
C HAP TE R 0 NE

The Integral Laws
in Free Space

The development of electromagnetism in the nineteenth century

\ vent hand in lillnd \ vith a very significant modification of the point of

view from \ \ "hich tile pertinent experimental evidence \ vas interpreted

and pieced together . rrhe original point of view of " action at a distance

, " characteristic of Coulomb ' s law , had led to considering forces

of electric and magnetic origin as exerted directly by electric charges

on electric charges , and by magnetic poles or current clements on other

magnetic poles or otiler current elements . It \ vas v ' araday , in the first

h :'11f of the nineteenth century , \ \ ' ho first conceived of the space surrounding 

electric charges as filled \ Vitil " lines of force , " indicating

every \ \ "ilere the direction and ( through tileir density ) the magnitude

of tile force tilat \ \ ' ould be acting on a positive unit charge if such a

clillrge \ \ "ere present . F :'irad :'lY , furthermore , tllougllt of the Sp :'lCC -

\ vhether empty or occupied by polarizable matter - :'ls an el :'lstic medium 

under stress , tension being present along the lines of for ( ~e , and

pressure being exerted in all directions normal to them . ~ lutual forces

bet \ veen charges could then be conceived as being " transmitted " by

tile medium .

Faraday ' s line of thought shifted the focus of attention from tile

properties of geometric configurations of charges and conductors to

tilose of the surrounding medium and of tile field of force llypotllesized

\ \ "i tllin it . l \ Iax \ velI , in tile second half of the nineteenth century , \ \ ":'lS

much impressed by tile import :.mce of tilis sllift of emplllisis , and set

out to express l " araday ' s ideas in a precise mathem :'ltic :'11 form . lIe

stated in tile preface to tile first edition of llis famous ,, 1 Treatise on

E ' lectricity and .Ill agnetism [ 1 ] : 1

1 Numbers set in brackets refer to references at end of chapter .
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10 ELECTROMAGNETIC FIELDS, ENERGY, AND FORCES

" chen I had translated ,,"llat I considered to be Faraday's ideas into a mathematical 
form, I found tllat in general the results of the t " o methods [that of

Faraday and that of action at a distance, " hich ,, as the most popular among
the theoretical ph:;"sicists and matllematicians of the time] coincided, so that
the same phenomena " ere accounted for, and the S[lme 1:1', s of action deduced
by both methods, bu~ that Farada:;"s methods resembled those in " hich we
begin " ith the " hole and arrive [it the parts by an[llJ"sis, " hile the ordinary
mathematical methods " ere founded on the principle of beginning " ith the
parts and building up the ,,"hole by s:;"ntllesis. I also found that several of the
most fertile metllods of research disco' "ered by tIle mathematicians could be
expressed much better in terms of ideas derived from Faraday than in their
original form. 1"Ile " hole theor:;", for instance, of the potential , considered as
a quantity " hich satisfies a cert:Lin parti [u clif Ierential equation, belongs essentially 

to the method " hich I ha\"e c[uled that of Faraday.

l\ Iax \vell 's interest in the inherent mailiematical properties of electric 
and magnetic fields , as con tr [lsted \\.i th those that depend on the

geometry and strength of ilieir sources, led him to the formulation of
his famous field equtltions and to the theoretical discovery of electromagnetic 

\vaves. l\ lthough electromagnetic \vaves can also be interpreted 
as the result of " deltlyed action at a distance ," their discovery

by i\ Iax \vell as a nece S Stlf Y consequence of the properties of electromagnetic 
fields constitutes the single most striking example of the much

greater po\ver of ilie field point of vie \\' .
In deference to the mechanistic attitude of the nineteenth -century

physicists , i\ Iax \vell kept ali \'e Ftlrtld [lY'S conception of free space as
an appropriate elastic medium tllrough \vhich electromagnetic actions
are transmitted , although his formultltion of the field equations did
not depend in the least upon it . Only the repeated failure to observe
anyone of the expected pllysi (~Til consequences of the existence of such
a medium , the ether , led mo ilern physicists to disregard such an hypothesis 

as un \v arrant  ed [lnLl, furthermore , as totally unnecessary.

Yet , because of the similtlrity bet \\'een the mathematics of electromagnetism 
and that of elasticity , the concept of an elastic medium is still

useful in providing helpful , suggest i\'e an[uogies.
1'he historical approacll , beginlling \\'ith Coulomb 's la\\", is Folio\ved

in most elementary tretltments of electromagnetism because it permits
one to de\'elop slo\vly ilie abstrtlct concept of field \vhile discussing the
experimentalltl \\'s leading to ~Itlx \\'ell 's formultltion of the field equations

. On the other htmLl, it seems more appropri [\,te, in a second and

more profound study of electrom ~lgnetism , to postulate ~Iax \vell 's field
equations as the la\VS of electrom [lgnetism , from \vhich the simpler
la\VS of Coulomb , i\ mpere , 1;'~lr ~ldtlY , etc ., ctm he deri \'ed as special
cases. This approach hus the ad\'~lnt ~lge of making a clear-cut separa-
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tion bet " , " een the sources of an electromagnetic field , the field itself ,

and the action exerted by the field on charges , currents , and neutral

matter . rrhe important ftlct , in this regard , is tllat in any given region

of space the same field can be produced by a variety of source distributions 

outside the region . I Io " e \ ' er , the field , , - ithin the region

must satisfy conditions entirely independent of the sources located

outside the region . rl ' hese conditions , " hich may be looked upon as

ph ) ' sical realizability conditions , are expressed by i \ Iax " ell ' s field equations

, so that the solutions of i \ Iax " cll ' s equations represent the

physically realiztlble fields . 1 ' hus " e see that the field approach permits 

us to split any design problem into three parts :

1 . rrhe determination of the class of fields able to produce the desired 

type of action on charges , currents , and matter ;

2 . the selection , vithin such a class of a physically realizable field ,

i . e . , a field that satisfies l \ Iax \ vell ' s equations ;

3 . the determination of primary sources ( charges and currents ) and

of secondary sources ( polarizable and magnetizable matter ) able to

produce the desired field .

This field - synthesis point of vic \ v will guide our thinking in most of

this volume .

1 . 1 Review of Basic Postulates and Definitions

Basic postulates and definitions are al " . ays a troublesome subject in

tile exposition of any physical theory . Edu  cation  ally speaking , " e are

faced , , - ith a vicious circle . On the one hand , the exposition of the

theory should be preceded by ~l , thorough discussion of the postulates

on " . hich it is based and by precise definitions of tile pllysical quantities

involvecl . On the other h ~md , both postulates and definitions cannot

be properly justified or even sttlted precisely " . ithout exploring their

consequences and comparing them " . itll the a , '"ailttble experimental

evidence ; tilus it " ould seem that postul ~ltes and definitions should be

discussed after the present ~Ltion of the theory rather than before it .

Furthermore , questions concerning their consistency , necessity , and

sufficiency are often very difficult and invol \ . e not only the theory that

stems from them b1 . it also other related physical theories .

Serious difficulties of this type confront us in connection " ith the

field theory of electromagnetism . ' \ " e are thus forced to compromise

and be satisfied " ith postulates and definitions that are not so clear
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and precise as " .e should like them to be, and " hich appear some" hat
arbitr [lry . Some of the questions that are left open " .ill be ans" .ered
later on ; others are beyond the scope of this text .

rrhe evidence a,"ailable from a ,vide variety of experiments on electromagnetic 
forces is consistent " .i th the f ollo ,ving basic postulates :

1. 1'here exist t \VO kinds of electric charges: a positive charge and a
negative charge.

2. Electric charge is conserved ; in the sense that \\.henever any
positiv 'e ch~lrge appears, an equal amount of neg::ttive charge also
appe~lrs . Coniersely , \\'henever any positiv 'e charge disappe~lrs , an
equal amount of negative c.11arge also disappears . rl'hus the algel Jraic
sum of all ch ~lrges is constant in any isol ~l ted system .

3. All ch::trges ::Ire integral multiples of the electronic charge, ,\'hose
magnitude is gilen by

e = 1.GO X 10- I !) coulomb (1.1)

4. i\ n electric charge in motion may be acted on by :1 force independent 
of its velocity and also by a force proportional to its velocity

and directed at rigllt angles to it . l\ lore precisely , the total force ]I'
knO\ffi as ilie Lorentz force c~m be expressed in the form

F = q(E + v x }.Loll) (1.2)

,vhere q represents the charge and v its veloeity . 1'he vector E, the
clectric -field intensity , and the vector II , the magnetic -field intensity ,
are thereby defined in terms of the force , the charge, and its , 'elocity
relative to the observer . rfhe quantity }J.o is the permeability of
vacuum , a constant " 'hose value depends on the system of units .

In the mks rationalized system of units , used throughout tilis volume
, the force is measured in ne\vtons , the velocity in meters per

second , and the ch :'lrge in coulombs . rl ' he coulomb is the basic electric

unit \vhich , together \\'ith the meter , the kilogram , and the second,
permits the definition of all other electromagnetic units , as discussed
in Appendix 2. Its definition requires , of course, an additional rel :'ltion
independent of Eq . 1.2. 1'he unit of electric -field in tensity is specified
by Eq . 1.2 in terms of the Ullits of force and charge. In practice , the
electric -field in tensity is measured in volts per meter , a ' "01 t being a
joule per coulomb . rrhe unit of .uoll is specified, similarly , in terms of
the units of force , velocity , and charge. rl'he dimensions and the value
of the permeability of vacuum

}La = 47r X 10- 7 henry jmeter (1.3)
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Conversely, the charge density is :1
that the total charge in any volume
volume integral

scalar function of position such
V shall be representable as the

Strictly speaking , this definition is inconsistent " ith postulate 3
above , because the limit of Eq . 1.4 cannot exist if the charge oq must
remain an intcgr ~u multiple of the electronic cllarge . Conversely , the
total charge in a finite region cannot be till intcgr ~u multiple of the
electronic charge for all regions if the charge density is a finite function
of position . On the other hand , the quantization of charge implied by
postul ~lte 3 is so fine compared " ith Tile charge involved in the large-
scale phenomena with " .hich " e shall be concerned that tIle inaccuracies
resulting from the assumption of a smooth charge distribution " ith a
finite density are completely negligible .

The current I fio ,\.ing through a surf ~tce S is defined as the limit of
ilie ratio of oq, the amount of charge that crossesS in the time ot, to
the time interial ot, " hen ol approach es zero, i .e.,

11m -
0/-. 0 at

p = jim ~oV-,o oV (1.4)

q = Lp du (1.5)

oq1 = (liG)
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are selected in such avay that the magnetic - field intensity be measured

in amperes per meter , that is in coulombs per meter - second , as ,ve shall
see in Sec. 1.3 .

' \ Te shall need in our study the concepts of charge uensity , current ,
and current density . 1"he charge density p at any point P is defined

as the ratio of the charge oq contained in a small region about P to the

volume oV of the region , in the limit ,vhen ilie region shrinks to the

point P ; i .e.,

Current is measured in amperes, one ampere being equal to a coulomb
per second. 1'he sign of I is arbitrarily defined :.lS positi\'e for :.1. current
flo\\'ing in tIle direction of motion of positive charges or opposite to the
direction of motion of negative charges.

1'he currl~nt density J , a ,'ector, is defined in turn as Folio\, s. I---et
us consider a small element of surface lSa, and indicate " It 'll 11- a unit
" ector normal to it . Clearly, the currellt ISI flo\,'ing througil lSa is a
maximum " hen the direction of n coincides " ith the direction of
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motion of the charge ; , vith n so oriented , the magnitude of J is defined

as

oJ

IJI = Jim - ( 1 . 7 )

oa - + O oa

The direction of J coincides , , ' ith the direction of motion of positive

charge and is opposite to the direction of motion of negati , " e c } illrge ,

in acrreement " ith the above convention regarding the sign of I . 1 ' llUS0

the current density in an electron beam } las a direction opposite to

the direction of motion of tile electrons . rl ' he current density c :.m also

be defined in an equi \ ' ~llent m ~ nner ~ s a \ " cctor function of position

such that tile current t } lrough any surf ~Ice S s } lall be representable as

the surface integral

I = 1 In da ( 1 . 8 )

" here da is a differential element of surface , and J n is the component

of J normal to the surf :-Ice .

It is clear that the above definitions of current and current density

are just as inconsistent \ , ith postulate 3 as tile definition of charge

density . .L\ g ~ in the ill  consistency m ~ y be disregarded as long as " e

are dealing \ , ith large - sc : ' Ile p } lenomena .

rl ' he definition of c } large density and current density , together with

the la \ v of conservation of charge ( postulate 2 ) , implies tIlit , for any

surfaceS enclosing a \ " olume V ,

[ In da = - ~ lp du ( 1 . 9 )
Ys dt v

where J n is the component of J normal to S , and out \ vardly directed .

1 "' he left - hand side of this equation represents the current flo \ ving out

of tile closed surfaceS , i . e . , tile net outgoing positive charge per unit

time . The right - hand side is tile neg ~ltive time rate of change of the

net charge \ \ " ithin IT . \ V e shall use this equation as a formal statement

of the la \ V of conserrntion of cll : lrge .

1 . 2 Convection and Conduction Currents

The current through a given surf :'lCC \ \ : '15 ucfincd , in the preceding

section , as the amount of charge crossing the gi \ ' cn surface per unit

time , \ \ ithout reference to any otllcr ch ~lr :' lctcristics of the motion of

the charge . On the other llanu , it is con \ ' cnicnt for the purposes of

our discussion , to classify currents accoruillg to their physical origins
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in three categories : convection currents , conduction currents , and
polarization currents . Convection currents and conduction currents
result from the free motion of electric charges; for this re~lson , they arc
often referred to as free currents . Polarization currents result from

the rclati ".c displacement of ch~lrgcd particles in the atomic structure
of matter , ","hcn such particles remain bound to the atom or molecule
to ,,"hich they belong . . rl'hc current resulting from the motion of such
bound charges is discussed in Sec. 5.2, as p~Irt of our study of dielectric
polarization . "\"\TC shall focus our attention here on conicction currents
and conduction currents .

"\V c regard a current as being of the con\.ection type ,,"hen it results
from the motion of charge ,,'hosc density and velocity arc explicitly
stated . rl ' hus , for instance , the current in a V~lcuum tube is rcg ~lfdcd

as a conicction current because it originates from the motion of a well -
identified space charge. rl'hc same is true for tIle current of an electron
beam in a cathode -ray tube , and for the current resulting from the
motion of a charged conductor . If p is the density of the moving
charge at a given point in astationarys }'stem of coordinates , and v is
its \ .cloci ty , the corresponding con \.ection -current density is

J = pv (1.10)

Conduction currents result from the drift of free electrons and ions

in m ~ltter under the influence of an electric field , as , for instance , in

metals and electrolytic solutions respect i \'ely . rl'he motion of such
charged p~lrticles is opposed by frictionlike forces \vithin the conducting 

m~lteri ;u th ~lt b~u ~lnce the forces exerteu by the electric field . In

metals anu in electrolytic solutions these frictionlike forces are proportional 
to the ,.elocity of the charged p~lrticles over :1 large range of

values , \\.ith tile result tllat the l~ltter must be proportional to the
electric -field intensity in order for the p~lrticles to be in dynamic equilibrium

. It Folio\\.s th ~lt the current density , \\-hich is proportional to

the ,"elocity of the particles , becomes proportional to tile electric -field

intensity , i .e., Jc = a E (1.11)

where a- is the conductivity of the materi :.u at the point at ,,'ilich Jc
and E are measured. rl' lli ", eClu~l tion i", re:'1dily recognized as expressing
Ohm 's l :.t ' v in terms of field vectors .

It is important to note tIl :'lt the pre",cnce of conduction current does
not imply tile presence of a net cll :'lrge density . In a mct :.u , for instance

, conduction current results from the drift of free atomic electrons 
in the presence of stationary atoms , " hich are positively charged

because of the loss of electrons . The net charge density mayor may
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  not be equal to zero ; in any case , it bears no relation to the current

density beyond that required by the law of conservation of chttrge .

I ;"'urthermore , the actual density of the moving charge and its velocity

are of no interest from a macroscopic point of view ; , ve are only concerned 
, vith their product , vhich constitutes the current density . By

comparison , in the case of a convection current , both the charge density 
and its velocity are individually of interest .

1 . 3 The Field Equations in Free Space

The electric field E and the magnetic field II have been defined in

Sec . 1 . 1 in terms of the Lorentz force exerted on a moving charge . In

the first six chapters \ ve shall focus our attention on the properties of

these two fields \ vithout reference to their original definition , Folio \ \ ' ing

the field approach to electromagnetism developed by Faraday and

l \ Iax \vell . \ V e shall return to their significance in terms of electromagnetic 
forces in Chapter 7 in order to develop the concepts of electromagnetic 

energy and electromagnetic po \ ver from the \ vork done by

such forces .

Let us begin by reconsidering the integral form of l \ Iax \vell ' s equations 
in free space , \ vhich culminates most elementary discussions of

electromagnetism . For this purpose , let us consider an arbitrary , t \VO-

sided , simply connected 1 surfaceS , bounded by a closed contour C ,

as illustrated in Fig . 1 . 1 . '"l ' he direction of the arro \ v along the contour

is related to that of tile unit vector n , normal to the surface , by the

right - handed - screw rule ; i .e . , if the surface is continuously deformed

into a plane , a right - handed scre \ v turning in the direction indicated

on the resulting contour should move axially in the direction of the

unit vector n , normal to the plane . The t \VO fundamental equations

of l \ Iax \ \ .ell can be \ \ Titten in the form :

" Et ds + ~ l }lo Hn da = 0 ( 1 . 12 )Ya dt s

" Ht ds - ~ lEo  En da = r In da ( 1 . 13 )Ya dt s Js

1 A simply connected surface is a surface without holes , i .e ., a surface bounded by

a contour consisting of a single continuous line . " "e slla .Il see later on that any

surface ,vith holes (multiply connected ) can be reduced for our purpose to a simply

connected surface by means of appropriate cuts . An example of a one - sided surface

is the Moebian strip constructed by joining the t ,vo ends of a t ,visted strip of paper

in such a way that one edge of the strip is made to coincide with the other edge .
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Fig. 1.1. The use of the right -
h:indeds (~re\v rule in determining
referen(~e directions on a surface
and on tIle contour bo Ullding it .

, , - here Et and II t are the components of l ~ : 'I'll  Cll  I tangent to tile contour 

C in the direction indic : ' lteu by the : ' lrrO \ \ , [ lnU E ' n allu II n are the

components of tIle ~ : ' lme , . ectors llorm ~ tl to tIle surf : ' Ice S [ mu in the

direction of tIle unit vector If , ; da rep  resell ts a JilT eren ti : ' ll clement of

tIle ~ urface S , anuds rcpre ~ elits [ 1, uii  Terellti ~ llc ~ lcmellt of the Colltour C .

rrIle ' " [ llue of tIle COll ~ t : 'Lilt EO , tIle permittivity of ' . : ' lcuum , is obtain  eu

from tile e < ! uation

1

c = - / - = 2 . 998 Xmeters    / second ( 1 . 14 )

v EO , uO

" here c is tIle velocity of ligllt in v ~ lcuum , as uetermined by me ~ lsure -

mell ts . ' l ' his eCJu ~ l tiOll ) ' ielus for fO the \ ' ~ ll ue

EO = 8 . 85 . 1 X 10 - 12 ( 1 . 15 )

I ; - : ; ( IU : 1tion 1 . 1 - 1 is : 1 ( lircct COI1SC ( lucn ( : c of i \ Iax , , ' cll ' s cqu ~ltions ,

: 1ltll  O Ugll it ( : ~ lllnot } > c ucriicu ~ lt tilis POillt . Sill  C C it rcl ~ ltcs tIle values

of J. 1. ( ) ~ lnu f ( ) to tIle , ' clot ' ity of lif ! ; Lit ill " [ lCUUm , ~ L mc ~lsur : ' lolc pllysical

qU ~ liltity , oilly one of tllC : : ; C t " . o const ~ . lilts of v : ' . lcuum c ~ m be selected

: 1rbitr : ' lrily ill dcii ~ ing [ L system of units . l \ S st : ' ltcd in Sec . 1 . 1 , the

" : ' lluc of J. 1. ( ) is sclct : tcu , in tIle mks ratioll ~ llizcd f ' ystcm , in such : 1 ' V : : LY

Til ~lt tIle m ~lgllctie - ficlu illt  C  il ~ it . y is mc : ' lsurcd in amperes per meter , as

ciidenrcu by Eq . 1 . 13 ; tlli . - ; selectioll fixes both the value and the

dimensions of f ( ) .

' "1 ' hc first cqu : 'ltion , Eq . 1 . 12 , express  es Faraday ' s induction law ,

n [ lmt ~ ly , th : ' Lt tIle clc ( : tromotiic force : ' lrounu : ' Lny closed contour must

C ( I Ual tIle I1Cg ~ ltiic time r : ' ltc of CI1 ~111ge of tIle m ~ lglletic flux linking the



Fig. 1.2. An example of t \VO surfaces bounded
by the same contour C through \vhich different 

amounts of current flo \v.
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contour . In fact , the contour integr [u represents the " .ork that ,vould
be done by the electric field in moving a unit positi \.e charge once
around the contour , i .e., the electromotile force . rl'he surface integral
represents the flux of the magnetic field through the given surfaceS .
Since the con tour integral depends only on the field and tIle con tour C,
the surface integral must also depend only on the field and on the contour

; in particul :'lr , the time rate of Ch[lnge of the flux must be the S[Lme
for all t " .o-sided surfaces bounded by C. "\"\?e shall see in Sec. 3.1 that
this requirement implies that the magnetic flux through any closed
surface is al \vays equal to zero, i .e.,

  }.Loll n da = 0 (1.16)
rl'his equation is sometimes stated as a separate field la,v kno 'ffi as
G[lU S S' law for the magnetic field . J\ ctu [lily it is a direct consequence
of Eq . 1.12.

1'he second field equation , Eq . 1.13, is a statement of J\.mpere 's circuital 
la,,' , modified by the addition of the term invol \'ing the time

rate of ch[1nge of the flux of Eol~. rl'he COlI tour in tegrul is the magneto -
moti \'e force around the contour ; the SUrf[Ice illtep;r[ll of the current
density represents , of course, the net current flo ,,"ing throughS . rl'he
role played by tIle second term on tIle left -hand side, sometimes misle

[ldingly referred to as the " displacement current ," becomes evident
\vhen \'"e move it to the right -h[ll1d side and require tIlat the sum of
the t ,,"O surface integr [Ils be the S:'lme for all t ,,"o-sided surf :'ices bounded
by the same contour , just as " "e did in connection \,"ith Eq . 1.12. rl'his
requirement could not be met by the current term alone ; for inst [ll1ce,
the surf ~ices Sand S' in Fig . 1.2 \vould yield different current fluxes,
since S cuts througll a \,"ire le:'lding to a c~lp ~lcitor \,"hereas S' passes
bet ,veen the plates of the capacitor \,"ithout cutting through any \vire .
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Thus the circuitalla \v as stated originally by Ampere cannot be correct
for time-varying fields.

We shall see in Sec. 3.1 that the requirement that the sum of the
t \VO surface integrals in Eq. 1.13 be the same for all surfaces bounded
by the same contour implies that the out\vard flux of foE through any
closed surface must be equal to the net charge q in the volume V enclosed 

by the surface: i .e.,

i fo En da = Lp dv = q (1.17)

Again, this equation is sometimes stated as a separate law, kno\\'ll
as Gauss' la\v for the electric field. Actually it is a direct consequence
of Eq. 1.13 and of the la\v of conservation of charge expressed by Eq.
1.9. I Iistorically , ho\, ever, the discovery of Gauss' la\v preceded the
formulation of the second basic field equ~ltion . l\Iax\, ell noted that
Ampere's circuitalla \v (similar to Eq. 1.13 but \\"ithout the term involving 

€oEn) \, as mathematically inconsistent for time-varying fields
because the flux of J could depend on the particular surf~Ice S selected,
as discussed above. lIe then sho\\"ed, on the basis of Gauss' la\\' and
the la\v of conser\'ation of charge, that mathematical consistency could
be obtained by adding the term involving €oEn. It is important to
note tIlat tile addition of this term \, ~lS the key to the t Ileoretical discovery 

of electromagnetic \\'~ives.
1"he name " displacement current" originated from ~Iax\, ell's argument 

about an additional current term being required, for mathematical 
consistency, and from his vie\\"s about free space being some

sort of a material medium. .l\ ctually , not Iling is displaced in free
space, and the ne\, term introduced by l\Itlx \\"ell in Eq. 1.13 sllould be
thought of as being parallel to the corresponding term in l~q. 1.12.
rl"hus, a finite magneto motive force is associated \, ith a time-varying
flux of €oE, just as a finite electromotive force is associated \vith a time-
varying flux of ,uoII.

1.4 Use fulness and limitations of Integral laws

It is important to stress that the integral laws discussed in the preceding 
section must be satisfied for every closed contour C and every

closed sllrface S. Clearly, it " ould be very difficult to ascertain " hether
any p~uticular pair of fields E and II docs or docs not satisfy such la" s
for all possible contours and surf~ices, and it " ould be even more diffi -



(1.18)

from ,vhich ,vc obtain

(1.19)
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cult to find directly a pair of fields that \ \ ' ould satisfy them for a given

distribution of c1illrges and currents . \ \ ~ e shall see in Ch ~lpter 3 Til ~tt

the problem can be consider  ably simplified by substituting for the

integral la \ \ " s equivalent dif ' ferenti : .u la \ \ " 8 . Yet , there are important

special cases in \ \ " hich the integral form of the field la \ \ " 8 is not only

adequate but also more illuminating . ' "l ' llese speci :.u cases are charac -

terized by p ~trticul ~u geometric symmetries , such as spherical or cylindrical

. ' "l ' his point is best explained in terms of specific examples .

I .Let us consider a time - independent ch : ' lrge q , uniformly di .. , tributed

\ \ " ithin a sphere of r ~ldius a cellt <. ' red at tIle origin . ' \ ~ e \ vi . . , ll to <. leter -

mine the electric field produced by this ch :.trgc , botl1 inside ~lllJ outside 

the sphere . \ \ Te note , first of all , th ~lt bec ~luse of the splleri ( ~~ll

symmetry of the charge distributioll , the electric field must ll ~t ve

every \ \ " here a dircctioll r ~ldi : ' ll from tile origin . ' "l ' his Folio \ \ " s from tIle

fact that a radi ~ll direction is the Oilly direction that can 11 :.1 v ' e acom -

plete spherical symmetry . For the same reason , the intensity of the

electric field must be constilllt o \ ' er any co11centric spherical surface .

Then , if \ \ " e take allY such spllerical surf : 'Ice as tile clo ~ ed surf ~Ice S of

Eq . 1 . 17 , and indicate \ \ " ith r its radius , tilis equation becomes

r ( r ) 3

? q - for r < a

47rr - fo  En = a

q for r ~ a

q

3 r for r < a

47rfoa

E -n -

q

for r > a

47rf  Or2 -

\ \ " here En is the electric - field intensity in tile out \ \ " ard direction .

It is important to observ " e that Err . 1 . 17 toget  Iler \ \ ' ith tIle spheric ~ll

symmetry requirement \ \ " as sufficient to determine uniquely tIle electric

- field intensity . 1 ' his means that Err . 1 . 12 must be automatically

satisfied , or , in other \ \ " ords , that the constraint imposed on the electric

field by this equation is aire : ldy implied by the spherical - s ) ' mmetry

requirement . It can be S110 \ \ " n , in fact , that , in the absence of any time -

varying magnetic field , Eq . 1 . 12 is s ~ltisfied by any radial , spheric ~illy

symmetrical electric field . ' "l ' his property of spllcrically symmctric ~ll

fields is very re ~ldily pro \ ' ed \ \ " it  Il tIle tool .., of vector analysis , dis ( ' ussed

in the Folio \ \ ' ing ( ~h : lpter .

Let us consider next the C : lse of an infinite str ~tigllt \ \ ' ire of radius a ,



Fig. 1.3. Contour of intcl!;ration
used in connection ,vith Eq. 1.20.
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carrying a steady current I , p:'lrallel toilic axis of the \\"irc and uniformly 
distributed through its cross section . ' \ "e \\"ish to determine

the m:'1gnetic field produced by this current distribution , both inside
and outside the \\"ire . " "e sh:'I'll SI1O\\', first , th [lt the magnetic field
must be tangent to any circul :'lr cylillder co:'1xi:'11 \\'ith the \\"ire . For
this purpose , \\"e obser\'e, first of all , th :'lt , I)cc:1use of the circular
c:'J Tlindric[u symmetry of tIle (~urrent distribution , the m:'lgnctic field
C:'ln depend Oilly on tIle r :'ldi :.ll dist :1l1ce r from the :'lxis of the \\"ire ,
be~idcs on t Il C m:1gl1itudc :'illd tIle direction of tIle Ctlrrcnt . In p:'1rticu -
I:lr , if the m:lgnctic field ineludcs :t r :.tJi :ll compon (~nt , tIlis component
must ha\"c tIle S:'lmc direction (eitller to \\':1rd tIle ~.txis of tIle \\"ire or
a\\':'1Y from it ) at :111 point ~. 1,'urt Ilermore , if tIle m[tgnctic field Il :1S a
compollcnt p:'1r[11Icl to tIle :1xi~ of tIle \\"irc , tIlis component must be
collstant o\'cr any str :'lig Ilt line p[lr :.tllcl to tIle \\.irc .

I .Jct us consider then ~~q. 1.lG, using for S the surf :'Ice of any circular
cylinder of finite length , co~1xial \\"itll the \\"ire . rl'Ilc flux of II entering
the cylinder from either end surface mu ~t be equal to tIle flux lc[tving
the cylinder from tile opposite end surf :'1.ce, bec~luse tile component of
the m~lgnetic field p[lrallcl to tIle \\"ire mU:'it be indepelldcll t of tile
position along tIle \\"ire . rl' Ilus thi ~ component C[innot contribute to
the surf ~Ice intcgr ~tl . On tile other Ilan (l , [lIlY flux t Ilrough the circular
part of tile sttrf ~tre C:'ln oilly be caused by ~t r:'ldial (~omponcnt ; furthermore

, bc{,~lu ~c of the {' irctll ~tr symmetry reqtliremellt on the r :1dial component
, tilis flux C~ln \ 'ani :-.;Il only if tIlis COmp()llcllt i~ equ~1.l to zero.

rrhus , \\'C C~tn coll (~lu (le tIl :lt 1-:<1. 1..1.0 re<luire ~ tIle m~lglletic field to be
tangent to [lny rircul :tr (~:'J Tlin Jer (~oaxial \\"it Il the \\.ire .

I ~ct lIS con~id (\r llext l ~q. 1.13 :'In (1 u:-.;e ~tS COIl tour ('I a circle concentric

\\"i Ul tile \\"irc , <Ira \\"n on :1, pl~Inc norm :tl to it , :'lS illu ~tratcJ in 11' ig . 1.3.
Assumillg tIlat tIle <~urrent flo \\"s Up\\"~lrd from tIle paper , I~q. 1.13 requires 

the Ctlrrent flo \\"ing t Ilroug Il tIle circle to be c<lual to the line

integral , in the direction indic :'lted by tile arro \\", of II t, tIle component



It remains to be sho\vn that , if there is any component of the magnetic 
field parallel to the axis of the \vire , the magnitude of such a

component must be constant throughout the entire space and independent 
of the current in tIle \vire ; in other \\yords, this Corn ponent

plays the role of an " arbitrary additive constant ." For this purpose ,
let us use for C the rectangular closed path illustrated in Fig . 1.4,
dr ~l \vn on a pl~lne containing the axis of the \vire . 1"'he t \VO radial
sides of the rectangle do not con trihu te to the line integral in Eq . 1.13
hec~~luse the m~1gnetic field has no radial component . }"'urt Ilermore the
entire line integral must ' Tanish because no current flo \\ys through the

Fig. 1.4. Contour of integration
used in determining the magnetic
field parallcl to the ,vireo

(~)227rr II t = (1.20)

irom which ,vc obtain

. 

. .

lIt = (1.21)
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of the m~lgnetic field tangent to the circle. Since lIt must be constant
o\"er the circle, because of the circul~lr symmetry of the current distribution

, Eq. 1.13 yields for a circle of radius r,
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rectangular closed contour . It Folio , vs that the contributions to the

line integral of the t \ , . o remaining sides must be equal in magnitude and

opposite in sign . Since this must be true for all similar rectangular

p : 'lths , the component of the magnetic field parallel to the axis of the

, vire must be constant through the entire space . rl " his uniform field is

independent of the current in the , vire and must be thought of as being

producecl by currents at infinity .

l ' he abo \ ' et , vo examples illustrate how static fielcls can be determined 

from tlleir sources , , ' itll the help of the integr :'llltl \ ' . S " ' hen the

sources have speri [ ll geometric symmetries . 1 ' he simplicity of the procedure 

results from the selection of s Urftl  Ces and contours on " . } lich

the pertinent field components are kno , vn to oe constant because of

the symmetry of tIle sources . In tile t \ \ ' O examples consi  Jered above ,

the fields turn out to depend on a single spari : 'll coordinate ; tllere are

cases , ho , , ' ever , in \ \ ' ilich fielJs tIl [ lt depelld on t \ VO sptlcial coor  Jinates

can oe determine  J Jirectly from tile intcgralltl \ ' . Soy Folio \ , . ing a similar

procedure . In otller , vords , the adeq  Utlcy of the integr [ Lila \ , ' s for the

solution of a particul : 'lr problem depends on tile possibility of finding

appropritlte contours and s Urftl  Ces r : 'lther than on the dimensionality

of tile field , altllough tllese t \ VO ch : 'lracteristics of the problem are related 

to some extent .

1 . 5 Matter as a Field Source

l \ Iatter is kno \ \ " n to consist of positively charged nuclei surrounded

by electrons . ' l ' he neg  Lltively charged electrons revolve in orbits

around the nuclei , and carry a tot  LU charge equal in magnitude and

opposite in sign to that of the nuclei . ' l ' hus matter , in its normal

state , is macroscopically neutral .

' l ' he field produced by atomic charges is , clearly , extremely complex .

In dealing \ , ith large - scale phenomena , ho \ \ " ever , \ , e can disregard its

fine structure , and focus our attention on the smoothed field obtained

by averaging the actual field over volumes large compared to atomic

dimensions , yet sm [ ul compared \ , ith the dimensions of the system

under consideration . We shall use the adjective " macroscopic " in referring 

to these smoothed fields .

Usually , no macroscopic electric field is produced by neutral matter ,

mainly because of the mutual cancellation of the fields produced by

neighboring atoms , and the averaging effect of thermal agitation .

I Io \ , ever , \ , hen the atomic structure of a material is modified , or the

averaging action of thermal agitation is counteracted by an external
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electric field (or by other external forces) , ilie contributions of the

individual atoms may add up to yiel <.l a macroscopic field comparable
in intensity to the external applied field . '1"\\"0 distinct situations [lrise :
the first one characteristic of conducting m~lteri :.u .:3 ,\-lien electrons or
ions are rel :'lti ,'"ely free to mo ' "e ~lbout under tIle influence of an electric
field , as in met ~ils and electrolytic solutio  il S; the secolld Olle cll ~lracter -
istic of dielectric m~t teri ~tls, ,\" hen posi ti " e and neg~t ti ve cllarges are
held togetller by SUCll strong forces that they C~tIlnot be pulled apart
completely , but OIlly slig Iltly di ~pl :.tced .

1'he ordered drift of ch~trges resulting in tIle first situ ~ttion CO Ilstitutes
macroscopic ~illy a CO Ilducti  O Il currelit \Vllicll is follnd to dep(\Lid Lit e~Ich
point on tIle loc~u electric -fiel<.l illtensity alld 011 tIle loc:.tl stru (~ture of
matter , as discussed in Sec . 1.2 . SU (;Il free (~Il ~trges m ~lY ~lc (~umul ~lte

" itllin a conductillg body [lnd on its fc:urf ~t('e, givillg rise tllerel >y to [\,
net m~lcroscopic cll ~lrge distribution . In tIle secolld situ ~ttioll , ill \\"Ilich
charges are llcld together by strollg forces, only small ch~lllges of their
relative mean positions call result . "' .Lien [), net macros CO I)ic electric
field results from such di ~placements , the m ~lteri ~ll is s~lid to l >e electrically 

Poi ~lrized . ' V e sll ~I'll see in CI1~11)ter ;) tIl ~l t tIle st ~l te of Poi :-lriz ~l -

tion of a m~iterial C~ln be t [lken into ~lC(~Ount I)}'" ~lssori ~lting to tIle
materi [ll a di ~tributioll of elc(~tric dipoles \\-I1OSe momellt den::;ity at
eacll POillt is a fUll Ctioll of the IO(~~ll st~lte of m:-ltter . '1' Ile m~lcro ~copic
cll :lrge and currentd Cllsities re::;ultillg from sur Il dipole (listriolltioll  S
and from their time r~ltes of rIl ~lllge \,"ill tIlen be illcorpor ~lted in the
field equations as Poi~lriz [\,tioll components of p and J .

Electrons are kno \' "n to possess a m~lgnetic -dipole moment inaddition 
to a negativ.e electric (~Il~lrge . '1"Ills i~ e\ri<.lellc (~d by tIle m~lglletic

field produced by them as " "ell ~lS oy tIle force anutor (l Ue exerted on
them by an external m~lglletic ficlu . '1' Ili ~ magnet i(~-dipole momellt is
associ~lted to an angul ~lr momelltum , or Spill , anu , t Ilercfore , i~ usu:-illy
regarded as resulting from tIle currellt loop form cd by tIle spinning
electric cll ~lrge . In some subst~ilices tIle spin (lipoIc moments of tIle
various electrons c[lllcel completel )'" \\-it Ilin e~lcll ~ltom or molecule ; in
others tiley do not cancel completely , so tIlate ~lrh of tlleir [ltoms or
molecules has a result :-lnt net dipole moment . '1"Ilese ~ltomic or molecular 

magnetic dipoles [tre usually rill1domly oriented , mainly bec~tuse of

thermal agit ~l tion , so th ~lt tiley produce no net m~lcroscopic field .
I Io \\ "ever , a p ~lrti ~ll Ori (~Lit ~ltion ill a p :-lrticul ~lr dirc (~tion m ~ty o (~cur

under the influence of illl external m ~lit;'neti (~ field , or as a result of

strong interatomic or intermolecul :-u for (~cs. In SUcll cases tIle individual 
co Iltributio  il S of e~L(~h ~ttom or molecule add up to yield a fillite

macroscopic field [lnd tIle m~lteri ~ll is s~lid to be m:-lgnetized .



1'hc purpo ;:;c of the tLbo\'c (lU~Llitativc remarks about thc role of
matter as a source of clcctr Omtlgllctic fields is to introuu ('e at tilis ctLrly

st~LgC the point of \ 'ic,v that ,,"ill cll ~Lr~.l(~tcrizc our tretltmcnt of macroscopic 
clectrom ~lgl1ctic p}l Cllomcna, ~Lnu to ju ~tify the f~t(~t th ~lt , in the

first four ch~lptcrs , " "C sll~I'll confillc our t Lttelltioll to free-sp~l ('e fields .
It is COll\ .cllient , for our purpos (~s, to l'l'g~trU tIle pllenomcll ~L of electric
Poi~lrizatioll and of m~L~nctiz ~Ltion of I'll ~.ltter as (~on;:;i:-;tillg of t \" O distinct 

parts : t Il C ~lction of ~I'll clectrom ~t~~lletic fielll ill ('ll ~lllging tIle st~ltC
of polariz ~ltion and magnetiz ~Ltioll of matter , alld t Ilc action of Poi~Lrizcd
and m~.lgnetiz (~d m~ltter ill pro Jul :illg an electromagnetic field . 1' he
first p~Irt in \'ol ,"es the functional rcl ~Ltioll S bct ,\"ccn the stnte of Poi~uiza -
tion and the state of m~Lgnctiz~ltion of m~Ltter on tllC one h~lnd , and
tIle clcctromn .gnetic field actillg on m~lttcr on the other hand . rrhcse
function ~u rcl ~ltions arc Oft Cll referred to as " constitucnt relations of
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We shall see in CI1~1pter 5 th ~it tIle state of magnetiz ~ltion of a ma-
teri ~ll can be t ~lken into a(~count m~lcroscopically by associating ,,"ith
it a distribution of m~1g1letic dipoles , ,,-llo ::;e moment density at ea(~ll
POillt is ~"\, function of the 10C:-ll st:-lte of matter . rl'llis reprcsent :-ilion is
entirely :-lnalogous to Til:'lt of clectric ~illy polarize J m~lteri ~11s. 110" --
e' "cr , it i::; not immcJi :lt (~ly clc~lr 110" " ~"\, distribution of m:lignctic dipoles
s Jlould be incorpor ~lt (~J in the field e<lu :ltions ~lS ~\, field source. \ \Te
sll :I'll sce ill CI1:-lpter [) tl1:.lt , if e:'1ch dipole of tIle uistril )utioll is r(~g~lr (led
as a micro :)copic cun 'cnt loop , tile clltire dipole di ~tributioll is cquiva -
lent Lo a ma(~ros(~opic currcllt uistriuution ,,"llOSe <lensity can l)e treateu
as ~l m~1hnetiz~ltion component of .1. I Io ," evt~r , tIle u::;(~ of SU<'}l t"\' current 

mouel for m~lglletiz <'<l m~1terials m:1kes it impossible to dc \'elop :1

m:lcroscopic tlleory of electromaglleti :.;m Til:-lt is both ~(~lf -consi:;tellt
:-1ncl in agreement ,,-ith cxpl' rimcnt :ll evi Jence. \ \ Te sll :lill see, on Tile
other ll :lncl, tllat a satisf ~l (~tor }" model C:'Ul be obtainecl by tre :ltillg
m:-1gnetic dipoles in a manner entirely an:-110gous to electric clipoles,
just as if tIle }" consistecl of magnetic cllarg (~s ,,"ith properties analogous
to tllose of electric Cll:l.rges. rl'llis ,,"ill require introclucil1g in the fielJ
l :l " "S :1, m:l.gnetic -ch:l.rge de11sit)r p* :l11cl a m[l.!!;lletic -curr (~Lit density J *,
analogous to p :-lnd J ; r-:<lS. 1.12 and1 .1G ,,"ill tilen uecome

(1.22)

i ,uolln da =J p* dv (1.23)
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matter ." The physical origin of these rcl :'ltions :'lnd tIle micro ~copic
ch.'1r:'lcteristics of matter tIl :'lt are responsible for them are outslue the
scope of our discussion . " "e sh:.ul tre :'lt them instead empiric :'11ly as
experimentally uctermined properties of matter . rl'he S C COll U part ,
namely , the role of polarized and magnetized m:'l t ter as a source of
electromagnetic fielus is not only \\.ithin the scope of our ui :3cussion
but is a ccn tral p :'Irt of it .

i \ nother \my of uescribing tile same point of vie \\'" is to say th :'lt
matter behaves like a " control  leu source ," in the sense that matter i :)

a source of electromagnetic ficlu , but , at the S:'lme time , its source
strellgth is :."1. function of tile fielu itself . In other \\.ord:3, tile phellomcn :t
of Poi[lriz [ltion and magnctiz :'ltion involve a sort of " feeub:'lck colltrol ,"
\\.hose characteristics are assumcu to be given , or othcr \\.ise cxperi -
mcn t .'1lly uetermin [l blc , for each ma tcrial .

This point of vic \\'" lcaus us to consiucr any macroscopic clectromag -
netic fielu in matter as a free - Sp[Ice ficlu in the presence of source uiSJ

tributions , \\ hich are either directly specifieu, or are expressible in
terms of the ficlu itself \\.ith the help of the constituent rcl :'ltions of
the material in \'olved . It Folio\\.s tIl :.tt all ficlu properties Til[lt UO not
invol \'"c the feeuback link rcpresentcu by the constituent rcl :'ltioll  S C[I'll
bc studied \ \ .it Ilout any reference to \ \.heilicr the sources arc illue -

pcnucnt of tile fielu or result from Poi[lrization ~lnd maglletiz :'ltion of
m~lttcr . In particular , tI1C ficlu l:'l \\ s for macroscopic fielu :3 arc tIle
same \\.ithin m.'1ttcr as outsiuc m:'lttcr , ~lS long as the source uensitics
\\ hich appC.'1r in the field l .'1\\.S .'1rc unucrstoou to incluuc tllC components 

contributcu by m.'1ttcr . ' Vc must keep in minu in this regard

that , \\.hcrc .'is electric sources C.'1n bc present in the absence of Poi[lrizcu
mattcr , m:'lg11ctic sources c.'1n .'1risc only from magnctizeu matter . } ' or
this rc.'1son, nl :'lgnetic sources .'1rc not usually incluucd in t Il C frec-,";pacc
ficlu equatiolls ; \\'C h.'1\'c Folio\\.cu this COn\.clltion in Sec. 1.3, ~lnu \\'C
sh:'I'll contillue to Folio \\'" it in tile next tllrcc ch [lptcrs to ~tvoiu gencrut -

ing ~lny misunucrstunding as to the p Il )'sicul n[lturc of m[lgllctic (~ll :'lrgc ~
.'1nu currents .

In vie \\'" of t Il C abo \ !c argum (~nts , \ \ 'c ~Il :ll1 focu ~ Ollr :'lttcntioll fir ~t on

free-space ficlus , prouuccu by spc(~ificd source <listributioll  S. ~rctallic
conuuctors , ho \\ .ever , \\.ill bc in (' luucJ from tIle st :Irt ill our uiscus ~Loll

because tilCY proviuc a \\ caltIl of in tcrcsting illustr :'l tiOllS, an<ll )ec:'lusc
of the simplicity of the C Ollstitucnt rclatioll bet \\.c(~n electric flclu .'1nu
conuuction current , namely , OIlm 's l:.t \\'". ! )ol:'lriz :'lblc and m:'lgnctiz :.1blc
materials \\.ill be takcn up in uctail in Chapter 5.
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1.6

1"fils chapter has been devoted to a review of the basic postulates of
el~ctromagnetism and of the l:'l ws governing the behavior of electromagnetic 

fields in free space. rl"he main purpose of this review \vas to

pl :'ice in evidence the foundations on \vhich \ve shall build our more
advanced discussion of electromagnetic phenomena , free from the intermediate 

steps necessary in a first presentation to develop gradually the
abstract concept of electromagnetic field . 1"hese foundations arc

1. The law of conservation of charge.
2. 1"'he expression for the Lorentz force on :1 moving charge in terms

of \vhich the electric field and the magnetic field are defined .
3. 1"'he field la\vs in integral form that relate the electric field and

magnetic field to each other and to the charge and current distributions .

1"'hese fund ~lmental las form a self-consistent set of relations in
terms of ,,-hich obser\'able mutual forces bet " een charges, ,,-hether
stationary or in motion , can be described and predicted . 1"'he description 

and prediction of macroscopic forces bet " een material bodies will

require the additional postul ~ltion in Chapter 5 of macroscopic models
for Poi~lrized and magnetized matter .

1.\ n import [mt characteristic of the la,v of conservation of charge
and of the field l~l " S as expressed in Secs. 1.1 and 1.3 is that they relate
contour integrals , surface integrals , and volume integrals of electromagnetic 

quantities . They are not equations of the type in " hich
physic ~ll qu~ll1tities are related to space or time derivatives of otIler
physic [u quantities at the same point in space. On the other hand , such
integr ~ll rel~ltions must be valid for all closed contour and associated
surf ~ices, and for [I'll closed surf ~ices and associ[lted volumes . rrhis
arbitrary nature of tile contours and surfaces suggests, as it is actually
the case, that tIlere should exist equivalent point relations bet " een
the same electromagnetic quantities and their time and space deriva -
ti \"es. For instance , tile elementary deri \Tation of plane " aves found
in many texts [2, Sec. 15.1] provides a good illustration of ho,v the field
equations in integr ~ll form yield point relations bet ,,-een the time cie-
ri vative of one field \"ector and the Sp[Ice deri va ti ves of the other .

Di [ferenti ~ll point rel~ltions describe the variations of vector fields
from point to point rather tIlan their properties over extended regions
of Sp[Ice. l\ S a result , they are much more convenient than integral
rel~ltioll  S, both conceptu [illy and mathematic Luiy. TIle next chapter is
ue\'otcu to tile de\"elopment of tIle mat Ilematic LU tools necessary to



Problem 1.3. In a c:-tthoue-ray o",cillosco!>c, tIle (~lcctrons cmittcu from a heateu
fil:lmcnt :-tre nccelcr:ltcll tllrollgh a potential Jif Tprcllcc of 1000 v. rrhc electrons
the Jl J>:lS,-; hf'! \,'c(~n t " .o parallel Jefl(~l~tillg pl:l.tcs, 2 X 2 cm, sp~l.ceu 0.5 cm apil.rt .

28 ELECTROMAGNETIC FIELDS, ENERGY , AND FORCES

express the la\\'8 of elcctrom ~lgl1ctism in the appropriate differential
form .

1.7 Selected References

rl"he f ollo \\'ing selected references should be helpful in revie \ving the
clemclltary aspects of clcctrom ~lglletism , in acquiring a better Ilistorical
perspective of tIle d(~\.elopment of electrom ~lgnetism , alld in developing
a cle~lrer u il Jcrst ~tlldillg of the b~tsie postulutes [lid definitioll  S discllssed
in this cllapter , and ~t better :'lppreci ~ttion of tIle problems inv.olv.cd in
tIlcir c Iloice .

1. J . c . ~ I :lx \\ eII , .11 ] 'rcati .",e on Electricity alLil .Ill al]nctism , 3rd cd ., reprinted by
Dover Pub Iic :ltions , XC \\' \ ' ork , IV ,) ! . TIle pref ~Ice to tIle first e Jition , d :l.ted
I ;'ebru ~lry 1, 187~~, gi \ 'es tIle rc :ltlcr a good ~lp !Jreci:ltion of ~I :lx \\ eII 's point of
vie \\ and of Ills fuml :lmc Iltul contribution to tIle tlleory of e Iectrom :lJ!,netism .

2. K . II . Frank , Introrlilction to Ell :ctricity allrl Optic "", 211d cd ., ~IcGr :'l \\ - I Iill , ~ C\V
\ ' ork , 1\);)0. r! ' his is tIle !Jllysit ~S textbook mo .,;t :'l !J!Jro!Jriatc in COil tent :'In (1 point
of vie \\ for rcvie \\"illg tIle elemelltary :'l ',;I Jects of electrom :'16netism \\ ith \\ Ilich
tIle reacler is eXpe (:tl ~J to Le f :'lmili :lr .

3 . 1\ . Sommrrfrlll , ] !;'!c(:tr ()r!Yllalllics , l\ (:uurmic I">rcss, N C\\. York , 1952 . Section 1
of I >urt I i .s un histori (~ul rcvic \\' illclu (lill ~ ~omc intcrcsti  I I~ bio ~ruphi (~ul notes

on t.he ~rc:lt mrn of clcctrom :I.!!;Ilcti .-,;m. ' Illis rcvic \\' is purticul :lrly illumil1uting
b(~cuuse Sommerfelu liveu tllrou ~h tIle perioll in \\"Ilich clcctrom :I~l1etic tllcory
bC' (:ume of u~ (,:. Sccti  O I I S 2 , 7 , unu 8 present a curcful di ::icus ::Lion of units and
dim Cl I Sil )I1S.

4. .T. C . Sl :ltrr anuN . II . Frank , Electromagnetism , ~IcGra \\' - I Iill , New \ York, 1917 .
'rIle illtrouuction to CII[lptcr 1 proviues a good discussion of the development of
elcctrom :'lgncti ::;m .

PROBLEMS

Problem 1.1. An electron moves with a velocity v along the z-axis of a Cartesi :ln

coordinates } 'stem , .:\ uniform m :lgnctic field of m :1gnitude II is applied in tIle
positive x -Jirection , " ' hat electric field is required to force the electron to follow
a straight P:l Til along tIle z-~lxis '?

Problem 1.2. .:\ n electron (charge e = 1.G X 10- 19 coulomb , mass m = 9.1 X 10 - 31

kg ) mov ('s in a uiliform magnetic fiel (! II = lOG amp /im in a pl [Lne at right angles
to the Jire (~tion of 11. SI1O\, th :lt the electron moves in a circulur path of r [lJius r ,
an J find r for an electron velocity of v = 104 m / ~ec.
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The electrons fina .lly strike afluorescents (~reen 30 em from the rear edge of the
ueflccting pl :ttcs .

" '"hat is the deflection of tIle spot on tIle fll10resccllt screen \, hen a potential
difference of 10 v is appli (~u to tIle deflecting platcs '? Ncglect the fringing ficlJ
near the euges of the ueflccting pl :ltes .

Problem 1.4. ,,\ ClOll!! of ch:lrl:;ed pilrti (~lc::; is distributed in a hollo'", spherical cavity
c:lrved out of a perfectly conduct i Ill:; m:ttcri:Ll. 'rhe ch:trge de il~ity is

( r2) coulombsp(r) = PO 1 - R2 ~ ~ 3

\vhere PO i:'i :t const.:wt , Il is tIle r:Loiu", of tIle c:Ly-it.}" am I r is tIle di,,;tnnce from tIle
(~entcr of tIle C:tilty . Vimi tile clectric-fi(~hl intensity nt ev('ry p()int \\'itllin tIle
c:lvit }... \\-Il:lt is tIle surf:tcc-ch~trge density on tile surfit(~e of the C:Liity '?

Problem 1.5. i\ sp1lcric:tl drop of flui(l c:trrics :1, c1mrgc of q cou1omo", . i\ ssume
th:tt the ch:lrge i~ uniformly di:;trihuted tllrou.(!;hout tile volume.

(11) Calcul:lte the electric fielu anu the potential both inslue anu outslue the
sphere.

(b) '1' \\'0 i Jentic:ll drops as above co:llcs(~e to form a single SIJ}\Crical drop. " 'hat
is the potential ::It the surf:1(~c of the nc\v drop?

Problem 1.6. Given a very l:lr !;c pl:Inc Sllcct of c}lnr !;c (not a coruluctor) \, ith
uniform surf:Ice-cll:lr !;c ucll:-;ity 0", fill U tIle differrnce of the electric-field vectors on
eitllcr Hiuc of tIle ~hcct, f:lr from tile CU !;('S of the sheet.

Problem 1.7. TIle stiltic electric ficl!! bct\vccn two infinite p:lrullcl co!1(lu(~ting
pl:.ttcs IlclJ ut a potcnti:ll Jiffer(~ncc 1"0 is pcrpcnuicul:lr to tIle pl:.ttes, 1tllU uniform.

(~t) Sho\v th~lit the field s~l.ti .-;fies l':q. 1.12 for ~Til rcctangul:lr p~lt11.~ norm~tl and
p~l.r~l.llcl to t11e pl:ltcs.

(b) SIIO\V th~lit tile ficul sati.-;fics I~q. 1.17 for all p:l.r~lllclcpirc (ls \vitll f:lccs norm:u
and parallel to the pl[ltcs. SIIO\V th:lit the S[lme equation is s~ltisfied for any spheric~ll
surf:l.cc.

(c) Find the surface-charge dcnsit), on the pl:ltCS by applying Eq. 1.17 to an ap-
propri:lte surface.

Problem 1.8. (:i) l ' ind the elc(~trostntic fi('l(l pro Ju(~ed by a p()int chnrgc q.
(b) Sho\\" tllnt r:q. 1.17 of tIle text is snt.i.~fi~J for a cl<):;c(l :;urfacc \VIIO:-;C si<les fire

formc<l by :i circular cone \vith tIle apex at tIle point cll:lrge, a Jl<1 \\"lloSC t \VO en Jfaces
arc t \\"o spllerical caI)S of r~t<lii I~l fin J 1~2 respectively (1~2 > I~J .

(c) SIIO\\" that the fielJ s:iti .-;fies J~q. 1.1.2 for finy pl:in:lr contour con~isting of t \\"o
arcs of circles centerc J ~tt the chnrgc fin J t\\"o segments of str~Light lines passing by
the chfirgc.

Problem 1.9. T\\"o infinite coaxial metallic c}"linders nre uniformly charged \\"ith a
denf;ity Ai per unit length on tIle inner c}"linder (outer r:tuius ro), nnd a ch:lrge Ao
per unit lellgth on the outer cylinder (inner r~t(Iius I?i and outer raulus I~o). Determine 

the electric fie I,l bct\\"een tIle c.)"lindcrs, anu in tIle outf;iue sp:tce, and show
that it s~ttisfics both }~qs. 1.12 and 1.17.

Problem 1.10. .\ direct current is uniformly distributecl over the cros~ section of a
straight, infinitely long, circul~lr c)"lindric:.lI col>pcr conductor of rattlus roo J\ n
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equal amount of current fio\vs in the opposite direction through a coaxial conductor
of inner radius Ri and outer radius Ra, and it is uniformly distributed over its cross
section. Find the magnetic field both inside and outside the conductors, and Silo\V
that it satisfies Eqs. 1.13 and 1.16.

Problem 1.11. The Supreme Council of Lo,ver Slabovia has decreed that in honor
of its famous scientist Popin, a ne\v unit of flux be introduced, the popin (abbreviation 

" pop," dimensional symbol P).

1 pop = 10 \vebers

The coulomb has been abolished. Derive a table of dimensions as used by the
Slabovian scientists. Use only the four fundamental dimensions, meter, second,
kilogram, and popin. Find the explicit values and dimensions of the electric permit-
tivity EO and the permeability PO, as used by the Slabovians.


