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Information Processing Systems in Culture
WILLIAM H. GEOGHEGAN

Introduction

Geoghegan 's paper represents an original synthesis of some of the most
recent results in ethnography and cognitive psychology . He presents an

axiomatic theory of coding behavior in finite -dimensional cognitive

domains . Among the advantages of Geoghegan ' s approach are the following :

1. In contrast to many formal theories of psychological process , this

approach contains nothing counterintuitive . On the contrary , Geoghegan ' s
results stem from intuitively clear primitives and highly plausible axioms .
The outcome is a theory encompassing a precise synthesis of empirical

results from both ethnography and cognitive psychology .

2. Substantively , Geoghegan ' s theory deals not only with the formal

(" code " ) aspects of information processing systems but also with some of
the real -time aspects of the cognitive process es involved . In the terminology

current in linguistics and psychology , this theory makes a considerable

advance in embedding an account of the subject ' s competence in a wider

theory that includes noncompetence aspects of performance . In currently

fashionable anthropological terminology , Geoghegan ' s formulation comes

squarely to grips with the problems of so-called " psychological reality ."

3. Geoghegan ' s method presents a distinct advantage over existing paradigmatic 
and taxonomic methods for representing cognitive /semantic

domains (cf . Kay , P . 1966, Current Anthropology 7 : 20- 23) in that it presents a
natural and explicit mechanism for expressing the relations among dif .

ferent domains . Geoghegan ' s recoding procedure , which allows the total

formal structure of one domain (ordered rule ) to serve as an item in the

structure of another domain (assessment in another ordered rule ), goes a

lon ~ way toward solving the ethnographic problem of interrelation of
semantic domains . Moreover , this achievement is attained by a formal

device independently motivated by an impressive number of experimental

findings in cognitive psychology [cf . Miller , G. A . 1956, Psychological Review
63 : 81 - 97 and Miller , G . A . , E . Galanter , and K . H . Pribram , 1960 , Plans and the

Structure of Behavior (New York : Holt , Rinehart and Winston )] .
4. Formally , the paper can serve as an introduction to axiomatic method

for anthropologists as well as an introduction to some of the basic concepts
of naive set theory and the theory of order relations . The endnotes contain
sufficient information on mathematical prerequisites to enable a reader

with two years of high school mathematics to follow the argument -

although some readers who have had no contact with mathematics since the

tenth grade may find it somewhat slow going .



Introduction

Among the recent developments in anthropological theory , especially in ethno -

science and the more psychologically biased variety of componential analysis, there

has been a tendency to look upon the production of socially conditioned activity as the
end result of a series of information processing operations performed by individual

native actors. This orientation has been characterized by an interest in discovering
and formulating sets of " rules" which account for culturally appropriate acts in terms

of the situations that properly evoke them . Componential analysis, for example , can

be conceptualized as a partially deductive , partially inductive technique used for

discovering a rule that maps sets of distinctive features onto members of a complete
set of lexemes at one taxonomic level . Insofar as the elements and structure of such a

rule are held to be cognitively valid , it is felt that the rule constitutes an adequate
model for certain cognitive process es as well as for the structure of a given semantic

domain and the associated overt linguistic behavior . A rule of this kind exemplifies

the class of models for one possible theory of information processing systems.
Speaking in more general terms, Frake ( 1964a) introduced his notion of the " cultural

code" with the following remark : " The ethnographer . . . seeks to describe an infinite

set of variable messages as manifestations of a finite shared code, the code being a set

of rules for the socially appropriate construction and interpretation of messages
[socially interpretable acts and artifacts ] " ( 1964a: 132) . He characterizes such rules
as follows :

If we want to account for behavior by relating it to the conditions under which it
normally occurs, we require procedures for discovering what people are attending to,
what information they are processing, when they reach decisions which lead to
culturally appropriate behavior . . . it is not the ethnographer 's task to predict behavior 

per se, but rather to state rules of culturally appropriate behavior . . . . The
model of an ethnographic statement is not : " if a person is confronted with stimulus
X , he will do Y ," but " if a person is in situation X , performance Y will be judged
appropriate by native actors." (1964a: 133)
To describe a culture , then , is not to recount the events of a society but to specify

what one must know to make those events maximally probable . The problem is not
to state what someone did but to specify the conditions under which it is culturally

This paper was originally presented in a somewhat simplified form at the Symposium on
Mathematical Anthropology , Annual Meetings of the American Association for the Advancement 

of Science , Berkeley , California , on December 29, 1965. Since the preparation of the

present version , research in native information processing systems has continued and has
suggested a number of changes in the mode of presentation of the formal theory , in the
method of analysis , and in the presentation of results . The suggested revisions , however , do
not involve any major changes in the substantive content of the theory as expressed in this
paper , and it has not , therefore , been altered since preparation . Forthcoming publications
of subscqucnt research will include such recent revisions . I am indebted to H . C. Conklin ,
Roy D ' Andrade , Charles Frake , Paul Kay , and A . Kimball Romney for many valuable
criticisms and suggestions . Though none of these people necessarily agree with everything
that is said here , the paper has bcnefited immeasurably from their assistance. Financial
assistance for the author while this work was in progress was supplied by the National Science
Foundation in the form of an KSF Cooperative Graduate Fellowship .
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appropriate to anticipate that he, or persons occupying his role , will render an equiva -
1entperformance . (1964b: 112)

If the ethnographer 's task is to describe the " code" of a particular culture in terms of

its component rules, and if this description is to specify the content and structure of

rules as they are actually used by native actors, then it is only logical to demand that

we first develop some conceptualization of what naturally occurring IP (information

processing) systems are like . That is to say, we should have in hand a theory that indicates 
the necessary and sufficient conditions for any logical entity (e.g., a particular

ethnographic statement ) to be a model for a naturally occurring information processing 
rule .

Although Frake 's paradigm for an ethnographic statement (" if a person is in situation 

X , performance Y will be judged appropriate by native actors" ) does give us

a starting point for such a theory , it leaves a number of relevant questions unanswered .

Are we to postulate , for example , the existence of a different rule for each recognized

situation and the action appropriate to it ; or does a rule account for a set of contrasting 

acts, each of which is appropriate to one or more members of some set of

situations ? How are we to characterize a " situation " itself ? Is it some kind of unitary

indivisible phenomenon , or can it be factored into a number of discrete, and at least

semi-independent , components ? Is the result of applying an information processing

rule always a " performance " (which seems to imply overt activity ) , or can it also be

the receipt of additional information for a native actor 's " internal " use? What is

the nature of the information processing phenomenon itself ; how is the information
contained in a native actor 's characterization of a particular situation operated

upon to yield inferences concerning the appropriate output ? And , finally , given the

possibility that such rules can differ from one another in their degree of complexity ,
we can ask whether or not there exist any natural boundary conditions on the complexity 

of naturally occurring rules, arising , perhaps, from limitations on human

information processing capabilities . These, and a number of related questions that

will arise during the subsequent discussion, should be answerable in terms of an adequate 

theory of natural (or " cultural " ) IP systems.
It should be clear that the kind of phenomenon we are dealing with is cognitive as

well as cultural , that information processing systems comprise part of the basic

" mental apparatus " of individual native actors, and therefore that the elements of an

adequate theory must represent classes of phenomena actually present in their cognitive 

maps. If all we desire is to account for the relationship between situations and

'performances as we define and conceptualize them , then there are any number of

adequate theories (and models for these theories) which could be used to accomplish
the task. Such an approach would go a long way toward summarizing data from the

ethnographic record (and even teach us how to behave more or less unobtrusively

within a given society), but it would not tell us very much about how the native actors

themselves make culturally appropriate decisions. If , on the other hand , the adequacy



6 ALGEBRAIC METHODS

of ethnographic description is to turn on whether or not it accounts for not only what

a native actor does under certain circumstances , but also how he decides what to do,

then we have to know what information he is operating with and how it is being processed
.

This particular criterion of adequacy (with which we are in complete accord )

links our problem directly with a large body of theory and research in cognitive

psychology , where an information processing approach to human cognition has been

receiving increasing emphasis in rec ~nt years . (See Reitman 1965 and Hunt 1962 for

detailed summaries of work in this field .) Any theory of natural IP systems which

hopes to meet a criterion of cognitive validity will have to take such work into account

and be compatible with its established findings . Conversely , what we already know

of natural IP systems through ethnographic research must enter into such a theory

and its interpretation , and perhaps stimulate some needed reforms in the purely

cognitive studies of complex systems .

In brief , the foregoing describes what we have attempted to do in this paper :

namely , to propose a formal theory of natural information processing systems of one

particular type and to provide it with an interpretation consistent with relevant

findings from ethnographic and cognitive research .

The Structure of Information Processing Systems

In the most general sense of the term , an information processing system is a set of

interconnected rules of inference , or information processing rules , each of which

includes instructions for gathering and operating upon a body of data which becomes

the rule 's input information . Depending upon the nature of the situation being assessed

in accordance with these instructions , the input information may take anyone of a

finite number of possible configurations . The rule also specifies a limited set of potential 

inferences , each one of which is a possible output of the rule . And finally , it

contains a mapping function from the various configurations of the input information

onto the set of possible outputs . 1

This characterization of an IP rule covers a wide range of possible types , since we

have specified neither the nature and internal structure of input / output information

nor the type of operations called for . A rule for obtaining the product of two numbers ,

for example , would be consistent with this description if it told us how to arrange

the input data and how to carry out the procedures necessary for getting an answer .

Although such rules would certainly be relevant to a description of how the members

of a particular society organize their scientific knowledge , we shall limit ourselves in

this paper to a discussion of what we shall call classification or code rules.2

1 A mapping from a set A onto a set B requires a function J such that ( 1) for every aj in A
there is exactly one bi in B such that J (a J = bi , and (2) for every bi in B there is at least one
aj in A such that J (a J = bi . A mapping from A into B requires a function such that only
condition ( 1) must hold ; e.g ., there may be some bJ in B such that for every aj in A ,J (a J * bi .
2 During the remainder of this discussion , when we use the terms " information processing
system" or " information processing rule ," it is to be understood that we are referring to rules
or systems of rules of the classification (code) type and not to other kinds of information
processing behavior which are outside the scope of this paper .
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The inputs and outputs ofa code rule shall be referred to as input situations and output
situations, respectively . A situation in general is one member of the set of all possible
combinations of values on a finite set of variables , such that each combination includes 

exactly one value from each variable . A variable of the type used in such a

rule (called an assessment) describes the set of possible correspondences between a given

entity and the member categories of a particular classification scheme. The rule

specifies the two sets of assessments which generate the potential input and output

situations , and it includes a procedure for determining which of the possible inputs

is actually in effect for any given application . It also contains the required mapping

from the set of potential inputs onto the possible outputs . The applications of a code

rule proceed as follows : The actual input situation is first discovered by following the

specified procedure . The mapping then indicates which of the potential output situations 
should be in effect . The indicated output thus contains information inferred from

the existence of a specific input situation .

Even though a classification rule may be used to determine the activity appropriate

to a given situation , we should emphasize that the output of the rule is not overt

behavior in any form ; it is information concerning the classification of one or more

entities (i .e., a situation ) . When we have to use an address term to an unfamiliar

Alter , for example , a code rule may be used to determine which category of some

classification scheme he corresponds to ; the actual use of an appropriate term may

be considered an overt behavioral realization of the inferred knowledge . Inferences

obtained by applying a code rule of this type may also be put to purely internal use,

perhaps in making judgments about the behavior of another individual , or in using

a second rule which requires this information to define its input . In other words , a

classification rule operates completely at the informational level , even though the
inputs and outputs may ultimately be connected to activity of the senses and motor
behavior .

Derivation of the Theory

The Structure of Axiomatic Theories In deriving the formal components of this

theory , we shall be using the axiomatic method . This approach to theory construction

usually involves four basic elements : ( I ) a specification of primitive notions , (2) a

statement of the axioms, (3) a presentation of relevant definitions , and (4) the derivation 
of useful theorems.

The primitive notions ofa theory are those elements that are not defined internally ,

that is, elements whose nature either is intuitively obvious or can be inferred from other

theories taken as logically antecedent to the one being constructed . To state that a

certain logical element is primitive does not prohibit us from describing or explicating

it , but it does imply that such description or explication is external to the formal

theory . Discussion of the primitive notions usually constitutes part of the theory 's

interpretation : the assignment of " meaning " to otherwise " meaning " -less logical
entities .

The axioms of a theory constitute the set of basic propositions from which all other
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propositions are derived . They must be logically independent of one another and refer

to no notions that cannot be reduced to primitive elements. The definitions and theorems 
form the set of derived elements, and they must be reducible to the axioms and

primitive notions .

We have already mentioned the idea of an interpretation for a theory and have indicated 
that it gives " meaning " to statements contained in the theoretical corpus .

It is a true but often overlooked fact that a theory by itself is simply a set of one or

more logical statements that fulfill certain formal criteria , but which are " meaning " -

less until given an interpretation (see Braithwaite 1962) . For example , the statement

a2 + b2 = c2 may be logically correct as a theorem for some specific theory , but it
has absolutely no link with the " real world " until the primitive notions and axioms of

that theory are given a representation in terms of particular phenomena . Then ,

perhaps, we have a relationship true of things labeled " right triangles ." Even though
a theory and its interpretation are two completely different things , it is often the case

that they are presented simultaneously , usually through a judicious choice of familiar

terminology . This technique has a tremendous adv.antage over others when we are
dealing with a theory of even moderate complexity ; it certainly facilitates understanding 

on the part of the reader by providing him with ready ~made concepts to which he

can anchor the derivation . But it also has the disadvantage that ambiguities or contradictions 
in the interpretation will sometimes be used as an argument for rejecting the

theory , when in fact the interpretation alone is at fault and should be corrected or

abandoned . This drawback can often be overcome through a careful selection of the
primitive notions and axioms . If they are chosen so as to minimize their number and

complexity , and to reduce the possibility of ambiguous interpretation , then the derived 
entities will share this precision and lead to a generally straightforward

interpretation of the entire theory . This is one of the principal advantages of a selfconscious
, carefully done axiomatic derivation . By constructing an economical axiomatic 

basis for the theory , we can minimize the amount of interpretation required to

make it meaningful , and thereby eliminate many of the semantic problems that might
otherwise confront us in using the theory and constructing productive models for it .

Primitive Notions and Axioms3 The first primitive notion of this theory is that of

an entity, symbolized E , . It shall be interpreted very broadly as referring to any

phenomenon that possess es a set of properties . An entity specified in a code rule operates 
as a variable whose current value depends upon the particular circumstances in

which the rule is applied . In a detailed example presented in the Appendix to this
paper , one of the relevant entities is identified by the label " Alter ," or " addressee."

" Alter " might refer to different human beings at different points in time , but it must

always refer to an individual fulfil  Iing the specified role of addressee.

The second primitive notion , also broadly interpreted , has been labeled categoriza-

3 Most of the notational conventions and formal terminology used here conform with that
employed in Suppes (1957).



Axiom 2 (Finite Membership )

For every categorization Kp there exists some positive integer n ~ 2 such that Kp has

exactly n member categories.
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tion (KJ) , and may be regarded as a classification scheme in terms of which some entity

or entities may be classified. Any categorization K " consists of a set of categories k"q,

each of which refers to one or more properties which an entity may possess. (The first

subscript in the notation k"q identifies the categorization as K " ; the second specifies

the particular category .) The term " color ," for example , might be the label of a specific 
categorization for native speakers of English , the constituent categories being

referred to by the terms " blue ," " green," " red ," " yellow ," etc. Category is the third

primitive notion of this theory ; and , although in the formal sense it may not be completely 
correct to propose two primitive elements that exhibit such strong interdependence

, this state of affairs should present no difficulties in the present context ,

but will simplify the following discussion immensely .

The fourth primitive notion is that of a correspondence between an entity el and a

category k"q, which we shall represent by the ordered couple <Ej , k"q) .4 We say that

an entity corresponds to a particular category when it possess es some property or set

of properties which allows it to exemplify that category . For example , an entity
la belled " social occasion" will correspond to the category labeled " formal "
if the attributes or properties of that occasion are such as to make it a " formal social
occasion."

The fifth and final primitive notion concerns what we have called the assessment of

an entity el in terms of a categorization K " , represented by the ordered couple
<el , K ,,) . This notion refers to a basic operation in any classification rule , that of

determining the actual correspondence between an entity and some category of a

relevant categorization . Under this interpretation , a correspondence may be regarded
as the result of making an assessment.

The two axioms which constitute the propositio ?al basis of the theory may be stated
as follows :

Axiom 1 (Contrast )

Given an assessment ( Et , Kp> and categories kpq and kpr in Kp (kpq * kpr) , if Ej

corresponds to kpq, then Et does not correspond to kpr '

4 An ordered couple is a special case of an ordered n-tuple : specifically, the case in which
there are exactly two dements. In general, an ordered n-tuple is a group of n elements in
which order as well as membership is important . For example, while the set {A, B} is the same
as the set fB . ai . it is not the case that the ordered couDle ( A. B> is the same as the ordered
couple ( B, A) , since two ordered n-tupies can be identical if and only if for every positive
integer i ~ n, the ith element of the first is identical with the ith element of the second. Also,
the same element may appear more than once in an ordered n-tuple, while this is not true
of a set. For example, we could have an ordered triple <A, B, A) ; the set of elements in this
triple would be {A, B} (or {B, A}).
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A set Au of assessments ( el , Kp) is an assessment set.

Axiom 2 is the simpler of these and can be disposed of quickly . It states that a categorization 
must have at least two member categories and that it must be finite in

extension . If we could not discover a positive integer n, greater than or equal to 2,
such that the categorization had exactly n members, then it must have either no

members, just one member , or an infinity of members (i .e., no matter how large an n

we selected, the set would always have more than n members) . (See Suppes 1960: 98)

For reasons which should be fairly obvious , we do not want to allow any of these three
cases.

Axiom 1 requires that the possible results of making a given assessment must contrast 
with one another . That is, if one particular correspondence results, then no other

correspondence may result simultaneously . Since we interpret an assessment as referring 
to a process that may be performed at different points in time , and since an

entity is a variable that may take any of a limited set of values, we do not have to

assume that Axiom 1 requires the result of an assessment to be the same every time

the process is repeated . It does require , however , that in any given instance the resulting 
correspondence must be unique . The axiom therefore places several restrictions 

on specific models for the theory . We could not allow a case, for example , in

which one of the assessments involved a categorization having categories like " formal "

and " important " if it were possible for the entity (e.g., a " social occasion" ) to correspond 
to both categories simultaneously .

Definitions and Theorems In this section we shall present a series of definitions
and theorems which characterizes the structural features of code rules and which has

a direct bearing on data analysis, model construction , and testing methods relevant

to empirical studies that involve this theory .

Definition 1 (State of an Assess "ment )

Given an assessment <E " Kp) , an ordered couple <E " kpq) , where kpq is a category
in Kp , is a state of the assessment <E " Kp) .

Under the interpretation we are proposing for this theory , a state of an assessment is any

possible result of that assessment; the actual result in a given instance is a correspondence.
Every state cfan assessment is therefore a potential correspondence .

Theorem 1, which follows , is essentially a restatement of the contrast axiom .

Theorem 1 (Contrast between States )

Given an assessment <el , Kp) and states <E " kpq) and <el , kpr) (kpq:;6 kpr) of this

assessment, if <el , kpq) is a correspondence, then <el , kpr) is not a correspondence .

PROOF: The proof follows directly from Axiom 1 and Definition 1.
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An assessment set, as its name implies , is simply a specified set of assessments.

Definition 3 (State Set )

Given an assessment set Au , a set Suv of states is a state set generated by Au if and only if

for every assessment <el , Kp) in Au there is exactly one state <el , kpq) of <Et , Kp)
in Suv .

In other words , by taking exactly one state of each assessment in Au , and by combining 
these states into a single set, we obtain a state set generated by Au .

Definition 4 (Situation )

Given an assessment set Au and a state set Suv generated by Au , Suv is a situation if and

only if for every state <el , kpq) in Suv, <el , kpq) is a correspondence .

That is, a situation (in the formal sense that we are using) is a state set, Suv, such

that every state in Suv is also a correspondence. Recalling an earlier remark , a state of

an assessment is interpreted as a potential result of that assessment, while a correspondence 
is the actual result . Or , in other words , an assessment is a kind of variable ;

its states are the values it may take ; and a correspondence is its current value . We can

extend this idea to the notions of state set and situation by noting that a state set

refers to a possible result of making some set of assessments, while a situation refers to

the actual result . In slightly more formal terminology , a situation is the set of current

values taken by the members of a set of variables of the type we have called assessments
. The following theorem extends the notion of contrast between states to contrast 

between state sets.

Theorem 2 (Contrast between State Sets )

Given an assessment set Au and state sets Suv and Suw generated by Au (Suv :;:!: Suw),
if Suv is a situation , then Suw is not a situation .

  PROOF: Since SUI> * Suw, there must be at least one state <el , kpq) such that

<el , kpq) is a member of SUI> and <el , kpq) is not a member of  Suw (Definition 3) . SUI>

is a situation , and by Definition 4, <el , kpq) must be a correspondence. Since <el , kpq)
is a state of some assessment in Au and is not a member of Suw, there must be some

other state <el , kPT) of that same assessment which is a member of Suw (Definition 3) .

Since <el , kpT) cannot be a correspondence (by Theorem 1), Suw cannot be a situation

(Definition 4) . Q .E.D .

The following definition introduces the notion of code segment, which plays a central
role in the derivation and interpretation of the remainder of this theory .
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Definition 5 ( Code Segnlent ) 5

Given two finite assessment sets AI and Ao , the two sets SI and So of all possible state

sets generated by At and Ao , respectively , and a many - one function 1 which maps

SI onto So , the ordered 5 - tupleT = < AI , Ao , SI , So , I ) is a code segment if and only if

the following two conditions are satisfied :

5 . 1 ( MAPPING )

For all state sets SII in SI and S Ok in SO , I ( SII ) = S Ok if and only if when SII is a situation ,

then S Ok is a situation .

5 . 2 ( MINIMAL DIFFERENCE )

For every assessment <  1 " Kq ) in AI , there exists some state <  1 " kqr ) of <  1 " Kq ) ,

two state sets SII and Sik in SI , and two state sets Sou and SOli in So ( Sou * SOli ) such that

( i ) SII ( " ) . . . . . . ( Sik ) = { <  I " kqr ) } , ( ii ) I ( SII ) = Sou , and ( iii ) I ( Sik ) = Sou '

We shall refer to the two assessment sets AI and Ao as the sets of input assessments

and output assessments , respectively ; and , similarly , we shall call the members of 81

and 80 input state sets and output state sets .

Since a state set may be regarded as a potential situation , it follows that a code

segment provides a mapping from one set of potential situations ( the members of8J

onto another set of potential situations ( the members of 80 ) . 6 If a particular input

state set is determined to be the actual situation after making the assessments indicated 

in AI , then there is a unique output state set that also has the status of a situation

. Although it would be possible ( from one point of view ) to interpret a code

segment as one type of classification rule that people might actually carry around in

their heads , the psychological evidence indicates that such an interpretation would

be incorrect and that a code segment would better be conceptualized as a description

of the capability of an individual to ~ ake inferences within a particular domain .

5 A note on the selection of terminology might be appropriate before we go any further with

this derivation . The term " code " will appear frequently throughout the discussion ( as in the

labels " code rule " and " code segment " ) ; and , as might be expected , its use follows from

several statements made by CO . Frake ( 1964a : 132 , 133 ; 1964b : 112 ) , and from the notion

of " recoding " discussed by Miller ( 1956 ) . A " code segment , " to illustrate , defines a mapping

from one body of information to another , and therefore can be interpreted as describing the

way in which elements of the first body are " recoded " ( or " encoded " ) as elements of the

second body . If the " cultural code " is to be considered the totality of recoding procedures ,

then it is apparent that a code segment gives a complete specification of the possible results

of using one of these procedures - that is , a " segment " of the " cultural code . " As we shall see

within the space of a few definitions and theorems , and " ordered code rule " accounts for " '

the mapping expressed in a code segment and gives a rule with which the coding task can

hp nprfnrmp , 1

6 There is some question as to \ ' - ' hether or not it would be better to regard the output of a

code segment as a situation or as a sin ,Gie correspondence . In the author ' s opinion , the latter

alternative has the greater intuitive appeal , and thus far suffers from no contrary empirical

evidence . Regarding the output as a situation , however , has the greater degree of generality ,

since we can always specify that Ao has only one member and that the outputs are therefore

potential situations containing only one correspondence apiece . For this reason , So has been

defined as a set of potential situations , rather than a set of potential correspondences generated

by a single assessment . If this proves to be unsatisfactory , a few simple changes should suffice

to correct the problem without altering the structure of the theory in any appreciable manner .



The set So of all possible output state sets generated by Ao is

So = {SOl' S02, S03},

where

S Ol = {<E3 , k31) } .

S02 = {<E3 , k32) },

S03 = {<E3 , k33) } .

The mapping function f is specified as follows :

Sf1 = {<el , k11) , <E2, k21) },
SI2 = {<el , k11) , <E2, k22)},
Sf3 = {<el , k12) ' <E2, k21)},
SI4 = {<el , k12) , < 2' k22)}'

! (SII) = SOl'
! (SI2) = SO2,
! (SI3) = SOl'
! (SI4) = SO3.
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For example,findicates that if Sfl (the set {<El , kll ) , <E2, k2l) }) is determined to be
a situation, then S Ol (the set {<E3, k3l) }) is the implied output situation.



j (SIJ = S Ol

j (SI2) = S02

j (SI3) = S Ol

j (SI4) = S02

( = {<E3 , k31) }) ,

( = {<E3 , k32) }) '

( = { <E3 , k31) }),

( = {<E3 , k32) }) .

(K3 now contains only the. members k31 and k32.) Note that the result of the assessment

<el , K1> is totally irrelevant to the outcome , which is now determined solely by the

result of the assessment <E2 , K2>. .In summary , Condition 5.2 demands that every
assessment called for by a code segment be relevant to the result of the information

processing operations . For any interpretation of the theory which involves even a

minimal notion of efficiency , a restriction of this type should be required .

Although a code segment has been defined as mapping complete descriptions of potential 
input situations onto potential outputs , it is often the case that full descriptions

are not required to account for the mapping , and that if the members of a certain

subset of states are known to be correspondences, then a unique output is automatically 
implied . This condition obtains when every potential input situation that

contains that subset of states maps onto the same output . In Example 1, we note that

this condition is fulfilled for the set of states {<E2 , k21>}, since the only two input

state sets that contain this state (specifically , Si1 and S13) map onto the same outputS
 Ol. Therefore , the knowledge that <E2 , k21> is a correspondence is sufficient to imply

that S Ol is a situation ; once this information is obtained , the assessment <el , K1> is

irrelevant to the outcome . If such a subset of states is minimal (i .e., if it includes no

smaller subset which fulfills the above condition ), it is called a simple path to the particular 
output involved . The set {<E2 , k21>}, for example , is a simple path to S Ol. We
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this type by altering Ka (in Example 1) and So, and
function as follows:

We can now discuss the operation of the two conditions (5.1 and 5.2) specified in

Definition 5 and their relevance for an interpretation of the theory .

Condition 5.1 describes the mapping function J, which relates the two sets of potential 
situations generated by At and Ao . Condition 5. performs  a less obvious function .

It requires for each assessment in At that there be two input state sets that differ from

one another only in regard to one state of that assessment, and which map onto different 
outputs . In Example 1, Sf2 and Sf4 fulfill this condition for the assessment <el , K1>;

and St1 and Sf2 (or St3 and St4) satisfy the requirement for <E2 , K2>' Suppose, for
example , that the definition lacked Condition 5.2. We could then construct a code

segment that required an assessment in At for which there existed no pair of input state

sets differing only in the result of this assessment and leading to different outputs .

Such an assessment would not differentiate any pair of inputs with regard to their

mapping , and hence would be totally irrelevant to the outcome in any application of

the associated rule . We could construct an improper code segment of

by changing the mapping
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say that a simple path accountsfor the mapping of every state set of which it is a subset.
This notion is formally presented in Definition 6.

Definition 6 (Simple Path )7

Given a code segment T = <AI , Ao , SI , So ,1 > and a state set S Ol in So, a set Pk of
states of the assessments in AI is a simple path to S Ol generated by Tif and only if the following 

two conditions are satisfied :

6 . 1

For every Slq in SI such that Pk S S,q, / (S,q) = S Ol
6 .2

There is no proper subset P z of Pk (P z c Pk) such that for every Slq in St where P z S

S,q, / (S,q) = S Ol.

The simple paths generated by the code segment in Example 1, and the state sets and

mapping for which they account , are shown in Table 1.

The following theorem shows that for every input state set generated by At (in some

given code segment T ) there is at least one simple path that accounts for that state
set .

Theorem 3 (Existence of Simple Paths )

Given a code segment T = <AI , Ao , SI , So, ! ) , and given Sfj in SI and S Oq in So

such that ! (Sfj) = S Oq, there exists a simple path Pic to S Oq generated by T such that

Pic SSfj .

PROOF: Since the proof is intuitively fairly simple , though rather long in its complete

form , we shall present only a sketch of the complete version . Assume that the theorem

is false , and that there exists no set Pk of states of assessments in AI such that Conditions

6.1 and 6.2 are fulfilled . Now , SI! cannot be a simple path (by this assumption ) .

Since Condition 6.1 is true for Sf! ' Condition 6.2 must be false (if true , then Sf! would

have to be a simple path ) . Therefore , there must exist some proper subset P z of Sf!

such that for every SfP in SI where Pz .  St P,! (SIP) = S Oq. Thus for Pz , Condition 6.1

7 We can define " subset" and " proper subset" as follows : A set A is a subset of B (A .   B )
. if and only if for every at in A , at is also a member of B . A set A is a proper subset of B (A c B )

if and only if A is a subset of B and there is at least one bJ in B such that bJ is not a member of A .

Table 1. Simple Paths for Example 1.

Simple Path To Output Accounts for State Set (s)

pi = {<E2, k2l) } SOlS !land Sl3

P2 = { <El , kll ) , <E2 , k22) } SO2 SI2

Pa = { <El , k12) , <E2 , k22) } Soa SI4
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must be true ; and since P z is not a simple path (by assumption ) , there must be some
proper subset P II of P z such that Condition 6 . 1 is true for P II . The same holds true for

any Pz oS Sfj such that Condition 6.1 is true . By induction , therefore , we have an

infinite series of smaller and smaller proper subsets of Sfj which meet Condition 6 . 1,

but which fail Condition 6.2. Since Sfj must be finite in extension (Definition 5 and

Axiom 2), such an infinite series of proper subsets cannot exist. Therefore , we must

reject our initial assumption , and the theorem is proved . Q .E.D .

An important implication of Theorem 3 is that every code segment is capable of

generating a set of simple paths which accounts for every potential input situation
produced by the input assessments of that segment.

Definition 7 (Simple Code Rule )

Given a code segment T = <AI , Ao , SI , So ,f ) , an ordered 5-tuple

R = <AI , Ao , P , So , g ) ,

where P is the set of all simple paths generated by T , and g is a function that maps
P onto So, is a simPle code rule for T if and only if the following condition is satisfied :
7.1 (MAPPING)

For every simple path Pk in P, and for every output state set S Ol in SO, g(Pk} = S Ol if
and only if Pk is a simple path to S Ol generated by T .

Since a simple path is interpreted as a set of states minimally sufficient to imply a

unique output (every state set that contains the path must go to the same output ),
we can think ofa simple code rule as specifying the absolute minimum information a

person would have to know about any given potential input situation in order to

achieve the inferential capability described by the associated code segment. We can

therefore extend the notion of accountability (mentioned in our discussion of simple
paths) to say that if R is a simple code rule for T , then R accounts for T . As the next

two theorems (4 and 5) will show, if we are given a code segment there is a unique
simple code rule which accounts for that segment, and vice versa. It follows that the

related problems of deriving a simple rule from a given code segment and deriving a
code segment from a given simple rule both have determinate solutions : that is, a solution 

exists and it is unique . This property establish es the biuniqueness relationship

that exists between these two elements of the theory .8

Theorem 4 (Existence and Uniqueness of Simple Code Rules )

Given a code segment T = <AI , Ao , Sq, So ,f ) , there exists one and only one simple
code rule R = <A " Ao , P, So, g) such that R is a simple code rule for T .

8 Probably the best example of a class of formal structures that have the properties of a
simple rule comes from the area of componential analysis . The set of minimal componential
definitions resulting from such an analysis - insofar as the analysis produces a true paradigm -
and their mapping onto the members of a lexical set, can b.e expressed in a simple code rule .
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PROOF: We shall first prove the existence portion of the theorem (that there is at least

one such R), and then the uniqueness portion (that if an R exists, it is the only
such R ) .

The only elements required by R which are not given in T are the set P and the

mapping function g. We know that the set of simple paths generated by T exists

(Theorem 3) . Therefore , we have only to show that i is a function that maps Ponto
So . For this to be true , three conditions must be met :

(i ) For every Pi in P, there exists an SoP in So such that g(P i ) = SO" .

(ii ) For every Pi in P, and SoP and S Oq in So, [g(P i) = SoP and g(P i) = S Oq] implies

that SoP = S Oq .

(iii ) For every SoP in So, there exists some Pi in P such that g(P i ) = Sop,

Condition (i) is satisfied by Definition 7, since any Pi in P must be a simple path to

some output . We now move to Condition (ii ) . Since Pi is a simple path generated by

T , there must be some Sfk in SI such that Pi   Sfk ' (By Definition 5, SI includes all

possible combinations of states.) By Condition 7.1, if g(P i) = SoP and g(P i ) = S Oq,

then Pi must be a simple path to both SoP and S Oq. And by Condition 6.1, it must be

the case thatf (Sik) = SoP andf (Sik) = S Oq. But according to Definition 5, f is a function
, and therefore SoP = S Oq. Hence , Condition (ii ) is satisfied. With regard to Condition 

(iii ) , we know that for every SoP in So there must be some Sik in SI such that

f (Sik) = SoP (sincef is a mapping onto So) . And by Theorem 3 there must be some

simple path Pi to SoP generated by T . Since P is the set of all such simple paths by

definition , Pi must be a member ofF ; and by Condition 7.1, we have g(Pi ) = SO" .

Conditions (i) , (ii ) , and (iii ) are therefore satisfied, and there exists a simple code rule
R for T .

We now move to the uniqueness problem . By the first part of this proof we know that

there is at least one simple rule for T . Assume that R is such a simple rule . Let R' be

another simple rule for T . If R is unique , then R = R' and vice versa. Since P must

be the same for both Rand R' (it is the set of all simple paths generated by T ) , they

can differ only in the mapping function . Let

R = <AI , Ao , P , So , g )

and let

R ' = <AI , Ao , P , So , g ' ) .

Since the range and domain of g and g' are the same (P and So), they can differ only

in the way they map P onto So. Now for some Pk in P and S Oq in So, g(Pk) = S Oq if

and only if Pk is a simple path to S Oq generated by T (Condition 7.1) . Similarly ,

g' (Pk) = S Oq if and only if Pk is a simple path to S Oq generated by T . Hence , g(Pk) =

S Oq if and only if g' (Pk) = S Oq . Therefore , g = g' , and it follows that R = R' . The simple
code rule for T must consequently be unique . Q .E.D .
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Theorem 5 (Uniqueness of a Code Segment for a Given Simple Code Rule )
Given a simple code rule R = <At , Ao , P, So, g) , there exists one and only one code
segment T = <At , Ao , St , So ,1 ) such that R is a simple code rule for T .

PROOF: The existence of T follows automatically from Definition 7, since R must be
derived from some code segment ; and therefore , if R exists , T must exist .

We now move to the uniqueness problem . If there is only one code segment which

generates the simple code rule R, then for any pair of code segments T and T ' such
that R is a simple code rule for both T and T ', it must be the case that T = T ' . This

is what we shall attempt to prove . Let R be a simple code rule for some pair of code
segments T and T ' . Let

T = <A " Ao , Si , So,l >

and let

T ' = <Ai , Ao , Sf ' Soif ' >.

Since the range and domain off are the same as those off ' , the two functions can differ

only in the way they map Sf onto So. Now , for every Sij in Si and S Oq in So such that

f (Sij) = S Oq, there must be a Pk in P such that g(Pk) = S Oq and Pk S Sfj (Theorem 3

and Definition 7) . And by Definition 6 we havef ' (Sij ) = S Oq. Similarly , we can show
that iff ' (Sij) = S Oq, thenf (Sij) = S Oq. Therefore , we obtainf (Sij) = SOQ if and only if

f ' (Sjj) = S Oq. Hence ,f = I ', and it follows that T = T ' . The code segment is therefore
unique . Q .E.D .

We now introduce two formal notions that will be required in subsequent definitions .

Definition 8 (State Sequence )9

A sequence Qi = <Qil , qi2, " " qin) of n states <Ep , kqr) = qij is a state sequence of

order n if and only if for every pair of states qij and qik (j * k) in Qi , qij and qik are
states of different assessments .

A state sequence of order n is therefore a sequence of n states of different assessments .

Definition 9 (Initial Subsequence )

Given a sequence XI = ( Xll , X12, - - - , Xim> of melements , a subsequence XI (n) =
( Xll , Xi2, - - - , Xtn> (n :::;;; m) of the first n elements of XI in order is the nth initial subsequence 

of XI -

For example , if we have a sequence Z = < Zl , Z2, Z3, Z4>, the sequence 2 (3) =
<Zl , Z2, Z3> is the third initial subsequence of Z : that is, the first three elements of
Z in order .

9 For present purposes , wc can regard a sequence ofn elements as an ordered n-tuple .
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Definition 10 introduces the notion of an ordered code rule (" ordered rule ," for

short ) . In many respects this is the most important element of the theory , and we shall

devote the bulk of the remaining discussion to characterizing its role as the fundamental 
unit out of which information processing systems are constructed .

Definition 10 (Ordered Code Rule ) lO

Given a code segment T = ( AI , Ao , SI , So, f > and the (unique ) simple code rule

R = ( AI , Ao , P, So, g> for T, an ordered 5-tuple R* = ( A " Ao , P * , So, g* >, where

p * is a set of state sequences Pj* consisting of states of assessments in AI , and g* is a

mapping from p * onto So , is an ordered code rule for Rand T if and only if the following
two conditions are satisfied :

10.1 (ACCOUNTABILITY)

For every Pt in p * and every S Oq in So, g* (P j* ) = S Oq if and only if there exists some

simple path Pk in P such that Pk 5; s(Pj* ) and g(Pk) = S Oq.

10.2 (ORDERING OF ASSESSMENTS)

For every P j* in P* and for every nth initial subsequence Pt (n) of P j* , if P j*n =

( Ep , kqr>, then :
10 .2 . 1

For every pit: in p * such that Pit: (n - 1) = Pj* (n - 1) , P;tin is a state of ( Ep , Kq>,
10 .2 .2

For each state ( Ep , kqs> of ( Ep , Kq>, there is a pit: in p * such that Pit:(n - 1) =

Pt (n - 1) and Pk*n = ( Ep , kqs>, and
10 .2 .3

There exists some pit: in p * and some state sequence Qk such that pit: (n - 1) =

Pj* (n - 1) = Qk(n - 1) ; and for all i > n, Qk,l - l = P~ , and for all Pq in P, Pq $

S(Qk) '

We shall refer to a state sequence Pff in p * as an ordered path in R* to S Ol (where S Ol is

the output upon which the path is mapped ), or , more simply , as an ordered path.
An ordered code rule differs from a code segment and a simple code rule in that it

requires an ordering of assessments. We may interpret this ordering as a temporal
one, and as indicating the step-by-step processing of needed information . The choice
of each successive assessment depends only upon the results of preceding assessments;

that is, upon correspondences already identified up to that point in the process.

Suppose, for example , that in applying a hypothetical ordered rule , an individual has

already made the assessments <el , K1> and <E2 , K2> and has determined that the

states <el , k11> and <E2 , k23>' respectively , are correspondences. At this point he
knows that the next correspondence will have to be some state of the assessment

<E4 , Ks>, for example ; and this, consequently , is the next piece of information he

process es (see Condition 10.2.2) . When he has identified a complete sequence of

10 We shall use the notations (X ) to indicate the set of elements ordered by some sequence X .



such correspondences (that is, when he has decided which P' t in p * accounts for the

actual situation ), the mapping indicates the output to be inferred . Such an inference

can be made because each complete ordered path must contain all the elements of

some simple path (Condition 10.1) which , as we have indicated , contains sufficient

information to imply a unique output . It can also be shown, using Condition 10.2, that

there must be a " unique beginner " : that is, some assessment with which the process
begins (see Theorem 6, below ) .

It should be stressed that while a code segment and its associated simple code rule

exhibit the biuniqueness property , this relationship does not necessarily hold between
a given code segment (or its simple code rule ) and a particular ordered code rule .

We can show that there al,.,'ays exists at least one ordered rule for any code segment

(Theorem 7), and that for any ordered rule there exists a unique code segment and
simple code rule (Theorem 10 and Corollary 10.1) . But it can also be demonstrated
that the problem of deriving an ordered code rule which accounts for some code

segment does not always have a unique solution . In any but the most trivial cases

(i .e., where the code segment involves only one input assessment) there is more than

one possible ordering of the assessments. The problem of deciding between alternative

orderings in empirical studies is an important one and will occupy us later in this
paper .

We can exemplify the notion of an ordered code rule and illustrate the possibility

of alternati \le orderings by continuing the development of Example 1. Th ~ two possible 
sets of ordered paths (p * and P * ' ) are given in Table 2, alongwith their respective

mappings . A convenient and easy to read representation of ordered code rules utilizes

S Ol
SO2
SO3

�

g*'(P j*')P* in p*' for Ordered Rule R*'
�

P; ' =  el, k11), (E2, k21 
P: ' =  el, k11>, (E2, k22 
P*' =  el, k12)' (E2, k21 3
P*' =  el, k12)' (E2, k22 4

S Ol

So

So

S
�
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�

p* =   2' k21 1
p* =  E2, k22), < 1' k11 2
P* =  E2, k22), < 1' k12 3

Table 2. Two Sets of Ordered Paths for Example 1.

Pj in p * for Ordered Rule R* g* (pl )
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some of the notational conventions of computer " flow diagrams ."; l Flow charts for

the two ordered rules derived from Example 1 are shown in Figures 1 and 2. The

diamond at each node of the diagram represents a single assessment (which is written

inside), the labels on the arrows identify the possible correspondences (by indicating
the categorization involved ) , and the rectangular terminating boxes display the potential 

output situations . Each ordered path is represented in the diagram by a chain

of linked arrows C?riginating at the first assessment (the " unique beginner ," marked
" Begin" ) , passing through a series of nodes, and terminating at some output . Figure 1,

for example , can be read as follows : We start with the assessment marked " Begin"

(that is, <E2 , K2 . If E2 corresponds to k22 (that is, if <E2 , k22> is a correspondence) ,
then the assessment <el , K1> is required. If el corresponds to k11, then we have completed 

the ordered path P: (see Table 2), and the output situation SO2 is indicated.

Other ordered paths would be determined in the same manner .
We can use this notational scheme to simplify our discussion of the formal requirements 

expressed in Condition 10.2 of Definition 10. To begin with , an nth initial

subsequence of some ordered path is represented by a connected chain of arrows

originating at the first assessment and following the ordered path through the first n

states. (It may , of course, be as long as the ordered path itself .) Suppose that we are

11 Tree diagrams , which are structurally similar to flow charts , have been used from time to
time by decision theorists and cognitive psychologists to represent several different kinds of
information processing rules , See Luce and Raiffa ( 1957) , Hunt ( 1962) , and Hunt , Marin ,
and Stone ( 1966) .
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given an ordered path pi and some nth initial subsequence of this path , such that

the nth arrow of this partial sequence represents a state of the assessment < )), Kq) .
The first part of Condition 10.2 requires that every other ordered path which follows

the same route through the (n - l ) th state have some state of < )), Kq) as its nth

element . This must hold true for every nth initial subsequence of every ordered path .
In other words , given a partial route through a flow diagram , every continuation of
that route must begin with some state of a single given assessment. Condition 10.2

does not permit any ordered rule to have a set of ordered paths which could be partially 
represented by a diagram like the one in Figure 3. The second part ( 10.2.2)

requires that for every ass~ssment (node) in the diagram , and for each state of that

assessment, there must be at least one ordered path that passes through the node and

contains that state at the appropriate point in the sequence. If we had an ordered

rule that specified the input assessment < )), Kq) , for example , and the states of that

assessment were < )) , kql) ' < )), kq2) ' and < )), kq3) ' then no portion of the rule could

be represented by a diagram such as the one in Figure 4 (since the state < )), kq3) does
not appear ) .

  -  : - ---- - -

I

: -<=c=---- - -

~.? --
I
I
I

Figure 3. Violation of Condition 10. 2. 1.

Figure 4. Violation of Condition 10. 2. 2.
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  pi = {<el , k11>, <E3 , k3l >} (to S Ol) ,

P2 = {<El , kll >, <E3 , k32>} (to SO2) ,

P3 ~= { <el , k12>, <E2 , k2l >} (to SO3) ,

P4 = { <El , k12>, <E2 , k22,>} (tO S O4) .

DEC;/:'; 1;'1 ~. ' .

l '~lIlk32

/;,., I " I
-- I .)tl! I

I; l :! 1;31

I; :;!

,

"~(/I~ /;'1 U "31 I <'- I~~ ::'y.--->--- - . (1:.'3,K3> "'L~.-Jk . .,
, , -

L":!2 kJI

-- 'u ~
Figure 5a. Violation of Condition 10. 2. 3.
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The third part of Condition 10.2 demands that every assessment made in accordance

with an information processing sequence specified in a given ordered code rule must

be relevant to the outcome determined by that sequence. For purposes of illustration ,

we can temporarily delete this r~quirement and note the possible consequences.

Suppose we are given an ordered path Pt in p * and an nth initial subsequence of this

path . We first take the set of all ordered paths that share the route of Pt through the

(n - l ) th state (including Pt in this set) , and delete the nth state from each member .

This forms the set of state sequences Qi mentioned in 10.2.3. If each of these new

sequences were to contain all of the states of some simple path given in the simple rule

R (hence violating 10.2.3) , then clearly the assessment whose states were deleted is

irrelevant to deciding between the outputs which could still result following the nth

assessment. (Recall that the information contained in a simple path is sufficient to

imply a unique output .) The diagram in Figure 5a illustrates a potential ordered

rule that violates Condition 10.2.3 at several points (specifically , in the placement of

<E2 , K2) in the ordered paths stemming from <el , k11) , and in the placement of

<E3 , K3) in the various paths extending from <el , kI2 ) ' The simple paths Pi (for

the simple rule associated w.ith the possible ordered rules incorrectly represented in

Figure 5a) are as follows :
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Figure 5b . Corrected to adhere to Condition 10. 2. 3.

If in all ordered paths starting with <el , kll > in Figure 5a the states of <E2 , K2> are

deleted , each of the resulting sequences contains the states of either PI or P2 . Although
this assessment is relevant in all ordered paths starting with <el , kI2>' it is not relevant 

once the correspondence <el , kll > has been determined . A more obvious violation 

of Condition 10.2.3 concerns the placement of <E3 , K3> in the paths stemming

from <el , kI2>' This assessment contributes no information toward making a decision 
between SO3 and SO4 ; this can be seen in the diagram or by studying the simple

paths listed above. An ordered rule in which these violations are corrected is shown
in Figure 5b.

We can now introduce several theorems relevant to the structure and existence of
ordered code rules.

Theorem 7 (Existence of an Ordered Code Rule )

Given a code segment T and the (unique ) simple code rule R for T , there exists at
least one ordered code rule R* such that R* is an ordered code rule for Rand T .
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Theorem 6 (Unique Beginner )
Given an ordered code rule R* = <AI , Ao, P*, So, g* ) , there is an assessment
<Ep, Kq) in AI (the unique beginner) such that for every ordered path Pf in P* ,
PJ~ is some state of <Ep, Kq) .

PROOF: The proof follows directly from Condition 10.2.1. For every pair of ordered
paths pi and P'jJ' in P* , Pj* (O) = P'jJ'(O) (since this is the empty sequence). There must
be some assessment <E" , Kq) such that Pj1 is one of its states. If P/1 is some state of
<E" , Kq) , then by Condition 10.2.1, P'jJ'l is also a state of this assessment. Since we
have shown that this is true of any pair of ordered paths in P* , it is true of all ordered
paths in P* . Q.E.D.
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PROOF: To demonstrate the existence of such an ordered code rule , we need only show

that it is possible to construct a set of ordered paths using the assessments in AI , and

to provide a mapping from this set to the members of So, such that the conditions of
Definition 10 are satisfied. We shall sketch such a construction procedure here. First

of all , we know that an ordered rule is derived from a given code segment and its

associated simple code rule . To begin the construction , take all of the input state

sets (the potential input situations ) of the code segment and order their members in

the same way , such that the first state of each sequence is a state of some assessment

<EI , Kp ) , the second state of every sequence is a state of another assessment < j , Kq ) ,

and so on . Map each of these sequences onto the output to which its corresponding

input state set is mapped by the functionf . Figure Sa, to which we referred earlier ,

represents such a set of sequences and shows that they produce a complete " tree"

diagram or flow chart . Each sequence contains the elements of a simple path (Theorem

3) and hence fulfills Condition .10.1. They also fulfill Conditions 10.2.1 and 10.2.2

(which are needed to produce a complete tree of the type shown in Figure Sa) . The

set of sequences, however , may not adhere to Condition 10.2.3 (as we illustrated

earlier ) . If this is the case, then irrelevant assessments are dropped from each path in

which they contribute no relevant information . Such assessments must be deleted one
at a time , and the modified structure should be checked for additional violations after

each deletion . Since the set of potential ordered paths changes after each incorrect

assessment is dropped , the mapping will have to be revised according to Condition
10.1. It should be clear , however , that this requirement ( 10.1) and the first two parts

of 10.2 will still be fulfilled . When no additional deletions are required , then all of the

conditions of Definition 10 will be met , and an ordered code rule for the given code

segment will have been constructed . Figure Sb illustrates the result when this procedure 
is applied to the set of sequences shown in Figure Sa.

We now move on to the proof of several theorems that illustrate the accountability

ofa particular ordered code rule for its associated code segment and simple code rule .

Theorem 8 (Accountability of Ordered Paths for Situations )

Given a code segment T = <AI , Ao , SI , So, j ) , the (unique ) simple code rule R =

<AI , Ao , P , So , g ) for T , and R * = <AI , Ao , P * , So , g * ) an ordered code rule for T

and R : for every P: in p * and for every S If in S I such that s(P: )   S If , and for every

S Oq in So, g* (P: ) = S Oq if and only ifj (S{f) = S Oq.

PROOF: If g* (P: ) = S Oq, then by Condition 10.1 there must be some Pj in P such that

Pj S s(P: ) and g(Pj ) = S Oq. Now ifs (P: ) S Sfj , then Pj S Silo Since Pj is a simple

path to S Oq generated by T (Condition 7.1) and Pj S Sij , it must be true thatj (Sfj)

= S Oq (Condition 6.1) . Similarly , if F: is an ordered path , there must be some Pu in

P such that Pus s(P: ) (Condition 10.1) . Ifs (P: ) s Sfj , then PuS Silo Let g(Pu) =

So:: ' By Condition 6.1, j (Su) = So:: . But since we are given thatj (Si J) = S Oq, and
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since f is a function (Definition 5), we have Soz = S Oq. Hence g(P II) = S Oq and

g* (Pff ) = S Oq (by Condition 10.1) . Therefore , g* (Pff ) = S Oq if and only if f (Su) =
S Oq. Q .E.D .

Theorem 9 (Existence and Uniqueness of Ordered Paths )
Given a code segment T = ( AI , Ao , SI , So, f > and an ordered code rule R* =

( AI , Ao , P* , So, g* > for T : for every state set SIJ in SI there exists one and only one
ordered path Pff in P* such that s(Pff ) S SIJ.

PROOF: Since the proof of this theorem is long and overly tedious, it is not presented
here . The proof is, however , very similar to the one used in Theorem 3 ; and the interested 

reader is referred there for a sketch of the procedure .

Theorem 8 shows that an ordered path accounts for the mapping of any potential

situation of which its elements form a subset . Theorem 9 demonstrates that for any

potential situation Sjj defined by a code segment T there exists exactly one ordered

path P If , specified by a given ordered code rule for T , such that the elements of Pff

form a subset of Sjj . These two theorems jointly imply that all potential situations

defined by some code segment T can be accounted for by an ordered code rule for T .

Theorem 10 (following ) shows that for any ordered code rule R* there is one and only
one code segment T such that R * is an ordered code rule for T ; and hence that the

problem of determining the code segment accounted for by an ordered rule has a
unique solution .

Theorem 10 (Uniqueness of a Code Segment for an Ordered Code Rule )

Given an ordered code rule R* = <At , Ao , P* , So, g* ) , there is one and only one
code segment T = <Ai , Ao , Sf ' SO ,I ) such that R* is an ordered code rule for T .

PROOF: The proof is iden tical in form to the one presented for Theorem 5 and is not

given here. The reader is referred to the earlier proof for an illustration of the procedure
.

Corollary 10.1

Given an ordered code rule R* , there is one and only one simple code rule R such that
R * is an ordered code rule for R .

PROOF: The proof follows directly from Theorems 4 and 10.

Although there exist a unique code segment and a unique simple rule for any gi \'en

ordered rule (the subject of the last several theorems), the converse is not generally
true . For any given code segment or simple code rule there will usually be more than

one permissible ordered code rule . (Figures land 2 illustrate a case in point .) Consequently
, when we attempt to apply this theory to the description of a natural system,

we are presented with the problem of choosing between alternative and equally
valid (at least in the formal sense) analyses. We might want to ask, therefore , whether



or not there exists an interesting subclass of ordered rules which has a greater likelihood 
of being represented in natural systems. In this connection we can enlarge upon

an idea about human cognition that we alluded to earlier in the paper , and discuss

its effects in generating such a subclass of ordered rules. The assumption involved can
be stated as follows : Human beings tend to process information in such a way as to minimize

the long-run average number of items processed. If we can interpret the processing of an

item of information to be equivalent to making a single assessment, then the implication 
of this assumption is clear : individuals will tend to modify the internal structure

of their ordered rules in such a way as to minimize the average number of assessments 

performed . This idea has been used so far to justify the " relevancy " condition

in Definition 5 (Condition 5.2) , which says that no code segment requires an assessment 
irrelevant to all decisions between outputs ; and it can also be used in justifying

Condition 10.2.3 in Definition 10, which states that at any stage of an information processing 

sequence the next assessment made must be relevant to the possible outcomes

at that stage.

From the above assumption we can also derive the following proposition : At any

stage in an information processing sequence, the next assessment to be made minimizes the average

number of subsequent assessments ~Ihich must be made before an output can be determined.12 In

terms of the tree diagram or flow chart representation of an ordered rule , this statement 

says in effect that the assessment at any given node is chosen so as to minimize
the number of assessments in the branch es that emanate from that point . We say that

any ordered code rule that meets this requirement is an efficiently ordered rule. Without

going into detail , an efficiently ordered rule can always be constructed for a given

simple code rule by operating upon the set of simple paths contained in the latter .

Construction proceeds in a step-by-step fashion by first selecting a unique beginner

(the first assessment) and then , for each branch coming from this node, selecting a
second assessment, and so on, such that each choice conforms to the efficiency requirement

. The process is terminated in each branch as soon as the ordered set of

states contains all the elements of a simple path and , therefore , is sufficient to indicate

a single output .

Returning to Example 1 and the set of simple paths shown in Table 1, we note that
if the assessment <E2 , K2> is chosen as the unique beginner , then one of its states

 E2 , k21  completes the simple path pi and leads directly to the outputS Ol. The other
branch from this node must lead to the assessment <el , K1> before a simple path is

accounted for . This produces the ordered rule shown in Figure 1. If , on the other hand ,

the assessment <el , K1> were taken as the unique beginner , then both branch es which

12 This proposition actually involves an additional simplifying assumption which states, in
essence, that the potential input situations in a code segment have an equal " probability " of
occurrence. In empirical cases this is ob\' lously untrue, but the errors of analysis that it is
capable of producing are relati\'ely minor and occur only in very specific and limited circumstances

. Since the potential errors are minimal , the fact that this assumption makes possible
the detailed analysis of empirical cases is sufficient justification for its use.
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emanate from this node must lead to <E2 , K2> before a simple path can be completed .

The ordered rule that this generates is shown in Figure 2. The first process (producing 
rule R* ) obeys the efficiency requirement by picking a unique beginner that

minimizes the number of subsequent assessments (only one additional assessment in

one branch ), while the second process does not (it requires an additional assessment

in each of two branch es) . The former thus generates an efficiently ordered rule , as an

inspection of Figures 1 and 2 should demonstrate . The algorithm that this procedure

illustrates can be applied to simple rules of any degree of complexity to derive an efficiently 
ordered rule . In some cases more than one solution is possible, but it should be

stressed that the range of alternati ,..e analyses is greatly reduced , usually to a set of

ordered rules that differ from one another only in the relative sequencing of two
adjacent assessments.

The notion of an efficiently ordered rule is an important one with regard to the

theory 's potential application in ethnographic description . If the efficiency assumption

is justified - and available evidence indicates that it is- then we should expect to
find that information processing routines actually in use by given individuals can be

described in a valid manner by efficiently ordered rules . Since a simple code rule can

be determined through elementary frame elicitation techniques , and since efficient
rules can be derived in turn from simple rules, then it follows that we should have in

hand a technique that requires data that are relatively easy to come by , and which

produces descriptions showing a reasonable approximation to cognitive validity .

Several tests performed in conjunction with the example presented in the Appendix
to this paper indicate , though on a limited basis, that the approximation falls within
quite acceptable limits .13

One other point deserves mention before we conclude this part of the discussion. It

concerns a phenomenon we have called " recoding ," following the usage of Miller

( 1956) . In essence, recoding refers to information contained in the output of one ordered 
rule being used as part of the input information to a second rule . Since a given

output is a set of states (a potential situation ), and since the input of a rule is also a

set of states, then the possibility of recoding is permit ted by the formal structure of

this theory . For example , in applying one ordered rule , there may be a required assessment 
for which the necessary information is not immediately available (i .e., it is not

known which state of the assessment is a correspondence) . If there exists a second rule

that contains the states of this assessment in its output (if the assessment is a member

of Ao) , it can be employed to determine the actual correspondence . In such a case,
we say that the input information to the second rule has been recoded in terms of a

13 These tests consisted of sorting tasks in which the subject was asked to group terms on the
basis of their similarity in use. After an initial partition was formed , the subject was asked
whether or not any of the groups could be further partitioned into smaller subgroups , and
then if any of the initial groups could be placcd together in larger groupings . Since a set of
ordered rules also generates partitions of a hierarchial type , the test could be used as evidence
for the cognitive validity of the set of derived rules .



given output . Because of certain inherent limitations on the amount of information
that an individual can process at anyone time , some sort of recoding must take place

in an information processing system of more than minimal complexity . This capability

must also extend to any theory of human information processing which is to be used

in the production of valid models for natural systems.

A Note on Cognitive Aspects Although this paper has been primarily concerned

with a theory useful in the production of certain types of ethnographic statements, and

is by no means a self-contained treatise on the psychology of thinking , we have already 
seen that our attempt to provide an interpretation for its formal notions depends 

heavily on a basic commitment to certain' ideas about how people think and

about their capabilities and limitations in organizing and processing specific kinds of
information . This commitment involves such fundamental notions as the itemization

of information (i .e., the cogniti \'e representation of information as discrete units and

not as continuously variable magnitudes ), the sequential processing of information ,

the tendency toward efficient cognitive systems, limitations on the amount of information 
that can be processed at one time , recoding , contrast between the states of an

assessment (Axiom 1) , and so on . In several cases, these ideas have had to be modified

or generalized to conform with the implications of well -founded ethnographic theory .

Unfortunately , limitations of space and the fact that this subject is outside the somewhat 
limited scope of the paper force us to postpone until a later time any detailed

discussion of the relationship between this theory and cognitive psychology . We can

say, however , and without any great reservations, that we have tried to keep the

theory and its interpretation as thoroughly consistent as possible with relevant areas

of cognitive and ethnographic theory . For the most part , the attempt has been successful
; though there have certainly been cases in which simultaneous compatibility

could not be maintained . These cases are interesting in themselves, since they ultimately 
reduce to conflicts between ethnography and cognitive psychology ; but , again ,

they fall outside the scope of this paper and would be more appropriate to a general
discussion de\'oted to the relationship between these two domains of study . We can

only say that a discussion of this type is needed and , hopefully , will not be long in

comIng .

Appendix . Bisayan Terms of Personal Address
The set of efficiently ordered rules which appears in this Appendix is included solely
for the purpose of exemplifying the theory developed in this paper. This example is
not intended as a complete and/or valid ethnographic statement concerning the terms
of personal address used by any group of Bisayan speakers.14 It should be stressed that

14 Bisayan (or Vi sayan) is a Philippine language in wide use among Christian Filipinos on
Mindanao and the ccntral group of islands known as the Visayas. I Jocal dialects can vary
widely within this area. The terminology analyzed here is most representative of the islands
of Cebu and Leyte and their immediate environs.
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Table AI . Entities and Categorizations for the Bisayan Example .

Categorizations Categories Gloss

A " relative age "

ai " younger "

a2 " same "

a3 " older "

A ' " absolute age "

" young child "

other (contains several categories not differentiated in

these rules )

�

�

,al,a2
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�

the terminology and usage reported here is derived from interviews with a single
informant under non field conditions , and should not be considered representative of
any " typical " speaker of the informants dialect , nor , perhaps, of the informant himself 

under more natural conditions .

Even with these reservations, however , the description is sufficiently adequate to

indicate something of the complexity of naturally occurring information processing
systems and their potential range of variation . In addition , there is some evidence

(from the sorting task described in footnote 13) that the description does approximate

a valid model of one portion of the informants " cognitive map ," and to this extent
can be considered adequate .

The notation used in the following table and diagrams differs slightly from that presented 
in the body of the paper . Categorizations have been represented by capital

letters which have as much mnemonic value as possible, and their member categories
are symbolized by the same letters in lower case with identifying subscripts .
The entities and categorizations used in these rules are listed below in Table AI .

The various assessments employed are shown in Figures Al through A6 .

Entities Gloss

El " Alter ," " addressee"

E2 " social occasion "

E3 " proname " (name or name substitute )

E4 " first name " (of Alter )

E5 " nickname " (" pet name " ) (of Alter )

E6 " social relationship with Alter "

E7 " personal background of Alter " (linguistic ,

" accultuative " )

E8 " language " (appropriate )



Table Al continued

Categorizations Categories Gloss

C " membership in Ego's group of 'friends' "
Cl " member"

C2 " not a member"

E (types of formal pronames)

el (Impossible to gloss; represents part of the proname

e2 classification scheme. Refer to Rule R: .)
ea

e4

F " permission of familiarity "

h " familiarity permit  ted "

12 " familiarity not permit  ted "
�

K " knowledge" (of some entity )
" known"

" unknown"
k1

k2

L (Classification by language )

" English "

" Bisayan "

" Spanish "
�

M

P ( Personal address classification scheme . Possible

PI - P19 correspondences are indicated in Rule R : , PI

through PI9 . )

" request for intimacy " (involves a standard verbal

formula)

Q

s " relative status"

" lower"

" same"

" higher"
�
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�

�

�

"marital status"
"married"

" unmarried," "single"
ml

m2

" request made"
" request not made"

ql
q2

$1

$2

$3

4
12
13



Table Al continued
�

T " possession of academic /professional title "

4 " has title "

t2 " docs not have title "

U " degree of intimacy " (with Ego )

Ul " intimate friend "

U2

V3

v V " absolute social status ," " wealth "

w " middle class " " poor "I ,

W2 " high class," " wealthy "

X " sex "

Xl " male "

X2 " female "

Note' The terms ? anl1l1a? " nickname " " pet name " Panl1alan " first name " and titolo. """ , , , "" , ,
" academic/professional title ," indicated in Rule R't are not address tcrms per sc, but refer to
forms which will vary \\,ith the particular Alter involved.
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" casual acquaintance ," " stranger "

V " types of informal pronamcs "

Vl (See discussion of categorization E .)
V2

Categorizations Categories Gloss



SYSTEMS

A P P R Oi' !{I,\TE
A Dl Jl{ESS TE!{M

" ?;illgga?11

" pangalall"

' inday

loloy

dodong

man6ng

man<1ng

II t/tolo "

mister (sir)

gino '6ng

d6n

sel1yor

rnlsis (rn.'\rn)

gin:lng

d6nya

scn)'6ra

m!s

ginmg

scllyorlla
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Figure A2. Rule R1 for making assessment <E6) F) .

nE G I~ /~ " r;! <'~~,::;:--~ I . \ 'J- "<zp-_._-"-'--~-'" y --- "'L~:~:'::~I ,LI I'llI_._..~._- .~- i_____.---....- - ..:---~;.,~;;;~--j: ._~
Figure A3. Rule Ru* for making assessment <Es, U) .

Figure A4. Rule Rv* for making assessment <E3, V) .

Figure AS. Rule Re* for making assessment <E3' E) .
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Figure .\ 6. Rule Rl* for making assessment <E8, L) .
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