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Modern physics, in its attempts to solve the quantum theory dilemma , is
in turn attacking all of our most cherished conceptions . The wave theory of
light , the conservation of energy, our mechanics, our electrodynamics ,
and even our methods of calculus have been assailed, separately and

collectively , as either entirely wrong or at least inapplicable to systems of
small dimensions , that is to the electron . 'The usual quantum mechanics
are based, however , on the conception of the electron as a point . It is
therefore not astonishing that we are sometimes unable to give the exact
location of this point .1 It is, to be sure, explained that we are dealing
merely with the geometrical center of aspherical electron. But the spherical
electron itself is a fiction assumed for lack of a better knowledge . Indeed it

would seem a priori probable that a better knowledge of the structure of
the electron would lead to changes in the mechanics and electrodynamics
of its motion which would afford at least a partial solution of the dilemma
in which we find ourselves. A first step in this direction has been taken by
de Broglie ,2 and that part of the present paper dealing with stationary
states is little more than a new presentation of his ideas.

De Broglie has shown that the standard quantum formula

W = hv (1)

is not invariant to changes of coordinates in space-time , but that we do
obtain an invariant relation if we also write

p = h[J. ( I ')

where 1fJ.1 is the wave-number of a wave train of frequency v, and fJ. is a
vector normal to the wave-surfaces whose magnitude is 1fJ.1. Equations (1)



The values of If Ll are to be determined from the kinetic energy in the same
manner as the p (divided by h) would be determined for a point -electron ,
although the kinetic energy no longer has quite the same significance . The
integral is to be taken along the " ray ." If these wave trains were in phase
at A at time to, they will , in general, not be in phase at B at time t. There
will , however , be a certain wave train for which the variation of the above

integral is zero, and this wave train has the property that wave trains
following nearly the same path will be very nearly in phase with it at B.
Other wave trains will have their phases at B distributed over wide ranges.
These will , as in optics , destroy one another , and need therefore not be
considered. Indeed , diffraction effects, in which the latter waves would
playa part , cannot occur with the electron -waves as there are no edges to
diffract them . Interference effects, however , do occur . We need therefore
only consider a certain wave-bundle5 clustered around that particular
wave train which is determined by

This central wave train follows the path which we would, from mechanics,
expect the point-electron to follow, for the above equation, in mechanical
quantities, express es the Principle of Least Action . The waves destroy each
other everywhere excepting in the neighborhood of this path.

6

<f> = 27t J: (1fl.1 ds - v dt) . (2)

J :
S<f> = 27t S(If J.1 ds - v at) = o. (3)

3 E. Schrodingert Phys. Rev.t 18t p. 1049.
4 E. Schrodingert Ann. der Physikt 79t 6t p. 489.
5 E. Schrodinger tIC .t p. 500.
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and ( 1') express the proportionality of two tensors, the factor of proportionality 
being Planck 's constant h. If , now , Wand p are the energy and

momentum ofa spherical electron , v and fJ. will be the frequency and wave-
number of a wave train whose exact nature is not yet well understood . We
shall consider this wave train to be the electron ,3 the laws obeyed by W
and p being consequences of the mode of propagation of this wave train .
We shall , of course, have to make some assumption as to this mode of
propagation . We might introduce arbitrarily a wave equation as Schrodin -
ge! has done 4 but as this step is not necessary for our purpose , we shall
merely assume a mode of propagation such as to give the usual equations
of mechanics for Wand p.

Consider the electron to go from A and B, and imagine all possible wave
trains going from A to B. The phase of any wave train at B, at time t, will be
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Let now v and be the frequency and wave-number of the central wave
train. Its phase is given at all points (not necessarily on the ray) by the
vector integral

4) = 2iv 5( L. ds � v dt) (4)
taken along any path within the region occupied by the wave train. If the
component wave trains of the bundle are distributed symmetrically about
this central wave train the resultant disturbance can be represented by a
sum of the form

[ sin2ivf( .ds + E .ds � vdt � dt)
+ sin 2i f( .ds � i i .ds � v dt + k I dt)]

= cos27rJ�(1 dL.ds � I1 4LI dt)sin27 fQL.ds � vdt) (5)
where i is the vector difference between the wave-number vector of the
wave train denoted by and that of the central wave train. In this form we
see that we can speak without ambiguity of the frequency, wave-number,
and phase of the electron, for the wave-bundle is equivalent to a simple
wave train whose phase is given by (4) and whose amplitude is

4) = cos 2iv f( .ds � L p dt). (6)
This represents a �wave group� travelling with the velocity

ew
(7)

The coefficients are functions of the electric and magnetic fields and of
the frequency v so that the �group� may have different �shapes� at
different times. It would, indeed, seem to be considerably elongated in the
direction of the motion. It is this �group,� essentially, which constitutes
the electron, for it moves with the velocity q which is observed experiment-
ally as the �velocity of the electron.� The charge, though it is probably
spread over the group without a definite boundary, perhaps proportionally
to the amplitude 4), forms an inseparable unit e 6 ; and its field obeys
Maxwell�s equations.

Equations (1) and (1�) can be more explicitly written
hv � eV = mc 2

h p. � eAt = cV�m2 � (8)
6 De Brogue, 1. C., p. 73.
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v = !!-:!- = ~ ~ = CJ~-=--------(~) 2 = ACOf]. om Of]. m t" ,
whence

vl - =~ .

If miseliminated between equations (8) we obtain

2 2 ( e V) 2 2C tJ. = v - h - vo,
where

~ =
m (9)

(10)

hvo = mOc2

fa (J. de = 27t(J. = n = a whole number. (12)
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where V is the electrostatic potential due to outside charges, and A is the
magnetic vector potential. In this paper we shall only consider cases in
which there is no magnetic field, and may therefore set A = O. The
velocity of the electron is then

Let us now apply these ideas to ~ otion in a circle , such as in the circular

orbits of the hydrogen atom . Ifwe use polar coordinates (J. will be expressed
in waves per radian . The electron will move with the angular velocity
ovjo(J., and, if the orbit is sufficiently large, it will , by classical electrodynamics

, radiate light of frequency

N = ~ ~
27t O{.l. (11)

so that the energy W, and hence the frequency v, of the electron will slowly
decrease. As in classical theory the orbit will be a spiral of small angle. If ,
however , the orbit is small the " wave electron " may reach all the way
around it so that the electron effectively becomes a ring electron and therefore 

does not radiate . It cannot , however , do this in all small orbits for in

some of these it will interfere with and destroy itself . The waves will , on the
other hand , add if

The existence of stationary states thus seems to be explained , and the Bohr
quantum condition appears as a kind of resonance condition ; and as there
is no radiation and therefore no damping the resonance phenomena should
be very sharp.

Moreover the normal state of the hydrogen atom has a magnetic moment
of one Bohr magneton , as recent experiments 7 seem to require .

7 TE . Phipps and John B. Taylor, paper presented at the Chicago meeting of the
American Physical Society.
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De Broglie has shown8 how to take account of the motion of the nucleus
and this point will not be discussed here.

Multiple periodic motions can be treated similarly . Let us consider them
first from the usual point of view , that of the point electron . The orbit does
not close but passes, to within any degree of approximation , through every
point of a certain limited region of space. If we attach to every point a
vector p equal to the momentum of the point electron as it passes that point
we shall have defined a vector field . As p is multiple -valued it is convenient
to consider space as composed of several sheets, as a Riemann surface, on
each of which p is single-valued . This vector field has been studied by
Einstein ,9 and he has shown that it is derivable from a potential , the
integral J * of the Ha milton -Jacobi partial differential equation . Consequently 

the integral fpodq has the same value when taken around closed

curves which can be brought into coincidence by a continuous process. In

particular this integral will be zero when taken around a curve which does
not enclose an excluded region or a singular point . On the other hand it
will , in general, have different values when. taken along paths which cannot
be brought into coincidence continuously . Einstein uses this property to
write the Sommerfeld quantum conditions in an invariant form .

We have seen that the wave electron follows the same path as the point
electron above, and that the wave extends a certain distance on both sides
of this path . The conditions for noninterference is then that the waves
along portions of the orbit which are close to each other be in phase. The
space must be considered to consist of several sheets, for the noninter -
ference condition does not apply to portions of the wave train passing the
same point but going in different directions . If the non-interference condition 

is satisfied, and the wave train is long enough, a coherent wave will

fill the entire space occupied by the mechanical orbit . The phase of this
wave will be given by (4), or for stationary states by

<P = 27t( J fJ.ods - vt ) .
(4')

8 De Broglie, 1. c., p. 34.
9 A. Einstein, Ber. d. Deutschen Phys. Ges. 1917, p. 82.

For the wave to be coherent the integral, taken between fixed limits, must
be independent of the path, at least to within a whole multiple of 27t.
In particular for closed paths it must be zero, or a whole multiple of 27t.
That is:

fo ~.ds = 0, n, n/, . . . whole numbers. (12/)



Calculatingthi~

( e2)2C2~2 = v + hr 2- Va (13)

~

= n ' = n - k .

(16)

another type of path along which integral (12') must be taken: from ' 1 toi  
on one sheet and back to ' l on the other. Choosing a path along a radius

this gives

) 9 + ~ + ~

2 - V ~ CXV CX2 - k2

+ - +

C2 7tCr 41t2r2

, integral in the way Sommerfeld 10 has shown we find

CXV . /

- V k2 - CX2 = n - k .

VV ~ ~

10 A . Sommerfeld , Atombau und Spektrallinien , Zusatz 6 .

and we shall suppose v < Va as the contrary assumption leads to hyperbolic

orbits . As the center is a singular point one of the conditions ( 12 ' ) will

be given by an integral taken along a path around the center . We shall

choose a circular path of radius r , and let (1. 9 be the component of (1. along

this path . We then have

whence ' fo fJ.8 d () = 27trfJ .o = k

k

EJ. e = - . ( 14 )27tr

Substituting in ( 13 ) we obtain

/ v2 - v ~ 2e2v I e4 k2 \ 1

( e4 k2 ) 1EJ. r = ::!: V EJ.2 - EJ. ~ = ::!: ~ - - c r + C2hr + \ C27i2 - 4' 7t2 J ~ . ( 15 )

Inasmuch as 27te2fch = a < 1 : : ; k , the expression under the radical has

two positive roots , and EJ. r is real when , is comprised between these roots .

These roots therefore determine the radii , ' 1 and ' 2 of two circles which

limit the wave . Because of the double sign before the radical the Riemann

surface between these radii must be considered double . There is then

10 ELECTRONS AND THEIR INTERACTION WITH ATOMS

If fJ. is replaced by p/h this becomes the quantum condition as formulated
by Einstein.

The simplest example of this type of motion is found in the hydrogen
atom. The wave is confined to the neighborhood of a plane, for the same
reason that the orbit of the point electron is plane, and we shall assume
a solution with cylindrical symmetry. Equation (10) for this case is



f (Lr dr + ~ () = constant. (18)
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These are shown in the accompanying figure , the heavy lines representing
the wave surfaces on one of the sheets and the light lines those on the other .
The wave surfaces have been shown one-half wave-length apart so that
their number must be divided by two to obtain the azimuthal quantum
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FIG. 1
Waves in hydrogen atom for n = 3.

This determines the frequency v in terms of the constants aVa, and the
quantum numbers nand k. What is usually spoken of as the energy is

2 h

a,2V 2 )2h(v - Va) = - v~-+v (n - -21- . . .

= - ~ ( 1 + ~ + - - _) ( 1 - ~ ~ + - - - ) -n2 nh 4 n2

This is the usual expression for the energy levels of the elliptic orbits .

Substituting the value of v from ( 16) in ( 15) we can calculate ' 1 and ' 2'

Then ~ is fully determined by ( 14) and ( 15) . It is then possible to calculate

the phase

cf> = 2rt ( f fl.r dr + ~ f) - vt ) ( 17)

and the surfaces of equal phase (wave surfaces ) are given by
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sin 27t(f fJ.r dr + ~ (J - vt) - sin 21t( - f ftr dr + ~ e - vt)
= 2 sin 27t f IJ.r dr cas (kfJ - 27tvt). (19)

Here ~r represents the positive value of ( 15) . The phase difference between
the waves on the two surfaces is indeterminate , for although a change of
phase at one boundary will appear in the radial quantum integral its effect
will be annulied at the other boundary . We have therefore assumed that
particular phase difference which gives zero displacement on the boundaries

. Equation ( 19) shows that the superposition of the waves on the two

imaginary surfaces results in a wave with radial wave surfaces, travelling
circularly , and having k wave-lengths to the circle .

Although this wave is a travelling wave as regards its circular component ,
it is a standing wave as regards its radial component , so that the amplitude

varies with the radius as sin 21t f ~T dr . This variatiorl is shown in the lower
curves of the figure . The number of circles of maximum amplitude gives
directly the radial quantum number nt.

The major difficulty of the quantum theory would seem to be, however ,
not the explanation of the stationary states, but of the " quantum jumps ."
The radiation of atoms has frequently been compared to " beats" between
vibrations within the atom , and this has seemed to excuse to a certain

extent the assumption which we shall make : that during the passage of an
electron from one stationary state to another there is a transition stage in
which the waves corresponding to the two stationary states are superposed,
perhaps with reduced amplitudes . There is, indeed, no reason to suppose
that while it is absorbing or emitting radiation the wave electron is as simple
as has been pictured above. New alternating electric forces, not derivable
from a potential V (cf. Equation (8)), have come into play , and they may
alter the distribution of the charge in a way which may only be guessed.
The final result only is known : that the electron has passed from one
stationary state to another . Turning to optics for a hint as to what the
process may be, we find something similar occurring in the reflection of
light from a mirror . An initial steady state, the incident beam, enters a
region of interference in front of the mirror , and issues again as a final
steady state, the reflected beam. The energy in the region of interference
cannot properly be assigned to either wave train . The electric and magnetic

ELECTRONS AND THEIR INTERACTION WITH ATOMS

number . They are of course orthogonal to the mechanical orbits corresponding 
to the same quantum states. These waves on the two sheets do

not , however , exist independently but are superposed, so that the resultant
disturbance is of the form



13A Wave Theory of the Electron

vectors are here not in phase . Indeed it is quite a distinct state of which we

would probably be entirely unaware did we not have an exact theory of

light and independent evidence of the existence of the mirror , as only

specially designed experiments make it directly apparent . It is nevertheless

an essential part of the phenomenon , for it is only during its existence that

transfer of momentum to the mirror occurs .

We would regard the " quantum jump " as an entirely similar process

during which charge passes gradually and continuously from one steady

state ofele ;ctron wave (corresponding to the incident beam ) to another ( the

reflected beam ) through a region of interference . In this region the waves

will form " groups " moving with the velocity

L\ v
v = -

L\ IJ. (20 )

and this is seen to differ from Equation (7) only in that a differential ratio

has been replaced by a difference ratio . Indeed the limit of this transition

stage when the initial and final states differ but very slightly is identical to

our picture of the electron as a bundle of very slightly differing waves . The

principle of correspondence is then evident .

These considerations may now be applied to transitions between the

stationary states described in the preceding pages , but let us first consider a

simpler case , where there is but one electron and the potential Vis uniform .

The electron waves are plane , and move with a constant velocity , and this

state will continue until there is some disturbance , such as the arrival of a

light wave . After the light wave has passed , a steady state of the same

general character will be resumed . If the initial and final states of the

electron are the simple wave trains

sin 27t ( (J.IoS - V Ir ) and sin 27t ( (J.2 S - V2t ) ( 21 )

the transition stage will be of the form

sin 27t ( ~ os - y t ) cas 27t ( ! : .!- T ~ os - ~ t ) . (22 )

The first factor represents a wave train intermediate between the initial and

final states . The second factor cuts it up into groups by planes moving

uniformly in the direction of fJ.l - fJ.2. The surfaces of zero displacement

. are shown in Fig . 2 . As the distribution of amplitude in the electron wave

is unknown the boundaries of the region of interference have been left

blank .

It is with this system of wave groups that the incident light wave

el = E cos 27t (MI8s - NIt ) (23 )
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Electron -waves in Compton Effect
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(24)

and this must be zero on the reflecting surfaces. The same conclusion is
reached if we consider that the uniform motion of the electron wave
groups requires that the field be zero. This condition is satisfied if

will react. The groups, as they contain charge, will act as reflecting surfaces.
Not the groups defined by the sine factor of (22), for these are moving
faster than light, but the groups defined by the cosine factor. If the reflected
light beam is

 2 = -  cos 27t(M2os - N2t) (23')
the total field is

N2 - ni = VI - V2

M2 - M1 = fl.l - fl.2. (25)

These relations are not sufficient to solve the problem , as we have been
obliged to assume known the final state of the electron . They are conditioned 

by the fact that the reflected light must have the velocity c, but this

still leaves two quantities undetermined in the final electron state (recoil
electron) . They are perhaps related to the phases of the incident waves.

If the wave quantities in Equations (25) are replaced by the corresponding 
mechanical quantities the conservation of energy and momentum

relations of the ballistic theory of the Compton effect are obtained , and
this without the necessity of assuming the light to be quantized . It has been
attempted to explain the Compton effect as a Doppler effect, but this
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explanation has been considered untenable because the reflecting center

would have to move in quite a different direction from the electron . The

two sets of groups furnished by our theory remove the difficulty , for while

the electron moves in the direction of ~ ! + ~ 2 with the velocity ( v ! + V2 ) !

I ~ ! + ~ 21, the reflecting surface moves in the direction of ~ ! - ~ 2 with

the velocity ( v ! - v2 ) ! I~ ! - ~ 21. This latter surface can be considered to

reflect both the electron and the light waves . ! !

We may now consider jumps between states corresponding to circular

orbits , such as have been considered on page 10 . Suppose the electron to be

in the state designated by n , and suppose that for some reason the state

( n - ~ n ) becomes slightly excited . The two waves will interfere , forming

~ n groups in the region between their orbits . As the amplitude of the

( n - ~ n ) wave is supposed to be at first small , the accumulations of

electricity in these ~ n groups will be slight , but they will nevertheless radiate

according to the classical laws . As the energy is thus decreased , charge

must necessarily fall from the higher to the lower level , from the nth to the

( n - ~ n ) th orbit , the groups becoming at first more marked and later

fading away until all the charge has fallen to the ( n - ~ n ) th orbit . The

frequency of rotation of the groups is ( cf . 11 and 12 )

1 ~ v ~ v

2: jt ~ = : L\ n . ( 26 )

This frequency is , by the theorem of the mean , intermediate between the

frequencies of rotation of the electron in the two orbits and therefore is

the frequency of rotation which the electron would have , were it in some

intermediate orbit . This is in accord with the principle of correspondence ,

but it was never clear why , according to that principle , only the ~ nth

harmonic should be radiated . Here it is clear . There are ~ n groups , and

hence the frequency radiated is

L\ v L\ W

N = L\ n - = L\ v = - h . ( 27 )L\ n

This type of jump is barred , however , by the principle of selection unless

~ n = :!: 1 . This would appear to be related to the essential indivisibility of

the electron , only such transitions being allowed in which one electron

wave group is formed .

Transitions between the more general type of stationary states of the

hydrogen atoms are to be treated in the same way . Because of the stationary 

character of the radial component of the wave the azimuthal quantum

11 Since this article went to press E . Schr6dinger , Ann . d . Phys ., 82 , p . 257 , 1927 ,

has published the same result .



number will determine the number of groups ,
moving circularly with the linear velocity (cf. 14).

there being Ilk groups

The frequency
radiated will be

rotation will therefore be Ilv /Ilk . And the frequency

Again the correct frequency
electron points to Ilk = ::!: 1.

is obtained, and the indivisibility of the
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~v ~vv = - = 27tr- ot:..~fJ t:..k (28)

of

N = L\k ~ = Ay - L\ WL\k i-:1 - h . (29)



The following item is the truly classic paper by Professor
Allis and Professor Morse which they wrote while working

with Sommerfeld in Munich in 1931. Here , in the early days

of wave mechanics, they were able to explain the apparently
most anomalous behavior which Ramsauer had demonstrated

so conclusively in which the collision cross section or alternately

the mean free path were, in some instances, sensitive functions

of the electron energy. The Morse -Allis theory which calculated

the diffraction of bombarding electrons by the external
electrons surrounding the nuclei of a large number of atoms

was not only the first but for many years the only wave

mechanical calculation of a gas-discharge phenomenon.




