assortment of

solutions that might on first thought be possible .

obviously those that have already demonstrated their

use fulness in similar fields of application should be tried

out first . However , as suggested by Braitenberg ( 1984 )

when alluding to the " law of uphill analysis and downhill
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more subtle and qualitative factors like the nature of the
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with the best sense organs that money can buy ,
and then teach it to understand and speak English

. This process could follow the normal

teaching of a child . Things would be pointed
out and named , etc.

Turing ' s first proposed direction led to " standard AI "
or computational cognitive science. Standard AI is basically 

competence- oriented , modelling specific human
abilities , often quite advanced ones. However , while
many AI programs exhibit impressive performance ,
their relevance for the understanding of natural intelligence 

is, in several respects, limited .

In addressing isolated competences, AI systems typically 
ignore the fact that real creatures are always situated 

in sensory environments and experience varying

degrees of need satisfaction . Furthermore , the systems
attach less importance to such basic natural abilities as
perception , categorization , and adaptation than they do
to algorithmic process es like search and exact reasoning

. This leads eventually to problems connecting the

arbitrary symbols used in internal reasoning with external 
physical stimuli (" symbol grounding " (Hamad ,

1990 , and "brittleness " ( Holland , 1986), the tendency
for AI systems to fail utterly in domains that differ even
slightly from the domain for which they were programmed

.

AI systems also have an arbitrariness : it is often not
clear why one program that exhibits a certain intellectual 

competence is to be preferred over some other one exhibiting 
the same competence, especially since the field

has not agreed on- or too much sought - a clear definition 
of intelligence . In a sense, the programmer 's facility 
for imitating a high -level fragment of human

competence is a kind of trap , since from a natural science 
perspective there is usually no strong relation to

nature .

Turing ' s second proposal , for a "child machine " , received
, over forty years, little attention or resources,

perhaps because it seemed fantastic . Yet the child machine 
was to be situated from the start in a real sensory

environment and was to learn through experience . It
would have emphasized precisely the abilities that
standard AI minimized . Turing ' s proposal is in fact

Abstract

A research methodology is proposed for understanding 

intelligence through simulation of artificial 

animals ( " animats " ) in progressively more

challenging environments while retaining characteristics 

of holism , pragmatism , perception , categorization

, and adaptation that are often

underrepresented in standard AI approach  es to intelligence

. It is suggested that basic elements of the

methodology should include a theory / taxonomy

of environments by which they can be ordered in

difficulty - one is offered - and a theory of animat

efficiency . It is also suggested that the methodolo -

gy offers a new approach to the problem of perception

.

1 . Introduction

There are two broad approach  es to the scientific understanding 

of intelligence , or how mind arises from brain .

One is the natural science approach , analyzing and experimenting 

with phenomena of life , mind , and intelligence 

as they exist in nature . In this there are two main

branch  es : physiology and especially neurophysiology ,

in which living systems are subject to detailed internal

investigation ; and experimental psychology , including

studies of animals , in which living systems are studied

through their external behavior . Related to the latter ,

but more observational , are fields such as linguistics

and anthropology .

In contrast , the second broad approach to intelligence

may be termed synthetic and computational , in which

the objects studied are constructed imitations of living

systems or their behavior . In " Computing machinery

and intelligence " , Turing ( 1950 ) suggested two possible

directions for the computational approach :

We may hope that machines will eventually

compete with men in all purely intellectual

fields . But which are the best ones to start with ?

Even this is a difficult decision . Many people

think that a very abstract activity , like the playing 

of chess , would be best . It can also be maintained 

that it is best to provide the machine
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close to what we have called the "animat " (or artificial
ani~ l ) approach (Wilson , 1985a), and the child machine 

is an advanced form of animat . Rather than isolated 

competences, the animat approach is holistic ,
focusing on complete systems (simulated or, when possible

, realized ) that , like animals , exist in realistic environments 
and must cope with the varied problems that

they present .

Obviously , we can' t yet simulate human intelligence
holistically . But the basic hypothesis of the animat approach 

is that by simulating and understanding complete 
animal -like systems at a simple level , we can build

up gradually to the human . At each point we will be
careful to include full connection with a sensory environment

, together with maximum use of perception ,
categorization , and adaptation . Thus when we reach
the human level these crucial abilities will not be missing

. We hope to reach human intelligence "from below
" , instead of piecemeal through high -level

competences as in Standard AI .

The animat approach also brings with it a needed element 
of pragmatism (Holland , Holyoak , Nisbett &

Thagard , 1986). Survival needs and their derivatives
are evidently the principal drivers of animal behavior ,
and so, at bottom , they must be for human beings . The
effect is that needs have a powerful influence on the formation 

of percepts and concepts - in machine learning

terms, they set the inductive bias (Mitchell , 1980) - yet
this has been little acknowledged in AI work . The ani -
mat approach explicitly brings in needs by making
them the drivers of system behavior .

Introduction of needs opens the way to operational
definitions of intelligence since the efficiency of need
satisfaction is in principle quantifiable . For example ,
some years ago van Heerden (1968) summarized his observations 

on human intelligence as follows :

Intelligent behavior is to be repeatedly successful 
in satisfying one's psychological needs in

diverse , observably different , situations on the
basis of past experience .

With suitable changes, this definition can be applied
from human to very simple animal levels . It brings in
perception , categorization , and adaptation , and it bases
degree of intelligence on rate of need satisfaction .

  Our aim in this paper is to outline themes in the ani -
mat approach to AI - that is, to suggest "how to go
about it " , at least in first approximation . A number of
efforts already exist [for a review , see Meyer & Guillot
(1990); also see Smith & Wilson (1989)], and the interest
is accelerating . We shall explain our view of what is
needed, and suggest potential directions of formaliza -
tion .

2 . The Basic Animat Strategy

The basic strategy of the animat approach is to work toward 

higher levels of intelligence " from below ' - using

minimal ad hoc machinery . The essential process is incremental 
and holistic : given an environment and an

animat with needs and a sensory / motor system that

satisfies these needs to some criterion , increase the difficulty 

of the environment or the complexity of the

needs - and find the minimum increase inanimat complexity 

necessary to satisfy the needs to the same criterion
. Alternatively , the environment could stay the

same but the needs satisfaction criterion might be increased

; again find the minimum animat complexity increase

. In either case it is vital ( 1 ) to maintain the

realism and wholeness of the environment , however

simple it is , so as to avoid special - purpose solutions ; ( 2 )

to maximize physicality in the sensory signals , so as to

avoid predefined symbolic inputs ; and ( 3 ) to employ

adaptive mechanisms maximally , to minimize the rate

of introduction of new machinery and maximize understanding 
of adaptation .

Note that the strategy has a " problem side " (harder

environments , increased efficiency ) and a " solution

side " ( new architecture : sensory / motor , internal , adaptive
) . Changes in the problem side can be due to the experimenter

, but also to ( co - ) evolutionary effects if the

environment is evolving . Similarly , changes in the solution 
side can be deliberate or evolved , based on a genotype 

and selection .

Research on animatlike systems has tended to emphasize 
the solution side . A certain experimental environment 

is selected as being in some sense interesting ,

but most of the work goes into testing and refining a

particular architecture in that environment . The result

is often a successful system , but accompanied by insufficient 

insight from a formal point of view into the properties 

or difficulty of the environmental problem that

has been solved , and with what efficiency . A major aim

of this paper is to suggest the need for a more systematic 

understanding of environments .

We now discuss the problem and solution sides in
more detail .

3 . The Problem Side

3 .1 Environments

Environments differ enormously in their complexity ,

uncertainty , and degree of reinforcement . Needed is a

formal theory and taxonomy that will order environments 
and reveal their differences in difficulty . For example

, some environments ( e .g ., some food

concentration gradients ) can be thought of as pure stimulus

- response : the local environmental signal directly

indicates the optimal action and provides reinforce -
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of different possible outputs for a given input is finite
(though possibly very large ), or equivalently , that the
number of possible values of the state variable Q is finite

. A strict finiteness property for real environments

is perhaps debatable , but since large FSMs provide a
good approximation in many problems o! interest , the
debate can be left for another occasion.

Besides reacting to anirnat actions with new sensory
stimuli , real environments also sometimes present new
stimuli in the absence of action (e.g., the clouds move
while you gaze at them , other animats move in your
field of view , etc.). This important property is not captured 

by the FSM fonnalism , and needs to be included
in a fuller environment theory .

Before continuing , it is necessary to be quite careful
about the meanings of E and A . Knowledge about the
environment comes only through the use of the sensory
and motor apparatus es, each acting as a kind of communication 

channel . Because these tend to be fixed in

phylogeny ('~ rdwired " ) it is often useful to define the
sensory and motor channels as part of the environment .
Then, a particular environment of interest might consist

, for example , of a (physical ) maze as detectable by
two eyes of a certain retinal description and manoeu-
verable by four legs of a certain musculoskeletal description

. From this , one would proceed to establish the

appropriate functions F and G, treating the retinal outputs 
as E and the motor command signals as A .

Alternatively , one could treat the sensory and motor
channels as part of the animat and not as part of the environment

. Such a division might be desirable inprob -

lems in which the sensory and motor equipment was
subject to an evolutionary process. However , for our
current purposes we shall use the former approach in
which the two channels are regarded as fixed and part
of the animat ' s environment .

The FSM formalism has advantages and disadvantages
. An advantage is that the environmental description 
can be as precise as desired , and it is necessary to

be precise in order to program a simulation . A disadvantage 
is that the FSM description has a certain

opaqueness from the point of view of understanding
levels of environmental difficulty . A further disadvantage 

is that animats deal in stimuli and actions while the
FSM alS<;) contains the state variable Q, which the ani -
mat can' t detect . Though in some sense the animat
should learn " the reality behind appearances" , there is
merit in examining an environmental formalism from
which Q is absent.

Suppose we try to express the next sensory stimulus
directly in terms of the current stimulus and current action

. Examination of some FSMs will show that the result 
is in general not determinate , as indicated by the

following relation :

ment immediately . In others , the reinforcement is deferred
, though the optimal action is still knowable from

the stimulus . An example would be an odor gradient
that reliably pointed toward the location of food .

In a somewhat more complicated environment, information
-bearing stimuli are not as simply related to

reinforcement as odor is related to food . Instead they
may consist of more or less arbitrary cues like stimuli
from a certain kind of bush that prey like to hide in or ,

to mention a human context , a certain kind of golden
arch! In still more complicated environments , the optimal 

action is no longer knowable from the immediate

sensory stimulus . Consider leaving your office and
turning in the correct direction in accordance with a
phone call received five minutes earlier. Or the environment 

of a stalking animal in which the current objective
is temporarily out of sight. At such times the immediate 

sensory stimulus may contain no information at all
relevant to attaining the objective . Further complexity
is of course introduced by the presence of competing
creatures with similar or different needs . All cases become 

more difficult if environment characteristics are

statistical , or stimuli or reinforcements contain noise .

These are just examples , but they suggest a bit of the
range and subtlety of real environments .

Given this variety , a more formal characterization is
desirable . A start can be made by noting that from an
animat ' s (or animal ' s) point of view , the environment is
a kind of machine that (in general) responds with a new
sensory stimulus (which may include reinforcement )
whenever the ani mat executes a motor action. One formal 

way to describe such an environment is as afinite-
state machine (FSM ) for which the motor actions are inputs 

and the sensory stimuli are outputs (Riolo , 1987;

Rivest & Schapire, 1987). The behavior of a finite - state
machine is defined by two equations (Minsky , 1967):

Q(t+1) = F(Q(t), A (t 

E(t+ 1) = G(Q(t), A (t ,

where A is the machine 's input (in this case the animat 's
motor action ), E is the machine ' s output (in this case the
sensory stimulus ), and Q represents the machine 's (the
environment ' s) current " state " . lime t is assumed to be

discrete . The variables A and E are in general vectors .

The first equation says that the environment 's next
state is a function F of its current state and the motor action

. The second equation says that the next sensory
stimulus to the anirnat is a function G of the current

state of the environment and the motor action . The FSM

fonnalism captures the idea that actions in a given environment 
result in new sensory stimuli ; the state variable 

Q makes it possible for the machine to respond
differently to the same action in different circumstances

, a common property of real environments. That the
FSM is " finite - state" means essentially that the number
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(E(t+l )} = f (E(t), A(t .
  Here the next stimulus is indeed a function of the current 

stimulus and action , but , as indicated by curly

brackets, E(t+ 1) will be one of a finite set of possible
stimuli , not unique. Although the set is determined by
the functionf , the particular member of the set that occurs 

is not. Thus the above relation express es a non-de-

tenninacy of the environment with respect to the
variables E and A .

We might term this kind of environmental description 
a sensory-state machine (SSM). In fact, for every FSM

there is an SSM that can be derived by straightforward
(though perhaps tedious ) examination of the FSM state
diagram. The SSM, trades the determinacy of the FSM
for a formalism that express  es the environment - or the

animal ' s problem - solely in terms of variables that the
aromat knows about . Furthermore , the SSM ' s non - determinacy 

is familiar : the reaction of an environment to

an action is very often not fully predictable from knowledge 
of that action and one's immediate sensory situation

.

Let us note that the SSM as defined above is an incomplete 
description of the environment . It can be derived

from the environment' s FSM, but the FSM cannot be derived 
from it (in general). Nevertheless, the SSM appears 
to be a more useful construct for understanding

levels of environmental difficulty , as we now attempt to
show .

Consider an environment which an animat detects

through extremely limited sensory apparatus . For example
, the animat might have only a single small touch

detector , pointed straight ahead . The SSM for this environment
-cum-sensory-apparatus would be extremely

non - determinate , since a large number of object shapes
would be consistent with stimulation of the single small
touch detector . Should , for example , the animat turn 30
degrees to the right , subsequent stimulation of the detector 

would be nearly unpredictable .

On the other hand , consider an anima t in the same

environment but having elaborate stereoscopic vision.
In this case the SSM would contain little non - determinacy

, since for example the visual stimulation subsequent 
to the same 30 degree turn or most other actions

would be a unique function of the current image and
therefore predictable .

Predictability of the results of actions in the context of
sensory stimulation is the foundation of an animat ' s

survival and , indeed , prosperity . Attainment of reinforcement 
depends on the ability to choose actions that

lead to reinforcement, whatever the sensory circumstances
. The examples above suggest that the degree of

non-determinacy of an environment's SSM is an important 
measure of the environment' s relative difficulty .

A simple and tentative taxonomy of environments
can be constructed based on SSM nQn-determinacy.

Class O. Environments with completely determinate
SSMs and in which for every sensory stimulus there exists 

at least one action which if taken will result in positive 
reinforcement. This might be called a pure

stimulus-response environment, meaning that the optimal 
action in each situation is a function only of the current 
stimulus. The "landmark " environment of Barto &

Sutton (1981) is an example of a Class 0 environment .

  Class 1. Environments with completely determinate
SSMs in which for only some sensory stimuli does there
exist at least one action which will result in positive reinforcement

. This could be called a stimulus -response

environment with sparse or deferred reinforcement .

The 288 -state environment of Grefenstette (1988 ) and

the maze environment of Sutton (1990) are examples of
Oass 1 environments .

Class 2. Environments with partially non - determinate 
SSMs. In contrast to Gasses 0 and 1, reliable prediction 

can no longer be based on the current sensory
stimulus and action . The environment 'WOODS7 " of

Wilson (1985a) is an example of a Gass 2 environment ,
as is the "little Prince " environment of Rivest & Scha -

pire (1987) .

In many cases it will be possible to reduce or eliminate 
the non - determinacy of a Oass 2 environment by

taking into account some degree of recent history. For
example , suppose that for a particular Oass 2 environment 

we construct the second-order SSM:

(E(t+ 1)} = f2(E(t), A(t), E(t-l ), A(t-l  .

It may well be the case that this SSM is less non - de -

tenninate that the first - order one , the additional context

of the prior time -step' s stimuli and actions serving to reduce 
the uncertainty . We can further imagine that for

some order of SSM, the non-detenninacy is eliminated.
Let that order be k. Then we could describe the environment 

in question as being of Class 2.k, with higher values 
of k standing for greater difficulty .

This concludes our discussion of environments , in

which we developed the idea that environments could
be ordered in difficulty according to the non-detennina-
cy of their SSMs .

One complication that we have not mentioned, but
will take up in Section 4 .2 , is the fact of " stimulus profusion" in real environments . The environment may not

have a tricky SSM, but at the sensory interface it always
has a very large one. Thus realistic environments pose a
problem of selection of relevant data . At higher levels
this can be a problem of "pattern recognition " and quite
complex .
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3.2 Efficiency
The second part of the problem side has to do with ani-
mat needs and the efficiency with which they are satis-
fied . An animat can have (1) somatic needs (food ,

shelter ), (2) reproductive needs, (3) additional needs
like play , exploration , and prediction . A particular
problem may address just one or a few of these, depending 

on how reinforcement is defined . In addition ,

hierarchies of secondary needs can in principle result
from the primary ones, though this should beexplicat -
ed experimentally . In the end, satisfaction of all needs
can be viewed as in the service of reproduction / survival

.

Efficiency of needs satisfaction is the grounds for
choosing one solution over another . The best way to do
this is probably using a competitive , evolutionary approach 

in which solutions have costs, niches exist or can

form , etc. Though data exist from natural science, determining 
costs will be difficult . Simulations may tend

to use computational in contrast to true somatic costs.
This could ultimately turn the animat approach away
from nature and toward artificial worlds , where the implications 

for natural intelligence may not be clear. In

any case, one would like to have a reasonable theory of
animat efficiency in terms of need satisfaction that will
take into account costs and provide criteria forprefer -
ring solutions .

4. The Solution Side

4 .1 Architecture

Here there appears to be a great deal of choice. However
, the animat approach (going slowly "upward " )

should pennit a strong criterion of " necessary and sufficient
" . The progression should at some level of abstraction 

parallel what actually exists in nature , but that
is conjecture ; the parallels are unlikely to be obvious ,
given the apparent role of accident in evolution (Gould ,
1989). We can expect, however , that if the SSM description 

of environments is valid and useful then the best

architectures at each stage should be those that most efficiently 
cope with increasing environmental nondeterminacy

.

For example ; stimulus -response (Classes 0 and 1) environments 
should imply any of a set of associative

memories , which could be implemented with networks
, etc. However , as soon as the sensed environment 
does not uniquely characterize its state (Gass 2),

the animat can only reach optimal performance using
some form of short -term memory , which suggests recurrent 

networks , classifier systems, etc. Further Class
2 complication will occur when reinforcements are
highly delayed and the system must form and retain an
intention , and its subordinate intentions , etc., until reinforcement 

is obtained . Efficiency may then require the

introduction of higher - order internal states , modularity ,

etc . The animat strategy offers a way to bring these in

naturally .

One interesting hypothesis is that the most efficient

systems will be those that convert every frequently encountered 

important situation to one of " virtual stimulus

- response " in which internal state ( intention ,

memory ) and sensory stimulus together form acom -

pound stimulus that immediately implies the correct

next intention or external action . This would be in contrast 

to a system that often tends to " figure out " or undertake 

a chain of step by step reasoning to decide the

next action . The latter more contemplative system

would presumably possess increased flexibility in the

face of an uncertain environment . However , the

present hypothesis is that greater overall efficiency will

be found in systems that set up generalizedS - R methods 

in the above sense . The motivation for the hypothesis 

is that in animals and people , even complex

behavior , if frequent and important enough , tends to

become reflexive . Standard AI has addressed the question 

of whether knowledge should be " interpreted " or

" compiled " ( Laird , Rosenbloom & Newell , 1986 ) . The

animat approach offers a new and perhaps more natural 

context in which to address it .

4 . 2 Perception

The preceding discussion of architecture bypassed the

issue of sensory profusion , tacitly assuming inputs are

few and well - defined , as in Standard AI . Perception -

which might be defined as knowing what in the environment 

is relevantly the case - has proved very difficult 

to imitate computationally . It has a chicken and egg

quality : How do you know what aspects of a complex

profuse input to select or combine into patterns until

you know how to view the input so as to find them ,

which in turn means knowing where or what they are

in the first place .

One approach with some success is a combination of

top - down and bottom - up processing in which , itera -

tively , fragmentary data from below suggest candidate

remembered percepts above which in turn guide the

lower search for confinning or disconfirming additional 

data [ see , e . g . , Grossberg ( 1987 ) ] . Most uses of these

and the related relaxation techniques [ e . g . , Geman &

Geman ( 1984 ) ] have occun " ed in the analysis of scenes

or images from specialized domains , and so are subject

to Standard A I ' s brittleness . In contrast , the animat approach

, retaining stimulus - profuse environments but

aimed at simpler percepts , should permit the development 

of more general and adaptive top - down / bottom -

up strategies .

Woods - like environments containing simple objects

( " tree " , " food " , etc . ) offer an interesting test - bed for

such strategies if the animat receives a stimulus that
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increasing animat complexity only as necessary . The

approach ' s hypothesis is that this program is feasible ,

and will ultimately lead to understanding of intelligence

, adaptation , and perception at high levels . In

support of the program , the paper proposes :

( 1 ) Creation of a theory / taxonomy of environments ,

based on a " sensory - state machine " formalism ;

( 2 ) Establishment of criteria of animat efficiency in

terms of need satisfaction and costs ;

( 3 ) The hypothesis that efficient animats will have architectures 

that deal with frequent , important situations 

by " virtual stimulus - response " ;

( 4 ) The suggestion that the problem of " stimulus profusion

" can be reduced through stimulus - condensing

sensoria and contingent action .
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90 degrees to the right " , (as stimuli are often directly
given in Standard AI ). Among other things, the percepts 
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the sensory input (as when the animat moves ), he can
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1985b ).

Perception is one of the hardest human abilities to
understand . Progress in machine perception has been
slow. The animat approach offers a fresh perspective
because well - defined experimental mechanisms can be
investigated in contexts that retain essential characteristics 

of real organisms and environments .

5. Summary
This paper has outlined "the animat path to AI ", a strategy 

for progressively understanding intelligence or the

relation of mind to brain that differs significantly from
Standard AI , and from the natural science approach es
to the same problem . The approach is not new, in that
examples of prior work exist and are somewhat known.
This paper however attempts to bring out the value of
the approach , calls for a more systematic effort , and offers 

some working themes.

Fundamentally, the animat approach advocates
maintaining the holism of the situation of real animals
in real environments, while progressively but efficiently
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ABSTRACT

There is an analogy between animal and product design that
can be formulated as an exact mathematical analogy. The
success of a biological design is measured by the success of
the genes that produce it . and this depends upon the ability
of those genes to increase their representation in the
population in the face of competition from rival genes.
Similarly , when a variety of products is under consideration.
they vary in the period required for product development, in
the chance of failure in the market place, and in the expected
returns from sales if the product is successful. The
development period refers to the period before any return is
achieved on investment . For animals this is the period
between birth and reproduction, and for products it is the
period prior to time that financial return accrues to the
investor. The success of a design is evaluated by the net rate
of increase of the genes coding for it (i .e. the return on
investment) in the animal case, or, in the case of a product
launched into the marketplace, of the money invested in it .
If we are to take the biological approach to robot design
seriously. then we should first consider the ecological (or
market) niche that a proposed robot is to occupy. Is the
robot to be a toy, a brick -laying robot, or a bomb-disposal
robot? Just as there are no general-purpose animals, so there
should be no generdl-purpose robots. For robot behaviour to
be adaptive, in terms of the analogy, it must optimisc with
respect to the selective pressures of the market place. Other
forms of adaptation, such as acclimatisation and learning,
are subject to the same criteria.

Fi2. 1 Adaption by acclimatisation . The physiological changes that
occur in acclimatisation to altitude run through a spectrum. rangin~
from fast but costly process es to slow-acting process es that are cheap
in energetic tenns.

The tenn adaptation, as used in biology has a number of
meanings: Biologists usually distinguish between (1)
evolutionary adaptation, which concerns the ways in which
species adjust genetically to changed environmental conditions
in the very long tenn; (2) physiological adaptation, which has
to do with the physiological process es involved in the adjustnlent
by the individual to climatic changes, changes in food quality ,
etc.; (3) sensory adaptation, by which the sense organs adjust
to changes in the strength of the particular stimulation which
they are designed to detect; and (4) adaptation by learning,
which is a process by which animals are able to adjust to a
wide variety of different types of environmental change.

WHAT IT MEANS FOR ROBOT BEHAVIOUR
TO BEAD APTIVE
BY DAVID MCFARLAND

Dept. Zoology. University of Oxford, U.K.

Adaptation implies cost reduction, as can be seen from the
example in Figure 1. In animal behaviour, real costs relate to
Darwinian fitness. So, in considering the usage of the term
adaptation in robotics, we should ask if there a concept
equivalent to the fitness of a robot?

I will argue that there is such an equivalent concept. and
that the analogy between animal and product design can be
formulated as an exact mathematical analogy. Briefly . the
success of a biological design is measured by the success of
the genes that produce it . and this depends upon the ability of
those genes to increase their representation in the population
in the face of competition from rival genes. How does this
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relate to product dcsign? S upposc that a variety of products is
under consideration. They vary in the period required for
product development, in the chance of failure in the market
place, and in the expected returns from sales if thc product is
successful. The development period refers to the period
before any return is achieved on investment. For animals this
is the period between birth and reproduction, and for products .

Fig. 2. Outline of the mathcmaticalanalogies betwecn thc lifc cycles of animals and robots (From McFarland and Sibly. in prep).

What It Means for Robot Behaviour to Be Adaptive

it is thc period prior to timc that financial return accrucs to thc
invcstor. Thc success of a dcsign is cvaluatcd by the oct ratc
of increasc of thc gencs coding for it ( i .e. thc rcturn on
invcstment ) in the animal case, or , in thc case of a product
launchcd into the markctplace, of the money invcstcd in it .
This argumcnt is outlincd mathematically in figure 2., and is
to bc spelled out fully by McFarland and Sibly (in prcp).
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Figure 3 summarisestheanalogies betwccn the dcsign
cycles of animals and robots. Development pcriod t refcrs to
Lhc pcriod bcfore any re Lurn is achieved on investmcn L. For

animals Lhis is thc period betwccn birth and reproduction, and
for products it is the period before any financial returns accrue
to the investor . S measures the chancc of a product (animate

or inanimate) surviving to enter the gene pool or marketplace.
n refers to the return on investment . For animals this is the

number of offspring produced whcn the individual reproduces
(i .e. when the gene is copied into half the offspring on
average , in accordancc with Mendel ' s laws ) . In the case of
man -made products , n refers to the income from sales. The
success of the design is evaluated by the net rate of increase
of gcnes coding for it , in the animal casc, or the money

invested in it , in the case of man-made products.
The cases of longer adult life of sales period, can be

analysed by an extension of the above method. In the simplest
such case the adult achieves a constant breeding performance,
producing n offspring every time it breeds, which occurs at
intervals t apart. Similarly a product might achieve sales at a
constant rate over a given period. If the animal is subject to
mortality at a constant rate, thc cxpcctcd brccding pcrfonnancc
is likely to follow a negative exponential curve. Similarly
expected product sales migl1t decline with time, taking into
account thc chanccs of failurc to scll as a rcsult of market

competition or loss of market appcal.

Fig . 3. Table of analogies bctwccn animal and robotlifc cyclcs

1. THE ECOLOGICAL NICHE
same timc whcn rcsources arc limited . The corollary is that,
if two specics coexist, thcre must be ecological differences
bctwccn thcm.

In thinking about dcsigning robots. wc should first think
about what market nichc wc envisagc. Is thc robot to be a toy,
a brick -laying robot . a bomb-disposal robot. or what. Just as
thcrc are no gcneral-purpose animals. so thcre should be no
gencral-purpose robots. If our robot is to be employcd as a
brick -layer. then it must be abic to compete in the market
placc with human brick -layers. Of course, the two species of
brick -laycrs will not be alike in every (brick-laying) respect.
Employers will value onc for ccrtain qualities. and the othcr
for other qualities. In other words there will be only partial
niche overlap. Neverthcless. employers will apply roughly
the same cost-efficicncy criteria to each species, and thcse
critcria will supply thc selcctive prcssures charactcristic of
thc brick -layer niche. These selective pressures provide the
main ingredients of the cost function that is characteristic of
thc environmcnt in which the robot is to opcratc.

If we are to take the biological approach to AI design
scriously , then we should first consider the ecological niche
that a proposed robot is to occupy. In animal ccology , the
niche is the role that the animal plays in the community in
terms of its relationship both to other organisms and to the
physical environmcnt. Thus a herbivore cats plant material
and is usually preycd upon by carnivores. The spccres occupying
a givcn niche varies from one part of the world to another. For
example, a small-herbivore niche is occuppied by rabbits and
hares in northern temperate regions, by the agouti and viscacha
in South America, by the hyrax and mouse decr in Africa , and
by wallabies in Australia.

Niche occupancy usually implies ecological competition.
When animals of different spccies use thc same resourccs or
have ce I1ain habitat prcfercnces or tolerance ranges in common,
niche overlap occurs. This leads to competition between
species, cspecially when resources are in short supply. The
competitive exclusion principle stales that two spccics with
idcntical niches cannot live togcther in the same place at the

ANALOGIES BETWEEN ANIMAL AND ROBOT LIFE CYCLES

return on n number of gross sales income
investments offspring assuming no failures

reproductiveS chance of juvenile chance of product
probability surviving to breed reaching market

development period t age at breeding development cost = k

design success net rate of increase net rate of increase
(rate of return ) of genes coding of money invested

for design in design
(It fitness " ) (instantaneous

interest rate )
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2. COST FUNCTIONS
activity is an encrgy-consuming business. The robot is equipped
with a sensor for monitoring thc fuel level , but this is not
perfcctly accurate.

In Figurc 4 wc assume that x, is the state of the fucl
rescrves at a particular timc and that the probability P of the
statc x, moving to a ncw position along the state axis is given
by a normal distribution . As thc robot goes about it 's busincss.
thc statc ~ movcs towards thc boundary B at which thc fuel
reservcs are zero. Thc arca A represents thc probability of
crossing thc boundary B. The arca A increases as thc square
of thc distance ox. In other words thc risk of crossing thc
boundary B increases as the squarc of the fucl deficit , as
shown in Figure 5.

The exact parameters of this function will dcpend upon
thc ecology of thc refuelling situation. The frequency and
rcliability of refuelling opportunities will obviously bc important
[actors influencing thc risk of running out of fuel . Thc cost of
thc refuclling behaviour must also be taken into account. In
thc prcscnt case, wc assume that thc robot rcf uells by replacing
its old rundown battery with a ncw recharged one. So it is thc
availability and location of the ncw battcries that matters.

In animal behaviour, rcal costs can bc studicd
experimcntally , and this is what somc animal behaviourists
spcnd thcir timc doing . To obtain similar information about

In biology , the cost function " spccifies the instantaneous
level of risk incurred by (and reproductive benefit available
to) an animal in a particular internal state, engaged in a
particular activity in a particular environment" (McFarland,
1977) .

An animal in a particular state runs a (specifiable) risk
of incurring real costs . It is obvious that it is more risky to be
in some states than others . For example . it is obviously
dangerous to allow hunger to approach lethal levels if the food
supply is not guaranteed. Thus the risk of death increases
steeply the nearer a variable is to it ' s lethal boundary . It has
been shown (McFarland and Houston , 1981) that the risk

function will generally be quadratic for state-variables that
have a lethal boundary . In animal behaviour studies , the term
'cost' is generally used to signify the risk of death plus ot.l1cr
factors that may lead to a decrement in Darwinian fitness ,

such as reduction of reproductive potential.
Such cost considcrations apply to robots as well as

animals. The bomb-disposing robot that runs out of fuel may
as well bc dead as far as its use fulness is concerned . Such a

robot would have low fitncss in the sense that it would not fare

well in the market place. In considering the question of the
fuel supply of our bomb -disposing robot , we assume that the
robot has some sort of on -board cncrgy store , and that robot

Fig . 4. Thc risk of fuel rcscrvcs falling below the lethal limit . Fig 5. The cost of the fuel state as a function of the deficit .

Thc probability P of thc statc xF moving to a ncw
position along thc SUltC axis.
Arca A is thc probability of crossing boundary B.

J!

0 " State

Xf axis
B



David McFarland26

Fig . 6

The cumulative cost of following rules

(large graph), and the changes in state

that result (small graph)

where C ( x ) is the instantaneous cost . x , and x ~ are state

variables . u ~ and u ~ represent the rates of performing two

activities . and K . L . M and N are scaling parameters . which

we will assume to have value one . for our present purposes .

The behaviour of an automaton would conform to this cost

function if it obeyed the following simple rule :

if Xl ul > x2u2perfonn activity ul . else perform activity U2 .

Wc will call this RULE B .

Thc effect of applying this rule can bc seen in Figurc 6 . In

this figure RULE B is constrastcd with an even more simple

rule ( RULE A ) , which is to perform that activity for which x

is largcr . Figurc 6 shows that the two rules give different

behaviour ( shown here in terms of the reduction in x ) , and

diffcrcntcululativc costs , as calculated on the basis of the cost

function . RULE B is less costly and comes close to the

optimal solution for this problem ( Sibly and McFarland .

1976 ) .

the equivalent costs for a robot. it would be necessary to do
field studies. Reliability studies of motor cars provide an
example of this sort of approach.

Of course empirical study is unlikely to provide all the
answers. and a good deal of computer modelling is required
to fill in the gaps (For an example see Sibly and McCleery .
1985). Similarly . to evaluate the risks. costs and benefits of a
robot launch cd into the market place. it would be necessary
to do some ecological modelling that resulted in a cost
function.

Let us now look at an example ofa simple cost function
that has received considerable auention from animal
bchaviourists.

Consider the two-dimensional quadratic cost function :

C (x ) = KX12 + LX22 + MU12 + NU22 ( 1)



What It Means for Robot Behaviour to Be Adaptive 27

by planning.
The cost function provides a performance index against

which thc behaviour produced by a particular brain archit(X;ture
can bc cvaluatcd objcctively - that is in terms of the robot
ccology, or in tcrms of the rcal world . In comparing different
brains for a given robot designed to operate in a given
ecological niche - what we should be looking at is value for
money. Figure 7 shows a plot of value for money versus price
for thc four diffcrent ways of minimising thc quadratic cost
function discussed above. The price is calculated on the basis
of thc development costs (assuming no profit ). So this is the
absolutc minimum price that could be charged without
incurring a loss. The actual pricc charged would , of course,
dcpcnd upon the expectcd saics.

In tcrms of valuc for money, RULE B is by far the best
buy. Of coursc, this is a vcry simplc problem, with only 2
dimcnsions. For morc complex problems we would cxpcct a
planning approach to result in somc savings in brain size,
bccausc a planner can rc-usc certain brain areas over and ovcr
again, whcrcas an automaton's brain is madc up of circuits
dcdicatcd to particular procedures. Morcover , a brain that
has somc reprcscntation of thc cost function (i .c. a goal
function) should bc capablc of learning. So we might cxpcct
somc improvcmcnt in performance.

Ovcrall, wc should cxpcct that, with incrcasing complcxity,
thc valuc for money provided by an automaton should
deciinc, becausc thc incrcasing cost of the hardwarc will
mean that the selling price will havc to increase. Thc value
for moncy providcd by a system capablc of planning and

Notice that it is possible for the rules governing behaviour
to conform to some extremal or optimality principle , without
there being any obvious sign of this in the formulation of the
control system. Of course, the cost function can be explicitly
represented (in which case McFarland and Houston (1981)
would call it a goal fuction) , as would be necessary in a
planning system.

As a matter of fact, a simple planning approach to the
same problcm givcs a very similar cost profile . (McFarland,
unpublished). If wc plan one step ahead (PLANt ), then we
simply ask what next activity will rcsult in thc lower cost as
calculated from the cost function . In planning two stcps ahead
(PLAN2) wc ask which subsequent activity yiclds the lower
cost.

If wc comparc PLAN 1 and PLAN2 wc fmd, not sul]Jrisingly
that PLAN2 results in lowcr cost than PLANI . If , howevcr,

wc comparc with our automaton (ABOVE ), we find that
PLAN2 < AUTOMATON < PLANI . The pcrformancc
diffcrcnccs are vcry small, but thcrc are vast differenccs in thc
capital costs invol vcd. The planner requircs some rcference to
a rcprcscntation ofthc cost function (called the goal function).
Thc planncr has lo compute thc notional cost of each of its
various options; and thcn comparc them. This all requircs
invcstment in hardwarc. It is difficult to know cxactly how to
makc thcse calculations. I havc tricd various ways, and I havc
come to thc conclusion (based on comparison of analogue
simulations) that PLAN2 = PLAN 1/9 = AUTOMATON /90.
In other words it would take a brain 90 times thc sizc of the
Alf I' O M A TON brain to improvc on thc automaton ~ rformance

Fig. 8. Value for money of automation (rulc following) and
planning brain architecturcs as a function of the complexity

(dimensionality of the nichc) of the agcnt's life-style.

Fig. 7. Value for money of different rule-following
and planning solutions to minimising the

2 dimensional quadratic cost function .
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Icaming should incrcasc. bccausc of improvcmcnts in
pcr[ormancc,as illustratcd in Figurc 8.Wcshouldrcmcmbcr ,
howcvcr , tllat in a multil .1sk agcnt. thc automaton solution
may bc bcllcr for somc l.1sks, and thc planning solution [or
othcrs. Thcrcforc , complcx multitask agcnts should havc a
modular architccturc , and I see thc kind of cxcrcisc that I
havc sketched hcrc, as leading to methods of costing different
brain architectures.

evolutionary lag, genetic dcversity, and ~ ological competition.
In robots thc same logic holds. This means thatlcarning is not
always adaptive. Lcarning in robots is adaptive only in so far
as the goal function resembles the cost function .

4. REFERENCES

3. LEARNING
So far wc have concentrated upon evolutionary ;ich\p~ tion

and its industrial equivalent. Let us now turn to adap~ tion of
the individual . Thc equivalent of physiological adaptation is
familiar to engineers as adaptive control .

An adaptive control system has the capacity to modify
its strategy of seeking some optimum , or set of performance
criteria, either by refcrcnce to some idealiscd form as reprcscntc-d
by a model, or by learning based on the remembered results
of past behaviour. Such adaptive control systems occur in
animals. (See for example McFarland, 1971, pp 109-116).

Adap~ tion of individual behaviour also occurs in the
formoflcaming . True learning rcquires somc kind of planning
architecture, which embodies a representation of the cost
function . An automaton has no representation of the cost
function , and can, thercforc, engage only in prcprogrammcd
forms oflcarning . Thc planning architecture embodies a goal
function representation (which we call the goal function ) , and
is therefore in a position to lcarn, in the true scnseoftlle word .
True learning requires some access to a rcpresen~ tion of the
cost function. Trial and error implies an experiment on the
part of the agent, the results of which have to be evaluated.
The rcsulL~ can bc evaluated only by reference to an i Jnmu~ble
set of values. For learning to be adaptive (i.e. of advantage)
this ret of values must reflcct the cost function that it charnctcristic
of thc ecological niche. Thc more the set of values, or goal
function , resembles tI1C cost function then the better adapted
will bc thc agent ' (scc McFarland & Houston (1981) for a
discussion). Notc that it is not possible for the agent to modify
the goal function to make it more like the cost function .

Learning requires fccdback about success and failure ,and this
feedback must be based upon an immutable set of values. This
set of values form part of the goal function .

Learning has to operate in relation to a representation of
the cost function , which wc call the goal function . So the
imprivement in pcrformancc that results from learning is an
improvement in relation to the goal function . Now the goal
function mayor may not be a good representation of the cost
function that is characteristic of the robots ecological niche.
In animals it can never bc a perfect representation, bccause of

McFarland , D. (1971) Feedback mechanisms in animal
bchaviour . Acadcmic Press , London .

McFarland , D (1977) Decision-making in animals, Nature,
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The advantage of computational neuroethology is that
the semantics of the network are well grounded , and
thus results are generated by observation rather than
by interpretation . That is , the fruits of computational
neuroethology simulations are " hard " objective measurements 

rather than "soft " subjective ones . At a metatheo -

reticallevel , it is argued that the computational network
simulation of cognitive processing should pay much more
attention to the evolutionary history of those faculties it
wishes to replicate . In particular , a conclusion of this
paper is that the study of linguistic process es using network 

models is wildly premature . The study of insects is

advocated as the most fruitful path for future research

As the reader will probably already have detected , this
paper is intentionally polemic . It is aimed at an interdisciplinary 

audience , and the author is no polymath .
For that reason , this paper is offered as a provisional
manifesto in the hope that it provokes some interesting
discussion . The argument is based on previous work by
a number of authors . Because of its disputatious nature ,
there are more direct quotes in this paper than is common

. There is no denying that this is a selective review

of the literature . This paper is abridged from [9] .
The paper opens with a discussion of computational

neuroscience , distinguishing it from neural engineering ,
and identifying two classes of model : realistic and sim -
plifying . Following this , the connectionist paradigm is
briefly summari ..,ed . Next , criticisms of connectionism
are discussed , with particular attention to the argument

that connectionist models have no semantic grounding 
without behavioural linkage to a sensorimotor system
. Then , a remedy to this objection is proposed :

the adoption of the computational neuroethology approach
. Computational neuroethology is defined , and

a specific technique for providing a behaviourallinkage
is discussed . This approach has some important implications 

for future research , the most significant of which

domain of the field of neuroethology , and the new approach 
is therefore referred to as " computational neu-

roethology " . Meaning is supplied to the models by embedding 
them in simulated environments which supply

visual feedback without human intervention , that is they

close the external feedback loop from motor output to
sensory input .

Computational N euroethology : A Provisional Manifesto

. Dave Cliff
University of Sussex School of Cognitive and Computing Sciences

Bright on BNl 9QN, England, U.K.
Email : davec<Ouk. ac. sussex. cogs

Abstract

This paper questions approach  es to computa -

tional modeling of neural mechanisms underlying

behaviour . It examines the " simplifying " ( con -

nectionist ) models used in computational neuroscience 

and concludes that , unless embedded

within a sensorimotor system , they aremeaning -

less . The implication is that future models should

be situated within closed - environment simulation

systems : output of the simulated nervous system

is then expressed as observable behaviour . This

approach is referred to as " computational neu -

roethology " . Computational neuroethology offers 

a firmer grounding for the semantics of the

model , eliminating subjectivity from the result -

interpretation process . A number of more fundamental 

implications of the approach are also

discussed , chief of which is that insect cognition

should be studied in preference to mammalian

cognition .

1 Introduction

This paper questions approach  es to computational modeling 

of the neural mechanisms underlying behaviour . It

examines the relationship between computational neuroscience 

[ 26 ] and that style of modeling popularly referred

to as " connectionism " , " parallel distributed processing " ,

or " neural networks " 1 which has recently been subject to

renewed attention in the fields of cognitive science and

artificial intelligence ( see e . g . [ 25 , 23 ] ) .

Connectionist models are characterised by their sim -

plified nature and concomitant inattention to biological

data , and it is argued here that such " simplifying " com -

putational neuroscience has serious inadequacies . A different 

approach is suggested which pays far more attention 

to the sensorimotor system and hence to behavioural

interactions with the external environment . This approach 

involves computational modeling of the neural

mechanisms underlying behaviour , in a manner akin to

that used in connectionism . Such an analysis of behaviour 

as a product of neural activity is properly the
�

11n this paper , these three terms will be treated as synonymous ,

and referred to collectively as " connectionist " models .
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.

. The construction of intelligent systems and massively
parallel (fine -grain ) digital computers inspired by
principles found in naturally occurring neural systems 

has been referred to as neural computing [1,

p .186] and neural engineering [1, p .203] . In this paper 
only the latter term will be used . The most important 

feature that distinguish  es neural engineering

from computational neuroscience is that inneuralen -

gineering the onus is on optimality . That is , neural

engineering usually has the goal of creating an arte -
fact that is (near - ) optimal with respect to some measure 

of efficiency .

quently the terminology has not been developed in a uniform 
manner . The first requirement is to distinguish between 
issues of science and issues of engineering . To this

end , two important terms , computational neuroscience
and neural engineering , are informally defined below .

Computational Neuroscience is the study of real

brains or nervous systems as computational systems ,

" . . . in the sense of representing , processing , and storing 

information . " [ 20 , p . 3 ] . Sejnowski and Poggio

define it as :

" . . . an approach to understanding the information 

content of neural signals by modeling 

the nervous system at many different

structural scales , including the biophysical ,

the circuit , and the systems level . " [ 20 , series 

forward ]

Most often , this entails modeling the system under

study on a digital computer . The term computational

neurobiology [ 1 , p . 186 ] is here taken to have meaning 

identical with computational neuroscience [ ibid .

p . 203 ] .

Computational neuroscience and neural engineering

are not mutually exclusive endeavours : " . . . the two subjects 

have different goals . Nonetheless , they overlap

and are mutually stimulating ." [ 1 , p . 186 ] . But the science

/ engineering distinction is an important one :

" Engineering is often based on science , but its

aim is different . A successful piece of engineering

is a machine which does something useful . Understanding 

the brain , on the other hand , is a

scientific problem ." [ 10 , p . 132 ] .

is that it encourages an evolutionary approach to understanding 

intelligence .

2 Neurosomething

The recent excitement in the cognitive science and artificial 

intelligence communities about " neural " issues has

been motivated by a number of interests , and conse -

This paper is concerned only with science ; not with engineering

. In particular , it is concerned with the relationship 

of computational neuroscience to cognitive science .

It is not concerned with any attempt to create ' intelli -

gent ' artefacts that employ optimal processing strategies :

that is a matter for artificial intelligence ( AI ) ; the processing 

strategies of naturally occurring cognitive activity 

may well be suboptimal , and ( for the purposes of this

paper ) cognitive science will be considered as studying

only naturally plausible models of cognitive processing .

That is , I ' ll assume that the creation of what Dennett

[ 11 ] calls " cognitive wheels " 2 is properly only the domain 

of AI ; although , of course , some cognitive wheels

may be lurking within the cognitive science canon , yet

to be refuted .

3 Computational neuroscience

The advantages claimed [ 26 ] for modeling and simulation

in computational neuroscience over conventional experimental 

techniques include :

1. Increased accessibility to the consequences of complicated 
nonlinear brain systems with many interacting

components .

2. The possibility of discovering new phenomena by
comparing experimental results to the predictions of
simulation , and using these predictions as the basis
for the design of new experiments .

3. Facilitating experiments (such as selective lesioning
or ablation of particular channels , synapses , neurons

or pathways ) which would be difficult or even impossible 
to perform on living tissue .

Practitioners of computational neuroscience employ

two classes of brain model : realistic models and simpli -

fying models ; these are discussed in more detail below .

These two classes of model represent the extreme points

of a continuum : in practice , models are likely to have

features of both , and many different types of model will

be required to span all levels of analysis .

3 . 1 Realistic Models

A realistic model " . . . consists of a very large scale simulation 

that tries to incorporate as much of the cellular

detail as is available " [ 26 , p . 1300 ] . The realism of the

model , while offering the advantages listed above , introduces 

two important weaknesses [ 26 , p . 1300 ] :

1 . As more parameters and variables are added to the

model to increase its realism , the complexity of the

model grows , and so there is an increasing danger of
�

2 " , , , an elegant but unnatural solution to a problem of natural

design ," [6 , p ,65 ]
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Sejnowski et al . state [26 , pp .1300- 1301] that simplify -

ing models include those currently being investigated under 
the general headings of connectionist models , parallel

distributed processing models , and "neural networks " ;
they note that some of the models reported on under
these headings are used not for brain research , but for
neural engineering or for the study of purely psychological 

process es. It is those connectionist models used for
brain research that are discussed here .

by Smolensky [27] , whose definitions are quoted below .
They are presented here as representative of the field ,
rather than as the view of a small group of Smolensky
cohorts .

" Connectionist models are large networks of

simple parallel computing elements , each of which
carries a numerical activation value which it computes 

from the values of neighboring elements in

the network , using some simple numerical formula
. The network elements , or units , influence

each other 's values through connections that carry
a numerical strength , or weight . . . . connections

carrying positive weights are called excitatory and
those carrying negative weights are inhibitory .

"In a typical connectionist model , input to the
system is provided by imposing activation values
on the input units of the network ; these numerical
values represent some encoding , or representation
of the input . The activation on the input units

propagates along the connections until some set
of activation values emerges on the output units ;
these activation values encode the output the system 

has computed from the input . In between

the input and output units there may be other
units , often called hidden units , that participate
in representing neither the input nor the output .

"The computation performed by the network in
transforming the input pattern of activity to the
output pattern depends on the set of connection
strengths ; these weights are usually regarded as
encoding the system 's knowledge ." [27, p .l ; original 

emphasis ]

Smolensky describes connectionism 's relation to the
two main levels of analysis in previous work : the neural 

(as in realistic computational neuroscience ) and the
symbolic (as in nearly all work in cognitive modeling
and artificial intelligence (AI ) up until the early 1980 's) .
Smolensky posits connectionism as constituting a new
level of analysis , intermediate between the symbolic and
neural levels . This he refers to as the subsymbolic level .

The argument for the existence of this new level is involved
, and will not be repeated here ; see [27] .

4 Connectionism

Again , this paper concentrates only on connectionist
models which are also simplifying computational neuroscience 

models : engineering or purely psychological models 
are ignored . Examples of all three styles can be found

in [25, 23] .
It is is not within the scope of this paper to attempt a

comprehensive definition of connectionism , nor is it possible 
to fully examine here the position of connection -

ism in the context of past practice in cognitive modeling
. However , both of these tasks have been performed

the simulated nervous system being as poorly understood 

as the real thing .

2 . The results may be invalidated by the inadvertent exclusion 

of important features , because all the cellular

details are not yet known .

Probably the best known realistic models are the

Hodgkin - Huxley neuron model [ 16 ] and the Hartline and

Ratliff model of lateral inhibition in the eye of Limulus

[ 24 ] . The realistic modeling approach is most appropriate 

when knowledge of the circuit to be modeled is almost

complete down to the biophysical level , and the function

of the circuit is already known [ 22 , p . 361 ] .

3 . 2 Simplifying models

The use of " simplifying " models is an approach applied

at the network level of nervous systems : the procedure

involves starting with a function such as a perceptual

ability and designing " simplified neural circuits that can

perform the function within the constraints of the state

of kn  Qwledge . " [ 22 , p . 361 ] .

Proponents of simplifying models claim that they offer 

greater conceptual clarity , and that they fulfill a perceived 

need for models capturing important principles .

Their supporters propose [ 26 , p . 1300 ] that they are analogous 

to aspects of the physics literature such as textbook 

examples that admit exact solutions :

" These models abstract from the complexity of

individual neurons and the patterns of connectivity 

in exchange for analytical tractability . " [ 26 ,

p . 1301 ] .

5 From frying pan to fire ?

Connectionism has not been received with universal acclaim
. Criticisms have been made both of specific models 

and of the methodology as a whole . Presented below

are summaries of critiques by some other authors , along
with some criticisms of my own . Again , this paper is

only interested in connectionism qua simplifying compu -
tational neuroscience . I am aware that some criticisms

have been replied to by proponents of connectionism , but
a full review of the debate would be an unwelcome digression 

here . The four criticisms made below are those
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which I feel connectionism has most consistently failed 5.2 Biological studies of cognition

5.1 The Hunting of the Snark

" Learning about neurons , their behaviour and

their connections , will not by itself solve our problems
, but will at least suggest the sort of answer to

look for and can be used , often rather decisively ,

to disprove false theories ." [10, p .132] .

to acknowledge or answer .

A forceful critique of the connectionist approach was
made by Crick [10] . He argues that connectionist "models

" do not correspond sufficiently closely to real neural

systems to be regarded as models in the usual sense: " In
another context they might reason ably be referred to as

existence proofs . As such they have a certain use." [10,
p .131] . He attacks connectionist research on method -
ological and onto logical grounds .

His methodological objection is that connectionists

employ mathematics as an intellectual prop : he suggests
" . . . that within most modellers a frustrated mathematician 

is trying to unfold his wings . It is not enough to

make something that works . How much better if it can

be shown to embody some powerful general principle for
handling information , expressible in a deep mathematical 

form , if only to give an air of intellectual responsibility 
to an otherwise rather low -brow enterprise ." [10,

p .132] . Lehnert made a similar criticism , she argues that
" the interdisciplinary appeal of connectionism is not so
much a computational appeal , as it is an appeal based
on theorem envy . . . . connectionism has come to the rescue 

of a new generation of psychologists who are really

closet mathematicians and physicists ." [27, p .40] .

Crick criticises past work in psychology and linguistics
for its preference for simple " intelligible " models , an approach 

rooted in the belief that the brain is intractably

complex . He notes that proponents of such an approach
are generally not concerned by the absence of criteria of
biological or psychological feasibility , and characterises
their philosophy thus : " If it describes , in a succinct way ,
some of the psychological data , what can be wrong with
that ? Notice , however , that by using such arguments ,
one could easily make a good case for alchemy or the
existence of phlogiston " [10, p .131] .

Crick 's onto logical objection is rooted in his method -
ological criticism . He argues that the search for mathematical 

expression is highly questionable because there

is no guarantee of deep general principles being embodied 
in the functioning of the brain . He offers the genetic

code as a good example of a complex natural system
which is not easily characterised by a small set of general 

principles : the brain may achieve its aims using a

"series of slick tricks " [1 .' p .132] . He contends that further 
research should be aimed at resolving this issue :

This preoccupation with elegant mathematics has lead,
I believe, to connectionists ignoring a significant school
of thought in neuroscience: that of Humberto Maturana
and his colleagues. Maturana 's work is concerned with
understanding how phenomena such as cognition and
language are rooted in biological process es. His work
is challenging , using a large specialised vocabulary I and
a full review of it is way beyond the scope of this paper :
it will suffice here merely to nod in his direction . The
notes that follow are based on an overview of his work

by Winograd and Flores [28, pp .38- 531.

The most germane of Maturana 's arguments is that
the nervous system should not be treated as an input -
output device . But most connectionist models do exactly
that . That is, they treat the neural function to be modeled 

as being implemented on a 'pipeline ' processor. The

most likely reason for this is the mathematical tractability 
of " feed-forward " network models , where each unit

sends output only to units in subsequent layers in the
network (i .e. later stages of processing) . FoL instance,
the "back-propagation " network learning algorithm [25,
ch.8] , the subject of much attention in the literature ,
operates only on feed-forward networks and is defined

solely in terms of the input -output profile of the function 
at hand .

This maths - driven nature of connectionist architecture

is acknowledged by Smolensky: "In the drive for more
computational power , architectural decisions seem to be
driven more and more by mathematical considerations

and less and less by neural ones." [27, p.9] .
So, the view (implicit in much connectionism ) of nervous 

systems as input / output pipeline devices is mistaken 
and should be avoided.

Maturana further argued that there is no clear modular 
separation between an entity and its 'environment '

[28, p.43] : an entity is defined only in terms of its surrounding 
environment . This is an issue ignored by virtually 

all current connectionist models. Most treat the

portion of the nervous system under study as capable of
being modeled in vacuo. At best, connectionist models
are extremely poor approximations to in vitro studies .

5.3 Microscope Envy

Unfortunately , the connectionist disregard for past work
in biology does not stop at the philosophical level of Mat -
urana . Lehnert 's diagnosis of connectionists as closet
physicists suffering from theorem envy was noted above.
I suggest that the complementary case also applies : some
connectionists are physicists or mathematicians who are

closet biologists suffering from microscope envy. Specifically
, it appears that one concrete achievement of the

connectionist paradigm has been to recast old problems
of the symbolic paradigm at anew , biological , level.
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notably in the critique by Prince and Pinker (e.g. [27,
pp.46- 47]) where the model is described as a fairy -tale
account of the actual cognitive process.

5.4 Grounding the semantics

This final criticism of connectionism continues the theme

of the in vacuo problem , further demonstrating the extent 
to which connectionism exists within a biological

vacuum . This criticism is Lakoff 's critique of theseman -
tics of connectionist systems; Harnad [15] makes a similar
point . Lakoff [21] criticises Smolensky's [27] account of
the connectionist paradigm as making a huge omission

in ignoring the body . He states:

"The neural networks in the body do not exist

in isolation ; they are connected to the sensorimo -

tor system . For example , the neurons in a topo -
graphic map of the retina are not just firing in
isolation for the hell of it . They are firing in response 

to retinal input , which in turn is dependent

on what is in front of one 's eyes . An activation

pattern in the topographic map of the retina is
therefore not merely a meaningless mathematical
object in some dynamical system; it is meaningful.
A different activation pattern over those neurons
would mean something different . One cannot just
arbitrarily assign meaning to activation patterns
over neural networks that are connected to the

sensorimotor system . The nature of the hookup
to the body will make such an activation pattern
meaningful and playa role in fixing its meaning .

" Compare this , for example , with a string of
symbols in a . . . computer program . The symbols 

are not meaningful in themselves. They have

to be "given meaning" by being associated with
things in the world . If the symbols are to stand
for categories, those symbols must be given meanings 

by being associated with categories that are
out there in the world ." [21, p.39]

The essence of Lakoff 's argument is thus that if neurons 
are appropriately located relative to the sensorimo-

tor system then activation patterns over a network of
neuron are meaningful in themselves. That is, the activation 

patterns do not have to be "given meaning" in the
same way that symbol -strings do. But surely any con-
nectionist model that is not connected to a sensorimotor

system has to be "given meaning" in much the same way
as symbolic systems do: whether you are giving meaning
to one discrete symbol , or to a configuration of activations 

over a number of input or output units , you still

have to associate these (sub )symbols with things in the
world ; you are still the source of meaning .

Lakoff continues :

"In a full -blown connectionist theory of mind activation 
patterns over neurons are meaningful in

This is a problem rooted in the cavalier attitude most
proponents of connectionism adopt towards biological reality

. Only one example of this is presented here: see [9]
for another .

5.3.1 Micro -worlds , again

This example concerns the micro- world trap in symbolic 
cognitive modeling . This is about previous work in

the symbolic AI paradigm which proposed to have created 
systems which 'understood ' concepts or which were

claimed to exhibit learning or 'discovery ' of new concepts
. There is a lot of such work , and a comprehensive

literature review is out of the question here: this is an
eclectic overview of the argument .

Essentially , the criticism of such models (which dogged
AI research through the early 1970's; see [12] for adiscussion 

and pointers to the micro-world literature ) was that
all the 'understanding ' was actually being performed
by the programmers , because in creating the system it
was necessary to create a micro - world for the system to
work on. Such toy worlds implicitly incorporated a vast
amount of preprocessing .

Similarly , systems which were purported to learn
or discover new concepts make their discoveries by

" . . . working on data presented in notational formats that
represent the fruits of centuries of human labor . Manipulating 

these representations could be the tip of the

iceberg; creating them and understanding them may constitute 
the unseen bulk ." [6, p.14] .

One of the appeals of the connectionist approach listed
by its proponents is the availability of autonomous learning 

procedures for tuning the weights in the network ,
thereby 'programming themselves' to perform the task
at hand. At first glance, the supposed autonomy (no human 

intervention is required to specify the changes or to

actually alter the weights) seems to indicate that con-
nectionism does not suffer from micro- world problems .

Any learning network requires a source of input vectors 
- specifications of the activities of the input units

of the network . And there 's the rub . Unless the network

is involved in the first stages of vision or hearing , the

input vectors have to be prepared "off-line" , invariably
by humans rather than by other connectionist networks .
That is, connectionist models rely on preprocessed information 

and are thus susceptible to the same problems 
as beset the micro- world studies of the symbolic

paradigm . Smolensky acknowledges this problem . He
notes [27, pp.7- 8] how important the choice of representation 

for input (micro )features is, and that a model 's

performance depends crucially on the input and output
representations chosen by the modeler.

Probably the most celebrated example of this is the
Rumelhart and McClelland verb past-tense learning system 

[23, pp .216- 271] : its 'wickelfeature ' representation
scheme (among other things ) has been attacked , most
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themselves by virtue of what they are connected

to . The intractable problem of assigning meanings 
to symbols does not arise here .

" It is also important to remember that the isolated 
models connectionists build to study the

properties of networks are not full -blown con-

nectionist theories of mind . They vastly oversimplify
, or totally ignore , sensorimotor input and

output , assuming that , for the purpose of the
study at hand , one can just as well use feature

names , to which the model -builders must assign
meanings . This is a crucial difference between isolated 

models and a full -blown theory .

the biological sciences : it is where ethology (the study
of behaviour ) meets neuroscience . Its youth puts it in a
situation not dissimilar to cognitive science ; its precise

aims and methods are still a subject of debate (see e.g .
[18, 14] ) . Put most simply , neuroethology is the study of

the neural mechanisms of animal behaviour [18, p .384] .
As Clarac remarks , "By definition , neuroethology is a
"vertical " science , whose main interest is to link the results 

obtained from many different levels of complexity in

the nervous system ." [18, p .384] . That is , neuroethology
spans most levels of analysis in neuroscience .

The relevance of neuroethology to the in vacuo problem 
in connectionism is neatly captured by Grossberg :

"Neuroethology teaches us that neural circuits

are organised to generate adaptive goal -oriented
behaviors . Without a behavioral linkage , no
amount of superb neurophysiological experimentation 

can lead to an understanding of brain design

, because this type of work , in isolation , does

not probe the functional level on which an organ -
ism 's behavioral success is defined ." [13, p .389] .

It is in this respect that connectionist computational
neuroscience has most to learn from neuroethology , and
it is this belief in the importance of behavioural linkage 

that most distinguish  es computational neuroethol -

ogy . Computational neuroethology replaces the in vacuo

approach of connectionism with a (simulated ) in vivo approach
; and in doing so, the semantics of the model are

automatically grounded .

So, computational neuroethology can be provisionally
defined as the study of neuroethology using the techniques 

of computational neuroscience . This definition

intentionally admits many classes of model , but the significant 
aspect is the increased attention to the environment 

that the neural entity is a component of . The vertical 
nature of neuroethology precludes restriction purely

to "simplifying " (connectionist ) models : modeling techniques 
from realistic computational neuroscience should

also be applicable to computational neuroethology .
Furthermore , this broad definition is noncommittal on

the interpretation of the word " computational " : a strict

interpretation would allow only neuroethological models
that focus on behaviour as a result of computation ; but
the vertical nature of neuroethology surely indicates that
models with no direct reference to computation should
still be of interest , and the Maturanian antipipeline argument 

outlined above additionally indicates that sole

focus on information processing may omit important factors
. So "computational " can simply imply a reliance on

computerised experimental techniques , as in e.g . compu -
tational physics .

And that , for the time being , is the working definition
of computational neuroethology . It is a broad definition ,

but this is a provisional manifesto , and ensuing debate

6 Computational Neuroethology

6 . 1 Towards a definition

Computational Neuroethology (as far as I am aware, I
originated this term , in [7]) is proposed here as a method
of eliminating the ad hoc semantics of contemporary con-
nectionist models. The definition of the term "compu-
tational neuroethology )) builds on the definition of "neu-
roethology )) , given below.

Neuroethology (e.g. [4) 14]) is a young discipline within

It has been argued that the connectionist paradigm is
biologically in vacuo and in this sense is no advance on

the symbolic paradigm : connectionism has acted merely
as a palliative f0r several of the maladies of symbolism .
The solution to this problem , as identified by Lakoff , is
linking the model neural network to the external world

via a sensorimotor system . Such an approach is more in
line with the philosophy of the Maturana school . Such an

approach is embodied in computational neuroethology .

'I. . . it is vital to bear in mind that a full -blown

connectionist theory of mind is a lot more than

just an information -processing system ." [21, p .40]

Lakoff 's argument that the linking of neural models
to a sensorimotor system provides an automatic grounding 

for the semantics of the model is persuasive . Pursuing 
this approach prevents theorists from inventing

the semantics of patterns of activity (as they are free
to while the models remain in their current isolated status

) . Smolensky 's reply to this ( " [it ] seems an important

philosophical point , but one that cannot really do any
modeling work until the gap is bridged ( . . . ) between the
sub conceptual [i .e. connectionist ] and neural levels . . . "
[27, p .66] ) is distinctly mezza voce. Again , the attack
here isn ' tad hominem , but Smolensky 's views are , I believe

, representative of the field . Acceptance of in vacuo

modeling is widespread within connectionism .
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"There is great methodological danger in tackling 
AI problems in toy worlds . The definition of

" toy " here includes all worlds where it is not up
to the AI system itself to do all the understanding 

of the world itself without relying on a human

interpreter . Likewise a world is a " toy " world if
the AI system is not responsible for carrying out
its actions in the world without a human agent to

interpret its responses . Such requirements on an
AI system thus force it to be part of a robot system
acting in a real world for some definition of real .
This is a much stronger definition of real world
than is normally used ." Brooks [3, p .5 , original

emphasis ] .

Even under such a definition of real world , it is possible

to work on real -world problems using closed -environment

simulators rather than robotics (thus ignoring some of
the more problematic engineering issues of sensorimotor

transduction ) . An example is the SYCO simulator ":model
of visual processing in a hoverfly [8] .

The advantage in using simulated " real " worlds rather
than the real world (i .e. a robotics approach ) is that the
real real world has many superfluous degrees of freedom :

many experiments in e.g . visual neuroethology take great
care to minimise the dimensionality of the experimental

animal 's world by creating visually impoverished environments
. Such precautions are also necessary , at least

during development and testing , in perceptual robotics ;
but in simulated " real " worlds identical conditions can

be recreated as many times as is required .
The closed -environment simulator approach thus provides 

a behaviourallinkage for a simulated neural network
. It grounds the semantics of the network in the

semantics of the simulated environment . And this is

the fundamental point : if the simulated environment is
" real " in the above sense, then the model ceases to demand 

interpretation ; results are observed . That is , discussion 
of the model network ceases to be subjective and

becomes objective . Soft data is replaced by hard data .

It is possible to talk of computational neuroethology as
a falsifiable scientific endeavour .

terns reliant on human interpretation . They are real-
world models for a certain definition of real. Consider:

6 .3 Finale : Implications

The implications of computational neuroethology for
cognitive science are , I believe , more fundamental than
simply tightening up a slack discipline . I briefly outline
some thoughts below .

The need for a behaviourallinkage , and its satisfaction

using a closed -environment simulation system , raises a
supplementary issue : if there is so much emphasis placed
on the preservation of the data -path from sensory input

may refine the definition . What is required is guidance
on how the connectionist model should be connected to

a sensorimotor system, thereby granting the required be-
haviourallinkage . This is a subissue of the field , and is
discussed at length in the next section.

As I mentioned above, the term "computational neu-
roethology " was coined to describe my work in studying
visual control of insect flight [7, 8] , but plenty of other
research in the literature could be classed as work in

computational neuroethology .

6 .2 The behaviourallink

This section discuss es my personal attitude towards
the issue of providing connectionist models with a be-
haviourallinkage . As such, it is only one of many possible 

approach es within computational neuroethology .
The need for a behavioural linkage is satisfied by

recognising in the model the importance of the environment 
within which the neural entity is a component

. The methods of connectionist computational neuroscience 
can be adapted to computational neuroethol-

ogy ip a fairly straightforward way : by embedding the
network model within a closed - environment simulator .

A closed environment simulator is one which provides a
data -path that models the external feedback loop provided 

by the environment .
That is , closed -environment models eliminate any "humans 

in the loop " : current connectionist models have a

data -path that resembles the architecture of an open -
loop control system; humans are responsible for feeding 

data (and meaning) into the input end and collecting 
data (and assigning meaning) at the output

end . Closed - environment models are closer in nature

to closed- loop control systems : the feedback loop in
a closed- loop controller corresponds to the sensorimo -
tor feedback provided by the simulated environment
in a closed-environment model . The feedback properties 

of the environment have long been recognised by

(neuro )ethologists .
Closed -environment simulator systems already exist ,

in the domain of aeroplane flight simulators . Here the
neural network is real (and human ) but that is not material

: motor commands are issued (to the cockpit controls

such as joystick and throttle ) and the simulator performs
the computations necessary on a model environment to

generate the sensory input (e.g. dynamic 3-D graphics,
etc.) which provides sensorimotor feedback.

Closed -environment simulators for neuroethology can
be fashioned in much the same manner . The simulation

of the medium thus involves two models : the model network 

and the model environment .

The use of simulated environments is open to the accusation 
of falling into the micro- world trap , discussed

above . Closed -environment simulators are not subject

to micro - world problems because they are not " toy " sys-
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6.3.2 Arthropod Imperialism

Moreover , Brooks argues that there are severe limitations 
on the generally accepted methodologies of artificial

intelligence , and that the currently accepted conceptual

to motor output , how is it possible to model high - level

cognitive functions where there is believed to be significant 

processing performed between input and output ?

Surely the sequence of functional units between input

and output in complex tasks such as speech understanding 

or 3D reasoning from vision is so long as to make the

modeling task prohibitively complex ?

If this problem cannot be solved , at least in principle

, then closed - environment simulation is only useful

for a very small class of problems : problems which traditionally 

have been peripheral to cognitive modeling and

artificial intelligence .

Fortunately , help is at hand . This problem is resolved

by careful attention to two assumptions implicit in its

formulation : first , that a sequential functional decomposition 

of cognitive process  es is the best approach ; second

, that what have traditionally been ' core ' topics in

cognitive modeling really are core topics , i . e . that problems 

amenable to closed - environment simulation really

are peripheral issues . Both of these assumptions have

been questioned and found wanting by Brooks .

' 6 . 3 . 1 Subsumption Architecture

Brooks [ 2 ] has developed an approach to the design of

control architectures for mobile robots operating in the

real real world , which can readily be adopted for use in

the simulated real worlds of closed - environment simula -

tors . The key to Brooks ' s approach is the concept of a

layered control system , which leads to control architectures 

and strategies radically different from convention .

The conventional approach to constructing a mobile

robot control system is to decompose the problem into a

set of functional units , creating an essentially sequential

linear data - path which starts at the sensory transducers

and ends at the motor actuators .

Brooks proposes that the primary decomposition of

the control problem should be into task achieving be -

haviou ' i ' s . That is , he advocates dividing the desired intelligent 

behaviour of a system into a collection of simpler 

behaviours ; behaviourally complex systems are thus

decomposed into a number of computational systems

achieving simpler behaviours . The intention is that the

simpler systems should be independent , but some degree

of overlap is likely in practice .

Brooks organises the behavioural decomposition on

the basis of two concepts : task achievement and competence 

levels . Task achievement dictates that : " Each

behavior should achieve some task . I . e . , there should be

some observable phenomenon in the total behaviour of

the system which can be used by an outside observer

to say whether the particular sub - behaviour is operating

success  fully . " [ 3 , p . 6 ] . Competence levels specify overall

system performance in a rather informal manner : " A set

of task achieving behaviours together provide the robot

with some level of competence . They should be designed

so that as new task achieving behaviours are added to

the system , the level of competence increases ." [ ibid .] .
The different task - achieving behaviours form layers of

a control system . The layers form what Brooks [2, p .7]
calls a subsumption architecture : initially , the complete
robot control system is constructed to achieve level 0

competence - this is referred to as the zeroth layer control 
system ; once it is completely debugged it is never

subsequently altered . Next , the first layer control system 
is constructed : it can receive input from the layer

0 system , and additionally it can suppress , or subsume ,
the output of the zeroth layer . The zeroth and first layers 

together implement level 1 competence . Similarly ,

higher layers are constructed to realise higher levels of
competence .

A particular layer always runs unaware of the activ -

ities of all higher layers , any of which might interfere
with its activity . Each level of competence includes as

a subset all earlier levels of competence [2, p .7] , so successive 
layers can be viewed as representing increasingly

more sophisticated and constrained classes of allowable

behaviour . In Brooks 's original robot , each layer is built
from a number of asynchronous modules , and each module 

is a finite state machine [2, p .9] .

So the central ideas in the Brooksian philosophy are :
that the control of a mobile robot can be viewed in

terms of behaviours rather than functional modules ; that
the subsumption architecture allows for incremental construction 

and debugging of complex mobile robot control

systems ; and that there is no need for centralised control :

"The control system can be viewed as a system of agents

each busy with their own solipsist world ." [2, p .19] .
The intention then in closed -environment simulator

computational neuroethology is to create a subsumption
architecture where the modules forming each layer are
not formal (symbolic ) finite state automata , but small
artificial neural networks . A network model constructed

according to a subsumption architecture is an explicit
recognition of the inhomogenous nature of natural nervous 

systems .

A guiding principle in Brooks 's work that is particularly 
relevant to such an approach is :

" Complex (and useful ) behavior need not neces-
sarily be a product of an extremely complex control 

system . Rather , complex behaviour may simply 
be the reflection of a complex environment . . . .

It may be an observer who ascribes complexity to

an organism - not necessarily its designer ." [2,
p .3]
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invertebrates . . . The study of specifically human

nervous systems is an applied , not a general , science

. " [ 17 , p . 17 ] .

decompositions and static representations are wrong . He

argues for a shift to process - based modeling , contending
that : " . . . mobility , acute vision , and the ability to carry
out survival related tasks in a dynamic environment provide 

a necessary basis for the development of true intelligence
." [3, p .2] . Brooks 's argument is based in part

on the evolution of intelligent beings : that intellectual
capabilities such as writing and 'expert ' knowledge are ,
on the evolutionary timescale , very recent developments
indicates to him that the creation of artificial entities

truly possessing such abilities will be relatively straightforward 
" . . . once the essence of being and reacting are

available . . . . This part of intelligence is where evolution
has concentrated its time - it is much harder ." [3, p .l ] .
Clark makes a related point :

" . . . intelligence has evolved as a means of satisfying 
our basic survival requirements . It has not

been selected for its capacity to achieve the high -
level mental feats which so much work in AI is

dedicated to modeling . If we can perform such
feats . . . it is only in virtue of our being endowed
with a set of low - level capacities which just happen 

to facilitate the higher -level activity .
. . .

"The right microworlds to study are not fragments 
of the sophisticated human achievements ,

but the less sophisticated achievements of the various 
animal intelligences , ranged across the phy -

lo genetic tree ." [5, pp .4- 5 ; original emphasis ]

In particular , Brooks advocates the construction of
robotic insects :

From the point of view of neural modeling , a fundamental 
advantage lies in insect neuroarchitecture . There

is ample data in the biology literature demonstrating

that insect (and other arthropod ) nervous systems are
constructed with an economical use of neurons .

The smaller number of nerve cells involved does not

necessarily indicate that the neural principles of operation 
are simpler in insects than in higher animals . However

, it does mean that a computational network simulation 
of insect nervous function is closer in architectural

terms to biological reality than any corresponding model
of mammalian or primate function , by several orders of

magnitude .
So, perhaps the best approach to studying intelligence 

is , phylo genetic ally speaking , bottom -up rather
than top - down . All previous work in cognitive modeling 

has focused on advanced animals , near the top of

the phylogenetic hierarchy , i .e. humans (and , in vision
research , other mammals ) . Yet the only case for such
anthropocentricity is an a priori one . Studying intelligence 

by modeling insects might seem counterintuitive ,
but then again it might yield some useful results . Perhaps 

we have been missing something .

Studying animals lowlier than ourselves is not without
precedent in other fields . The most notable example is in

genetics , where countless person -years of research have
been expended on the fruitfly Drosophila melanogaster ;
with the human genome project commencing only very
recently . As John McCarthy (a founder of AI ) puts it :

It may be that AI is a problem that will fall to
brilliance so that all we lack is one Einstein . [but ]
I think this is one of the difficult sciences like genetics

, and it 's conceivable that it could take just

as long to get to the bottom of it ." (McCarthy ,
quoted by Johnson [19, p .13] ) .

Perhaps cognitive science research should go the same
way as genetics : we should cease to concentrate on high -
level functions and get the basics right first ; following a
development path strongly influenced by the evolutionary 

history of natural intelligence .
Even if the study of insects provides us with no data

specific to higher animals , it will help clarify the status
of the general principles that connectionists search for
- perhaps the answer is not to study simple models of
large brains , but to study large models of simple brains .

This shift to an antianthropocentric focus for AI has

manifest implications for the connectionist study of language
. This is a core cognitive function [27, p .62] . But if

the arguments listed above are accepted , then (pace the
researchers involved ) all current connectionist models of
language are wildly premature . Language will be best

" Insects are not usually thought of as intelligent .
However , they are very robust devices . They operate 

in a dynamic world , carrying out a number 
of complex tasks . . . No human -built systems

are remotely as reliable . . . Thus I see insect level
behavior as a noble goal for artificial intelligence

practitioners . I believe it is closer to the ultimate
right track than are the higher level goals now
being pursued ." [3, p .7] .

Similarly evolutionist arguments have been proposed in
neuroethology . One of the most passionate advocates
of restricting study to arthropods (the animal class to
which insects belong ) was Hoyle :

" Many neurophysiologists . . . express no , or very
little interest in invertebrates . Their goal is to
understand the higher mammalian nervous system

, period . . . . The invertebrates have nervous
systems which will certainly be understood first
in cellular and connectivity terms . . . by definition

, the general principles must be those features 
which vertebrates possess in common with
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Proposal . University of Sussex
and Computing Sciences .

School of Cognitive

works. Nature, 337:129- 132, January 1989.

7(3):388- 390, 1984.

cogn ~-

and parallel distributed processing .

Bradford Books , Cambridge MA ,

[ 7 ] D . T . Cliff . A closed - environment computational

network model of visual processing performed by an

airborne insect , 1988 . Unpublished D . Phil . Research

[13] S. Grossberg . Neuroethology and theoretical neu-
robiology . The Behavioral and Brain Sciences ,

[14] D . M . Guthrie , editor . Aims and Methods in Neu-
roethology. Manchester University Press, Manchester

, 1987.

S. Harnad . The symbol grounding problem . In
CNLS Conference on Emergent Computation , Los
Alamos , May 1989 . Submitted to Physic a D .

A . L . Hodgkin and A . F. Huxley . A quantitative
description of membrane current and its application
to conduction and excitation in nerve . J. Physiol .,
117 :500 - 544 , 1952 .

G. Hoyle . Neural mechanisms underlying behaviour
of invertebrates . In MS . Gazzaniga and C. Blake-
more , editors , Handbook of Psychobiology , pages 3-
48 . Academic Press , New York , 1975 .

G . Hoyle . The scope of neuroethology . The Behavioral 
and Brain Sciences , 7:367- 412 , 1984 .

G . Johnson . Machinery of the Mind . Microsoft Press

- Tempus Books, Redmond , Washington , 1986.

[18]

[19]

understood as a very high layer in a subsumption architecture
: how it interacts with lower layers could be of

vital importance , and we should study these lower layers
first .

If we are still yet to determine the subsymbolic or
neural basis underlying the dance-language of bees, how
then are we supposed to study such aspects of human
language at anything but the most gross level of neu-
roanatomy (i .e. studies of lesioned patients )? We simply
do not know enough.

7 Conclusion

The significance of computational neuroethology is its
spanning of many levels of analysis in the brain and
behavioural sciences. The prospects for computational
neuroethology look good; it will never answer all of
the questions asked of computational neuroscience, but
it will provide "simplifying " network models with well-
grounded semantics, and hopefully lead to a consequent
rejection of interpretation in favour of observation . Subjectivity 

will give way to objectivity .

. The use of closed-environment simulators , coupled
with the rejection of the phylo genetic ally top-down study
of intelligence , hails a new approach. This new approach
is evolutionist and antianthropocentric . It focuses attention 

on the true issues underlying intelligence . Language
must wait . Discuss.
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ON THE FEASIBiliTY OF COMPUTATIONAL ARTIFICIAL LIFE

A REPLY TO CRITICS

Harold C . Morris

P . O. Box 657
Los Alamos , NM

87544 USA

Abstract ical l ' wetware , ' 1 robotrc hard -

The thrust of this paper is ware , and as computer software .

to meet the objections of what This paper shall , however ,

may be termed a philosophical deal only with controversies

school , whose principals are surrounding the third variety ,

Robert Rosen , Howard Pattee , and namely the computational AL

Peter Cariani . The objection form .

that a computational universe generally stated , the AL

is a f :lat ' lpseudo - world , I ' program is to develop life - like

because it is I ' all syntax and organisms in the medium of

no semantics , " is inquired into choice . For myself and some

and refuted , as is the claim other AL researchers , the

that nothing really new can computer is our medium of

evolve within such an artificial choice . Our objective is to

universe . It is concluded that implant or evolve individuals

no persuasive reasons have been or colonies in automaton

advanced as to why computational universes , to observe instances

artificial 1 ife is not feasible . of propagation , adaptation ,

or communication , such as one

usually associates with

A convergence of several ifeforms  .

fields has resulted in the new Since the pioneering

discip1 ! ne of Artificial Life work of von Neumann ( 1966 ) ,

( IIALII ) research . And just as AL cellular automata have been

science has several sources , it much used as computational

is moving in several distinct media for AL research . In

directions . Life - 1 ike entities recent years , more sophist -

are being developed as biochem - icated systems , for example
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messages, directing the actions
of others , and of leaving maps
or other records for the

edification of posterity . This
system would seem to have most
of the potentialities desirable
in an AL universe .

Nevertheless , there are
I'naysayers'l who woul d have us
believe that nothing really
deserving of the appellation
I!living " could arise in or inhabit
any computational medium.
One of these critics , Robert
Rosen, has very recently stated
that , in spite of all our
contemporary efforts and advances,
'Iwe are in fact not an inch
closer " to the fabrication of
an organism than were our
predecessors (Rosen, 1990) . With
colleagues Howard Pattee and
Peter Cariani , Rosen is
especially vehement in his
denial that computational
approach es to artificial life
hold any promise of success.
Let us proceed to their
objections .

The first of these ,
expressed by Howard Pattee (1989) ,
essentially says that a simulation
necessarily refers to something
outside itself and by definition
cannot become something over

the Corn Met Computational

Metab01ism of Marek Lugowski

( 1989 ) . have expanded on

the basic cellular automaton

theme .

A computational medium

along these 1 ines is my own

Robotix World ( Morris . 1990J ..

In Robotix World . virtual

robots rove over a grid . getting

from fixed dispensers chunks of

information . ' I modules . 11 containing 

instructions written in the

robots ' programming language .

The acquiring robot may then

assimilate this module into

its own internal program , to

enact the instructions subsequently

. alternatively . it may

stack such modules atop each

other to build a brand new

robot . These robots are t .hus

self - programming , and propagating .

Since robots can steal from or

cannibalize modules off other

robots . they can compete quite

directly witn one another .

Robots can bui id other robots

for later consumption or

service . as . we husband plants and

animals . Since robots can receive

instructronal modules from other

robots . and set down modules for

future generations to discover .

they are capable of communicating
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the sun . Of course , a geologist

may not be interested in this

new crystal as an artifact ,

but he can hardly afford to

ignore it as a possible

arrangement that atoms may

take . And by the same token ,

a ( natural ) biologist may not

consider an artifact to be

within the purview of his fIeld ,

but should not ignore those

possIbilities of propagation ,

adaptatIon , etc . , brought to

1 ight by the cdmputational AL

researcher .

The idea that the same

program may be treated on the

one hand as a referential model ,

and on the other hand as a

realization , should not be

any more disturbing to one ' s

sensibilities than is our

tendency , for example , to treat

a Voyager communicated photograph

of Neptune as , on the one hand ,

an illustration of an aspect

of nature , to be judged by its

fidelity to the original , and

on the other , as an aesthetic

object , to be judged on its

aesthetic merits .
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1 . The Measurement Prcblem ~ carry a heavy burden of proof

A seemingly more sub - in establishing the direct

stantive criticism of the relevance of the measurement

Rosen / Pattee / Cariani school problem , as it is known in

involves what Pattee terms the quantum physics , to the AL

" incomprehensible " measurement enterprise . Certainly nothing

problem . Members of this in Pattee ' s or Cariani IS

school hold that a 1 iving thing writings stands as sound

must be able to make measure - objection to the creation of

ments , but that measurement is a computational entity with

a process that cannot be the sensitivity of a venus

simulated by physical process  es fly trap .

alone , and cannot be real ized Related to this ' Imeasur ~ ment

computationally at all . Cariani problem ' ! is a directly relevant

( 1989 ) has made much of this . logical problem associated with

It is easy to agree that a part observing the whole of

we should like for our AL a system it inhabits . To frame

forms to have the capacity to the problem in the form of a

make at least rudimentary diagonal argument ; We may infer

observations , or to h 'ave some - that for an artificial life form

thing on the order of the venus or organ existing within a larger

fly - trap plant ' s sensitivity . environment to observe all the

However , the " measurement parts ( of that universe ) that ,

pro b 1 em " Car i ani eta 1 . ha ve in can no t 0 bs e r ve them se 1 v e ~~, j s

mind has been borrowed from to do the impossible , as one

quantum physics , and as far as real izes on considering the

this author is concerned no matter of self - observation ( this

computational AL researcher being , of course , : a variant on

is seriously bent ' upon the Russell Paradox ) .

creating 1 ittle quantum physic - One can also formulate

ists . an infinite regress problem .

Carpetlayers , snd other To observe the entire universe

scientists for that matter , do is to entertain some model

manage to make measurements internally that corresponds to

without having to cope with what is observed . Again , selfmind

- boggling philosophical observation becomes problematic ,

obstacles . Cariani et al . must in that it involves making a
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model of a model , ad infinitum ,

of the self . Rucker ( 1983 )

considers a closely analogous

paradox , which he attributes to

turn of the century philosopher

Josiah Royce . Rucker suggests a

possible " out " for the human

mind infinitely introspecting ,

by hypothesizing that the brain

may be itself infinitely divisible

. Clearly this will not work ,

though , for a digital computer ,

which has allowest " level of

discrete components .

At any rate , though these

philosophically interesting

conundrums may establish some

limitations on the capacity of

an AL form to arrive at an

absolutely all - encompassing

knowledge of its environment ,

all the life forms with which we

are acquainted in nature are

similarly 1 imi ted . Such 1 imitations 

can hardly be taken as

decisive on the question of

whether something is al ive

or not ! And the modest ,

practical objective of obtaining 

" sensitive " organs or

organisms , perhaps even entities

that can recognize some patterns

occurring in the world they

occupy ( or represent those

patterns , however crudely ) , is

not shown Infeasible by these

ty .pes 0 far gum en t s .

Related to the above ,

Cariani ( 1989 ) has set as a

requirement for an artificial

life form , that it construct

for itself a new ' I device for

measurement . .1

Now , only human beings ,

amo .ng known natural life forms ,

create new measuring devices

for themselves , in what I take

to be customary usage of the terms

J' create for themselves " and

I 'measuring devi ces . II What Car i an i

must mean is that he would like

to see a genealogical 1 ine . evolve

a new kind of sense organ . As far

as that goes , I think many AL

researchers would like to work

toward realizing just such a

prospect . The only question is

whether this is a good criterion

for admitting something to be

a life form or not .

To be sure , this may come

down to one IS intuitions . Suppose

a form evolves within a computa -

tional medium that can somehow

sense the general excitation level

of its immediate surroundings ,

as we sense heat and hear air

vibrations as sounds . Ignore the

fact that Cariani et al . believe

that evolutionary emergence cannot

occur in a computational environment

, since that objection will
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forms , if he knows that a certain

ideology idscounts such predesigning 

of sensory capacities .

2 . A SemantIc Void

Pattee and Cariani view a

computational medium as intrinsically

, irredeemably sterile ,

because it is . they claim , all

syntax and no semantics . Cariani

alludes to the semiotics of

Charles Morris . in defining syntax

as the rules governing a language

or formal system , and semantics

as the relationships holding between

a language and the world . According 

to Cariani , a computational

universe is , so to speak . a flat

pseudoworld supporting no real

semantics . Symbols are shuttled

about lawfully but meaninglessly ;

lacking real world efficacy . or

reference , they can never really

amount to a 1 iving thing in a

real environment . Cariani

evidently pictures the fruit of

computational Al research as

being something like a genetic

blueprint for which no epigenetic

rules exist . a blueprint for

something that possess  es sense

organs which have nothing

aval table to sense , in short , a

mere string among strings .

Actua1ly . there is just no

reason to think of a computational
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universe as necessari1y of description , an artificial

is01ated from the world life form , say a virtual robot or

beyond the computer . Many if bug or fish or what have you , is

not most of us doing computa - ' a syntattica1 string or config -

tiona1 Al work at least enter - uration , that is not to say that

tain the possibi1 ity of a110wing It is semantica11y empty , for

input into our computationa1 substrings within it may be

universe from peripheral sources . instances of mention of other

However , I wi11 address the strings external to this entity

case Cariani feeis his objection but within the computationa1

most app1 Les . to , namely the self - universe . In other words , reference

contained computationa1 medium is perfectly possible . The outside

that does not receive input from observer ( e . g . the Al researcher )

the external world . can then make interpretations of

Cariani ' s misconception lies these instances of mention in

in his understanding of seman - terms of sensations , or memories ,

tics , and specifica11y his for - o 'r even thoughts , entertained

getting that , a language may be by the Al form .

an important part of the world

it talks about . Thus a language 3 . Evolvabi 1 ity

may talk about itself . Quine Yet another contention put

invented his use / mention dis - by Cariani and Pattee is the

tinction to a110w us to requirement that ifeforms  be

conceptual ize the situation " ev01vab1e . I ' This contention ' is

c1ear1y . A syntactical config - meant to go hand in hand with

uration may consist in part of their contention that genuine

mention of syntactical entities , ev01ution is impossible within a

facts , or rules . And once such computationa1 medium . obviously ,

embedding is permit  ted , it can these two contentions add up to

lead to in definite  1y rich the proposition that artificial

nestings of mention . The life cannot arise within a

essential point is that a rich computationa1 universe .

1anguage can have semantics even It actua11y seems a bit

without reference to anything absurd to spe 'ak of " ev01vabi 1 ity "

but itself . as an affirmative property

Granting that at one 1eve1 possessed by ifeforms  . Both
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primItive symbols

new combinations

new

on. ly

given

can arise - -

of the

animate and InanImate things

change under environmental

pressure . It is precisely

1 ife ' s relative resistance

to change , achieved through

adaptation and self - replication ,

that distinguish  es it from

the nonliving . AffirmatIve

capacities of life such as

these are in fact under

intensive study by AL science

today .

Rather than speak of

" evolvability " as a criterion

for identifying ifeforms  , then ,

let us speak instead of the

evolvability of an artificial

uni : verse . I am confident that

most of us in computational AL

believe thQt we have real ized

evolutionary process  es within

computer media . Let us see why

Carrani and Pattee object to

our characterizations of these

pro ce s'se s. ( and the i r f ru its ) .

tariani ( 1989 ) begins with

the inarguable premiss that a

computational medium can be described 

at one level as a formal

system , with a finite alphabet

of primitive symbols and a fixed

set of rules of inference /

substItution . But he then leaps

to the conclusIon that this means

that nothing really new can arise

in such a system , because no

primitives .

The fallacious jump here

is in thinkIng that an artIficial

1 ife form would be a new primitive

symbol , or necessarily be

composed at least in part of such

" ew primitive symbols . There is

no reason to think thIs . An

organism or organ arising in a

computational medium ' s evolution

will be a new combination of

the given primitive symbols .

That ' s what " something new " is :

a combinatIon not present at

the starting up of the evolutionary

process . In most systems , the

potentIal number of new combinations

is going to be infinite .

The bad reasoning here is

quickly exposed by some analogies .

Would we tell an aspiring composer

that he cannot possibly come up

with any new , original musical

compositions , because he ' s using

a finite number of scales , each

of which has a finite number of

notes ( i . e . primitive symbols ) ? A

new musical composition is just

a new combination , isn ' t it ? And

would we imagine that a child

who has learned the English

alphabet now " knows " all the works

of Titerature that have been or

ever will be written in that
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The Animat and the Physician
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75002 Paris

being told, systems that learn by complete examples,
and animats, i .e. systems that learn by reward.

Production systems without learning ability get their
knowledge from rules which are used to reason about
the input data and conclude about the output data to
provide. They are somehow more intelligent because
the order in which rules are executed depends on the
data: control is data driven . This means that a few
rules implicitly specify many different reasoning
traces.

Introduction
Specifically built neural networks get their knowledge
from a set of predetermined weights which indicate
how a formulated hypothesis (micro- feature represented
by one neuron) influences another. However, without
learning, they are not really much more intelligent
than production systems, but some experiments tend
to show that they are less brittle and noise sensitive
and can exhibit even richer behavior than can be
expected because they use parallel analog processing.

There has been much debate about how one can
consider that a system is intelligent , most of the time
according to how it process es information (rules,
neurons etc.) in connection with the human brain.
However, in [ Wilson, 85] Wilson developed the idea
that we could probably learn more from ethology, and
he introduced the concept of animats, which are
autonomous systems which learn how to survive and
expand in a given environment.
We propose to discuss how this research can be
profitable to the understanding of human intelligence,
and how animat algorithms can be used to reproduce
some intelligent human behavior.

1. Intelligence hierarchy

Let us consider the following intelligent systems
hierarchy based on how explicit the input knowledge
from the environment must be: systems that learn by

Pierre Bonelli ( LRI )
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LRI , batirnent 490

Domaine U ni versitaire de ParisS ud
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1st level: Systems that learn by being told

Most computers get their knowledge by being given
programs, i .e. a list of instructions to be executed in a
specified order; the processing is completely explicit
in the input know ledge .

2nd level: S~stems that learn b~ coml2lete examl2les

Learning systems can manage with even less
formalized knowledge: they only need examples which
contain both the input and the corresponding desired
output; they take care of extracting the appropriate
knowledge that is needed to generalize the sampled
behavior to new inputs. Such systems can be either
rule based systems, connectionist networks , or
classifier systems. A number of learning algorithms

Fax : (33) ( 1) 40 20 98 98
Tel : (33) ( 1) 6981 8841
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Abstract

Animat research has already produced
interesting concepts and algorithms . In this
paper , we analyze how this research can be
applied to human intelligence understanding
and to reproducing of some expert behaviors .
To support these ideas , we experiment with an
improvement of Boole , a Genetic Based
Learning algorithm from animat research , in a
medical domain of expertise . We
experimentally demonstrate that our system
obtains good results on a well known realistic
medical diagnosis task , and we analyze its
potential ability to solve more complicated
problems .



In addition, they cannot be given all their knowledge
at once: they need to learn it incrementally , and they
cannot memorize it as it "is: they have to extract and
memorize useful knowledge which is diluted into
massive , diffuse , inaccurate and inconsistent
information .
It appears that this kind of intelligence is needed by
autonomous systems in nature, such as animals,
animal societies, or animal species which all learn to
survive in a hostile environment by being given more
or less fulfillment of their basic needs, expansion of
their territories, or their total population.

For some human activities . reasoning can be well
conceptualized because people have access to complete
consistent knowledge about the domain; additionally .
the associated reasoning is conscious. In these cases
explicit models of both knowledge (rules) and
reasoning (meta-rules) can be build and permit expert
systems (which "learn by being told") to be effective
in behaving like humans for these tasks.
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exist for each of these, and there is much debate about
whether connectionist systems [Bounds, 89] , rule
based systems [Kodratoff , 89] , homogeneous hybrid
systems [ parodi & Khouas 89] , or inhomogeneous
hybrid systems [ Hendier, 88] should be used.

A typical case is medical diagnosis where
physicians interact with the human body which is
extremely complex, not yet completely understood,
and where input symptom data has a complicated
relationship with the diagnostic output . Of course,
academic (conceptualized) knowledge helps, but
doctors claim that past experience (set of examples) is
most important: it develops the intuition capability.

In this sense, acquiring the intuition that is
needed for medical diagnosis is merely learning by
examples.
However, a system which does medical work and
behaves as a physician has to be more than a simple
"learning by examples " system. Indeed , the
information is very diffuse , and doctors induct
knowledge from it incrementally during a very long
period of time, with no specific memorization of each
and every case, as is needed for animats.

It seems

This tends to be true for instance in the case of
computer configuration, machine trouble checking and
diagnosis, etc., and in a number of man created
domains.

3. Experimental programHowevert in some other domain st man cannot really
conceptualize the needed knowledge because it is not
available or beyond his understanding. In the context of this paper t we .restricted our

experiments to a medical diagnosis taskt which seems

at the present time. that Genetics Based
Machine Learning is best suited to fulfill these needs.

In addition~ medical researchers also design therapies
which involve new treatments and drugs against
diseases that are not yet very well understood: they are
not given examples that contain what treatment to
give for an infered diagnostic , or a given set of
symptoms.

3rd level: Animats. Systems that team by reward

However, according to our hierarchy, anirnats are even
more intelligent since their only source of knowledge
is the reward (payoff or penalty) that they receive from
the environment according to their behavior in each
situation.
Therefore, they are not given explicit knowledge about
the adapted behavior corresponding to each encountered
situation: they have to infer it from past experience,
and to generalize it for new situations.

They rather guess and try , using their incomplete
present knowledge to treat a patient, and then check
whether the patient evolves toward a better or worse
condition; from this JX}int they update their knowledge
iteratively . Therefore, improving therapies might be
considered as learning by reward; this last quantity is
directly related to the patient's condition improvement.

It clearly appears that this last activity is close to
those perfonned by animats.

Hence. when attempting to build a machine which
behaves as a physician. it seems quite natural to use
genetic algorithms to learn the medical "intuition " for
both diagnosis and therapy. However. one might say
that classifier systems mechanisms do not have much
to do with the human brain. neither at the conscious
reasoning level nor at the neural one. However .
"intuition " merely consists in being able to "feel" the
correct solution unconsciously. sometimes with no
possibility to explain or even justify it absolutely .
Since modeling is not possible . our approach is
"behaviorist"; i .e. we do not care if know ledge is coded
inside our machine in the same (unknown) way as in a
human being who has the desired behavior. Hence. the
idea of identifying the animat problem and the doctor's
problem and use a genetic algorithm to perform
learning in this context is sound.

2 . Animat and human intelligence

How can AI benefit from research in the animat
domain ? This is the question we will try to answer in
this section.



3/ Initialization:

4/ Rule crossover:
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reinforcement component that we developed jointly
with Wilson and Sen.

For each experiment, the classifier population was
initialized by directly applying a modified version of
Wilson's create operator.

In addition , for the following experiments ,
NEWBOOLE has been improved by enhancing the
crossover component of the genetic algorithm.
Indeed, the knowledge of the system is appropriately
represented by a set of explicit 0+ order rules rather
than a set of strings of bits as is the case with
classifier systems. Each rule consists of a condition
part, which is an unordered set of (attribute, value)
couples, and a conclusion part , which provides the
output value.
Therefore, the crossover that is used takes into account
general properties of this representation . More
generally , our approach consists in directly apply
modified genetic algorithms onto the appropriate
representation of the knowledge , rather than
attempting to convert the knowledge into a classifier
representation which can be processed through
classical genetic algorithms.

* BODLE is a simplified version of the standard
Classifier System (CS) which learns difficult boolean
functions.
Like any CS, Boole maintains a population of
classifiers (which can be thought of as bit -level zero
order rules ) according to Darwinian evolution
principles. However, classifiers are not chained; they
directly provide an output and the decision is made
within a single step during recognition; consequently
there is no message list nor Bucket Brigade
Algorithm . Thus each classifier consists of a
condition (taxon) and an action which are fixed length
strings over the {O, 1 ,#} alphabet.
Like other CS, BODLE contains three components,
namely a performance component, a reinforcement
component, and a discovery component.

Our fIrst results tend to show that this feature further
enhances the generalization quality , i .e. the ability to
find appropriate answers for examples that the system
has never seen before.
The error rate on such examples is reduced by about
one third, hence providing results which are better than
ID3 , and identical to neural networks using back-
propagation, Michalski 's logic reduction system or
statistical Bayesian systems.

5.1. The BOOLE Classifier System

used in the experiments.

We now present BOOLE with some detail concerning

the parts that have been changed , in order to explain

the improvements in the following paragraphs . Boole

includes three components :

It is important to mention that BO O L E's
generalization capabilities were maintained in the new
system. For more details about the NEWBOOLE
system, please refer to [Bonelli , Parodi , Sen &
Wilson , 90] .

S. Description of the algorithms

In this section, we describe the algorithms that were

a natural step toward therapy learning. In addition, the
data base with which we experiment has been tested
with a number of learning systems, which allows to
validate our ideas quantitatively.
We therefore adapted Boole [Wilson 87] a classifier
system that emerged from animat research to a medical
diagnosis problem.
We modified it in a way so that it gathers its
know ledges in the form of 0+ order production rules:
this allows some expert checking, but also human use
for knowledge that cannot be easily acquired by
humans such as therapy.

4. Quick overview of the NEWBOOLE
system and its improvements .

In this section, we briefly describe the
NEWBOOLE Classifier System used to perform the
medical diagnosis task described in the experimental
section of the paper.

NEWBOOLE is a modified version of
Wilson's system BOOLE, which was initially
designed to fulfill the animat problem constraints.

* NEWBOOLE integrates changes to both the

performance and reinforcement components , which

were made in order to get a faster convergence of the

error rate in the context of learning from examples .

The changes resulted in the following

differences with BOOLE :

1 / General out12ut :

NEWBOOLE is no longer a specialized CS for

Boolean functions : the number of classes can exceed 2 .

2 / Leaming rate :

NEWBOOLE obtains much faster learning rates then

its predecessor , partly through the use of a new



5.2 Reinforcement com12 Qnent enhancement
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- finally , whether the system's decision is
correct or not, deduct fractions e and t respectively
from the strengths of [A] and Not [A] .

2/ Reinforcement component : this component
modifies the strengths of classifiers according to
performance level :

following :

2/ Deduct a fraction e from the strengths of
[C] .

Thus , the effect of the reinforcement

S[C](t+l) = (I-e) x S[C](t) + R

SNot[C](t+l) = (I-p) x SNot[C](t)

(1)

(2)
BO O L E's version of the genetic algorithm is

quite particular in the sense that only one offspring is
added per invocation of the genetic algorithm. In this
context, the parameter p will represent the average
number of invocations of the genetic algorithm per
cycle (i .e. the number of offspring added per cycle).
For more details, please see [ Wilson, 1987] .
Here p = 4.

all classifiers in [A] ;

component can be written as:

1/ Performance component: in the performance cycle,
an input string is presented to the system, the match
set M of all classifiers whose taxa match the input
string is formed, and a single classifier from M is
selected (using a probability that is proportional to its
strength) whose action is output as the system's
decision.

Thus, following each performance cycle , only the
strengths of [A] are adjusted according to the system's
performance. '

However, once we know that [A] contains
accurate classifiers, we also know that Not [A] only
contains inaccurate classifiers; in this case it would
make sense to penalize the rules in Not [A ] . This
acknowledgement led us to a symmetrical payoff -
penalty algorithm, in which we respectively reward
and penalize the accurate and inaccurate classifiers
present in the Matchset.

The new reinforcement component is the

1/ Form the subset of [M] consisting of
those classifiers whose action is accurate; this is the
correct set [C]. The remaining members of [M] form
the set NOT[C].

c/ * If the system's decision was
correct, distribute a payoff quantity R to the strengths
of [A] ; but

* If the decision was wrong ,
distribute a payoff quantity R' (where 0 ~ R' < R) to
the strengths of [A] and deduct a fraction p from the

a/ Form the action set [A] consisting of
classifiers from [ M] whose action is the same as the
chosen action; the remaining members of [M] form
the set Not [A] ;

bl Deduct a fraction e from the strengths of

3 / Since [ C ] contains the accurate classifiers ,

distribute a payoff quantity R to the strengths of [ C ] .

4 / Since Not [ C ] contains the inaccurate

classifiers . deduct a fraction p from the strengths of

Not [ C ] .

BO O L E's reinforcement component , under the
"payoff-penalty" reinforcement regime (p ~ 0) adjusts
classifier strengths in the following way:

- if the system's decision is correct, distribute
a quantity R to the strengths of the Actionset [A] .

- if the system's decision is false, penalize
the strengths of [A] by deducting a fraction p from
their values.

where S[C] and SNot[C] are respectively [C] 's and
Not [C] 's total strengths.

This new algorithm constitutes a clear
departure from Boole : indeed, if we have several
possible output values then the knowledge of the
correctness of the output of each classifier from the
match set is used. This information can be provided
by the knowledge of the correct output for each
example, as is done in most learning systems.
However , this does not make any difference with
boolean functions such as the Multiplexer since only
two values are possible: if one is known as wrong,
then the other one is right .

As in Boole , the payoff .R to [C] is
distributed by a biased distribution functionD , which

strengths of [A] (at least one of R' and p is equal to
0);

d/ Deduct a fraction t from the strengths of Not [A] .

The distribution of payoff is done so that rules which
have many # 's (thus more general) are favored.
3/ Discovery component , which modifies the
classifier population according to Holland 's (1975)
genetic algorithm and employs reproduction, genetic
operations (crossover and mutation), and deletion.



5.3 Initialization algorithm

The problem here is to check whether we
could apply GBML directly on the attribute -value
representation without preliminary coding.

Firstly , the number of attributes to be treated
for each rule would be smaller than the number of bits
in the corresponding CS classifier, resulting in faster
processing.
Moreover , classifiers have many explicit don't care
positions, which must be processed, resulting in a
waste. Using the attribute -value representation ,
attributes whose values do not have any incidence in
the conclusion of a rule will not be present in its
premise, and will not be explicitly processed.
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   . Usual representation

We assume that the examples are described
with a collection of attributes. Each attribute can take
a small set of discrete mutually exclusive values. For
instance, in the weather domain, we consider four
attributes {SKY , TEMP, WIND , OUTLOOK } which
can respectively take the following values:

number of #'g in igi = L
Let us define:

di = 1 + G x gi SKY: {blue, grey, rainy};
TE~ : {cold, mild, warm, hot} ;
WINDY {true, false};
OUTLOOK: {mistral, east wind}.

favors more general rules (i .e. with many " don 't
cares" #) as follows .
First , the generality of each classifier no i of length L
is computed as:

(3)

(4)

where G is a "generality emphasis " parameter .

Then , the portion of reward Ri that is given to
classifier i becomes :

di
Ri = D (i) xR = - R (5) (6)

Ldi
1

~

In addition , some the following improvements were
made for the experiments which are considered in this
article.

(7)

The straight forward GA coding of such a description
would consist in a mapped concatenation of fixed
length binary strings, each of them representing an
attribute 's value. In the same weather domain, the
attributes values could be coded in binary as:

SKY: (blue = 00, cloudy = 01, grey = 10, rainy= 11);
TEMP: (cold = 00, mild = 01, warm = 10, hot = 11);
WINDY: (false = 0, true = 1);
OUTLOOK: (mistral = 0, east wind = 1).

The same weather description (6) would then
be represented by the data :

0000 1 (8)

and the classifier corresponding to rule (6) is :

00## 1 / 0 (9)

5.4 S~mbolic discovery

In this section we describe how we address
symbolic processing in our system, in order to use
symbolic data, as is needed for medical work.

A weather description example might be:

(SKY = blue) & ( TEMP = cold) &
( WINDY = true).

In this caset the following rule would fIfe:

(SKY=blue) & ( WINDY = true)
(OUTLOOK = mistral)

The reason for choosing a different initialization
procedure is that the search space to be explored is far
too vast to permit a random initialization process
since the population classifiers are supposed to
recognize examples from the Learning Base which
represents a microscopic fraction of the search space.

Therefore, the initial classifiers are generated in the
following way:

a) An example from the learning base is
chosen at random.

b) The condition part of the new classifier is a
copy of the symptomatic part of the example, except
that "don't care" symbols are inserted with a
probability of 0.5.

c) The conclusion part of the new classifier is
chosen randomly among the 4 possible diagnoses.

d) Steps a), b), c) are repeated P times, where
P is the size of the population.



Learning was performed over 10,000 cycles to
ensure that proper generalization has been achieved.
Indeed, even after the error rate on the learning data
base has converged to almost zero, the system still
improves its generalization capability.

6.3 Discussion of the results

This example base consists of 148 examples
separated into 4 distinct diagnoses. Each example is
completely described by 18 discretely valued attributes
representing the symptoms and one of 4 classes
representing the corresponding diagnosis.

6.1 Conditions of the ex I2eriments
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.Set representation During each learning cycle , an example from the
learning base is chosen at random and presented as
input to the system. The system then makes its
decision according to its past experience and applies
the reinforcement and discovery components according
to the experimental parameters.

6.2 Ex12erimental Results

Results below are the average of 4
independent experiments. Figure 1 shows Symbolic
Newboole's performance over the Test Base, i .e. its
induction ability . The graph plots the smoothed
system's average score which is the percentage of
correct decisions over the past 100 cycles versus the
number of cycles since the experiment began.

This plot shows that the system more or less
stabilizes its performance after a few thousand cycles
at approximately 82 %.
The average result for the test experiment was 37 right
answers out of 45, which represents approximately 82
% of correct classifications . This score is to be
compared with an estimate of 85 % of correct
diagnoses by specialists , 76 % with New Boole
without enhanced crossover, and 76% for assistant-86
which is an ID3 based learning system.

6. Experiments and discussion of
results .

We provide here after a table which compares
these results in induction with other learning systems
which are used in the same conditions.
Of course, these results have to be considered with the
idea that they are the average of four independent
estimations of probabilities of around 80 % with 47
samples each. Hence, we get a mean square root error
of about 2.5 %. Therefore, the differences between
Bayes, BP and Newboole with rule crossover are
insignificant here.

We tested NE W BO O L  E's ability to perform
medical diagnosis using data on the lymphography
domain, provided by the Institute of Oncology in
Ljubljana , Yugoslavia. We chose this particular set of
data because numerous other inductive learning
systems have been applied to it in the past, hence
enabling quantitative comparisons.

These results clearly validate our intuition
that a Classifier System can provide high
classification rates in a domain such as medical
diagnosis.
This is amplified by the fact that no other inductive ,

incremental learning system obtains such results
besides Connectionist Systems. However, Classifier
Systems have the advantage of being equivalent to 0+
rule based systems which provide comprehensive
solutions, and thus contain an explanation capacity,
whereas neural networks merely provide sets of
numerical coefficients without any clear semantic
meaning.

The way rules are coded does change the
matching algorithm which is then close to what is
used in 0 + expert systems, but the reinforcement
algorithm does not have to be changed at all .

However , it is obvious that the discovery
component will have to be modified in order to make
it work on this symbolic representation.

Since a condition is actually a conjunction
and because the logical " AND " is commutative, we
can note that it actually is a variable size unordered set
of (attribute , value) couples; for instance the logic
condition:

(SKY=blue) & ( TEMP=cold) & ( WINDY=true) (10)

can be represented as the unordered set of three
couples:

{(SKY,blue), ( TE: MP,cold), ( WINDY,true)} (11)

. We developed an algorithm which exploits
this representation by performing crossover and
mutation directly on these sets without any conceptual
reference to strings. This algorithm will be presented
in an upcoming article.

Our main goal was to test the quality of the
generalization, i .e. the induction capability.

For each experiment, 70% of the examples
(i .e. 103 examples) were randomly chosen for
learning, and the remaining 30 % (i .e. 45 examples)
for testing. Hence the system is tested with examples
it has never seen, thus enabling quantitative
measurement of its performance for induction.
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Figure 1: S~mbolic Newboole convergence over test base

(smoothed over 3 points: one point every 100 cycles)

Name Source Inc . Principle Represent . Induction

Bayes [Oar ., 87] NO Statistical Probabilities 83 %
BP (1) YES Connectionist Weights 82 %
Assistant -86 [Cestnik et al ., 87] NO Entropy min . Decision tree 76 %

AQ15 [ Michalski et al., 86] NO2 Logic reduc. Rules 81 %
Newboole [ Bonelli , Parodi

Sen & Wilson ] YES Genetic Classifiers 76 %

Sym . Newboole YES Genetic Rules Rules 82 %
Experts [ Michalski et al ., 86] YES Unknown Unknown 85 %

This table presents the source of this data, learning incrementality, principle of the algorithm , knowledge
representation and induction rate .

1 We conducted this Back-Propagation test with a 18:60-40-20-20-4 (18 inputs, 4 hidden layers and 4 outputs)
network architecture and only 3 trials rather than 4.

2 This system acquires rules from examples which are considered one after the other; however, it only adds
generalized logic fonnula and cannot revise its past knowledge accordingly to compress it . In this sense, it is not
incremental as Back-Propagation, ID6 and GBL systems are.
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More importantly , these systems nave the potential to
do therapy design as well , since they possess all the
animat qualities.
Indeed, even Newboole learns by reward internally ,
once the example is known.

Tool for Sophisticated Users". In Bratko & Lavrac
(editors) Progress in Machine Learning, 31-45, Sigma
Press.

However , it is strickening that the best learning
systems all do the same score on this medical
diagnosis problem. This result also happens to be true
in other domains such as phoneme recognition. This
suggests that there is a limit to the quality of
induction that a system can get by learning from a
given data base; this might simply be the implicit
knowledge that is contained inside it . This also
supports the idea that if humans do slightly better on
this problem, it is mainly because they had access to
other knowledge before, in the form of other examples
from a neighboring domain, or academic courses. This
last remark illustrates how background knowledge
could be useful in such a system. The ease to describe
it in terms of rules partly motivates the need to use
such a representation in lieu of classifiers.

[ Hendier , 88 ] "Activation Spreading
Inconsistencies : On the need for hybrid
symbolic/connectionist models", Proceedings of the
AAAI 1988 Symposium on Parallel Models of
Intelligence

[Kodratoff , 89], "Enlarging Symbols to more than
Numbers or Artificial Intelligence is the science of
explanations", p. 157-172

[Michalski et al., 86] Michalski, R., Mozetic, I.,
Hong J., & Lavrac N., (1986). "The multipurpose
Incremental Learning System AQ15 and its Testing
Applications to three medical domains". In
proceedings of the fifth National Conference on
Artificial Intelligence, 1041-1045. Philadelphia, PA:
Morgan Kaufmann.

Conclusion

[Parodi & Khouas, 89], "Parodi, A., Khouas, S.,
"Adaptive Approach for Learning Abstractions in
Semantic Networks", Neuro-Nimes 89, International
Workshop on Nueral Networks and their
Applications, Nimes (France), 13-16 Nov, 1989.

[Wilson , 87] "Classifier Systems and the
problem", Machine Learning 2, 199-228, 1987
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et aI., North-Holland 1989
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et al ., 87] Cestnik G., Konenenko I ., &
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[Clark & Niblett , 87] Clark, p, & Niblett, T,
(1987), "Induction in noisy domains", In I , Bratko &
N, Lavrac (Editors) Progress in Machine Learning, 11-
30, Sigma Press,

In this paper, we have developed the idea that animat
research helps to understand and reproduce complex
human capabilities such as medical work.
We have experimentally shown that an improvement
of Boole can learn to do medical diagnosis as well as
other learning algorithms, and we discussed its unique
potential to do therapy design. Moreover, our results
suggest that genetic algorithms can be success fully
applied directly on other knowledge representations
than strings of bits.
Some interesting extensions of this work would be to
check whether this remains true in other domains,
apply our algorithm for medical therapy design, and to
include background knowledge in the system.
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2 Animation automationAbst ..act

Consider traditional animation movies : drawn by hand, they
require a frame -by- frame precision level script for each character 

of the animation . A first level of automation consists in

drawing a few frame images by hand and apply an interpolation 
procedure to generate the missing frames required for a

smooth animation . Improvements from the traditional paper
based technique only reside in greater flexibility of the drawing 

tools and reduction of involved manpower .

By using computers , we can automate the generation of the
script by writing procedures in a computer language . Object
oriented [6] languages seem to match the requirements of animation 

programming . In such languages , an object is speci-

fied by a local state (a set of state variables ) and a set of procedures 
(the object ' s methods ). An object 's behavior is implemented 

by its methods . As its methods process the object 's
local state , it is easy to obtain a wide range of behaviors from

a few procedural specifications , by varying the content of the
entities local states .

If object oriented programming systems facilitate the behavioral 
specification of large groups of simulated actors , they

do not give any assurance that the resulting acting will meet

the desired goals . This work is still under the responsibility of
the designer who must keep in mind a model of the potential
interactions between actors .

A few fixed procedures can simulate complex behaviors .
Even a cellular automaton , Conway 's game of life [2J, can
generate primitive animats - gliders and glider guns, for instance 

- with interesting behaviors. In the frame of computer

animated graphics , we are moreover helped by spectators who

will tend to interpret the events occurring in the movie . This
fact is highlighted in V . Braitenberg 's book [3] where simple 

animats (called vehicles ) are involved . These animats are

carts, endowed with captors (photosensible cells ) and effec -
tors (propellers such 3.') wheels ), which are wandering in an

environment containing light sources. By changing the disposition 
and the properties of the different vehicle brain compo -

In this paper, we propose the use of the animat approach to
automatically generate animation scripts for computer synthesized 

movies. We want to design a system where animats are

actors able to improvise from a few contextual informations.
We plan to implement such animats with extended classifiers
allowing a compact encoding of behavior rules while preserving 

their ability to be modified by inductive genetic operations
.

1 Introduction

\ Vhen computer animated characters become more and more
realistic in their rendering, the problem of specifying more realistic 

individual and collective behaviors also appears. We

think that animats can be used to solve this new problem and
that behavior simulation based systems can change the way
computer animations are designed. We propose aprogramming 

by environment" approach using anirnats and evolution
simulation which can drastically reduce the work of animation
script writing .

Animats are computer simulated entities , exhibiting
animal -like autonomous individual or collective behavior . We
want to use them as low -cost credible crowd artists in order

to ease the writing of animation scripts . In the world of film
making , crowd artists are employed to give the audience background 

informations about the time and location where the

action of the movie takes place . The movie d Uector gives to
these actors fuzzy indications on how to behave , then they are
left nearly without control during the filming . On the other
hand , as the central character behaviors may not easily infered

from the movie context , the corresponding actors are more
precisely directed and have less freedom than crowd artists .
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,:~it. 3 Adaptive behavior
";t:::::=" For the spectator , the interest of an animated character also

consists in the way it interacts with its environment . The more

different environmental responses the character will have , the

more the spectator will be speculating on the progress of the
animation and will keep his attention focused on the movie .
His motivation will last until he has a full model of simulated

characters ' way of reacting to environmental stimuli .

The most straightforward way of achieving variety in ani-
Figure 1: An animat speeding up. mat environmental response would be to encode large set of

rules in the animats , each rule associated with aspecificen -
","N" , vironmental input . Such a design will only extend to a fixed

'::;::::::::::;:"

'":':',""' ";:;:;:;:;:::; amount the duration of the spectator interest . If the environmental 
stimuli are fluctuating enough , they will exhaust the

set of possible behavior of the animat . It is still possible to
choose a stochastic rule selection scheme in order to introduce

some noise in the animat response. If such a solution will confuse 
the spectator , maybe enough to keep his attention , it will

still allow him to find the underlying determinism of the rules .
Moreover , if this noise is too high , the spectator will perceive
the character 's actions as groundless and may be bored .

When large groups of animats are put into play , the problem 
of an initial rule set does is not as important as it is for a

Figure 2 : An animat hits the brakes. few animats . The collective behavior not only depends from
the rule set contained in each animat , but also from animats

interactions . Compared to a single animat rule set, this com-
nents, one can produce different behaviors, such as goal seek- plexity is a better match to both the environmental variety and
ing strategies or avoiding reactions . Sometimes , these behav- the analytic abilities of the spectator . Real world entities such
lors can be interpreted as the results of the animat " feelings " , as ants give goods example of adaptive behavior emerging
because the candid spectator , ignorant of the involved inter - from interaction between primitive elements [ 10] which can
nal machinery , applies human rules for analyzing behavior . be transposed into a computer simulation . Work on bird and
This effect can be amplified if we choose a cartoon -like ani- fish flocks [ 11, 1] have also produced attractive results . Never -
mat representation. For instance, the figure 1 shows how we theless, in both examples, the the relationships - repulsion or
could represent an accelerating animat . attraction forinstance - between the different animation actors

The same way , when a roving animat notices an attack or must still be defined by the animation designer . As we wish to
an obstacle , we can amplify this fact with a representation as overcome this kind of constraints when generating animation
shown by the figure 2. scripts , we must to use inductive mechanisms that allows the

If we make our animat interact with other object such as generation of new behavioral rules.
light sources, we can use classical rendering techniques to am-

pli~ the anima~ action. Th~ figure. 3 shows an animat locating 4 Adaptive vehiclesa light source, Its shade bemg projected on the ground.

For our experiment , we want to use animats similar to V . Brait -

j enberg vehicles. In these animats, environmental events are\ / transformed by the captors, then processed by a network of
- 0 ~ fibers linking threshold devices [9] reaching effectors, and

/ / \ ' " eventually transformed by the effectors in action on the en-
< = : _~ ~ vironment. In the case of our very simple animat, this action

!) . is a motion caused by the rotation of powered wheels.
.' Such a design is ba.~ed on analogic signal processing which

does not match formalisms human beings are used to deal
with . As one of our goal is the evolution of a predefined set of

rules, we prefer a different model: production rules. Such approach 
has been introduced by J. Holland [7] with its Genetic

Figure 3: An animat locating a light s~ e. Algorithm (GA) processed classifier systems (CFS) and used
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for adaptive behavior simulation by [ 12] .
The use of Production rules for computer animation allows

the animation designer to specify some basic behavior and let

them be processed by an evolutionary mechanism .

5. Genetic Algorithms
Genetic Algorithms are search and optimization techniques
based on the mechanics of natural evolution as described by

the neodarwinian theory [5] . GA 's main goal is to solve com-

bin ati on ally exploding search problems with process es drawn
from biology . The relation between the two domains becomes
clear if we look at biological evolution as a search process for

the possible life forms in the space of the possible chemical
constructs .

The RNA -DNA couple is the basic material containing informations 
which specify the way life forms are built and

are functioning . This large and complex chemical construct 
is a product of natural evolution initiated from simpler

molecules 1. Alterations (random mutations ) of this molecule

have consequences on the physical characteristics (pheno-
type ) of the life form it builds . Another operation , the
crossover which , occurs during sexed reproduction , allows
genetic characteristics to be quickly spread in a population .

Simplified genotypes and genetic operations can be simulated 
on a computer . In simulated genetics , genomes are reduced 
to a vector of features which are modified and diffused

in the population by random mutation and crossover . A selection 
pressure is also simulated which corresponds to a reproduction 

probability for the different genotypes . As fitting indi -
vjduals will reproduce more often that the others , their genetic
characteristics will be spread faster in the population . Consequently

, the average fitness of the population population will

tend to an optimum , the stochastic character of the genetic
operators allowing the system to escape from local maxima
of the search space.

In the case of animats , we can use GAs to explore the space

of possible behaviors . To do this , it is necessary to code behavioral 
descriptions under a form which supports the application 

of genetic operators .

6 Classifiers

A classifier is a linear string of symbols from { O, 1, #} . This
string is divided into two parts : a condition part and an
production part of equal sizes. A classifier system (CFS) is
a group of classifiers exploiting messages comming from a
mailbox. A message is a linear string of symbols from { O, I }
which size is half the classifierts one.

[4]

ficient can be modified by:

Briefly , a CFS run is a repetition of a cycle decomposed as
follows :

1. construct an environmental message and put it in the

J it is also suggested that DNA has been generated by clay crystals

. an external payoff which is the evaluation of the
CFS perfoffi1ance by the environment,

. by incomes from other classifiers which have received 
previously posted messages,

. and by penalties associated to the posting of these
messages during the current cycle. Other penalties,
such as life costs, may help to put tune the selection
pressure on the classifiers.

The whole system can be viewed as a microeconomy, where
external events are communicated with messages to elementary 

agents. Messages can be passed between agents via the
CFS mailbox and can fonD activation chains. Those chains
are usually maintained by strength revision schemes such as
J. Holland 's Bucket Brigade algorithms.

Without any induction mechanism, a CFS will select, depending 
on environmental constraints, the subset rules which

is relevant for the environment and have been proved useful
to the system (their actions have received a payoff from the
environment ).

If we apply a GA to a CFS, it becomes able develop new
rules. Mutations in the classifier conditions create new pattern
matching abilities and also create new responses to stimuli
when they touch the action part. When Crossover recombines
features from two existing classifiers, the two resulting offsprings 

have good chances to fit the environmental constraints
because their conditions and actions are derived from existing
features owned by selected individuals, thus reflecting some

mailbox. Mark it specifically as an input message to give
to classifiers the opportunity to distinguish it from other
messages.

2. collect matching classifiers. A matching classifier has a
condition part identical to the me.~sage, except that both
0 and 1 match #.

3. evaluate the bid made by each matching classifier. The
bid usually depends on the classifier's strength (past utility

) and express es the ability of a classifier to solve the
current situation.

4. choose matching classifiers for message production (the
higher the classifier bid is, the more probably the classi-
fier will be chosen). Post the output message which will
be inserted in the CFS mailbox for the next step. This
output is a copy of the action part of the classifier, except
that each # symbol has been substituted by the identically 

placed value in the input message. The result of the
rewriting is marked as an output message so the environment 

will be able to interpret it .

5. remove output messages and interpret them as actions on
the environment.

6. revaluate each classifier strength coefficient. This coef-
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aspects of the environment. This aspect has been thoroughly

6.1 A CFS based animat

Figure 4 : A light seeking animat built with analogic fiber technology 
(front view).

When both eyes receive the same amount of light , both.

Such a simple behavior requires four rules because of the
implicit information used by the message rewriting process:
the positioning of # symbols.

Using the other way, based on fibers/threshold devices technology
, a similar behavior is easily implemented if we connect

each animat's captor to the opposite motor (cf. figure 4).
Of course, we can arrange the animat interface so that each

motor effector in the classifier action part matches the opposite 
captor in the classifier conditions. But in this case, thi I1gs

become more complicated if we decide to change the behavior
of our animat.

In order to reduce the number of rules needed by so simple
behaviors we can endow the classifiers with a connection map.
This map specifies paths between input features detected by
the rule condition filter and the output features which will be
stored in the output message.

if LEFT _ EYE and RIGHT _ EYE and not ( TOUCH )
then

LEFT MOTOP, true=

RIGHT MOTOR = true
en,ji f Rules with connection maps

,
oo

t 
I - ' -

:
J " H

I
iD~
 

1 - 3
0C(

)
;

I :

LEFT MOTOR = false
P.IGHT MOTOR = false

endif

The above rules can be coded in the following four classi-
fiers:

studied in [8].

are set to zero.

bits are set to one.

mented by adding a projection area to each cla..;;sifier. l1us
projection area is a temporary work memory where some input 

message features are stored when the classifier is fired.
Thus. the size of this memory is the same as a CFS message:
half the size of a classifier. The projected features are then
stored in the output message. The connection map specifies
the paths followed by input features. filtered by the classifier

Consider a minimal CFS based animat brain. Captors put binary 
representations of stimuli in specific places of the envi-

rorunental message stored in the mailbox. Suppose we want
to specify a basic set of rules for this animat, to make him
attracted by light . We choose to set three one-bit quantities
representing the animat perception in the environmental message

. The two first values of this message are function of the

light intensities received at each captor :

. If one eye receives more light than the other, the corresponding 
bit in the message is set to one.

. When no light is received by any of the eyes. the two bits

The third bit indicates if the animat has reached its goal.
On the effector side, the first bit and the second bit of the

output message respectively command the left and the right
wheel motors. When an effector bit is set to true, then the
corresponding motor is on.

Using the classifier semantics, we can implement a light -
seeking behavior with the following rules:

if n.:..t (LEFT_EYE) and RIGHT_EYE and not (TOUCH)
then

LEFT MOTOP, = true
P,IGHT MOTOR = false

en.:iif

if LEFT_EYE and not (RIGHT_EYE) and not (TOUCH)
then

LEFT MOTOR = false
RIGHT MOTOR = true

endif

Conditions Actions

left eye right eye touch left motor right motor
0 I 0 1 0

1 0 0 0 I

1 1 0 I I

# # I 0 0
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projection [i] = input[map conditions[i]]

2. fill each output message slot with projected features
pointed by the projection map . For each output message
slot i :

output[i] = projection [mapactio,,[i]]

Figure 5 : Co I U1ections for a light seeking animat.

if not ( TOUCH )

then

EYE

EYE=

then
LEFT MOTOR

endif

The figure 5 displays how the connection map creates crossing 
links between the input part and the output part of the light

seeking rule . Note that the fust three rules given in section 6.1

are replaced by only one equivalent rule .
Although we have no experimental results on the perfor -

mances of such rule system , one can see that the size of the

rule space is dramatically increased by the adjunction of connection 
maps to rules . The set of every possible rules of length

N becomes (  )N instead of 3N for the traditional classifiers .

   8 Conclusion

About GA processing , the exploration of such huge amount
of rules can be shorten if we initialize the system with a set
of predefined rules . We also hope that the greater message
rewriting abilities of the rules will allow us to reduce the size

of the rule population . This reduction is of great interest if we
wish to disassemble the classifiers to a human readable fonn .

On the GA side, many issues must be fixed . For instance ,

which kind of crossover is preferable ? Is it a good thing to
separate crossovers on the connection map from crossovers
on rule condition / action filters ?

The automated production of systems able to challenge the

human analytic abilities of modeling behavior , to surprise peo-

endif

RIGHT MOTOR

LEFT MOTOR =
RIGHT MOTOP,

RIGHT
LEFT

false

= false

conditions , stored into the projection area, then transferred in
the output message through the rule actions filter .

The message rewriting process can be decomposed in two
phases:

1. fill each projection area slot with input features pointed
from the projection map . For each projection slot i :

When an extended classifier input filter slot contains #, it

means that both 0 or 1 can be stored in the associated projection 
area slot . The same way , if a classifier output filter slot

also contains # then it will store the content of the corresponding 
projection area slot in the output message.

Note that the part of the map covering the conditions is of
type

message position - + projection area position

a Jthough the part used for output projection is of the form

projection area position - + message position

Such a scheme ensures that no output message will be un-
derspecified and that crossover and mutation will never produce 

invalid maps. Moreover , the proposed rewriting process

can be performed in parallel because it avoids conflicts during
memory transfers .

It is interesting to note that GA driven modifications on rule

connection maps and condition / action patterns do not alter
their meaning in a disrupting way . For instance , if we consider 

two # symbols placed respectively in the condition and

in the action part of a rule . If they are linked by the connection 
map, it means that we have a variable , local to the rule ,

which is bound at rule fire time . If one of these symbols is

turned by mutation into 1 or 0, the variable disappear and is
replaced by a constant . In the later case we can consider the
transfonnation - as it is the case of classifier systems - a~ a
rule specialization . Differently , if the connection map is altered 

but the variable maintained , that is one of the variable

binding site have been changed , then we can say that the variable 
has been substituted by an other one.

7 .1 Animat 's rules with connection maps

The rewriting , using connection maps , of our last example of
mlimat behavior will lead to the following role set :

left eye right eye
input message
left hand sideof connection

,:::::.~ map
projection area
ight hand sideof connection,........'.. map

output message

left motor right motor
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pIe and to keep them interested may become a growing field .
The long tenn consequences of work on this domain could
have a strong impact on fields , such as the entertainment business

, which seems to be reserved to human beings . In fact , it
would be a natural evolution for this kind of activities , which

nowadays are industries , to take advantage of automated creation
.
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