The Integral Laws
in Free Space

The development of electromagnetism in the nineteenth century
went hand in hand with a very significant modification of the point of
view from which the pertinent experimental evidence was interpreted
and pieced together. The original point of view of “action at a dis-
tance,” characteristic of Coulomb’s law, had led to considering forces
of electric and magnetic origin as exerted directly by electric charges
on electric charges, and by magnetic poles or current elements on other
magnetic poles or other current elements. It was Faraday, in the first
half of the nineteenth century, who first conceived of the space sur-
rounding electric charges as filled with “lines of force,” indicating
everywhere the direction and (through their density) the magnitude
of the foree that would be acting on a positive unit charge if such a
charge were present. Iaraday, furthermore, thought of the space—
whether empty or occupied by polarizable matter—as an elastic me-
dium under stress, tension being present along the lines of force, and
pressure being exerted in all directions normal to them. Mutual forces
between charges could then be conceived as being “transmitted” by
the medium.

Faraday’s line of thought shifted the focus of attention from the
propertics of geometric configurations of charges and conductors to
those of the surrounding medium and of the field of force hypothesized
within it. Maxwell, in the second half of the nineteenth century, was
much impressed by the importance of this shift of emphasis, and sct
out to express Faraday’s ideas in a precise mathematical form. Ie
stated in the preface to the first edition of his famous A Treatise on
Electricity and Magnetism [1]:1

t Numbers set in brackets refer to references at end of chapter.
9



10 . ELECTROMAGNETIC FIELDS, ENERGY, AND FORCES

When I had translated what I considered to be Faraday’s ideas into a math-
ematical form, I found that in general the results of the two methods [that of
Faraday and that of action at a distance, which was the most popular among
the theoretical physicists and mathematicians of the time] coincided, so that
the same phenomena were accounted for, and the same laws of action deduced
by both methods, bub that Faraday’s methods resembled those in which we
begin with the whole and arrive at the parts by analysis, while the ordinary
mathematical methods were founded on the principle of beginning with the
parts and building up the whole by synthesis. I also found that several of the
most fertile methods of research discovered by the mathematicians could be
expressed much better in terms of ideas derived from Faraday than in their
original form. The whole theory, for instance, of the potential, considered as
a quantity which satisfies a certain partial differential equation, belongs es-
sentially to the method which I have called that of Faraday.

Maxwell’s interest in the inherent mathematical properties of clee-
tric and magnetic ficlds, as contrasted with those that depend on the
geometry and strength of their sources, led him to the formulation of
his famous ficld cquations and to the theoretical discovery of electro-
magnctic waves. Although clectromagnetic waves can also be inter-
preted as the result of “delayed action at a distance,” their discovery
by Maxwell as a necessary consequence of the properties of electromag-
netic fields constitutes the single most striking example of the much
greater power of the field point of view.

In deference to the mechanistic attitude of the nineteenth-century
physicists, Maxwell kept alive Faraday’s conception of free space as
an appropriate elastic medium through which electromagnetic actions
are transmitted, although his formulation of the field equations did
not depend in the least upon it. Only the repeated failure to observe
any one of the expected physical consequences of the existence of such
a medium, the ether, led modern physicists to disregard such an hy-
pothesis as unwarranted and, furthermore, as totally unnccessary.
Yet, because of the similarity between the mathematics of clectromag-
netism and that of clasticity, the concept of an elastic medium is still
useful in providing helpful, suggestive analogies.

The historical approach, beginning with Coulomb’s law, is followed
in most clementary treatments of electromagnetism because it permits
one to develop slowly the abstract concept of field while discussing the
experimental laws leading to Maxwell’s formulation of the field equa-
tions. On the other hand, it scems more appropriate, in a sccond and
more profound study of electromagnetism, to postulate Maxwell’s field
equations as the laws of electromagnetism, from which the simpler
laws of Coulomb, Ampere, Faraday, cte., can be derived as special
cases. This approach has the advantage of making a clear-cut separa-
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tion between the sources of an electromagnetic field, the field itself,
and the action exerted by the field on charges, currents, and neutral
matter. The important fact, in this regard, is that in any given region
of space the same field can be produced by a variety of source dis-
tributions outside the region. Ilowever, the ficld within the region
must satisfy conditions entircly independent of the sources located
outside the region. These conditions, which may be looked upon as
physical realizability conditions, are expressed by Maxwell’s field equa-
tions, so that the solutions of Maxwell’s equations represent the
physically realizable ficlds. Thus we sce that the field approach per-
mits us to split any design problem into three parts:

1. The determination of the class of ficlds able to produce the de-
sired type of action on charges, currents, and matter;

2. the seclection within such a class of a physically realizable field,
i.e., a ficld that satisfies Maxwell’s equations;

3. the determination of primary sources (charges and currents) and
of secondary sources (polarizable and magnetizable matter) able to
produce the desired field.

This ﬁcld—éynthesis point of view will guide our thinking in most of
this volume.

1.1 Review of Basic Postulates and Definitions

Basic postulates and definitions are always a troublesome subject in
the exposition of any physical theory. Educationally speaking, we are
faced with a vicious circle. On the onc hand, the exposition of the
theory should be preceded by a thorough discussion of the postulates
on which it is based and by precise definitions of the physical quantities
involved. On the other hand, both postulates and definitions cannot
be properly justified or even stated precisely without exploring their
conscquences and comparing them with the available experimental
evidence; thus it would scem that postulates and definitions should be
discussed after the presentation of the theory rather than before it.
Furthermore, questions concerning their consistency, necessity, and
sufficiency are often very difficult and involve not only the theory that
stems from them but also other related physical theories.

Serious difficultics of this type confront us in conncction with the
ficld theory of clectromagnetism. We are thus forced to compromise
and be satisfied with postulates and definitions that are not so clear
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and precise as we should like them to be, and which appear somewhat
arbitrary. Some of the questions that are left open will be answered
later on; others are beyond the scope of this text.

The evidence available from a wide variety of experiments on electro-
magnetic forees is consistent with the following basic postulates:

1. There exist two kinds of electric charges: a positive charge and a
negative charge.

2. Electric charge is conscrved; in the sense that whenever any
positive charge appears, an equal amount of negative charge also
appears.  Converscly, whenever any positive charge disappears, an
equal amount of negative charge also disappears. Thus the algebraic
sum of all charges is constant in any isolated system.

3. All charges are integral multiples of the clectronic charge, whose
magnitude is given by

= 1.60 X 10~ coulomb (1.1)

4. An electric charge in motion may be acted on by a force inde-
pendent of its velocity and also by a force proportional to its velocity
and dirccted at right angles to it. More precisely, the total force I
known as the Lorentz force can be expressed in the form

F = qE+ v x uI) (1.2)

where ¢ represents the charge and v its velocity. The vector E, the
clectrie-ficld intensity, and the vector I, the magnetic-field intensity,
are thereby defined in terms of the force, the charge, and its velocity
rclative to the observer. The quantity g is the permeability of
vacuum, a constant whose value depends on the system of units.

In the mks rationalized system of units, used throughout this vol-
ume, the force is measured in newtons, the velocity in meters per
second, and the charge in coulombs. The coulomb is the basic clectrice
unit which, together with the meter, the kilogram, and the sccond,
permits the definition of all other electromagnetic units, as discussed
in Appendix 2. Its definition requires, of course, an additional relation
independent of IEq. 1.2, The unit of electric-ficld intensity is specified
by Eq. 1.2 in terms of the units of force and charge. In practice, the
clectric-field intensity is measured in volts per meter, a volt being a
joule per coulomb. The unit of uoll is specified, similarly, in terms of
the units of force, velocity, and charge. The dimensions and the value
of the permeability of vacuum

uo = 4r X 1077 henry/meter (1.3)



THE INTEGRAL LAWS IN FREE SPACE 13

are sclected in such a way that the magnetic-field intensity be measured
in amperes per meter, that is in coulombs per meter-sccond, as we shall
see in Sce. 1.3.

We shall need in our study the concepts of charge density, current,
and current density. The charge density p at any point I is defined
as the ratio of the charge 8¢ contained in a small region about P to the
volume 8V of the region, in the limit when the region shrinks to the
point P;i.e.,

p = lim — (1.4)

Conversely, the charge density is a scalar function of position such
that the total charge in any volume V shall be representable as the
volume integral

q =fp dv (1.5)
v

Strictly speaking, this definition is inconsistent with postulate 3
above, because the limit of Ilq. 1.4 cannot exist if the charge 8¢ must
remain an integral multiple of the electronic charge. Conversely, the
total charge in a finite region cannot be an integral multiple of the
electronic charge for all regions if the charge density is a finite function
of position. On the other hand, the quantization of charge implied by
postulate 3 is so fine compared with the charge involved in the large-
scale phenomena with which we shall be concerned that the inaccuracies
resulting from the assumption of a smooth charge distribution with a
finite density are completely negligible.

The current I flowing through a surface S is defined as the limit of
the ratio of 8¢, the amount of charge that crosses S in the time 8¢, to
the time interval 8¢, when é¢ approaches zero, i.e.,

)
I =1lm A (1.6)

5t—0 Ot

Current is measured in amperes, one ampere being equal to a coulomb
per seccond. The sign of I is arbitrarily defined as positive for a current
flowing in the dircction of motion of positive charges or opposite to the
direction of motion of negative charges.

The current density J, a vector, is defined in turn as follows. Let
us consider a small element of surface da, and indicate with n a unit
vector normal to it. Clearly, the current 8 flowing through éa is a
maximum when the direction of n coincides with the direction of
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motion of the charge; with n so oriented, the magnitude of J is defined
as
oI
|J]| = lim — (.7
5a—0 8@

The dircction of J coincides with the direction of motion of positive
charge and is opposite to the direction of motion of negative charge,
in agreement with the above convention regarding the sign of 1. Thus
the current density in an clectron beam has a direction opposite to
the direction of motion of the clectrons. The current density can also
be defined in an equivalent manner as a vector function of position
such that the current through any surface S shall be representable as
the surface integral

I =fJn da (1.8)
8

where da is a differential clement of surface, and J, is the component
of J normal to the surfacec.

It is clear that the above definitions of current and current density
are just as inconsistent with postulate 3 as the definition of charge
density. Again the inconsistency may be disregarded as long as we
are dealing with large-scale phenomena.

The definition of charge density and current density, together with
the law of conservation of charge (postulate 2), implies that, for any
surface S enclosing a volume V),

d
I d =———f d 1.9
£ N I (19)

where J, is the component of J normal to S, and outwardly directed.
The left-hand side of this equation represents the current flowing out
of the closed surface S, i.c., the net outgoing positive charge per unit
time. The right-hand side is the negative time rate of change of the
net charge within V. We shall use this equation as a formal statement
of the law of conservation of charge.

1.2 Convection and Conduction Currents

The current through a given surface was defined, in the preceding
section, as the amount of charge crossing the given surface per unit
time, without reference to any other characteristics of the motion of
the charge. On the other hand, it is convenient for the purposes of
our discussion, to classify currents according to their physical origins
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in three categorics: convection currents, conduction currents, and
polarization currents. Convection currents and conduction currents
result from the free motion of electric charges; for this reason, they are
often referred to as free currents. Polarization currents result from
the relative displacement of charged particles in the atomic structure
of matter, when such particles remain bound to the atom or molecule
to which they belong. - The current resulting from the motion of such
bound charges is discussed in Sce. 5.2, as part of our study of dielectric
polarization. We shall focus our attention here on convection currents
and conduction currents.

We regard a current as being of the convection type when it results
from the motion of charge whose density and velocity are explicitly
stated. Thus, for instance, the current in a vacuum tube is regarded
as a convection current because it originates from the motion of a well-
identified space charge. The same is true for the current of an electron
beam in a cathode-ray tube, and for the current resulting from the
motion of a charged conductor. If p is the density of the moving
charge at a given point in a stationary system of coordinates, and v is
its velocity, the corresponding convection-current density is

J = pv (1.10)

Conduction currents result from the drift of frec electrons and ions
in matter under the influence of an clectric ficld, as, for instance, in
metals and electrolytic solutions respectively. The motion of such
charged particles is opposed by frictionlike forces within the conduct-
ing material that balance the forces exerted by the clectric field. In
metals and in electrolytic solutions these frictionlike forces are propor-
tional to the velocity of the charged particles over a large range of
values, with the result that the latter must be proportional to the
electric-ficld intensity in order for the particles to be in dynamic equi-
librium. It follows that the current density, which is proportional to
the velocity of the particles, becomes proportional to the electric-ficld
intensity, i.e.,

Jc = ok (1.11)

where ¢ is the conductivity of the material at the point at which J,
and E are measured. This equation is readily recognized as expressing
Ohm’s law in terms of ficld vectors.

1t is important to note that the presence of conduction current does
not imply the presence of a net charge density. In a metal, for in-
stance, conduction current results from the drift of free atomic elec-
trons in the presence of stationary atoms, which are positively charged
because of the loss of electrons. The net charge density may or may
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not be equal to zero; in any case, it bears no relation to the current
density beyond that required by the law of conservation of charge.
Furthermore, the actual density of the moving charge and its velocity
arc of no interest from a macroscopic point of view; we are only con-
cerned with their product which constitutes the current density. By
comparison, in the case of a convection current, both the charge den-
sity and its velocity are individually of interest.

1.3 The Field Equations in Free Space

The electric field E and the magnetic field II have been defined in
Sec. 1.1 in terms of the Lorentz force excrted on a moving charge. In
the first six chapters we shall focus our attention on the propertics of
these two ficlds without reference to their original definition, following
the ficld approach to electromagnetism developed by Faraday and
Maxwell. We shall return to their significance in terms of electromag-
netic forces in Chapter 7 in order to develop the concepts of clectro-
magnetic energy and electromagnetic power from the work done by
such forces.

Let us begin by reconsidering the integral form of Maxwell’s equa-
tions in free space, which culminates most clementary discussions of
clectromagnetism. For this purpose, let us consider an arbitrary, two-
sided, simply connected ! surface S, bounded by a closed contour C,
as illustrated in Fig. 1.1. The direction of the arrow along the contour
is related to that of the unit vector n, normal to the surface, by the
right-handed-screw rule; i.e., if the surface is continuously deformed
into a plane, a right-handed screw turning in the dircction indicated
on the resulting contour should move axially in the direction of the
unit vector n, normal to the plane. The two fundamental equations
of Maxwell can be written in the form:

- d
fEt ds + ——f;onn da=0 (1.12)
c dtJs

d
§II¢ ds — —feoE'n da =fJ" da (1.13)
¢ dt Jg s

! A simply connected surface is a surface without holes, i.e., a surface bounded by
a contour consisting of a single continuous line. We shall see later on that any
surface with holes (multiply connected) can be reduced for our purpose to a simply
connected surface by means of appropriate cuts. An example of a one-sided surface
is the Moebian strip constructed by joining the two ends of a twisted strip of paper
in such a way that one edge of the strip is made to coincide with the other edge.
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Fig. 1.1. The use of the right-
handed-serew rule in determining
reference dircetions on a surface
and on the contour bounding it.

where I, and II, are the components of E and IT tangent to the con-
tour C in the direction indicated by the arrow, and E, and I, are the
components of the same vectors normal to the surface S and in the
dircetion of the unit vector n; da represents a differential element of
the surface S, and ds represents a differential element of the contour C.
The value of the constant €, the permittivity of vacuum, is obtained
from the cquation

c = 2.998 X 10® meters/second (1.14)

1
\/ €010
where ¢ is the velocity of light in vacuum, as determined by measure-
ments. This cquation yields for ¢ the value

€ = 8.851 X 10712 (1.15)

Equation 1.14 is a direet consequence of Maxwell’s equations,
although it cannot be derived at this point.  Since it relates the valucs
of g and ¢ to the velocity of light in vacuum, a measurable physical
quantity, only one of these two constants of vacuum can be selected
arbitrarily in devising a system of units. As stated in Sce. 1.1, the
value of p is selected, in the mks rationalized system, in such a way
that the magnetic-field intensity is measured in amperes per meter, as
evidenced by Iq. 1.13; this sclection fixes both the value and the
dimensions of ¢.

The first equation, Eq. 1.12, expresses Faraday’s induction law,
namcly, that the electromotive foree around any closed contour must
equal the negative time rate of change of the magnetic flux linking the
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contour. In fact, the contour integral represents the work that would
be done by the electric field in moving a unit positive charge once
around the contour, i.e., the clectromotive force. The surface integral
represents the flux of the magnetic ficld through the given surface S.
Since the contour integral depends only on the field and the contour C,
the surface integral must also depend only on the ficld and on the con-
tour; in particular, the time rate of change of the flux must be the same
for all two-sided surfaces bounded by C. We shall see in See. 3.1 that
this requirement implies that the magnetic flux through any closed
surface is always equal to zcro, i.c.,

f;uolln da=0 (1.16)
N

This equation is sometimes stated as a separate field law known as
Gauss’ law for the magnetic field. Actually it is a direct consequence
of Eq. 1.12.

The sccond field equation, Eq. 1.13, is a statement of Ampere’s cir-
cuital law, modified by the addition of the term involving the time
rate of change of the flux of . The contour integral is the magneto-
motive force around the contour; the surface integral of the current
density represents, of course, the net current flowing through S. The
role played by the second term on the left-hand side, sometimes mis-
leadingly referred to as the “displacement current,” becomes evident
when we move it to the right-hand side and require that the sum of
the two surface integrals be the same for all two-sided surfaces bounded
by the same contour, just as we did in connection with Eq. 1.12. This
requircment could not be met by the current term alone; for instance,
the surfaces S and S in Tig. 1.2 would yicld different current fluxes,
since S cuts through a wire leading to a capacitor whereas S’ passcs
between the plates of the capacitor without cutting through any wire.

Fig. 1.2. An example of twosurfaces bounded
by the same contour C through which differ-
ent amounts of current flow.
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Thus the circuital law as stated originally by Ampere cannot be correct
for time-varying fields.

We shall sce in Sece. 3.1 that the requirement that the sum of the
two surface integrals in Eq. 1.13 be the same for all surfaces bounded
by the same contour implics that the outward flux of ¢FE through any
closed surface must be equal to the net charge ¢ in the volume V en-
closed by the surface: i.e.,

§€0En da =fp dv = q (1.17)

S V

Again, this equation is sometimes stated as a separate law, known
as Gauss’ law for the electric field. Actually it is a direct consequence
of Eq. 1.13 and of the law of conservation of charge expressed by Eq.
1.9. Iistorically, however, the discovery of Gauss’ law preceded the
formulation of the sccond basic field equation. Maxwell noted that
Ampere’s circuital law (similar to Eq. 1.13 but without the term in-
volving ¢FE,) was mathematically inconsistent for time-varying fields
because the flux of J could depend on the particular surface S selected,
as discussed above. IHe then showed, on the basis of Gauss’ law and
the law of conservation of charge, that mathematical consistency could
be obtained by adding the term involving eE,. It is important to
note that the addition of this term was the key to the theoretical dis-
covery of electromagnetic waves.

The name “displacement current” originated from Maxwell’s argu-
ment about an additional current term being required, for mathe-
matical consistency, and from his views about free space being some
sort of a material medium. Actually, nothing is displaced in free
space, and the new term introduced by Maxwell in Iq. 1.13 should be
thought of as being parallel to the corresponding term in Eq. 1.12.
Thus, a finite magnetomotive force is associated with a time-varying
flux of e E, just as a finite clectromotive force is associated with a time-
varying flux of polIl.

1.4 Usefulness and Limitations of Integral Laws

It is important to stress that the integral laws discussed in the pre-
ceding scction must be satisfied for every closed contour C and every
closed surface S. Clearly, it would be very difficult to ascertain whether
any particular pair of fields E and IT does or does not satisfy such laws
for all possible contours and surfaces, and it would be even more diffi-
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cult to find directly a pair of fields that would satisfy them for a given
distribution of charges and currents. We shall sece in Chapter 3 that
the problem can be considerably simplified by substituting for the
integral laws equivalent differential laws. Yet, there are important
special cases in which the integral form of the field laws is not only
adequate but also more illuminating. These special cases are charac-
terized by particular geometric symmetrices, such as spherical or cylin-
drical. This point is best explained in terms of specifie examples.

Let us consider a time-independent charge ¢, uniformly distributed
within a sphere of radius a centered at the origin,  We wish to deter-
mine the electrice ficld produced by this charge, both inside and out-
side the sphere. We note, first of all, that because of the spherical
symmetry of the charge distribution, the clectric field must have
everywhere a dircction radial from the origin. This follows from the
fact that a radial direction is the only direction that can have a com-
plete spherical symmetry. Tor the same reason, the intensity of the
cleetric field must be constant over any concentric spherical surface.
Then, if we take any such spherical surface as the closed surface S of
Eq. 1.17, and indicate with r its radius, this equation becomes

r <r>3 forr <
- orr<a
4rriel, = 1 a (1.18)
Lq forr > a
from which we obtain
1 -7 forr<a
dregad
I, = (1.19)
1 forr > a
47['607‘2

where E, is the clectric-ficld intensity in the outward direction.

It is important to observe that ISq. 1.17 together with the spherical
symmetry requirement was sufficient to determine uniquely the clee-
tric-ficld intensity. This means that Iiq. 1.12 must be automatically
satisfied, or, in other words, that the constraint imposed on the eleetric
ficld by this equation is already implicd by the spherical-symmetry
requirement. It can be shown, in fact, that, in the absence of any time-
varying magnetic field, Eq. 1.12 is satisfied by any radial, spherically
symmetrical clectric ficld. This property of spherically symmetrical
fields is very readily proved with the tools of vector analysis, discussed
in the following chapter.

Let us consider next the case of an infinite straight wire of radius q,
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carrying a steady current I, parallel to the axis of the wire and uni-
formly distributed through its cross scetion. We wish to determine
the magnetic field produced by this current distribution, both inside
and outside the wire. We shall show, first, that the magnetic field
must be tangent to any circular eylinder coaxial with the wire. For
this purpose, we observe, first of all, that, because of the circular
cylindrical symmetry of the current distribution, the magnetic field
can depend only on the radial distance r from the axis of the wire,
besides on the magnitude and the direction of the current. In particu-
lar, if the magnetic field includes a radial component, this component
must have the same direetion (cither toward the axis of the wire or
away from it) at all points. I'urthermore, if the magnetic ficld has a
component parallel to the axis of the wire, this component must be
constant over any straight line parallel to the wire.

Let us consider then Eq. 1.16, using for S the surface of any circular
cylinder of finite length, coaxial with the wire. The flux of II entering
the cylinder from either end surface must be equal to the flux leaving
the cylinder from the opposite end surface, beeause the component of
the magnetic ficld parallel to the wire must be independent of the
position along the wire. Thus this component cannot contribute to
the surface integral.  On the other hand, any flux through the circular
part of the surface can only be caused by a radial component; further-
more, because of the cireular symmetry requirement on the radial com-
ponent, this flux can vanizh only if this component is equal to zero.
Thus, we can conclude that Eq. 1.16 requires the magnetic field to be
tangent to any circular eylinder coaxial with the wire.

Let us consider next 18q. 1.13 and use as contour € a circle concentric
with the wire, drawn on a plane normal to it, as illustrated in Fig. 1.3.
Assuming that the current flows upward from the paper, I3q. 1.13 re-
quires the current flowing through the circle to be equal to the line
integral, in the dircction indicated by the arrow, of I1,, the component

Contour of
integration

Fig. 1.3. Contour of integration
used in connection with 15q. 1.20.
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of the magnetic field tangent to the circle. Since II, must be constant
over the circle, because of the circular symmetry of the current distri-
bution, Itq. 1.13 yiclds for a circle of radius r,

1 (7Y
1 (—) forr<a
2nrHl, = a (1.20)
LI forr > a
from which we obtain
I
sr  forr<a
2ra”
H, = 7 (1.21)
— forr > a
2nr

It remains to be shown that, if there is any component of the mag-
netic field parallel to the axis of the wire, the magnitude of such a
component must be constant throughout the entire space and inde-
pendent of the current in the wire; in other words, this component
plays the role of an “arbitrary additive constant.” TFor this purpose,
let us use for C' the rectangular closed path illustrated in Fig. 1.4,
drawn on a plane containing the axis of the wire. The two radial
sides of the rectangle do not contribute to the line integral in Eq. 1.13
because the magnetie ficld has no radial component. Furthermore the
entire line integral must vanish beeause no current flows through the

] ¥ ! Fig.1.4. Contour of integration
i b {7 used in determining the magnetic
{ ficld parallel to the wire.
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rectangular closed contour. It follows that the contributions to the
line integral of the two remaining sides must be equal in magnitude and
opposite in sign. Since this must be true for all similar rectangular
paths, the component of the magnetic field parallel to the axis of the
wire must be constant through the entire space. This uniform field is
independent of the current in the wire and must be thought of as being
produced by currents at infinity.

The above two examples illustrate how static fields can be deter-
mined from their sources with the help of the integral laws when the
sources have special geometric symmetries. The simplicity of the pro-
cedure results from the selection of surfaces and contours on which
the pertinent field components are known to be constant because of
the symmetry of the sources. In the two examples considered above,
the fields turn out to depend on a single spacial coordinate; there are
cases, however, in which fields that depend on two spacial coordinates
can be determined direetly from the integral laws by following a similar
procedure. In other words, the adequacy of the integral laws for the
solution of a particular problem depends on the possibility of finding
appropriate contours and surfaces rather than on the dimensionality
of the field, although these two characteristics of the problem are re-
lated to some extent.

1.5 Matter as a Field Source

Matter is known to consist of positively charged nuclei surrounded
by electrons. The negatively charged clectrons revolve in orbits
around the nuclei, and carry a total charge equal in magnitude and
opposite in sign to that of the nuclei. Thus matter, in its normal
state, is macroscopically neutral.

The field produced by atomic charges is, clearly, extremely complex.
In dealing with large-scale phenomena, however, we can disregard its
fine structure, and focus our attention on the smoothed ficld obtained
by averaging the actual field over volumes large compared to atomic
dimensions, yet small compared with the dimensions of the system
under consideration. We shall use the adjective “macroscopic” in re-
ferring to these smoothed fields.

Usually, no macroscopic electric field is produced by neutral matter,
mainly because of the mutual cancellation of the ficlds produced by
neighboring atoms, and the averaging effect of thermal agitation.
However, when the atomie structure of a material is modified, or the
averaging action of thermal agitation is counteracted by an external
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electric ficld (or by other external forces), the contributions of the
individual atoms may add up to yicld a macroscopic ficld comparable
in intensity to the external applied field. Two distinet situations arise:
the first one characteristic of conducting materials when electrons or
ions are relatively free to move about under the influence of an electrice
ficld, as in metals and electrolytic solutions; the second one charactoer-
istic of diclectric materials, when positive and negative charges are
held together by such strong forces that they cannot be pulled apart
completely, but only slightly displaced.

The ordered drift of charges resulting in the first situation constitutes
macroscopically a conduction current which is found to depend at cach
point on the local electrie-field intensity and on the loeal structure of
matter, as discussed in See. 1.2, Such free charges may accumulate
within a conducting body and on its surface, giving rise thereby to a
net macroscopic charge distribution. In the second situation, in which
charges are held together by strong forces, only small changes of their
relative mean positions can result. When a net macroscopic electric
field results from such displacements, the material is snid to be clec-
trically polarized. We shall see in Chapter 5 that the state of polariza-
tion of a material can be taken into account by associating to the
material a distribution of clectric dipoles whose moment density at
cach point is a function of the local state of matter. The macroscopic
charge and current densities resulting from such dipole distributions
and from their time rates of change will then be incorporated in the
field equations as polarization components of p and J.

Electrons are known to possess a magnetie-dipole moment in addi-
tion to a negative electric charge. This is evidenced by the magnetic
ficld produced by them as well as by the force and torque exerted on
them by an external magnetic ficld.  This magnetic-dipole moment is
associated to an angular momentum, or spin, and, therefore, is usually
regarded as resulting from the current loop formed by the spinning
electric charge. In some substances the spin dipole moments of the
various electrons cancel eompletely within each atom or molecule; in
others they do not cancel completely, so that each of their atoms or
molecules has a resultant net dipole moment. These atomic or molecu-
lar magnetic dipoles are usually randomly oriented, mainly because of
thermal agitation, so that they produce no net macroscopic field.
However, a partial orientation in a particular direction may occur
under the influence of an external magnetic field, or as a result of
strong interatomic or intermolecular forces. In such eases the indi-
vidual contributions of each atom or molecule add up to yield a finite
macroscopic field and the material is said to be magnetized.
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We shall sce in Chapter 5 that the state of magnetization of a ma-
terial can be taken into account macroscopically by associating with
it a distribution of magnetic dipoles, whose moment density at cach
point is a function of the local state of matter. This representation is
entirely analogous to that of electrically polarized materials.  ITow-
ever, it is not immediately clear how a distribution of magnetic dipoles
should be incorporated in the field cquations as a field source. We
ghall sce in Chapter 5 that, if cach dipole of the distribution is regarded
as a microscopic current loop, the entire dipole distribution is equiva-
lent to a macroscopic current distribution whose density can be treated
as a magnetization component of J. ITowever, the use of such a cur-
rent model for magnetized materials makes it impossible to develop a
macroscopic theory of electromagnetism that 1s both sclf-consistent
and in agrecement with experimental evidence. We shall see, on the
other hand, that a satisfactory model can be obtained by treating
magnetic dipoles in a manner entirely analogous to electric dipoles,
just as if they consisted of magnetic charges with properties analogous
to those of electric charges. This will require introducing in the field
laws a magnetic-charge density p* and a magnetic-current density J*,
analogous to p and J; Eqgs. 1.12 and 1.16 will then become

d
fE, ds + —fuoHn da = —fJ,.*da (1.22)
c dt Js 3

56 woll da f o* dv (1.23)
S v

The purpose of the above qualitative remarks about the role of
matter as a source of clectromagnetic ficlds is to introduce at this carly
stage the point of view that will characterize our treatment of macro-
scopic electromagnetic phenomena, and to justify the fact that, in the
first four chapters, we shall confine our attention to free-space fields.
1t is convenient, for our purposes, to regard the phenomena of electric
polarization and of magnetization of matter as consisting of two dis-
tinet parts: the action of an electromagnetic field in changing the state
of polarization and magnetization of matter, and the action of polarized
and magnetized matter in producing an electromagnetic field. The
{irst part involves the functional relations between the state of polariza-
tion and the state of magnetization of matter on the one hand, and
the clectromagnetic field acting on matter on the other hand. These
functional relations are often referred to as “constituent relations of

It
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matter.” The physical origin of these relations and the microscopic
characteristics of matter that are responsible for them arc outside the
scope of our discussion. We shall treat them instead empirically as
experimentally determined properties of matter. The sccond part,
namely, the role of polarized and magnetized matter as a source of
electromagnetic ficlds is not only within the scope of our discussion
but is a central part of it.

Another way of describing the same point of view is to say that
matter behaves like a “controlled source,” in the sense that matter is
a source of electromagnetic ficld, but, at the same time, its source
strength is a function of the field itself. In other words, the phenomens
of polarization and magnetization involve a sort of “feedback control,”
whose characteristics are assumed to be given, or otherwise experi-
mentally determinable, for each material.

This point of view leads us to consider any macroscopic clectromag-
netic field in matter as a free-space field in the presence of source dis-
tributions, which are either dircetly specified, or are expressible in
terms of the field itself with the help of the constituent relations of
the material involved. It follows that all ficld properties that do not
involve the feedback link represented by the constituent relations can
be studied without any reference to whether the sources are inde-
pendent of the field or result from polarization and magnetization of
matter. In particular, the ficld laws for macroscopic ficlds are the
same within matter as outside matter, as long as the source densities
which appear in the ficld laws are understood to include the com-
ponents contributed by matter. We must keep in mind in this regard
that, whereas eleetric sources can be present in the absence of polarized
matter, magnetic sources can arise only from magnetized matter. For
this reason, magnetic sources are not usually included in the free-space
field equations; we have followed this convention in Sce. 1.3, and we
shall continue to follow it in the next three chapters to avoid generat-
ing any misunderstanding as to the physical nature of magnetic charges
and currents.

In view of the above arguments, we shall focus our attention first on
free-space ficlds, produced by specified source distributions.  Metallie
conductors, however, will be included from the start in our discussion
because they provide a wealth of interesting illustrations, and because
of the simplicity of the constituent relation between electric field and
conduction current, namely, Ohm’s law. Polarizable and magnetizable
materials will be taken up in detail in Chapter 5.
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1.6 Summary and Conclusions

This chapter has been devoted to a review of the basic postulates of
clectromagnetism and of the laws governing the bchavior of electro-
magnetic ficlds in free space. The main purpose of this review was to
place in evidence the foundations on which we shall build our more
advanced discussion of clectromagnetic phenomena, free from the inter-
mediate steps necessary in a first presentation to develop gradually the
abstract concept of electromagnetic field. These foundations are

1. The law of conservation of charge.

2. The expression for the Lorentz force on a moving charge in terms
of which the electric field and the magnetic field are defined.

3. The ficld laws in integral form that relate the electric field and
magnetic ficld to each other and to the charge and current distributions.

These fundamental laws form a sclf-consistent set of relations in
terms of which observable mutual forces between charges, whether
stationary or in motion, ean be deseribed and predicted. The descrip-
tion and prediction of macroscopic forces between material bodies will
require the additional postulation in Chapter 5 of macroscopic models
for polarized and magnetized matter.

An important characteristic of the law of conservation of charge
and of the ficld laws as expressed in Sees. 1.1 and 1.3 is that they relate
contour integrals, surface integrals, and volume integrals of electro-
magnetic quantities. They are not equations of the type in which
physical quantities are related to space or time derivatives of other
physical quantities at the same point in space. On the other hand, such
integral relations must be valid for all closed contour and associated
surfaces, and for all closed surfaces and associated volumes. This
arbitrary nature of the contours and surfaces suggests, as it is actually
the case, that there should exist equivalent point relations between
the same electromagnetic quantitics and their time and space deriva-
tives. For instance, the clementary derivation of plane waves found
in many texts [2, Sce. 15.1] provides a good illustration of how the field
equations in integral form yicld point relations between the time de-
rivative of one field vector and the space derivatives of the other.

Differential point relations describe the variations of vector fields
from point to point rather than their properties over extended regions
of space. As a result, they are much more convenient than integral
relations, both conceptually and mathematically. The next chapter is
devoted to the development of the mathematical tools necessary to
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express the laws of clectromagnetism in the appropriate differential
form.

1.7 Selected References

The following sclected references should be helpful in reviewing the
elementary aspects of electromagnetism, in acquiring a better historieal
perspective of the development of electromagnetism, and in developing
a clearer understanding of the basic postulates and definitions discussed
in this chapter, and a better appreciation of the problems involved in
their choice.

1. J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., reprinted by
Dover Publications, New York, 1954, The preface to the first edition, dated
February 1, 1873, gives the reader a good appreciation of Maxwell's point of
view and of his fundamental contribution to the theory of clectromagnetism.

2. N.IL Frank, Introduction to Electricity and Optics, 2nd ed., McGraw-Hill, New
York, 1950. This is the physies textbook most appropriate in content and point
of view for reviewing the elementary aspeets of clectromagnetism with which
the reader is expected to be familiar,

3. A. Sommerfeld, Electrodynamics, Academic Press, New York, 1952. Seection 1
of Part I is an historical review including some interesting biographical notes
on the great men of electromagnetism.  This review is particularly illuminating
beeause Sommerfeld lived through the period in which electromagnetic theory
became of age. Scetions 2, 7, and 8 present a careful discussion of units and
dimensions.

4. J. C. Slater and N. IL. Frank, Electromagnetism, McGraw-I1ill, New York, 1917,
The introduction to Chapter 1 provides a good discussion of the development of
electromagnetism.

PROBLEMS

Problem 1.1. An electron moves with a velocity v along the z-axis of a Cartesian
coordinate system. A uniform magnetic field of magnitude I is applied in the
positive z-direction. What electrie ficld is required to foree the electron to follow
a straight path along the z-axis?

Problem 1.2, An electron (chargee = 1.6 X 10~ coulomb, mass m = 9.1 X 10—3
kg) moves in a uniform magnetic field II = 10° amp/m in a plane at right angles
to the direction of II. Show that the electron moves in a circular path of radius r,
and find r for an electron veloeity of » = 10* m/sce.

Problem 1.3. In a cathode-ray oscilloscope, the electrons emitted from a heated
filament are accelerated through a potential difference of 1000 v. The electrons
then pass belween two parallel deflecting plates, 2 X 2 em, spaced 0.5 em apart.
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The clectrons finally strike a fluorescent screen 30 em from the rear edge of the
deflecting plates.

What is the defleetion of the spot on the fluorescent screen when a potential
difference of 10 v is applied to the deflecting plates? Negleet the fringing field
near the edges of the deflecting plates.

Problem 1.4. A cloud of charged particles is distributed in a hollow spherical cavity
carved out of a perfectly conducting material. The charge density is

12) coulombs

p(r) = po (1 -

meter?
where pg is 2 constant, R is the radius of the cavity, and r is the distance from the
center of the cavity. Iind the electric-field intensity at every point within the
cavity. What is the surface-charge density on the surface of the cavity?

Problem 1.5. A spherical drop of fluid carries a charge of ¢ coulombs. Assume
that the charge is uniformly distributed throughout the volume.

(a) Caleulate the electric field and the potential both inside and outside the
sphere.

(b) Two identical drops as above coalesce to form a single spherical drop. What
is the potential at the surface of the new drop?

Problem 1.6. Given a very large plane sheet of charge (not a conductor) with
uniform surface-charge density o, find the difference of the electrie-field vectors on
either side of the sheet, far from the edges of the sheet.

Problem 1.7. The static electric field between two infinite parallel conducting
plates held at a potential difference Vy is perpéndicular to the plates, and uniform.

(2) Show that the field satisfies Iq. 1.12 for all rectangular paths normal and
parallel to the plates.

(b) Show that the field satisfies I3q. 1.17 for all parallelepipeds with fices normal
and parallel to the plates. Show that the same equation is satisfied for any spherical
surface.

(c) I'ind the surface-charge density on the plates by applying Eq. 1.17 to an ap-
propriate surface.

Problem 1.8. (2) Find the electrostatic field produced by a point charge q.

(b) Show that Ilq. 1.17 of the text is satizfied for a closed surface whose sides are
formed by a eircular cone with the apex at the point charge, and whose two endfaces
are two spherical eaps of radii Ry and Ry respectively (2 > Iy).

(c) Show that the field satisfies Joq. 1.12 for any planar contour consisting of two
arcs of cireles centercd at the charge and two segments of straight lines passing by
the charge.

Problem 1.9. Two infinite coaxial metallic cylinders are uniformly charged with a
density A; per unit length on the inner eylinder (outer radius 7o), and a charge Ao
per unit length on the outer cylinder (inner radius I?; and outer radius ). De-
termine the electrie field between the cylinders, and in the outside space, and show
that it satisfies both Ilqs. 1.12 and 1.17.

Problem 1.10. A direct current is uniformly distributed over the cross section of a
straight, infinitely long, circular cylindrical copper conductor of radius ro. An
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equal amount of current flows in the opposite direction through a coaxial conductor
of inner radius B; and outer radius Ry, and it is uniformly distributed over its cross
section. Find the magnetic field both inside and outside the conductors, and show
that it satisfies Eqs. 1.13 and 1.16.

Problem 1.11. The Supreme Council of Lower Slabovia has deereed that in honor
of its famous scientist Popin, a new unit of flux be introduced, the popin (ab-
breviation “pop,” dimensional symbol P).

1 pop = 10 webers

The coulomb has been abolished. Derive a table of dimensions as used by the
Slabovian scientists. Use only the four fundamental dimensions, meter, second,
kilogram, and popin. Find the explicit values and dimensions of the electric permit-
tivity e and the permeability uo, as used by the Slabovians.



