1 The Expected Utility
Model

Before addressing any decision problem under uncertainty, it is
necessary to build a preference functional that evaluates the level
of satisfaction of the decision maker who bears risk. If such a func-
tional is obtained, decisions problems can be solved by looking for
the decision that maximizes the decision maker’s level of satisfac-
tion. This first chapter provides a way—the now classical way—
to evaluate the level of satisfaction under uncertainty. The rest of
this book deals with applications of this model to specific decision
problems.

The modern theory of risk-bearing has been founded in 1944 by
von Neumann and Morgenstern in their famous book entitled Theory
of Games and Economic Behavior. In the 1930s and early 1940s, econo-
mists like John Hicks (1931), Jacob Marschak (1938), and Gerhard
Tintner (1941) were debating whether the ordering of risks could
be based on a function of their mean and variance alone. A first
axiomatic approach to the ordering of probability distributions had
been introduced by Frank Ramsey (1931). This approach was revived
in successively clearer and simpler terms by von Neumann and
Morgenstern (1947) and Marschak (1950). The aim of this chapter is
to summarize this axiomatic approach.

1.1 Simple and Compound Lotteries

The description of an uncertain environment contains two different
types of information. First, one must enumerate all possible out-
comes. An outcome is a list of variables that affect the well-being of
the decision maker. The list might give a health status, some meteo-
rological parameters, levels of pollution, and the quantities of differ-
ent goods consumed. As long as we do not introduce saving (chapter
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15), we will assume that the outcome can be measured in a one-
dimensional unit, namely money (consumed at a specific date in
time). But at this stage, there is no cost to allow for a multidimen-
sional outcome. Let X be the set of possible outcomes. To avoid
technicalities, we assume that the number of possible outcomes is
finite, so X = {xs},_; s

The second characteristic of an uncertain environment is the vector
of probabilities of the possible outcomes. Let p; > 0 be the probabil-
ity of occurrence of x;, with Zsszl ps = 1. We will assume that these
probabilities are objectively known.

A lottery L is described by a vector (x1,p1;x2,p2;...;%s,ps). Since
the set of potential outcomes is invariant, we will define a lottery L
by its vector of probabilities (p,,...,ps). The set of all lotteries on
outcomes X is denoted ¥ = {(p,....ps) R} |p1 + - +ps =1}

When S = 3, we can represent a lottery by a point (p;,p3) in R?,
since p, =1 — p; — p3. More precisely, in order to be a lottery, this
point must be in the so-called Machina triangle {(p,,ps) € R2 |
1 —p1 — p3 < 1}. If the lottery is on a edge of the triangle, one of the
probabilities is zero. If it is at a corner, the lottery is degenerated, by
which we mean that it takes one of the values x1, x;, x3 with proba-
bility 1. This triangle is represented in figure 1.1.

A compound lottery is a lottery whose outcomes are lotteries.
Consider a compound lottery L which yields lottery L = (p{,...,p)
with probability o and lottery L” = (p?, ..., pl) with probability 1 — o
The probability that the outcome of L be x1 is p1 = ap? + (1 — a)p?.
More generally, we obtain that

L has the same vector of probabilities as aL® + (1 — a)L". (1.1)

A compound lottery is a convex combination of simple lotteries.
Such a compound lottery is represented in figure 1.1. From condition
(1.1), it is natural to confound L with aL? + (1 — «)L?. Whether a
specific uncertainty comes from a simple lottery or from a complex
compound lottery has no significance. Only the probabilities of
potential outcomes matter (axiom of reduction).

1.2 Axioms on Preferences under Uncertainty
We assume that the decision maker has a rationale preference rela-

tion > over the set of lotteries #. This means that order > is com-
plete and transitive. For any pair (L% L?) of lotteries in %, either L? is



The Expected Utility Model 5

P3
1 L
a
L
1—«
Lb
P
0 1
Figure 1.1

Compound lottery, L = «L%(1 — o)L, in the Machina triangle

preferred to LY (L® = LY), or L? is preferred to L® (L? = L%) (or both).
Moreover, if L? is preferred to LY which is itself preferred to L¢, then
L? is preferred to L°. To this preference order >, we associate the in-
difference relation ~, with L? ~ L? if and only if L > Lband LY » L.

A standard hypothesis that is made on preferences is that they are
continuous. This means that small changes in probabilities do not
change the nature of the ordering between two lotteries. Technically,
this axiom is written as follows:

axiom 1 (conTinuiry) The preference relation > on the space
of simple lotteries ¥ is such that for all L% LY L e & such that
L® = LY = L¢, there exists a scalar « € [0,1] such that

LY ~ol® + (1 — o)L,

As is well-known in the theory of consumer choice under cer-
tainty, the continuity axiom implies the existence of a functional
U: & — R such that

U(L) > U(LY) < L° = LY. (1.2)

The preference functional U is an index that represents the degree of
satisfaction of the decision maker. It assigns a numerical value to
each lottery, ranking the lotteries in accordance to the individual’s



6 General Theory

preference >. Notice that U is not unique: take any increasing func-
tion ¢g: R — R. Then the functional V that is defined as V(.) = g(U(.))
also represents the same preferences >. The preference functional is
ordinal in the sense that it is invariant to any increasing transforma-
tion. It is only the ranking of lotteries that matters. A preference
functional can be represented in the Machina triangle by a family of
continuous indifference curves.

The assumptions above on preferences under uncertainty are
minimal. If no other assumption is made on these preferences, the
theory of choice under uncertainty would not differ from the stan-
dard theory of consumer choice under certainty. The only difference
would be on how to define the consumption goods. Most develop-
ments in the economics of uncertainty and its applications have been
made possible by imposing more structure on preferences under
uncertainty. This additional structure originates from the indepen-
dence axiom.

AXIOM 2 (INDEPENDENCE) The preference relation > on the space
of simple lotteries % is such that for all L% LV L¢e & and for all
o€ [0,1],

L= LY & al® + (1 — a)L° = aL’ + (1 — a)L".

This means that if we mix each of two lotteries L* and L’ with a
third one L¢, then the preference ordering of the two resulting mix-
tures is independent of the particular third lottery L¢ used. The inde-
pendence axiom is at the heart of the classical theory of uncertainty.
Contrary to the other assumptions made above, the independence
axiom has no parallel in the consumer theory under certainty. This is
because there is no reason to believe that if I prefer a bundle A con-
taining 1 cake and 1 bottle of wine to a bundle B containing 3 cakes
and no wine, I also prefer a bundle A’ containing 2 cakes and 2
bottles of wine to a bundle B’ containing 3 cakes and 1.5 bottles of
wine, just because

(2,2) =0.5(1,1)+0.5(3,3) and (3,1.5) =0.5(3,0) +0.5(3,3).
1.3 The Expected Utility Theorem
The independence axiom implies that the preference functional U

must be linear in the probabilities of the possible outcomes. This is
the essence of the expected utility theorem, which is due to von
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Neumann and Morgenstern (1947). It has been extended later on by
Savage (1954) to the case where there is no objective probabilities.

THEOREM 1 (EXPECTED UTILITY) Suppose that the rationale prefer-
ence relation > on the space of simple lotteries % satisfies the con-
tinuity and independence axioms. Then = can be represented by a
preference functional that is linear in probabilities. That is, there

exists a scalar u; associated to each outcome x5, s =1,...,S, in such
a manner that for any two lotteries L® = (pf,...,p%) and L’=
(ph,...,pL), we have

S S
L~L'e Zp;‘us > Zpsbus.
s=1 s=1

Proof We would be done if we prove that for any compound lottery
L =L+ (1 - B)LY, we have

U(BL" + (1= PL') = BU(L") + (1 = B)U(L"). (1.3)

Applying this property recursively would yield the result. To do this,
let us consider the worst and best lotteries in %, L and L. They are
obtained by solving the problem of minimizing and maximizing
U(L) on the compact set £. By definition, for any L € %, we have
L>L*>L. By the continuity axiom, we know that there exist two
scalars, o” and «’, in [0, 1] such that

L ~a'L+(1—a")L
and
L' ~ oL+ (1 — o)L

Observe that L? = L? if and only if «® > o. Indeed, suppose that
a" > ob and take y = (2" — «?)/(1 — «’) € [0, 1]. Then we have
2L+ (1 — o)L ~yL+ (1 —9)[e’L+ (1 — a?)L]

=y’ L+ (1 = a’)L] + (1 = 9)[e"L + (1 — o")L]

~ oL+ (1 - a")L.

The two equivalences are direct applications of the axiom of reduc-
tion. The second line of this sequence of preference orderings is due
to the independence axiom together with the fact that L > «’L+
(1 — aP)L, by definition of L.
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We conclude that U(L) = o, where « is such that L ~ oL + (1 — a)L,
perfectly fits the definition (1.2) of a preference functional associated
to =. Thus U(L") = o® and U(L?) = o’. It remains to prove that

U(BL + (1= B)L) = Bo + (1 = B)ot’,
or equivalently that
L+ (1= PLY ~ (fo + (1 = fa")L+ (B(1 — ") + (1 = f)(1 — o) L.
This is true since, using the independence axiom twice, we get
PL® + (1= BIL® ~ fla"L + (1 — o")L] + (1 — B)L’

~ B L+ (1 — 2L+ (1 = B + (1 — o)L

~ (B + (1= Pa’)L+ (B — o) + (1 = B)(1 — oa"))L.
This concludes the proof. B

The consequence of the independence axiom is that the family of
indifference curves in the Machina triangle is a set of parallel straight
lines. Their slope equals (u; —uy)/(uz — up). This has the follow-
ing consequences on the attitude toward risk. Consider the four
lotteries, L°,L",M“, and M", depicted in the Machina triangle of
figure 1.2. Suppose that the segment L°L! is parallel to segment

P3

L:: "

Figure 1.2
Allais paradox in the Machina triangle
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M"MP". This implies that L® is preferred to L? if and only if M” is
preferred to M.

In this book, we will consider the outcome to be a monetary
wealth. The ex-post environment of the decision maker is fully
described by the amount of money that he can consume. A lottery on
wealth can be expressed by a random variable @ whose realization is
an amount of money w that can be consumed. This random variable
can be expressed by a cumulative distribution function F, where F(w)
is the probability that w be less or equal than w. This covers the case
of continuous, discrete, or mixed random variables. By the expected
utility theorem, we know that to each wealth level w, there exists a
scalar u(w) such that

Wy = Wy < Eu(wy) = Eu(wn) < Ju(w)dl—"l (w) > Ju(w)dl—"z(w),

where F; is the cumulative distribution function of w;. It is intuitive in
this context to assume that the utility function is constant.

Notice that the utility function is cardinal: an increasing linear
transformation of u, v(.) = au(.) + b, a > 0, will not change the rank-
ing of lotteries: if w; >~ w,, we have

Ev(w1) = Elau(w1) + b] = aEu(wy) + b > aEu(w,) + b = Ev(ws).

To sum up, expected utility is ordinal, whereas the utility function is
cardinal. Differences in utility have meaning, whereas differences in
expected utility have no significance.

1.4 Critics of the Expected Utility Model

The independence axiom is not applied without difficulties. The
oldest and most famous challenge was proposed by Allais (1953).

Table 1.1

Outcome as a function of the number of the ball
Lottery 0 1-10 11-99
L? 50 50 50

LY 0 250 50
M* 50 50

M? 0 250 0
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The paradox that he raised generated thousands of papers. Whether
the Allais’s counterexample knocks out expected utility theory or
comes from outwitting the players is still subject of lively discus-
sions among the specialists. We first present the paradox. We then
summarize the main arguments that have been proposed by the EU
proponents to sustain that the paradox comes from a misconception
by the players.

1.4.1 The Allais Paradox

Allais proposed the following experiment: An urn contains 100 balls
numbered from 0 to 99. There are four lotteries whose monetary
outcomes depend in different ways on the number that is written on
the ball that is taken out of the urn. An example of an outcome
expressed in thousands of dollars is described in table 1.1.

Decision makers are subjected to two choice tests. In the first test,
they are asked to choose between L? and LY, and in the second test,
they must choose between M“ and M!. Many people report that they
prefer L® to L but subsequently prefer M" to M®. Notice that since L*
and L’ have the same outcome when the number of the ball is larger
than 10, the independence axiom tells us that most people will prefer
L”, which takes value 50 with certainty, to LY, which takes value 0
with probability 1/11 and value 250 with probability 10/11. The
paradox is that the same argument can be used with the opposite
result when considering the preference of M’ over M“! Thus these
choices among pairs of lotteries are not compatible with the inde-
pendence axiom.

This problem can be analyzed using the Machina triangle in
figure 1.2. Let us define

X1 = 07
Xy = 507
X3 = 250.

The four lotteries in the Allais experiment are respectively
L*=(0,1,0), L!=(0.01,0.89,0.10), M= (0.89,0.11,0) and M’ =
(0.90,0,0.10). Segment L°LY is parallel to segment M*M". Because
indifference curves are parallel straight lines under expected utility,
it must be the case that M? = MY if L* > LP.
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1.4.2 The Allais Paradox and Time Consistency

Savage (1954), who was a strong supporter of the expected utility
model, participated in the test organized by Allais. It happened
that Savage was one of those people who preferred L* to L’ and M”
to M“. After realizing that this was not compatible with expected
utility, he wanted to revise his choices. He claimed that he had been
misled and that a more cautious reading of the problem would have
been sufficient to avoid the mistake.

A first argument in favor of the independence axiom is that indi-
viduals who violate it would find themselves subject to so-called
Dutch book outcomes. To illustrate, suppose that a gambler is
offered three lotteries L% L”, and L¢. The gambler ranks them L ~ L’
and L? > L°, but contrary to the independence axiom, it turns out
that L? = 0.5L" + 0.5L¢ is preferred to L®. L/ is a compound lottery in
which a fair coin is used to determine which lottery, LY or L, will be
played. In making the choice from among L*, L’ and L€, the gambler
rationally selects L°. Since L? is preferred to L%, we know that he is
willing to pay a fee to replace L* by the compound lottery L?. This
outcome is thus rationally accepted by the gambler. But, as soon
as the coin is tossed, giving the gambler either L’ or L¢, one could
get him to pay another fee to trade this lottery for L?. At this point
the gambler has paid two fees but is otherwise back to his original
position. This outcome is dynamically inconsistent.

The relation between the independence axiom and time consis-
tency is central to the current debate between the EU and non-EU
specialists. Wakker (1999) makes this relation clear by using the
Allais’s example. We summarize Wakker’s analysis in figure 1.3. A
simpler version of the Allais paradox is expressed by the comparison
of figure 1.3a and e. As is usual, the square in the decision tree
represents a decision (up or down), whereas the circle describes the
occurrence of a random event. For example, problem a is to choose
between a lottery that has a payoff of 250 with probability 10/11,
and a sure payoff of 50. Standard choices are to select “down” in
figure 1.3a, and to select “up” in figure 1.3e. Any combination of
these two choices is not compatible with expected utility.

To see how this is possible, let us examine the following sequence
of comparisons:

« Comparison between a and b. Upon being asked to express her pref-
erences between lotteries “up” and “down” of problem a, an agent is
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Figure 1.3
Decomposing Allais’s paradox

told that this is only by chance that she has to participate. In fact, she
has been selected at random with 11 other participants in a group of
100 persons. The decision problem in figure 1.3a is in fact a subtree of
a larger problem that is represented by figure 1.3b. Should the agent
modify her decision on the basis of this forgone event? Most people
agree that forgone events should not affect the decision of the agent.
Past events are irrelevant for the current decision. This rationale is
called “consequentialism.” It tells us that rational agents will make
the same decision in both problem a and problem b.

« Comparison between b and c. Let us now take the problem back one
step. We have a group of 100 persons. Eleven will be selected at
random to participate in game a. The agent under scrutiny does
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not yet know whether she will be among the lucky eleven persons.
However, she is asked to commit herself to the strategy that she
will follow if she is selected. Figure 1.3c describes this problem. If
the agent is time consistent, she should commit herself ex ante to
do what will be optimal to do ex post. Why, for example, would
she commit to the “up” strategy when she knows that “down” is
optimal? Time consistency tells us that people will make the same
decision in problems b and c.

« Comparison between c and d. Problem d is essentially a rewriting of
problem c. If the agent commits to strategy “up,” she faces a selection
risk and a gamble risk as is represented by the upper part of tree d. If
she decides to commit to “down,” she only faces the selection risk.
Now, let us forget the story of selecting eleven people from a group
of 100 persons. Problem d is a decision problem between two com-
pound lotteries. This changes the context of the problem but not the
underlying lotteries faced by the agent. Do we think that the context
in the way the gamble is processed matters for the decision maker?
Most people would say no. The context does not matter. Only the
state probabilities and the state payoffs do. This assumption, called
“context independence,” implies that rational agents will make the
same choice in problems c and d.

« Comparison between d and e. Compounded lotteries can be reduced
by using the standard law of probabilities. For example, if “up” is

selected in problem d, there is an 0.89 + (0.11 %) = (0.9 probability

of obtaining 0. This is what we earlier called the reduction axiom. By
repeating this calculation, the reader can easily check that problems
d and e are the same. Assuming that the agent is able to reduce
compounded lotteries in this way, we can conclude that she will
make the same choice in both problems d and e.

From this sequence of elementary assumptions—consequentialism,
time consistency, context independence, and reduction—about pref-
erences, it should be clear that if an agent prefers “down” to “up” in
problem a, he will behave the same way in each of the other prob-
lems of figure 1.3, in particular, problem e. The violation of indepen-
dence is possible only if at least one of the elementary assumptions
above is also violated. While it may be possible that some people will
violate one of these assumptions in experiments, we believe that
there is a strong normative appeal to each assumption.
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Table 1.2

Outcome as a function of the number of the ball
Lottery Red Black White
L? 50 0 0

Lb 0 50 0
M? 50 0 50
Mb 0 50 50

1.5 Concluding Remark

We will learn more in the next chapters about the linearity of the
preference functional with respect to probabilities and its central role
in finding simple solutions to decision problems under uncertainty.
If we relax the independence axiom, most problems presented in this
book cannot be solved anymore. Our approach is thus pragmatic:
we recognize that the independence axiom may fail to describe real
behavior in certain risky environments, especially when there are
low-probability events. But the combination of facts showing that the
independence axiom, and its related axioms of time consistency and
consequentialism, make common sense and make most problems
solvable is enough to justify the exploration of its implications.

The search for an alternative model of decision making under un-
certainty that does not rely on the independence axiom has been
a lively field of research in economics for more than fifteen years.
There are several competing models, each with its advantages and
faults.! Most entail the expected utility model as a particular case.
Nevertheless, the use of the expected utility model is pervasive in
economics. Probably because of its strong normative basis.

1.6 Exercises and Extensions

Exercise 1 Consider the Allais paradox summarized in table 1.1.
Show that there exists no utility function such that the expected
utility of L“ is larger than the expected utility of L’, and the expected
utility of M" is larger than the expected utility of M".

1. For more about the history of the economic thought on this field, see Bernstein
(1996) and Dreze (1987), for example.
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Exercise 2 (Ellsberg’s paradox) Savage (1954) extended the ex-
pected utility theorem to situations where the probabilities are not
objectively known. He introduced the sure thing principle, an axiom
that is stronger than the independence axiom. He showed that this
stronger axiom could be used to prove the “subjective EU” theorem
by noting that

« there exists a subjective probability measure p,

+ there exists a real-valued utility function u

such that the decision maker ranks various distributions of con-
sequences w by using their subjective expected utility >, psu(ws).

The following example is due to Ellsberg (1961). An urn contains
90 colored balls. Thirty balls are red, and the remaining 60 either
black or white; the number of black (white) balls is not specified.
There are 4 lotteries as described in table 1.2. Given that many
people report ranking L* = L’ and M? = M?, show that there exists
no pair (p,u) that sustains such ranking of lotteries. The agents are
averse to ambiguous probabilities, a possibility that is ruled out by
the sure thing principle. (For a model with ambiguity aversion, see
Gilboa and Schmeidler 1987.)

Exercise 3 (Rank Dependent EU) Consider the lottery L = (x1,p1;
X2,P2; .. -3 Xs,Ps), with x1 <xp < -+ < xg. Quiggin (1982) proposed a
generalization of the EU model by introducing a function g of trans-
formation of the cumulative distribution:

S s s—1

UL) = u(x) [g< pt> - g(Z ptﬂ (1.4)
s=1 t=1 t=1

with ¢g(0) =0 and g(1) = 1.

« Draw the indifference curves in the Machina triangle for g(q) = ¢°

and g(q) = v

« Which restriction on g would you consider to solve the Allais
paradox?



