African countries, 60	capital turnover, 139
agriculture, 61, 175, 234	capital vintage structure, 129, 135, 153, 158,
allocation of scarce factors, 27	190
altruistic behavior, 32	carbon, 16
aluminium, 69, 197, 291	carbon dioxide emissions. See CO ₂
ammonia, 197	emissions
applied general equilibrium framework, 255	carbon dioxide emissions module, 135, 137
Armington, 210	carrying capacity, 167
ASFF. See Australian Stock and Flows	cars, 87
Framework	car-sharing services, 44
Asnæs fiskeindustri, 318	cascading, 367
Asnæsværket, 318	cascading of materials, 23, 375
Australia, 9, 165	catch levels, 367
Australian Stocks and Flows Framework	causes of trade and recycling, 296
(ASFF), 9, 168, 171	cement consumption, 86
Automobiles, 57	CES production functions, 269
Avedøre Holme, 10, 314, 328	chain approach, 197
average material intensity, 141	chemical time bombs, 6, 21, 39
	chemical exergy, 61
backcasting scenarios, 118	chemical products, 17
Basel Convention, 305, 368, 370	chemicals industry, 144
basic industry, 197	Chicago Board of Trade (CBOT), 293
Baumol effect, 372	Chile, 60
bicycles, 57	China, 300
biomass, 18, 79	CITES, 366
biomass consumption, 75	climate change policy, 126, 156, 361
bottom-up, 10	closing cycles of substances, 22
bottom-up and top-down modeling, 130	CO ₂ emissions, 21, 34, 101, 180, 187, 195,
bounded rationality, 374	196
Brundtland Commission, 33, 34, 339	Cobb-Douglas production function, 30
building materials, 67	coevolution, 45
buildings calculators, 175	collection, 31, 32
bureaucrats, 11, 345	collective action theory, 349
bulk material flows, 96	collective approach, 337
burning, 22. See also Incineration	collective goals, 352
business services, 234	combustion, 61, 367
	Commonwealth Scientific & Industrial
Cairneross, 58, 65, 87, 90	Research Organization (CSIRO), 167
calibration procedures, 177	comparative advantages, 208
capital intensity, 140	complex systems modeling, 361
capital investment, 156	computer chips, 57, 79

conservation of energy/mass, 19	detailed decomposition of final demand
construction materials, 74, 88	categories, 106
consumables calculator, 172	developed countries, 10, 40, 41, 294, 360
consumers, 45	DIMITRI model (Dynamic Input-Output
consumer behavior, 44	Model to Study the Impacts of
consumer preferences, 369	Technology-Related Innovations), 9, 34,
consumption, 29, 169	192, 211, 223, 224
contracts between municipalities and waste	disembodied technical changes, 129
treatment, 255	displacement, 59
control space, 168, 178	displacement effects, 213
Convention on International Trade in	disposal, 257
Endangered Species of Wild Fauna and	dissipative household consumables, 89
Flora, 366	downstream demand, 322
cooperation, 42, 348	downstream tax, 256, 368
cooperation culture, 313	Duchin-Lange model, 230
cooperation in the product chain, 375	Duchin-Szyld model, 230
Copenhagen area, 314	dumping of waste, 21, 367
copper, 68, 70, 87	Dutch National Statistical Bureau (CBS), 8,
copper scrap, 292	96, 233
cost curves, 35	Dutch Waste Management Association, 22
cost of carbon, 146	Dutch waste policy, 367
cost-benefit analysis, 368	Dwight D. Eisenhower, 74
cost-benefit consideration, 345	dynamic models, 125–163, 223–252, 361
cost-effective, 345	dynamic industrial system analysis, 125
cost-effectiveness, 27, 28, 35, 257	dynamic industry models, 140
CPB (Netherlands Bureau for Economic	dynamic input-output (DIO) modeling,
Policy Analysis), 34, 225	362
cross-price elasticity of demand, 31	dynamic vintage approach, 129, 135, 153,
crude oil, 72	158, 204
decision support 131	dynamics, 165
decision support, 131 declining ore grades, 68	ECCO approach (Enhancement of Capital
decomposability of products, 366	Creation Options), 35
decomposition	eco-efficiency, 24, 45
of final demand categories, 106	eco-industrial park (EIP), 10, 313, 337
of output, 106	ecological rucksacks, 166
of value added, 106	ecology, 4
decoupling, 95	econometric models, 190
delinking, 36, 95	economic efficiency, 363
demand and supply functions, 259	economic growth, 27, 42, 107, 199, 289, 296
demand-oriented theories, 297	economic life of products, 23
dematerialization, 8, 11, 21, 24, 26, 35, 44,	economic limits and opportunities, 14
57, 68, 79, 95, 100, 195, 364, 360, 366. See	economic valuation, 371
also Rematerialization	economic value, 65, 373
absolute, 104, 105	economics and material flow analysis, 5
at the macro level, 24, 37	economics perspective, 5
dematerializing of supply side of economy,	economies of scale, 44, 296
372	economy-wide feedback, 5
relative, 104, 105	Eastern Europe, 302
type of, 105	efficiency, 30, 373
dematerialization factors, 68–80	efficiency gap, 198
dematerialization indicator, 372	elasticity of substitution, 203
demography calculators, 172	electricity production module, 135, 137
Denmark, 314	electronic computer, 79
deposit refund system, 256, 368	embodied energy, 168
design, 11	embodied energy analysis, 169
design approach, 178	embodied exergy per unit of mass, 371
	chibodica exergy per unit of mass, 371

empirical partial equilibrium model, 35 end-of-pipe solutions, 313	fast-moving variables, 169 FDL, 98
end-of-pipe technologies, 13	FDM, 98
endogenous growth mechanism, 171	final commodities, 39, 288
energy, 61, 96	final goods, 39, 65
energy carriers, 83	final products, 87
energy demand, 101	final users, 197
energy efficiency, 341	firm level, 24
energy intensity module, 135, 136	firms, 42, 259
energy mix module, 135, 137	fisheries calculator, 175
energy models, 157	flat-fee pricing, 22, 255, 368
energy policy, 361	FMS-3, 211, 212
energy transformation sectors, 169	forecasting scenarios, 117
energy use, 236	forest products, 65
energy-related emissions, 96	forestry calculator, 175
energy-rich materials, 67	fossil fuel exergy, 83
engineering and econometric analyses, 8	fossil fuels, 72
entropy, 19	free-riders, 349
environmental awareness, 296	freight transport, 366
environmental club, 324, 327	Frosch and Gallopoulos, 339
environmental economics, 20	fuel shares, 139
environmental Kuznets curve (ECK), 36,	fuels, 66
42, 95	furnace production processes, 143
environmental load of producing new materials, 22	Gaia, 16
environmental policies, 291	general equilibrium model, 128, 166, 256,
equilibrium, 62	363
equilibrium models, 33	of the waste market, 9
erosion, 60	genuine collective action, 353
essential, 30	geographical area, 337
ethylene, 138	glass, 19
ethylene industries, 126	glass packing, 18
Europe, 9, 195, 302	global biogeochemical cycles, 38
European Union (EU), 368	global environment, 233
EU countries, 195	global recycling market, 294
Europoort/Botlek area, 342, 346	globalization, 38
evolution of cooperation, 351	government expenditure, 269
evolutionary aspects, 363	Graedel and Allenby, 4
ex post studies, 233	Greenspan, 58, 65, 79, 87, 90, 185
exchange relationships, 352	gross investment, 139
exergy, 19, 61–63, 62	group of firms, 337
exergy per capita, 79, 371	groupings of material, 371
exergy/GDP, 79	growth debate, 36
exports, 111, 170, 197, 228, 236	growth optimists, 31
exports from developed to developing countries, 295	Gyproc Nordic East, 318
export level effect, 115	hard-wired model, 191
external costs, 18	hazardous waste, 305
of packaging materials, 19	Heckscher-Ohlin theorem, 210, 297
of waste, 369	hidden material flows, 59, 166
externalities, 371	hierarchy of waste management, 21, 367
EZ (Ministry of Economic Affairs), 341	highway program, 74
	history of iron and steel production, 68
factor 10, 90	Hoover dam, 74
Factor Four, 24, 45, 90, 166, 203, 364	Hotelling rule, 365
Factor Ten economy, 166	household, 259
Factor X, 45	household consumption, 113
Factor X debate, 4	houses, 87

human-made capital, 35	input-output (I/O tables), 32, 169
hybrid-unit input-output (I/O) framework,	institutional analysis, 363
96	integrated mills, 142
hybrid-unit input-output (I/O) tables, 8,	integrated modeling, 14, 29
96, 362	integrated policy, 373
hybrid-unit model, 102	interfirm recycling linkages, 345
,	integrative methods for policy analysis, 360
illegal disposal, 256	intermediate products, 65
illicit dumping, 22	intermediate substitution, 98
immobility of labor and capital, 41	international agreements, 374
I-M-P chain, 40	international flows of waste, 369
imperfect information, 374	International Institute for Applied Systems
imports, 107, 109, 197	Analysis (IIASA), 168
incentives, 11	international material-product chain, 40,
incineration, 20, 262	297, 298
income, 199	international material-product chain
income elasticities of material demand, 200	(IMPC) model, 196
increased greenhouse effect, 21	international reuse, 370
index approach, 107	international trade, 10, 32, 40, 287–310
index decomposition analysis (IDA), 117	international trade balance calculator, 176
indicators of dematerialization, 104	international trade data, 60
industrial ecology, 4, 337	Intra-Sectoral Technology Use Model
industrial ecosystem, 37, 43. See also Eco-	(ISTUM), 130
industrial park	inverted U-curve, 199
industrial metabolism, 6, 38, 226	investments, 27, 202
industrial network, 316	investment goods, 113, 230
industrial park, 42. See also Eco-industrial	investment in new technology, 128
park	involving stakeholders, 133
industrial Paralletian 28 (0.166	iron and steel, 95–122, 105, 126, 138, 291
Industrial Revolution, 38, 69, 166	iron and steel industry, 141
industrial symbiosis, 42, 313, 337	iterative simulation process, 189
industrial symbiotic network, 313	Ionan 192
industrial systems, 125	Japan, 183
industry dynamics, 127	Journal of Industrial Ecology, 4, 339
industry organizations, 136 inert materials, 67	Kalmbach-Kurz model, 230
INES Eco-Industrial Park, 342, 346	Kalundborg, 10, 24, 42, 313, 338, 368
information, 20	KLEMO, 98
Information Age, 38	Kyoto, 195
information and communication	12,000, 150
technology, 7	land resources, 176
inherent inert materials, 67	land regulations, 361
input substitution, 203	land scarcity, 296
input-output (I/O) analysis, 32, 126, 225.	landfilling, 21, 262
See also Hybrid-unit input-output (I/O)	lead scrap, 292
framework; Structural decomposition	leasing, 44
analysis	legal waste disposal, 369
commodity technology assumption, 104	legislation, 332
commodity-by-commodity input-output	lengthening the life of products, 366
(I/O) table, 104	Leontief input-output (I/O) world model, 34
input-output (I/O) data and techniques,	Leontief-Duchin model, 230
362	levels of connectedness, 352
input-output (I/O) tables, 95	life cycle
input-output energy analysis (IOEA), 225	life cycle analysis (LCA), 27, 28, 365
input-output (I/O) coefficient, 97	life cycle of a product, 337
input-output (I/O) model, 97	local trust-based relationship, 326
input-output (I/O) model including	location, 42
imports, 107	location of industrial activities, 208

location theories, 297	monetary units, 31
lock-in, 44, 374, 375	monetary data, 96
low-entry energy, 24	monetary economy, 189
lumber and paper, 86	monetary evaluation, 28
lump-sum transfer, 259	monetary supply and use tables, 103
*	monetary valuation, 18
machine space, 168, 178	monitoring, 352
machinery, 68	Moore's law, 79
macro level of aggregation, 35	motor vehicles, 68
macroindicators, 25	M-P chain (MPC). See Material-product
maintenance services, 44	chain
MARKAL, 130	multilocation optimization model, 300
Markets, 197	multiregional input-output (I/O) model, 224
market distortions, 255	multiregional input-output (I/O) structure, 9
market failures, 21	municipalities, 22
markets for waste, 21	municipanties, 22
mass and exergy per unit of GDP, 58, 371	National Energy Modeling System
mass per capita, 371	(NEMS), 130
mass/GDP, 79	national environmental policy plan (NEPP),
mass-balance principle, 20, 26, 29, 60, 63	223
material	national stocks, 165
cascading, 23, 37	natural capital, 35
typology of, 15–18, 63–68, 68–80	natural resource accounting, 34
material balance conditions, 33	natural resource stocks, 169
material cycle, 39, 40	negative external effects, 367
material entropy, 20	Negishi format, 258, 282
material flow analysis, 183	Negishi weight, 282
material policy, 202, 359	neoclassical production functions, 30
material prices, 201	neo-technology theory, 297
material flows, U.S., 63-68	Netherlands, 8, 9, 22, 105, 109, 183, 196,
material resources calculators, 175	209, 228, 233, 268, 341, 346
material-poor economy, 11	Netherlands Bureau for Economic Policy
material-product chain, 26, 27, 197, 288. See	Analysis (CPB), 35, 225
also International material-product chain	Netherlands Energy Demand Model
materials inputs per service unit, 371	(NEMO), 205
Matter-Markal model, 211	Netherlands Environmental Assessment
meat replacement, 241	Agency, 224
mental factors, 327	Statistics Netherlands (CBS), 8, 96, 233
MESEMET (Macro Economic Semi	network analysis, 347
Equilibrium Model with Endogenous	network externalities, 44
Technology) model, 231	New England, 42, 43
mesoeconomic model, 224	nitrogen, 16
metabolism, 169. See also Industrial	nitrogen fertilizer production in the
ecosystem; Industrial metabolism	Netherlands, 208
metals, 16, 19, 67	noise externalities, 359
metals sector, 42	nonequilibrium approach, 134
methane, 21	non-OECD countries, 236
methanol economy, 171, 180	nonstructural materials, 87
methanol production scenario, 180	North-North trade, 294–296
micro level, 24	North-South trade, 294–296
mineral prices, 206	novel protein foods, 225, 239
minerals, 17, 66	NOVEM, 344
mining calculator, 176	Novo Nordisk, 318
mining industry, 197	NO_x permits, 217
Ministry of Economic Affairs, 341	NO_x reduction, 215
mix of policy instrument, 361	NPFs, 239
MNP-RIVM, 224	N-shaped relationship, 200
Modules, 135	nutrient flows, 37
,	,

OECD, 236	prevention of waste, 366
OECD countries, 367	prices, 258
Oostzaan, 261	price-based policy instruments, 157
optimal growth model, 42	price elasticities of import and export and
optimal use of the resource, 365	scrap, 209
optimization of external effects, 371	price instrument, 32
organic products, 18	price mechanisms, 34, 191
Our Common Future (report), 33	primary commodities, 39, 288
overburden, 60	primary materials, 197
oxygen, 59	primary recycling, 23
OzEcco Embodied Energy Model, 9, 168–	principal-agent problems, 4
170	product chains, 342
	product choice, 45
packaging material, 18, 257	product design, 307
packing material agreement, 202	product industry, 197
paper, 19, 197	product level, 24
partial equilibrium analysis, 28, 195–223,	product life cycle, 257
362	production, 153, 257
partial equilibrium model, 9, 195, 218-222	production cycle, 373
payoff times, 325	production functions, 29, 128, 263
per capita dematerialization, 79	production module, 135
performance standard rates (PSRs), 214	of meat, 239
peripheral areas, 333	products, 39
personal computers, 79	provinces, 22
pessimists, 31	pulp and paper, 138
phosphate, 197	pulp and paper industry, 138
phosphor, 16	PVC, 17
photosynthesis, 62	OWED TWILL I I I I
physical constraints, 14	QWERTY keyboard, 45
physical economy, 46, 189	D.O.D. (207
physical economy modeling, 165	R&D support, 307
physical economy simulators, 168	raw materials, 197
physical flow accounting, 14	raw agricultural products, 63
physical input-output (I/O) tables, 34	raw material inputs, 59
physical imports, 171	rebound effect, 45, 69, 88, 367
physical limits, 192	reciprocity, 350
physical supply and use tables, 103	recyclable materials, 288
pig iron, 69 Pigovian tax 365	recycled material, 264
Pigovian tax, 365	recycling, 10, 21, 26, 31, 35, 37, 39, 202, 287.
Planning, 363 planning-and-design perspective, 5	See also Reuse 100 percent recycling, 37
plastic products, 95–122	recycling options, 365
plastics, 17, 19, 83, 95–122, 197	recycling options, 365 recycling rate, 289
policies, 46	recycling services, 260
policy and strategies, 21	refrigerators, 57
policy and strategies, 21 policy implications, 11, 359	regional aggregation, 131
policy scenarios, 146, 272, 273	regional economic development, 320
pollution generation, 169	regional scale, 131
pollution problems, 15	regulation of resource supply, 367
population density, 296	relative energy intensity (REI), 136
population-development-environment	remanufacturing, 44
simulators, 167	rematerialization, 95, 104, 105. See also
Portland cement, 67	Dematerialization
potassium, 197	repairing, 22, 23
potentially reactive, 67	replacement, 30
pre-collective-action phase, 353	resilience, 165, 190
President's Council on Sustainable	resource-intensive industries, 316
Development, 339	resource problems, 15

resource stock management, 366	structural decomposition analysis, 8, 32, 95-
reuse, 23, 35, 39. See also Recycling	122, 97, 234, 362, 373
revitalization, 341	structural materials, 87
revitalize industrial parks, 341	subsidization of virgin materials, 255
RIVM (National Institute for Public Health	subsidy-cum-tax scheme, 258, 260
and the Environment), 35	substance flow analysis, 28
Rotterdam, 342	Substance Throughput Related to Economic
Rotterdam area, 333	Activity Model (STREAM), 34, 192, 195,
Rotterdam harbor, 346	196, 362
Royal Dutch Shell, 167	Substances, 15
rubber, 86	Substitution, 20, 26, 29, 34, 45, 87, 129, 269, 365
sale, 257	direct versus indirect, 29
sanctioning, 352	between commodities, 290
saving, 30	between primary and secondary materials,
scale effects, 41	203
scarcity of land, 367	of glass optical fibers, 77
scenario analysis, 117, 189	of inputs, 27
scenarios, 145, 168, 198	of materials, 30
Schumpeterian competition, 23	substitution elasticities, 269, 271
scrap, 197	among different consumption goods, 277
scrap prices, 206	sulphur, 16
secondary commodities, 39, 288	supply security, 322
secondary materials, 197, 305	surface mining, 60
secondary recycling, 23	sustainability transition, 190
second-best policy, 372	sustainable development, 14
sector of industry, 337	sustainable food supply, 239
self-governance, 352	sustainable harvesting, 367
self-organization, 10, 42, 352, 363	"Sustainable Economic Development
self-organized interactions, 354	Structures" (study), 33
sensitivity analysis, 276	symbiosis, 10, 314
services, 29, 36, 44, 372	Symbiosis Institute, 324
service economy, 44	system boundaries, 141, 155, 157
service sector, 37	system boundary for eco-industrial parks,
shape, 20	348
Silicon Valley, 316	
slow- and fast-moving variables, 166	TC, 98
slow-moving variables, 169, 190	technical and institutional limits, 289
social norm, 32	technical efficiency, 20
social-accounting matrix, 34, 269, 270	technical progress, 203
Socolow, 4	technological adaptations, 361
soft model, 191	technological changes, 129
Soilrem, 318	new technologies, 226
South Africa, 60	in materials, 98
"Space for Growth" (Dutch study), 33	technological innovation, 27
spatial dimensions, 22	technological progress, 198
species, 39	technological scenarios, 7, 225
sport utility vehicles, 57	technological matrix, 226
stakeholder, 363	technology transfer, 307
statistic optimization model, 300	telecommunications technology, 77
statistical-historical modeling, 360	tertiary recycling, 23
Statoil raffinaderiet, 318	text processors, 45
steady state, 5	textiles, 68
steel, 66, 83, 197	Thailand, 299
stocks, 14	thermodynamics, 14, 19, 30, 61
strategic prospectives, 167	thermo-recycling, 368
STREAM. See Substance Throughput	Third Italy, 316
Related to Economic Activity Model	throughput, 5, 365

top-down, 10, 363 waste policy, 11, 255, 367-369 top-down design, 354 waste regions, 22 waste tax, 256, 368 top-down project, 331 topsoil or subsoil, 59 waste treatment, 265 waste treatment options, 368 total material requirement (TMR), 371 trade, 4. See also International trade wastepaper, 291, 292 in India, 299 among developed countries, 295 in materials, 42 water, 59 with Germany, 208 water resources and air resources trade liberalization, 292 calculators, 176 trade relations, 210 weight of the GNP, 65 trade specification, 210 welfare function, 262 trade theories, 297 Western diet, 239 Western Europe, 9, 209, 302 transition management, 224, 233 transitions, 11 whole system indicators, 169 translog cost function, 204 World Trade Organization (WTO), 293 transportation, 175 transportation equipment, 106 zero emissions, 22 truck tires, 302 trust, 350 two-region simulation model, 303 U.K. Waste Hierarchy Policy, 367 unilateral energy tax, 213 unit-based pricing, 10, 256, 369 United States, 8, 18, 31, 60, 99, 102, 109, 183, 299 dematerialization indicators and drivers, 57-94 economic system, 8, 57, 64 U.S. Environmental Protection Agency, 21, 125, 367 metals sectors, 25 pulp and paper, 126 steel exports, 208 upstream production, 322 upstream tax, 256, 368 useful outputs, 63 use of materials and energy, 16 utility companies, 368 value versus physical amount, 36 vintage analysis, 29, 129, 135, 153, 158, 190, 198, 204 virgin material, 23, 264, 288 virgin-material-biased regulations, 255 Vishnu group, 339 waste, 21, 367-369 waste collection, 256, 264 waste collection services, 259 waste disposal industry, 197 waste hierarchy policy, 21, 367 waste management, 21, 35, 367 waste management hierarchy, 21, 367 waste market, 255, 363 waste mining, 6, 37, 39, 374 waste plastic trade, 300