
1 Growing Up in the Digital Age

There is a fundamental problem for people living in the digital age. People

and digital artifacts are different. People struggle to understand and use their

computers, cameras, and phones. Certainly, many of these devices are quite

complex, but many features of them are also poorly designed. This is not

to blame designers; they are people living in the digital age too. They have

grown up with the same understanding of people and the same background

of computers as the rest of us. We do feel, however, that if designers were more

sensitized to the problems people have using digital technologies, they

might come up with better designs. If they were more literate in things digi-

tal, they could better express their intentions through their designs.

The digital is about to come of age. For sixty years, we have seen a steady de-

velopment of digital technologies. Now everything is going digital. Once-

separate things like cameras and phones are now converging, creating new

artifacts. Indeed, it is right to say that the very fabric of the world is increas-

ingly becoming digitally enhanced. The designers of these new environ-

ments, artifacts, and forms of interaction need to understand the things they

create and the impact that they may have on people’s lives.

Unfortunately, there is good reason to believe that our understanding of

people, and particularly how people think, has been dominated by a serious

misconception for the last sixty years. This misconception is that there is an

objective world that people understand by holding and manipulating sym-

bols in their heads that, in turn, stand for the things in the world. In place of

this view is a conception that thinking is inherently embodied, rather than

disembodied, literal, and based on the logical manipulations of abstract sym-

bols. It is creative, figurative, and derived from our experiences as humans liv-

ing in a physical, cultural, and social environment.

2 Chapter 1

With this alternative view of cognition we can revisit the design of digital

technologies. We can understand where the constructs used in the design of

digital artifacts have come from and better explain how they may be used. We

can help software designers and engineers understand their technology.

Most important, we can develop literacy in digital technology design that

will enable people to interact with and through those technologies in a satis-

fying and fruitful way.

Things Digital

Digital technologies, of the sort that we are familiar with today, first arrived in

the form of electronic computers at the end of the Second World War. The

concept of an electronic calculating machine had arisen during the 1930s,

and found a real need in the work of the code-breaking group working at

Bletchley Park in Buckinghamshire, England, and the war effort in the United

States. Soon, general-purpose computers with names such as ENIAC and

EDVAC were being developed. At much the same time, psychologists were

doubting the prevalent theories of psychology. These theories focused on the

observed behaviors of people, and a fierce debate raged between the behav-

iorists and the “cognitivists” about how best to describe and understand the

psychology of people. Whereas behaviorists had looked at the observed be-

haviors of people, cognitivists believed that people had mental representa-

tions of things in the world that they stored, manipulated, and transformed

in their minds.

Since the 1950s, there have been many developments in both computing

and cognition. They have drawn from each other and have contributed to the

understanding of each other. The fundamental design of a computer’s mem-

ory and the way in which it processes data are much the same now as they

were in the 1950s. Data—whether text, video, audio, or graphics—is repre-

sented as bits (binary digits), manipulated in the computer’s main memory,

and stored on some more permanent secondary storage device. Data can be

transmitted over communications links to other devices. In a similar way,

people could be described as having a long term memory for more permanent

storage, a short-term memory for transitory data, and some processing capa-

bility, and of course they can transmit as well as receive data through hearing,

seeing, smelling, touching, or tasting.

Digital technology has been very successful. The speed and capacity of

computers have increased at a phenomenal rate—far beyond anything the

early pioneers dreamed of. Thus we now have digital technologies (that

is, computers) that are ubiquitous and pervasive, embedded in the fabric of

the world. People increasingly wear computers in their clothes or jewelry, or

carry computers in their phones or audio players. Ambient technology de-

scribes computers that are embedded in the fabric of buildings. These new

media are characterized by their interactivity. They are interactive media—

people alter the behaviors, presentation, and content of the media through

their interactions with them. Interactive media continue to evolve and con-

verge so, for example, a phone might include a camera, display live video

transmissions, and connect automatically to receive e-mail when in range

of a communications network. In interactive media, data is digital so it is

transferable between devices, transmittable across wireless networks, and trans-

mutable from one representation to another. The stuff of digital media that

allows all this to happen is known as software.

Alongside the successes of digital media, however, there have been some

notable failures. In the 1960s, the new field of artificial intelligence (AI) was

established, and courses were set up at the University of Edinburgh in Scot-

land and Stanford University in the United States. Expectations were high.

An AI computer would understand people when they talked to it. Computers

would be able to wander around a house, recognize faces, and think in much

the same way that people do. From the 1970s onward, huge amounts of in-

vestment have been put into “natural-language” processing to try to get com-

puters to understand and use language as we do. In the 1990s, the Japanese

“fifth-generation” project predicted highly “intelligent” machines within five

years with automatic translation between languages. In the United States,

President Ronald Reagan envisaged an umbrella of intelligent missiles in the

“Star Wars” project. None of these has been realized.

Cognition, or cognitive psychology, has also come a long way since the

1950s. In particular there have been great advances in neurology, which is

concerned with how the brain functions, where the functions are located, and

how these functions can be identified and repaired, if necessary. But we are

still no closer to understanding how people understand what each other say,

how they recognize objects, nor how they play games like chess. If we could

only understand the representations that people have (so the argument goes),

Growing Up in the Digital Age 3

we could program computers to do the same. Yet, some commentators have

asserted that computers could never be intelligent in any way approximating

what we understand by human intelligence because of the way that comput-

ers represent the outside world. They might do some clever things (which in-

deed they have done), but this has to do with size and speed, with brute force

rather than understanding.

This difference between the representations of things that computers have

and people’s ways of understanding and acting has also made interacting

with the computer difficult. The human-computer interaction (HCI) disci-

pline grew out of the computing and cognition discussions of the 1970s, and

became a central arena in which the psychologists could explore their theo-

ries. Software systems became to the cognitivists what the rat-in-a-maze had

been to the behaviorists. People could be studied and questioned about the

thinking that they were engaged in. The first theories of HCI were based on

the idea that people are “human information processors” (see, for example,

Card, Moran, and Newell 1983). Theories of human information processing

had developed during the 1960s and 1970s. They examined how people

could encode, transform, create, and output information. Applying this to

people interacting with computers seemed an ideal laboratory in which

to explore the cognitivists’ ideas.

Many metaphors were used during this time to try to characterize HCI. HCI

was often called the human-computer dialogue in the early days, suggesting

that the person was communicating and discussing things with the com-

puter. The notion that people interacting with computers could be consid-

ered a dialogue had its origin in the early design of computers too. In the

early 1950s, “instructions” were given to computers by setting switches. Each

switch could be set; either it was on or off (hence binary). Six or eight such

switches (binary digits or bits) taken as a group would represent a character.

With eight switches there were 256 different combinations (28), which was

enough to represent all the letters of the alphabet, the numbers 0 to 9, special

characters such as commas and periods, and spaces, with some to spare. Eight

bits were known as a byte. As the process of using computers became more

automated, paper tape was used to provide a sequence of instructions. Holes

were punched in the tape to represent the bytes, and the sequence became

known as a program, instruction set, or procedure. The process worked much

the same as the original automated knitting machines, the Jacquard loom.

By the late 1950s, general sets of instructions were stored in the computer to

4 Chapter 1

enable it to undertake frequently used procedures (such as storing and re-

trieving data). These were known as supervisor programs, monitor programs,

or the operating system.

And so the scene was set for the first period of the digital age. Metaphors

were used to describe the actions of computers and the representations that

they used. Data was stored in “files.” Programs were written in a program-

ming “language.” Programs were “executed” on the computer. People en-

gaged in a “dialogue” with the computer. Since then, of course, we have a

very different form of HCI and such metaphors have proliferated. We have

“menus” of “commands.” We “cut” and “paste.” We “open” and “close” files.

We “quit” programs and “import” data.

The Felt Sense of Thinking

In 1980, George Lakoff and Mark Johnson published their book Metaphors We

Live By. This groundbreaking work argued that language and thought were

based on a limited number of fundamental, conceptual metaphors. Metaphor

was much more than a literary trope; it was central to how humans thought.

Many metaphors were not recognized as such because they had been so in-

grained into our ways of thinking and talking that we no longer saw them at

all. The coauthors gave examples such as “knowing is seeing” (for instance, I

see what you mean) and “up is good” (one is climbing the ladder of success).

The computing examples above would not be recognized as metaphors by

many; they are what we do with computers. This discovery of the systematic

embedding of metaphors was accompanied by another key insight. These

metaphors were based on embodied experience. These fundamental, con-

ceptual metaphors derive from the fact that we are people living in the world:

“three natural kinds of experience—experience of the body, of the physical

environment, and of the culture—are what constitute the basic source do-

mains upon which metaphors draw” (Rohrer 2005, 14).

Lakoff and Johnson’s work and that of some other commentators repre-

sented a major shift in cognitive theory that may, in turn, have significant

impact on how we view cognition (the debate on this continues). Given the

intertwined history of computing and cognition, we suspect that the various

theories that Lakoff and Johnson’s ideas spawned will have a significant im-

pact on software engineering (SE) and HCI too. In this book we explore ex-

actly these issues.

Growing Up in the Digital Age 5

Consider the following story based on reports of an air accident (Imaz and

Benyon 1996, 106–107):

On 27th November 1983 there was a Boeing 747 accident near the Barajas airport. It
was an Avianca (Colombian Airlines) regular flight from Paris to Bogota with a stop at
Madrid. Even if the total scenario is quite complex, it could be said that the main cause
of the accident was the misuse of the Ground Proximity Warning System (GPWS). Ac-
cording to the official report on the accident, the GPWS was insistently warning about
the fact that the plane was below a minimum altitude.

The captain reacted saying: “OK, OK” meaning “I know it is a GPWS malfunction, so
I will continue the approach procedure.” The official reports says:

Captain answers “Bueno, bueno” (OK, OK).
However some people very close to this Official Commission (and some magazines

of that time) say that the real captain answer—registered in the CVR (Cockpit Voice
Recorder)—was:

“Calla gringo” (Shut up gringo).
“Gringo” is an expression used by some Latin-American people referring to (north)

American people. In this context the captain was Colombian (south American), the air-
craft north American and a warning system (GPWS) that speaks English. There is also a
known fault in the artifact that in certain circumstances it gives a false warning. This
determines a mistrust reaction by the captain. The captain has used a way of anthro-
pomorphizing the GPWS by using the metaphor: THE DEVICE IS A STUPID PERSON.

This story illustrates that the relationship the captain establishes with the

GPWS is not neutral. It shows some type of mistrust or a pejorative attitude.

It appears that the GPWS has caused some unconscious reaction as if it were

a real person. As this GPWS was a device that in certain circumstances gave

erroneous information, this malfunction determined that in a critical mo-

ment, the captain did not accept the warning as a real one, but just another

malfunction.

This analysis draws on a concept that we might call “sociocultural embod-

iment.” The interaction of the captain and the device is not a simple, disem-

bodied exchange. An HCI specialist could look at the design of the device

as well as that of the human-computer interface and conclude that all HCI

guidelines (derived from a traditional view of cognition) had been met. Such

an analysis, we argue, would miss some key aspects of the human-computer

relationship that derive from the embodied nature of cognition.

Tim Rohrer (1995) discusses “zooming windows” as an example of the

power of physiologically embodied metaphors. When a person double clicks

on a file icon on a computer, the image zooms out toward the person much in

the same way as a page gets larger if you move a book toward your face. Similar

6 Chapter 1

animations have been adopted on personal data assistants and in the “genie”

effect on the Macintosh operating system OS X when an item is moved on or

off the temporary holding location, the Dock. Rohrer (1995, 8) says that:

zooming is more than just a nice touch however; it is one of the best examples of how
user interface design can draw on common patterns of feelings. Zooming is a pattern of
feelings that takes place in and through time; the realization that all feeling takes place
in and through time is the most important step in thinking about users’ bodies. . . .
Zooming windows are an extension of the PHYSICAL WORLD metaphor, which draws on
the common pattern of feeling we experience when an object approaches us. Though
computer events usually happen fairly instantaneously by our standards, zooming
windows are a deliberate attempt to make the PHYSICAL WORLD metaphor of the user in-
terface to include both three-dimensional space and time.

Rohrer (2005) emphasizes the felt sense of embodied interactions. It is not

just a case of knowing some interaction is good or bad; it is sense of feeling it.

In this book, we explore the design of computing systems—including the

process of SE and HCI—from the perspective of “embodied cognition.” This

term covers a number of theoretical positions that oppose the traditional

“objectivist” view of cognition that has dominated the discipline since its be-

ginning. Our interests are with computers, how people use computers, what

they try to do with computers, and designing for new interactive media. In

the remainder of this chapter we introduce some of the key concepts in both

people and computers.

A Short History of Cognition

Throughout the 1940s and 1950s, disciplines such as psychology, linguistics,

computer science, and philosophy found that they were thinking and talking

about similar concepts. This gave rise to a new discipline, called cognitive

science. Indeed, one history of the subject (Gardner 1985) points to Septem-

ber 11, 1956, as the real starting point—the middle day of a symposium on

information theory at MIT when papers were presented by Noam Chomsky

(on linguistics), George Miller (on human memory), and Allen Newell and

H. A. Simon on computing. Each person was to become a central figure in

their own field.

Cognitive Psychology was the title of Ulrich Neisser’s (1967) book that ap-

plied these concepts specifically to understanding human thought from an

individual perspective. The computer-processing metaphor was used just as

Growing Up in the Digital Age 7

it is, taking meaning as almost synonymous with information, and describing

people in terms of an input, a process, and an output: “Cognitive psycholo-

gists investigate human information processing—how people encode, trans-

form, create, and output information” (Haberlandt 1994, 25).

The computer metaphor THE HUMAN IS AN INFORMATION PROCESSOR was used

to understand cognition. The two main assumptions of cognitive psychology

are representation and process. Within cognitive psychology, there are many

debates about what these representations might be like, such as whether the

representations are analogous to the physical entities or whether they are ab-

stract. But the question of representation is not controversial. Moreover, for

the adherents of a strong cognitivism, knowledge has uniformly the same

structure and format, whether it is a transient image, a memory, the meaning

of a word, or a problem to be solved.

Once the question of representation has been established, the next issue

concerns how to store such representations in memory. Cognitive psycholo-

gists ask, for example, whether there is a specific storage location (as in a

computer), which is always the reference of a representation. Others argue

that information is distributed over many locations as a neural network. Cog-

nitivism is a term usually reserved for an individual, isolated approach to cog-

nitive psychology. It has a whole repertoire of processes, strategies, moves,

operations, procedures, algorithms, plans, goals, and so on that manipulate

the representations. For example, if a person is to remember a phone number

the processes would involve listening, writing the number down, trying to

remember it, and recalling it when needed. In terms of cognitive psychology

this would be encoding, recoding, storing, and retrieval. Encoding means

that the number is recognized, next it is recoded for writing it down, and as-

suming that the number has been stored in memory, then it may be retrieved

for later use.

This notion of cognition dominated psychology throughout the 1960s and

1970s. In the 1980s, a new computing paradigm emerged: parallel distributed

processing (PDP). People such as David Rumelhart and James McClelland

(1986) used this different computing metaphor to discuss cognition. The

classical paradigm of centralized processes and an executive program in con-

trol was replaced by a new one: THE BRAIN IS A NEURAL NETWORK. In this model,

thousands of relatively independent processing nodes are linked into a net-

work. The strength of the different connections is altered during processing

until the network settles down (or “relaxes”) to provide a solution.

8 Chapter 1

Another development in cognition is the notion of “distributed cogni-

tion.” Starting his work in the 1980s, Ed Hutchins published Cognition in the

Wild in 1995. Since then, he has been working with colleagues at the Univer-

sity of California, San Diego, to develop these ideas. One of them, Jim Hollan

(et al. 2000, 175) states that unlike traditional theories, distributed cognition

“extends the reach of what is considered cognitive beyond the individual to

encompass interactions between people and with resources and materials in

the environment.”

In traditional views of cognition the boundaries of the unit of analysis are

those of individuals, while in distributed cognition the unit is the cognitive

process, wherever it may occur and taking into consideration the functional

relationships of elements participating in the process. Distributed cognition

is also concerned with the range of mechanisms that are assumed to partici-

pate in cognitive processes. This is a broader spectrum of cognitive elements

than those assumed to exist in the limits of an individual brain. As an ex-

ample of distributed cognition, researchers point to flying an aircraft. The

successful completion of a flight is shared across the instruments in the cock-

pit, a pilot and copilot, the air traffic control staff on the ground surrounded

by all their computers and notebooks, and so on.

Hollan and colleagues (2000) identify three different kinds of distribution

of cognitive processes: across people, across representations, and across cul-

tures. Socially distributed cognition focuses on the role that a group of people

have in thinking and knowing and on the phenomena that emerge as a result

of these social interactions. Second, cognitive processes make use of external

as well as internal representations. These external representations are things

such as notes, entries in logbooks, specialist measuring instruments, and

other cognitive or information artifacts. An important ramification of this

view is that designers cannot simply automate something. By changing the

information artifacts that are involved in an activity, the distribution of the

cognition required to undertake the activity changes.

People are social agents who live in cultural environments. Hence, there is

an intertwined relationship between agents and culture. On the one hand,

culture emerges as a result of the activity of human beings, and on the other

hand, in its various forms of artifacts and social practices, culture shapes cog-

nitive processes. Hollan and colleagues claim that this influence is particu-

larly important in processes that are distributed over social agents, artefacts,

and environments. This has a crucial knock-on effect for our analysis. If

Growing Up in the Digital Age 9

concepts are culturally shaped, then so is cognition. How we think about

things is affected by history.

A conceptually related view of cognition is activity theory. Activity theory

has its origins in the works of the Russian psychologist Lev Vygotsky begin-

ning in the 1920s, but has only recently been recognized in the Western sci-

entific community (see, for example, Leont’ev 1978; Bødker 1991; Bannon

1991; Nardi 1995). The concept of activity consists of a subject (one or more

individuals), an object (held by the subject and motivating the activity),

actions (goal-directed and conscious processes that must be undertaken to

fulfill the object), and operations (former actions that have become rou-

tine and unconscious with practice). An activity is “a system that has struc-

ture, its own internal transitions and transformations, its own development”

(Leont’ev 1978, 50).

An activity is directed toward a certain object (that is, a purpose or goal),

and is mediated by one or more artifacts (which may include pieces of soft-

ware, “thinking” artifacts such as language, and so on). Activities can only be

understood given some knowledge of the object and the motive behind the

activity. Significantly, activities need to be seen within a cultural and histori-

cal context; the term “cultural historical activity theory” (CHAT) is often

used to emphasize this.

Since its beginnings in the 1950s, then, cognition has gone through many

transformations as researchers have grappled with better ways of under-

standing and describing how people think. This quick tour through some of

the main influences inevitably leaves out much detail and many other com-

peting theories. The purpose of the tour is to illustrate that cognition is not a

simple well-understood concept or theory. Yet these folk views of cognition

have been profoundly influential on the design of computer systems and dig-

ital media.

Concepts of Software

There are many levels at which a computer (or any digital medium) can be de-

scribed. There is the overall “architecture” of secondary storage, primary stor-

age, processing unit, input and output mechanisms, and power source. Each of

these has an impact on what can be done with the device, and each is becom-

ing smaller and faster all the time. People are now predicting “speckled com-

puting”—fully functional computers that are one millimeter cubed that can

10 Chapter 1

be sprayed from a spray can or spread around like “smart dust.” We have seen

the amazing increases in secondary storage that allow people, for example, to

put their whole music, photo, or video collection on a device no bigger than

a pack of playing cards. We have mobile phones that contain more comput-

ing power than the standard computer of five years ago. Such features of dig-

ital media are incredible, but our interest here is in what we can make these

devices do, using software. We take the basic digital architecture as given. We

are interested in some conceptual description of what the computer does, the

constructs of computer programming languages, and the different ways in

which programming the computer has been conceptualized over the years.

Even at this level, there is a huge amount that can be said, and there are spe-

cialist groups that research the psychology of programming and related areas.

A computer works by manipulating the contents of the locations in its

memory. In the early days, computers were programmed in a machine lan-

guage. This specified the location in the computer’s memory where data or in-

structions were stored, and where the result of any calculation should be

placed. Soon after this, symbolic programming languages were developed

that used more abstract terms to specify the actions of the program. Words

such as move, add, store, and so on, included the specification of a storage

location using names such as rate, pay, and so forth. These more abstract

descriptions were then “assembled” into the machine code. This assembly

language was still quite obscure, so more abstract means were used to pro-

gram the computer, and more and more of the processing was moved from

software into hardware. The main hardware revolution happened in the

1970s, when general-purpose microchips were developed. These have subse-

quently become incredibly small, and can be tailored and manufactured for

specific purposes such as controlling the fuel input to a car engine or telling

the time. The trade-off between hardware and software is one of flexibility. A

more general-purpose hardware can be programmed to do many different

things. Hardware with a more specific function is less flexible.

The more abstract programming languages began appearing in the 1950s

and 1960s, and included FORTRAN (standing for “formula translation”),

the common business-oriented language (COBOL), and the beginner’s all-

purpose symbolic instruction code, BASIC. These languages adopted a pro-

cedural paradigm and are known as procedural languages. Sequences of

instructions are written in the order in which they are to be executed. Other

competing programming paradigms included the functional language LISP

Growing Up in the Digital Age 11

(for “list processing language”) and the logic programming language, Prolog.

These latter two were particularly popular for programming AI applications.

Another important change that took place during this period was that the

preferred term for describing instructing the computer changed from com-

puter programming to software engineering. Software development was depicted

using an industrial plant metaphor: SOFTWARE IS CONSTRUCTION.

The “object-oriented” (OO) paradigm of computer programming began at

the Xerox Corporation’s Palo Alto Research Center (PARC) with the develop-

ment of the programming language Smalltalk in the early 1970s. In OO

methods, the domain of interest (some “sphere of activity”) is represented in

terms of the objects that exist, the relationships between objects, and the

messages that are passed between objects. This was an important change. The

metaphor for thinking about software development changed from SOFTWARE

IS A SEQUENCE OF STEPS to SOFTWARE IS A COLLECTION OF OBJECTS.

There were many competing methods during the 1990s for OO design and

programming. Toward the end of the century, three of the main competing

OO methods became united in the Unified Modeling Language (UML).

Objects are defined as: “an encapsulation of attributes and exclusive ser-

vices [behaviors]; an abstraction of something in the problem space” (Coad

and Yourdon 1992, 31). They correspond to “real-world” entities. The ben-

efits of OO techniques include abstraction and encapsulation (otherwise

known as “information hiding”). All computing is concerned with abstrac-

tions: with finding generic methods of representing things so that people can

attend to the significant aspects and not get confused by the details. Objects

are “viewed” from the outside, and people need not be concerned about how

they are implemented. Objects can send and receive “messages”; they encap-

sulate the structure and processing that enables them to deal with those

messages. Other features of the OO paradigm include polymorphism (that

different object classes will treat the same message in different ways) and in-

heritance; objects can inherit characteristics from more abstract objects. The

most popular OO programming languages are Java and C++.

The OO paradigm is still the dominant approach for software develop-

ment. Recently, however, software objects have been programmed to be more

independent. Rather than sitting and waiting to be instructed to do some-

thing, objects can be given higher-level “intentions” that they actively seek

to achieve. Such systems are known as software agents. Agents operate in a

12 Chapter 1

variety of domains. For example, agents can move around a computer network,

optimizing the flow of network traffic or checking for breaches of security.

Agents in mobile phones actively seek out the strongest signal and automati-

cally switch connections. Software in car engines optimizes fuel flow in order

to maximize efficiency.

Increasingly, software agents are taking on these mundane tasks, leaving

us, as people, to concentrate on the more interesting aspects of life. There

are dangers and concerns of course. Computer viruses are software agents.

Computers and other digital technologies connect autonomously with one

another and can exchange data without us being aware of it. The advantages

of the agent approach, though, is that they can be given relatively abstract,

high-level instructions and be left to satisfy those as best they can. And so

we see another change in how we think about software: SOFTWARE IS A SOCIETY

OF AGENTS.

Human-Computer Interaction

People and software come together in the discipline of HCI. The concerns of

HCI were expressed intermittently during the early part of the digital age.

J. C. R. Licklider’s “Man-Computer Symbiosis” in 1960 and Brian Shackel’s

1959 paper are counted among the first writings to address the issues of

people making use of devices along with the difficulties they might face. But

the subject really started to attract interest with the publication of Ben Shnei-

derman’s Software Psychology in 1980 and Don Norman’s “The Trouble with

UNIX: The User Interface Is Horrid” in 1981.

As with the development of both psychology and software, HCI was origi-

nally concerned with a person using a computer. Stuart Card, Thomas Moran,

and Allen Newell published The Psychology of Human-Computer Interaction

(1983) and introduced the discipline to the information-processing view of

people that was so dominant in psychology. Applied to HCI, this perspective

resulted in a number of detailed methods for analyzing and designing human

tasks. Task analysis was to dominate HCI for the next twenty years. The basic

conceptualization of HCI was that a person had a goal that they wanted to

achieve. This goal could be accomplished by undertaking a number of tasks

in a given order. Tasks consisted of subtasks and actions. Thus people formed

a plan of action and followed it through: HCI IS FOLLOWING INSTRUCTIONS.

Growing Up in the Digital Age 13

During this period, the emphasis was firmly on the human-computer in-

terface: all those parts of the system that the user comes into contact with,

whether physically, perceptually, or conceptually. HCI was practically syn-

onymous with interface design.

Later in the 1980s, a new field emerged that focused on people working to-

gether through computers. This became known as computer-supported co-

operative work. The stress here is on multiperson, distributed systems and

issues of awareness of others, supporting collaboration and peripheral infor-

mation. The centrality of tasks to HCI was also challenged by Lucy Suchman,

who published Plans and Situated Actions in 1987. In this work, she argues that

people do not simply follow plans; they react to changing situations.

When considering HCI, we recognize an initial constitutive metaphor: THE

INTERACTION IS A DIALOGUE, CONVERSATION, OR COMMUNICATION. This had its

origin with the introduction of operating systems in the mid- to late 1950s.

These new “supervisor programs” were the intermediary software needed to

represent the computer in all the interactions with the operator, program-

mer, or user. The consequence of using a linguistic metaphor applied to the

code is that the interaction between humans and computers could be con-

sidered as a DIALOGUE. The user interface at this time (up until the late 1970s)

was known as a command line interface. The interaction between person and

computer consisted of the person typing in instructions, or commands, and

the computer undertaking some processing and displaying the output.

A new metaphor, INTERACTING WITH THE COMPUTER IS DIRECT MANIPULATION,

was formally characterized in 1983 by Ben Shneiderman. Yet it had begun

to take form many years previously when Ivan Sutherland was defending

his PhD thesis, Sketchpad: A Man-Machine Graphical Communications System

(1963). It is interesting to note that Sutherland conceptualized this interac-

tion in terms of communication—the dominant paradigm at that time—al-

though it was a true interactive computer graphics. Shneiderman (1983, 57)

described the new computing of the late 1970s that were using interactive

computer graphics as follows:

In trying to understand the commonalities across these diverse interfaces, I began to
notice a certain pattern. The first was a visual representation of the world of action. The
objects of interest and the actions of interest were shown on the screen. . . . These new
systems showed the objects of interest, and when actions were taken the results were
also shown immediately and continuously on the screen. A second set of principles
that also seemed important were that the actions were rapidly executed, incrementally

14 Chapter 1

described and reversible. Furthermore, in direct manipulation systems, pointing, se-
lecting and dragging replace the need to type commands. For example, you could drag
an icon towards a folder or you could bring it back.

While Shneiderman is credited with coining the term “direct manipula-

tion,” it is fair to say that the designers at Xerox PARC were responsible for

creating the interfaces that he was observing. Shneiderman detected some

patterns or principles of interaction—visibility of the objects of interest;

rapid, reversible, incremental actions—to introduce a new paradigm and a

new metaphor. It was the Xerox Star computer, the Apple Lisa, and finally the

Apple Macintosh in 1984 that demonstrated the principles.

Finally, another approach called ubiquitous computing (Weiser 1991, 1993)

appears as enhancing or generalizing direct manipulation. Weiser (1991, 94)

says that:

the idea of a “personal” computer itself is misplaced, and that the vision of laptop ma-
chines, dynabooks and “knowledge navigators” is only a transitional step toward
achieving the real potential of information technology. Such machines cannot truly
make computing an integral, invisible part of the way people live their lives. . . . Such a
disappearance is a fundamental consequence not of technology, but of human psy-
chology. Whenever people learn something sufficiently well, they cease to be aware of
it. . . . Only when things disappear in this way are we freed to use them without think-
ing and so to focus beyond them on new goals.

Here a new slogan is emerging: THE COMPUTER IS DISAPPEARING or THE COM-

PUTER IS BECOMING INVISIBLE, according to Norman (1998). In order for com-

puters to disappear from our awareness, they would have some features that

everyday objects have: a natural, intuitive form that indicates functions and

content that resides in the background, or periphery, coming to the fore

when needed. At this point it is interesting to listen to some skeptical voices

about ubiquitous computing, who observe that “we will still be frustrated,

but at a higher level of functionality, and there will be more of us willing to be

frustrated” (Odlyzko 1999, 1).

Framing the Problem

And so we arrive at the present, and the digital age continues apace. The prob-

lem we have is how to design digital artifacts, how to design for new spaces

that are full of computing devices, and how to design for people who are

wearing these devices. Information, data, and multimedia content are easily

Growing Up in the Digital Age 15

passed from one person or place to another, transformed from one medium

to another, and displayed on one device or another. What new forms of

interaction will there be, what are the potential pitfalls, and what are the

potential benefits?

Unfortunately, we cannot answer these questions yet. What we can do is to

develop literacy in designers, and provide designers with an understanding

of the underlying concepts of the digital medium and its interaction with

people. We may even influence some changes in design—moving it away

from the idea that we are trying to make something literally happen toward

an understanding that interaction with and through digital media is funda-

mentally figurative.

We have seen that SE methods have changed over the years according to

the metaphors that people have used to conceptualize what they are doing:

THE SYSTEM IS AN INDUSTRIAL PLANT; THE SYSTEM IS A COLLECTION OF OBJECTS; and

THE SYSTEM IS A SOCIETY OF AGENTS. HCI is still grounded in both metaphors:

HCI IS COMMUNICATION and HCI IS DIRECT MANIPULATION. There are new pro-

posals, such as informal interaction or sketching interfaces (Landay and

Myers 2001), that try to assist people with new, informal activities, such as

writing, drawing, or designing. Pattie Maes (1994) has conceptualized HCI as

A SOCIETY OF INSECTS, and Alan Kay (1993) has a vision of HCI as the INDIRECT

MANAGEMENT OF AGENTS. Indeed, there have been debates between protago-

nists of these different metaphors for HCI (Shneiderman and Maes 1997).

We are moving into yet another new era: THE COMPUTER IS DISAPPEARING. We

expect interaction with digital media to become much more physical and less

screen based. People will interact with digital technologies through touch,

manipulation, and gesture; interaction will increasingly be embodied. People

will move through environments embedded with digital artifacts, and will

interact with and through technologies in new ways. These new environ-

ments promise to be highly complex in terms of their accessibility, function-

ality, and usability. Conceptually, it will be difficult to determine what can be

done, how it can be done, and where it can be done.

We also suspect that our traditional understanding of cognition is flawed.

Hence, the principles of HCI are based on an inappropriate view of how

people think and act, and on the relationships between action and cogni-

tion. SE methods are predicated on an objectivist view of the world that is

inappropriate.

16 Chapter 1

Finally, we point to a fundamental difficulty for the design of digital media:

people and digital media are different. This is the problem of HCI-SE. In order

to design digital artifacts, we have to specify instructions in some way that

the computer can process, but this is inevitably fundamentally different from

how people want to work. There is a mismatch between the rich, complex,

nuanced activities of people and the inflexible demands of digital artifacts.

In the next few chapters we explore these three intertwined issues. We in-

troduce a view of cognition that is grounded in ideas of embodiment: we

think and act the way we do because we have bodies and live in human soci-

eties. We use this to provide an alternative perspective on HCI and SE, the

conceptual foundations of these subjects, and methodologies for the analysis

and design of human-computer systems. The aim here is to offer insight and

develop literacy in the analytic approach that we adopt. We also look at de-

sign and how embodied cognition can change the way we approach design

by foregrounding the figurative (as opposed to the literal) nature of interac-

tion, and then move toward a critical approach to the design of digital media.

Growing Up in the Digital Age 17

