
Preface

Physics is like sex: sure, it may give some practical results, but that’s not why we do it.

— Richard P. Feynman

Judge a man by his questions rather than his answers.

— Voltaire

Scientists investigate that which already is.

Engineers create that which has never been.

— Albert Einstein

This book is an introduction to constraint-based local search, a novel way to solve combinatorial

optimization problems by local search.

Combinatorial Optimization

Combinatorial optimization problems are ubiquitous in our society. From the transportation in-

dustry to supply-chain management, from manufacturing to the pharmaceutical industry, from

resource allocation to sports scheduling, they affect almost every aspect of our daily lives. Over the

last decades, optimization technology has progressed rapidly and has found its way into novel ap-

plication areas, helping society to address critical situations and industries to become more reactive

and cost-effective. You can be sure that as you are reading this sentence someone, someplace, is

solving an optimization problem for some practical purpose.

In general, optimization problems are extremely challenging computationally. They cannot be

solved exactly in polynomial time and no single approach is likely to be effective on all problems, or

even on all instances of a single problem. Solving optimization problems remains a very experimental

endeavor: what will or will not work in practice is hard to predict. Some problems are better solved

using mathematical programming, some are more amenable to solutions by constraint programming,

while local search is more effective on others.

In addition to their inherent computational complexity, algorithms for solving optimization prob-

lems are often large and intricate: they are tedious to design, implement, and maintain. This is

ironic, of course, because many optimization problems can be specified concisely and declaratively.

The considerable distance between the specification and the final program indicates that program-

ming languages are seriously lacking in expressiveness and abstractions in this application area. As

a consequence, it is not surprising that modeling and programming languages have been designed

to narrow this conceptual gap.



xii Preface

Optimization Tools

Languages for expressing combinatorial optimization problems have historically focused on integer

programming. Typically, integer programs are solved using branch and bound (or branch and cut),

a systematic search procedure using linear relaxations to prune suboptimal nodes. Starting from

matrix generators, this line of research led to the development of elegant modeling languages (for

instance, [11, 32]), where collections of (typically) linear constraints are expressed using traditional

algebraic and set notations. These constraints, and the associated objective function, are then sent

to integer programming solvers.

The last two decades have witnessed the emergence of constraint programming as a fundamental

methodology for solving a variety of combinatorial applications, and of constraint programming

languages to express them (for instance, [53, 120, 121]). The focus of constraint programming is on

reducing the search space by pruning values that cannot appear in any feasible or optimal solution.

Because of the distinct nature of this paradigm, it is not surprising that constraint programming

languages have made many innovations in the modeling of combinatorial optimization problems.

Typically, constraint programming languages feature rich languages for expressing and combining

constraints and for specifying search procedures at a high level of abstraction. These languages

support the fundamental concept of combinatorial constraints (for instance, [9, 120, 97]), which

capture combinatorial substructures arising in many applications. Moreover, there have been several

attempts to unify constraint programming and mathematical modeling languages (for instance,

[33, 121, 122]).

Local Search

Local search approaches the solving of combinatorial optimization problems from a very different

angle from the systematic tree search of constraint and integer programming. From a theoretical

standpoint, local search algorithms sacrifice quality guarantees for performance. They may fail to

find optimal, or even high-quality, solutions. However, on many problems, they isolate optimal or

near-optimal solutions within very reasonable time constraints. From a computational standpoint,

local search explores a graph, moving from solutions to neighboring solutions in the hope of improv-

ing the value of the objective function. Defining this neighborhood graph and exploring it effectively

are two of the main issues faced by local search algorithms.

Local search is particularly appropriate for large-scale problems involving thousands of decision

variables and for online optimization problems in which (good) solutions must be found within strict

time constraints. Local search is also the technique of choice in many optimization applications,

where systematic search techniques are less effective. For instance, at the time of writing, the best

approach to the traveling tournament problem, an abstraction of major-league baseball scheduling,

is a neighborhood-search method that significantly outperforms constraint and mathematical pro-



Preface xiii

gramming. The same is true of many other important problems, such as vehicle routing, frequency

allocation, and many resource-allocation and scheduling problems.

Constraint-Based Local Search

Surprisingly, the modeling and programming language communities have largely ignored local search.

Part of the reason is that local search algorithms are often presented in terms of low-level (imple-

mentation) concepts. Scientific papers rarely specify local search algorithms using constraints and

objective functions. Rather they talk about neighborhoods, local moves, and metaheuristics either

informally or using low-level implementation details. Such papers seem to offer little opportunity

for reuse, separation of concerns, and modularity. Moreover, the wealth of research on metaheuris-

tics further exacerbates the perception that local search is a collection of heterogeneous techniques

lacking a unifying theme.

But local search was too important a paradigm for combinatorial optimization to be ignored in-

definitely. The 1990s witnessed significant progress in solving satisfiability and integer programming

problems by local search (for instance, [105, 107, 135]). LOCALIZER [70, 72], the first modeling language

for local search, introduced the use of invariants to specify incremental algorithms declaratively. By

the beginning of the 21st century, combinatorial constraints were also recognized as beneficial in

local search (for instance, [16, 36, 73, 84]).

Constraint-based local search, the idea of using constraints to describe and control local search, was

slowly emerging. The COMET project was initiated in 2001 to explore the ramifications of constraint-

based local search and how it could be supported in high-level programming languages. The project

led to a novel constraint-based architecture for local search [74], new modeling and control abstrac-

tions [124, 125, 128], and the programming language COMET.

Comet

COMET is an object-oriented language with a number of innovative modeling and control abstractions

for local search.

From a language standpoint, COMET supports both modeling and search abstractions in the spirit

of constraint programming. The modeling abstractions feature invariants and a rich constraint

language, that includes numerical, logical, and combinatorial constraints as well as constraint com-

binators. The search abstractions include randomized selectors, events, checkpoints, neighbors, and

novel control structures to implement nondeterminism. Many of these control abstractions rely on

first-class closures and continuations as a unifying implementation technology. COMET is also an open

language: programmers can add their own constraints and objectives, as well as their own control

abstractions.



xiv Preface

From a computational standpoint, COMET is particularly innovative. Constraints and objective

functions are differentiable objects that maintain properties that are then used to direct the graph

exploration. Moreover, differentiable objects can be queried to determine the impact of local moves

on their properties. In particular, constraints are differentiable objects maintaining their violations,

while objectives maintain their evaluation. These constraints and objectives can then be natu-

rally composed in combinators to build more complex modeling objects. Typically, differentiable

objects the encapsulate efficient incremental algorithms that are so fundamental in obtaining high

performance in most local search algorithms.

Benefits

The constraint-based architecture of COMET brings numerous benefits in solving combinatorial opti-

mization problems by local search. Most of these benefits are expressed in the formula

Local Search = Model + Search

stating that local search algorithms can be specified in terms of modeling and search components.

The modeling component, which is purely declarative, expresses the combinatorial structure of

the application in terms of constraints and objective functions. The search component exploits

the structure expressed in the model to guide the neighborhood exploration toward high-quality

solutions.

A Rich Modeling Language for Local Search Perhaps the most significant benefit of constraint-

based local search is its rich modeling language. As mentioned earlier, local search algorithms are too

often described in terms of operational concepts. The constraint-based architecture of COMET allows

the same applications to be described declaratively in terms of constraints and objectives that specify

properties of the solutions. This model captures the combinatorial structure of the application and

is largely technology-independent. COMET models are frequently similar to constraint-programming

models for the same applications. As a result, constraint-based local search moves the development

closer to modeling, decreasing the distance between the application and the computer program.

Moreover, models in COMET are built compositionally, by combining constraints and objects through

a wide variety of combinators. Constraints and objectives can be combined through arithmetic,

logical, and cardinality operators. In practice, compositionality is fundamental to expressing the

complex idiosyncratic constraints that typically arise in industrial applications, accommodating the

changes often requested by customers over the course of a project, and capturing the combinatorial

structure of the application.

A Rich Search Language for Local Search Equally important is the rich search language of

COMET, which abstracts many of the tedious and error-prone aspects of local search algorithms.



Preface xv

COMET supports abstractions such as solutions and selectors to ease the formulation of heuristics,

events to glue together different aspects of the search procedure, the concept of neighbor to address

the temporal disconnection between move specifications and executions in complex neighborhoods,

and nondeterministic abstractions that are becoming increasingly important with the progress in

hybridizations of local and systematic search. The control abstractions of COMET promote mod-

ularity and reuse. In particular, they make it possible to separate, to a large extent, heuristics

from metaheuristics, neighborhood definitions from their uses, and search heuristics from search

strategies.

Separation of Model and Search The formula clearly highlights another fundamental benefit

of the architecture: the clean separation between model and search. Although the model and

the search often interact in sophisticated ways, they are physically separated in the COMET code.

Moreover, the model and the search procedure can evolve independently: the search procedure can

be replaced without affecting the model and the model can be enhanced without upgrading the

search procedure.

The separation of model and search introduces another desirable benefit: generic search proce-

dures that can be reused in many contexts. Indeed, since models and search procedures interact

only through limited channels, the search algorithms are often independent of the specifics of the

models.

Extensibility and Flexibility Another interesting property of COMET is the extensibility of its ar-

chitecture, both for modeling and search.

At the model level, new constraints and objectives can be defined in the language itself and

combined exactly as other differentiable objects. The implementation of these differentiable objects

is greatly simplified by the availability of invariants that provide an intermediate layer between the

language and differentiable objects. Invariants, or one-way constraints, maintain (possibly complex)

algebraic, set, and graph expressions incrementally under changes in the decision variablesm, and

often simplify the implementation of differentiable objects significantly.

At the search level, the availability of closures and continuations as the enabling technology new

control structures possible that simplify the specification of complex search algorithms. Similarly,

the nondeterministic instructions are parameterized by search controllers, making it easy to specify

new search strategies and new implementation schemes.

It is important to emphasize an important property of constraint-based local search: constraints

(or objectives) are independent of each other and interact only through incremental variables. The

resulting flexibility greatly simplifies the definition of new constraints and objectives since the dif-

ferentiable objects can be implemented in isolation, and makes it easy to add constraints in a model

without affecting the rest of the model and the search.



xvi Preface

Efficiency COMET’s rich modeling language and concept of differentiable objects often make it

comparable in efficiency to low-level implementations, especially for complex applications and for

problems with idiosyncratic constraints. Part of the reason is the fact that the modeling abstrac-

tions and combinatorial objects encapsulate sophisticated incremental algorithms that exploit their

underlying structure.

New Perspectives Finally, it is important to mention the long-term implications of constraint-

based local search. Its formula

Local Search = Model + Search

directly parallels the constraint programming expression

Constraint Programming = Constraints + Search

essentially indicating that local search and constraint programming solutions can now be expressed

at a similar level of abstraction. Moreover, the local search and constraint programming models

are often similar in nature, and integer programs can also be derived systematically from them.

As a result, it is natural to envision modeling systems that integrate these orthogonal technologies

in a unique platform in which experimenting with all of them, as well as their hybridizations,

would be easy. Although considerable research is required to lay the foundations of such modeling

systems, constraint-based local search highlights the importance of high-level models that convey

the structure of applications.

Contents

This book is an introduction to constraint-based local search and its implementation in COMET. Part

I gives an overview of local search, including neighborhoods, heuristics, and metaheuristics. It is not

intended to be comprehensive, since there exist excellent textbooks covering local search, as well as

portions of each of these topics. Rather, this part aims at presenting, in a unifying way, the main

concepts used throughout the book. Part II presents constraint-based local search, its architecture,

and its modeling and search components. Part III describes how constraint-based local search is

supported in COMET and cover invariants, differentiable objects, control, and first-order control. Part

IV describes a variety of applications to illustrate constraint-based local and COMET. The clustering

of applications by metaheuristics provides a clear focus for each chapter. Part V presents scheduling

applications which are particularly challenging. Indeed, they often feature implicit neighborhoods

and require additional modeling support to convey their combinatorial structure naturally. This

part gives the necessary background on scheduling, describes the novel vertical abstractions, and

considers various applications in job-shop and cumulative scheduling.



Preface xvii

This book illustrates constraint-based local search on a number of satisfiability problems, in

which the goal is to find a feasible solution, not an optimal one. There are many such applications

in practice, and constraint-based local search is often a natural vehicle to model and solve them.

They illustrate an additional strength of constraint-based local search: its ability to cope with both

satisfiability and optimization problems in a uniform fashion.

Disclaimers

This book lies at the intersection of several fields, it uses an actual programming language as a proof

of concept, and it discusses a variety of applications. It is thus important to provide the proper

context to understand the terminology, to interpret the experimental results, and to evaluate the

models.

Terminology Combinatorial optimization bridges computer science, industrial engineering, and

operations research: this makes the area stimulating but complicates the exchange of ideas because

of differences in vocabulary. This book adopts the following conventions for the main underlying

concepts. A solution is an assignment of values to the decision variables. A feasible solution is a

solution satisfying all constraints. An optimal solution is a feasible solution optimizing the value of

the objective solution.

Efficiency The book contains experimental results for a variety of applications. These results

aim merely at suggesting the practicability of constraint-based local search. They are certainly not

indicative of the best performance that can be achieved in these applications, either by constraint-

based local search and by low-level implementations of the same algorithms. In addition, the

experimental results are not always scientifically rigorous: they may be limited to a small number

of instances on some problems, and in this case they are provided only to give some indication

of the algorithm behavior and potential. In general, the references give more information about

performance.

COMET and constraint-based local search in general introduce several levels of indirection com-

pared to low-level implementations. For some (pure) applications in which the basic operations

are extremely simple, the induced (constant) overhead may be significant if very high performance

is desired. Typically, however, for complex applications involving heterogeneous and idiosyncratic

constraints and complex neighborhoods, COMET’s overhead is small. It may become negligible or may

be completely offset by the reduction in development time or ease in experimentation. These are

precisely COMET’s target applications: ones that require considerable development time and experi-

mentation, which is greatly simplified by constraint-based local search.

It is also important to mention that COMET does not yet include all the traditional low-level opti-

mizations found in high-performance compilers, although its implementation is based on a just-in-



xviii Preface

time (JIT) compiler that generates machine code. There is thus considerable room for improvement

and one may expect future implementations of constraint-based local search to be more efficient

and to reduce the gap from low-level languages.

Finally, it is worth emphasizing that constraint-based local search is independent of its imple-

mentation technology. It can be supported in any programming language or implemented as an

object-oriented library. This is especially true of the modeling aspects of constraint-based local

search: the invariants and the differentiable objects. The control abstractions are more challenging

to support elegantly in modern languages, which often lack the low-level implementation technology:

closures and continuations.

Models and Algorithms The models and algorithms presented in this book are merely illustrative

and are not necessarily the best possible algorithms for some of the applications. In general, they

are included because they illustrate a new feature of constraint-based local search or because they

show how to implement certain classes of local search algorithms in COMET. They should certainly

not be seen as promoting one approach over another. Indeed, this would contradict one of the main

motivations behind this book: to show that many of these approaches have orthogonal strengths

and that it is difficult to predict in advance what will or will not work on a particular instance of a

specific problem.

Notes and Further Reading The Notes and Further Reading in most chapters direct readers to

references where additional information may be found. They are not intended to be exhaustive. In-

stead, they simply provide the starting links for search engines and long random walks in interesting

neighborhoods.

Syntax and Semantics COMET is an ongoing project: the language and its implementation are

likely to evolve over the coming years. In particular, its syntax and semantics may change, so that

some programs presented here may not run on subsequent versions or may give different results.

More information about the language, its implementation, its distribution, and example programs

is available at <www.comet-online.org>.

Acknowledgments

The research underlying this book can be traced back to early 1994 when Paris Kanellakis asked the

authors “whether constraint programming languages could accommodate local search.” It took us

more than 10 years to come up with a long and late answer to this far-reaching question. This book

gives us a wonderful opportunity to acknowledge Paris’s scientific vision and engaging personality.

Of course, this research did not take place in a vacuum. It builds on the work of many colleagues

who are, we hope, properly acknowledged in the text. In particular, many COMET applications have



Preface xix

been directly inspired by local search algorithms proposed by other researchers. We also would

like to thank the undergraduate and graduate students at Brown University and the University of

Connecticut who contributed to this project, including Aris Anagnostopoulos, Ionut Aron, Russell

Bent, Ivan Dotu, Daniel Fontaine, Greg Harm, Liyuan Liu, Keith Schmidt, and Yannis Vergados.

Each of them improved our understanding of this material in more ways than they can imagine.

We would not even have thought of starting this project without knowing that Cambridge, MA,

has a Legal Seafood restaurant where Bob Prior patiently listens to passionate scientists, rewrites

their ideas on place mats, and makes them believe that they have, or sometimes don’t have, a story

to tell. May be one day, Bob will go back to all these place mats, write a book about all the strange

characters he meets, and explain his secret recipes.

We were also fortunate to have amazing editors for the manuscript: Katrina Avery, Deborah

Cantor-Adams, and Elisabeth Nelson helped to improve the manuscript in many ways, even cor-

recting some of the formulas and programs and suggesting better quotes.

Last but not least, there are two wonderful women and four equally wonderful children who are

eternally grateful to Bob for ensuring that we can all spend Christmas together, playing football

or knights and princesses, singing, or simply talking around Belgian food and French wine in a

computer-free environment.

Pascal Van Hentenryck

Laurent Michel


