
A Rn F I C I A L INTELLIGENCE 5

�

David S. Touretzky

�

I The name is a play on Boltzmann machines [9] and CONS, the first MIT LISP Machine [6] .

Artificial Intelligence 46 (1990) 5- 46
0004-3702/90/ $03.50 @ 1990- Elsevier Science Publishers B .V. (North -Holland)

Boltz CO N S: Dynamic Symbol
Structures in a Connectionist Network

School of Computer Science , Carnegie Mellon University ,

Pittsburgh , PA 15213 , USA

ABSTRACT

Boltz CO N S is a connectionist model that dynamically creates and manipulates composite symbol
structures . These structures are implemented using a functional analog of linked lists , but
Boltz CO N S employs distributed representations and associative retrieval in place of a conventional
memory organization . Associative retrieval leads to some interesting properties , e.g ., the model can
instantaneously access any uniquely -named internal node of a tree . But the point of the work is not to
reimplement linked lists in some peculiar new way ; it is to show how neural networks can exhibit

compositionality and distal access (the ability to reference a complex structure via an abbreviated

tag) , two properties that distinguish symbol processing from lower -level cognitive functions such as
pattern recognition . Unlike certain other neural net models , Boltz CO N S represents objects as a
collection of superimposed activity patterns rather than as a set of weights . It can therefore create new

structured objects dynamically , without reliance on iterative training procedures , without rehearsal of
previously -learned patterns , and without resorting to grandmother cells .�

1. Introduction

Boltz CO N S 1 is a neural network that dynamically creates and manipulates
composite symbol structures , such as stacks and trees . In LISP , these structures
are represented as linked lists . In Boltz CO N S, we investigate what a parallel ,
distributed version of linked lists might look like . The goal is not to arrive at
some peculiar new version of LISP , or to suggest that any representation as
impoverished as cons cells might actually exist in the brain . Rather , it is to
address the issues of compositionality , cited by Fodor and Pylyshyn [5] , and
what Newell [14] calls distal access, that help to distinguish symbol processing
from lower -level cognitive functions like pattern recognition .

" Compositionality " is the recursive combining of symbol structures into
larger , more complex structures . It is an essential feature of language . " Distal
access" is the ability to reference a structure in some remote , abbreviated way ,
such as via a pointer or symbolic tag . Without this ability , concepts would have

6 D.S. TOURETZKY

to be written out in full detail everywhere they were referenced . Limited
resources , and the circularity of semantic representations , preclude this . Com -
positionality therefore requires distal access. These issues are fundamental
ones which connectionist systems must deal w.ith if they are to address the full
range of human cognitive phenomena , rather than being limited to pattern
recognition and associative memory [25] .

It is an open question whether symbolic data structures such as frames , parse
trees , and semantic nets have any cognitive validity . Presently , though , it is
difficult to imagine a comprehensive cognitive theory without such structures .
Boltz CO N S is an attempt at reconciling the functional properties of these data
structures with the implementational constraints of PDP models [22] . Not all
connectionists concede the necessity of such a reconciliation . For example ,
Rumelhart and McClelland 's verb learning model [18] maps input strings to
output strings in a way that captures both the rules of English past tense
formation and the many classes of exceptions , yet they explicitly deny that the
model has symbolic rules or a lexicon . Pinker and Prince [15] refer to this as
" eliminative connectionism ," because it eliminates the symbolic level as a valid
level of description . Symbolic theories , according to the eliminativists , are no
more than crude approximations to what really takes place in the brain . They
are not a truthful high -level description of the neurological facts in the way that
the source listing of a Pascal program can be a truthful description of the
machine language version . This antisymbolic view is controversial , but it has
yet to be effectively refuted .

McClelland , Rumelhart , and Hinton [12] , in arguing against the validity of
symbol structures , suggest that what we perceive introspectively to be symbolic
process es are mere epiphenomena of an underlying subsymbolic system .
Smolensky [20] characterizes the subsymbolic level as a continuous dynamical
system . The evolution of its states through time may be well -approximated by a
discrete symbolic theory ,2 but complete accuracy would only be achievable by
descriptions phrased as numerical differential equations . He goes on to suggest
that what we consciously experience as discrete throughts may be snapshots of
the dynamical state vector taken when a number of processing units have
remained stable for a few tens of milliseconds .

If the extreme eliminativist view is correct , the long struggle to symbolically
axiomatize such things as deep and surface -level linguistic structure , episodic
memory , goals , beliefs , and so forth , can never succeed. At the other extreme ,
one could adopt the " implementationalist " stance [15] that discrete symbolic
representations are perfectly adequate , and that connectionist networks are
just another implementation technology , not a new theoretical approach . I
don 't see how either of these views can be correct . My goal is to explore how

the properties of a connectionist implementation influence our understanding

2This admission separates him from the radical eliminativist camp.

DYNAMIC SYMBOLS T R Ucr URE S

of what symbol processing is about .
Despite their support elsewhere for an eliminativist view , Hinton , Rumelhart

and McClelland [9, p .78] warn that " it would be wrong to view distributed
representations as an alternative to representational schemes like semantic
networks or production systems" Instead they suggest that parallel ,
distributed processing models can implement these schemes in ways that have
important emergent properties . These properties would distinguish connection -
ist networks from other implementations of symbol processing theories . In
Pinker and Prince 's taxonomy [15] , this position is called " revisionist -symbol -
processing connectionism ." Boltz CO N S is an example of this approach .

Many of the differences between the way Boltz CO N S and a von Neumann
machine process data are due to the use of parallel associative retrieval .
Associative retrieval is not unique to connectionist models . One can always
duplicate its functionality (though not its efficiency) on a conventional computer

using sequential search . And one can sometimes even obtain the same
efficiency , by using hash tables . There are , however , certain areas where the

decision to use a connectionist architecture , as opposed to some other parallel
model not constrained to resemble neurons , uniquely influences the choice of
representations and the efficiency of primitive operations . Elucidating those
influences is the primary contribution of this paper .

What distinguish es Boltz CO N S from many earlier connectionist models is its
ability to construct and modify composite symbol structures dynamically , by
representing them as activity patterns rather than as weights . Boltz CO N S is
therefore not limited to retrieving one of a set of preexisting patterns . It can
create new ones " on the fly ," without extensive training , without rehearsal of
previously learned patterns to prevent their decay , and without resorting to
grandmother cells .

The control of Boltz CO N S is external to the model . While it would not be
difficult to build a finite state machine from simulated neurons to issue the

necessary control signals for copying activity patterns from one module to
another , initiating an associative retrieval , and so on , this would add little of
interest . The real issues the model address es are issues of representation .

Internally , Boltz CO N S uses coarse-coded , distributed representations for
linked lists that are quite unlike von Neumann machine data structures . It
includes a functional equivalent of pointers , but no notion of address es. Its
associative retrieval capabilities support primitives that are not available in
conventional computer implementations of linked lists . One modest example is
instantaneous access to the internal nodes of a tree , given a node label . But
connectionist associative retrieval suggests much more powerful operations ,
such as rapidly accessing parts of a symbol structure based on closest match
rather than exact match . This puts Boltz CO N S-style models in the realm of
truly revisionist symbol processing , pointing the way toward new computation -
al theories that exploit the special strengths of PDP architectures .

8 D.S. TOURETZKY

Event37

/ """"

�

pastAction

/ " "
kiss Patient

I
Mary

Fig. 1. A tree with labeled non terminals.

Agent

I

John

2. Direct and Indirect Representations

Both stacks and trees are special cases of directed graphs . LISP offers a direct
representation for a highly restricted class of graphs as analogous cons cell
structures . By direct representation I mean that each element of the graph
corresponds to either an atom or a cons , and the basic graph operations of
finding the left or right child of a node , and constructing a new nonterminal
node given its two children , correspond to the LISP primitives car , cdr , and
cons. Only directed graphs whose nodes and links are unlabeled , and whose
nonterminal nodes all have out -degree 2, can be represented this way . Stacks
and binary trees fall in this category , but general tree structures do not .

Different versions of Boltz CO N S also offer natural , direct representations
for various kinds of graphs . The version primarily discussed in this article is
called Boltz CO N S-3. It can directly represent the same set of structures as
LISP , although its repertoire of primitive operations is larger . Section 5.3
discuss es another version of the model , called Boltz CO N S-5, that has a richer

direct representation .
In order to manipulate graphs for which no direct representation is available ,

programmers employ indirect representations . For example , one often needs to
represent general (not strictly binary) trees . A common technique is to
represent each non terminal node by a linked list of its children , marking the
cell that points to the last child by placing something special in its cdr . If nodes
are labeled , then the first cell of the linked list holds the node label ; the
remaining elements point to the children . Interpreted LISP programs are
represented as tree structures in precisely this way .

Following this convention , the tree of Fig . 1 would be represented in LISP
by the list shown in Fig . 2. Internally , this list is a cons structure as shown in
Fig . 3. The slashes in the cdrs of some cells indicate the termination of a cons
cell chain . In LISP , the termination marker is the distinguished symbol nil .

DYNAMIC SYMBOL STRUCTURES 9

(Event37
(Agent

John)
(Action

kiss

(Patient
Mary

past)

Fig. 2. Linked list representation of the tree of Fig. 1.

Patient

Fig . 3 . Cons cell representation of the tree of Fig . 1 .

The major disadvantage of this indirect representation for trees is that it

limits the ways one can access the nodes . For example , on a von Neumann

machine one cannot access the rightmost child of a node in constant time .

Another problem is that given a pointer to an arbitrary node in a tree , one can

find its descendants but not its parents or siblings , because von Neumann

machines cannot follow pointers backward . LISP programmers are of course

free to create more complex indirect representations that overcome these

limitations , but doing so would increase the cost of representing and modifying

the tree , and block the use of LISP ' s many built - in tree manipulation primitives

.

3 . Representing Linked Lists on an Associative Retrieval

Machine

This and the two following sections give a high - level overview of the

Boltz CO N S architecture as an abstract associative retrieval machine . Section 6

then presents the connectionist implementation of Boltz CO N S , including

details of the distributed representation and the wiring patterns of the various

modules .

10 D.S. TOURETZKY

-
- - - - - - - - - -

-
f

N
' <) (~ < C - cn " ' . c ' O

(

j)

CAR CDR

Event37
r
Agent
John
u
Action
kiss
x
Patient
Mary
past

-

- - - - - - - - - -

q
t

s

Fig. 4. The linked list structure of Fig. 3 encoded as tupies.

3.1. Encoding cells as tupies

We can represent one cell of a linked list as a three -tuple of symbols of form
(tag , car , cdr) . Tags serve as the targets of what would be called pointers in
conventional computers . But tags are symbols , not address es. In particular ,
they are not integer indices into a vector of sequential memory locations , as on
a von Neumann machine . The memory of our abstract associative retrieval
machine has nothing corresponding to discrete sequential address es.
. The symbols in the car and cdr fields of a tuple refer either to the tags of
other cells , or to atoms (terminal nodes ; objects without composite structure) .
No two cells may have the same tag . Figure 4 shows one way the linked list
structure of Fig . 3 could be encoded as tupies . Other ways are possible , since
the assignment of tags is arbitrary . This encoding strategy does not use nil to
mark the end of chains , due to a property of the distributed memory
representation , to be described later .

3.2. An architecture for associative retrieval

A general outline of the Boltz CO N S architecture is shown in Fig . 5 . Tuple
Memory contains the set of tupies that encode the graph structures Boltz CO N S
creates . Tuple Buffer holds only a single tuple , known as the " current tuple ."
Sometimes it is empty . The individual components of the current tuple , if there
is one , are also represented in the three symbol spaces labeled TAG , CAR ,
and CDR . These spaces can be clamped (meaning their state ' is frozen) and
used to drive associative retrievals from Tuple Memory via the buffer . For
example , if Tuple Memory contains the set of tupies in Fig . 4, then clamping
the symbol p into TAG space and performing an associative retrieval would
cause (p , Event.37, q) to appear in the Tuple Buffer . Simultaneously , Event .37
and q would appear in the CAR and CDR spaces, respectively . (The actual
simulation uses just the symbols AthroughY . I use symbols like John and
Event3 ? here to distinguish atoms from tags, and to suggest that atoms might

11DYNAMIC SYMBOL STRUCTURES

Fig. 5. The Boltz CO N S architecture.

have semantic content, even though Boltz CO N S itself does not rely on this

3.3. Pointer traversal

content .)

Pointer traversal by associative retrieval is straightforward . We assume there is
a current tuple in the Tuple Buffer , with its components represented in TAG ,
CAR , and CDR spaces. LISP 's car function is implemented by copying the
symbol currently in CAR space into TAG space, clamping TAG space,
clearing the CAR and CDR spaces and the Tuple Buffer , and performing an
associative retrieval . This fetches the triple with the specified TAG value into
the Tuple Buffer ; simultaneously , its second and third components are fetched
into CAR and CDR space, respectively .

At this point it will be convenient to introduce a notation for sequences of
these operations . The retrieval just described consists of two steps in this
notation :

Get CAR =

{$CAR~ TAG;
$Retrieve.by.TAG}

The first step of the Get CAR sequence is to issue a control signal causing the
symbol in CAR space to be copied into TAG space. This destroys the previous
contents of TAG space. The second step issues a control signal that initiates an
associative retrieval , with TAG space providing the retrieval cue . The units in

Tuple
Memory

12 D.S. TOURETZKY

TAG space are clamped so they cannot change during the retrieval . The
Boltz CO N S implementation of LISP 's cdr function is similar :

Get C DR =

{$CDR~ TAG;
$Retrieve.by.TAG}

To use pointer traversal to go from the Event37 node of Fig . 1, represented
by the tuple (p , Event37 , q) , to the Action node , represented by (u , Action , v) ,
a sequence of two cdrs followed by a car is required . A suitable composition of
the Get CAR and Get C DR procedures is easily constructed , since each procedure

leaves its result in the Tuple Buffer and associated symbol spaces, where

it may serve as the argument to the next procedure .
With associative retrieval one is not limited to following pointers in the

forward direction . We can go from the Agent node of Fig . 1, represented by
the tuple (r , Agent , s) , to its parent node , by performing an un-car operation .
The first step is to copy the symbol r from TAG space to CAR space. An
associative retrieval with CAR space clamped then yields the tuple (q, r , t) .
We have followed a pointer backward from the cons cell r to the cons cell q.
Next an un -cdr is performed . The symbol q is copied from TAG space and
clamped into CDR space, and after a second associative retrieval , (p , Event37 ,
q) appears in the Tuple Buffer .

un-CAR =

{$TAG~ CAR;
$Retrieve.by.CAR}

un-COR =

{$TAG~ COR;
$Retrieve.by.COR}

These little procedures are in some ways analogous to Ullman 's notion of
visual routines [30] . They are short , simple routines , with direct hardware
implementations , that form the primitives from which more complex processing

operations are built .

3.4. Detecting atoms and list termination

There are several ways one might distinguish terminals from nonterminals (or
atoms from cells) . One way is to a priori divide the set of symbols into those
that may be used as tags for composite objects and those that may not . The
latter class may then be used to refer to atoms . A minor drawback to
implementing this approach is that the model must somehow be able to tell
which class each symbol is in .

A second approach is to note that a symbol associated with an atom is not
the tag of any composite object , so it will never appear as the first component

13DYNAMIC SYMBOL STRUCTURES

of any tuple . An associative retrieval with that symbol clamped into TAG
space will fail , i .e., whatever it retrieves will not match the specified tag . Thus
the model can determine whether a symbol refers to a composite object by
attempting one associative retrieval . The drawback to this method is that extra
associative retrivals waste time , and performing one will destroy the state of
the unclamped symbol spaces. If the retrieval fails , their state may need to be
restored before the next step of the computation can proceed .

A third approach is to represent atoms as tupies with a special marker in all
but the first field , e.g., the symbol John could be represented by the tuple
(John , * , *) . The model can simply check for the presence of the * marker
after a tuple is retrieved to determine whether it represents an atom . But this
method would not work well in Boltz CO N S due to the model 's coarse-coded ,

distributed memory representation . In a phenomenon called local blurring ,
when a distinguished symbol appears in the same position in many tupies , it
reduces the accuracy of the distributed memory . This is one of the ways in
which the connectionist implementation influences the design of the model .

A fourth approach represents atoms as tupies whose car and cdr fields
contain the atom 's own tag . This eliminates the local blurring problem , since
each atom will have unique car and cdr values . In this scheme , John would be
coded as (John , John , John) . It is easy to detect when a tuple represents an
atom : "the model simply compares the tag , car , and cdr fields to see if they are
identical .

In applying Boltz CO N S to various problems , both the first and fourth
methods for distinguishing atoms have been used .

A related concern is the method of marking termination of linked lists .
Although nil could be used as a terminator , following the LISP convention , it
would have to appear many times in highly -branched structures , which raises
the probability of local blurring interfering with the accuracy of retrieval . An
alternative is to mark the last cell in a chain by having its cdr point to itself , as
in Fig . 4. The model can easily detect a cell marked this way because its tag
and cdr components are equal . If this convention is used for list termination ,
then one of the other three conventions must be used to distinguish atoms from
composite objects . In the example in Fig . 3, we assume that the symbol space
has been divided a priori into symbols that denote atoms and symbols that may
be used as tags for cells .

3.5. Creating new structure

We create new list cells by adding tupies to Tuple Memory . The first step in
adding a tuple is to clamp values into the TAG , CAR , and CDR spaces. These
are then assembled into a new tuple in the Tuple Buffer . Any previous value in
the Tuple Buffer is discarded . Finally , the pattern in the Tuple Buffer is added
to the contents of Tuple Memory .

14 D.S. TOURETZKY

The delete operation in the above procedures can be done in parallel with
the transfer of a new symbol into CAR or CDR space, because deletion is
performed by the Tuple Buffer and only affects the state of Tuple Memory .

In the procedure Make cell below , certain operations can proceed in parallel

because they involve independent modules or transmission paths . These operations

appear on the same line , separated by ampersands , to highlight the

potential parallelism . The parameters x and y represent inputs from external

symbol spaces that are not part of the Boltz CO N S model , but are connected to

it in the context of some larger information processing architecture . An

example of such an architecture is given in [23] .

. Make Cell (x , y) =

{ $ x ~ CAR & $ y ~ CDR & $ New Tag ~ TAG ;

$ Assemble . tuple . in . buffer ;

$ Store . tuple }

The problems of avoiding collisions when choosing tags for new tupies , and

reclaiming tags no longer in use (garbage collection) , will be addressed in

Section 7 .

3 . 6 . Modifying structures

LISP destructively modifies cells by storing new pointers into the car or cdr half

with the rplaca and rplacd operations , respectively . In Boltz CO N S the equivalent

effect can be achieved by deleting the tuple and storing another with the

modified components . For example , to change the agent of Fig . 1 from John to

Bill , the tuple (s , John , s) would be called into the Tuple Buffer and then

deleted from Tuple Memory . Then the triples , Bill , s) would be assembled in

the buffer and stored in the memory . Due to the distributed representations

Boltz CO N S uses for its Tuple Memory , the order of these operations is

important : the delete operation should take place before the store . The

procedures below assume that the tuple to be modified is the one currently

represented in the Tuple Buffer , with its components represented in the TAG ,

CAR , and CDR spaces .

Replace CAR(x) =
{$Delete.tuple.from.memory & $x~ CAR;
$Assemble. tuple.in.buffer;
$Store. tuple}

Replace CO R(x) =
{$Oelete.tuple.from.memory & $x~ COR;
$Assemble. tuple.in.buffer;
$Store.tuple}

15

Associative Stacks

and the following section present associative versions of two familiar
recursive data structures ': stacks and trees .3 In both cases the use of associative

retrieval leads to slightly different algorithms with different performance
characteristics than LISP on von Neumann machines .

Stacks may be represented as linked lists . The top of the stack resides in the
Tuple Buffer , and also in the TAG , CAR , and CDR spaces. The stack is
popped by taking its cdr , i .e., deleting the tuple currently in the Tuple Buffer
from Tuple Memory , copying the symbol in CDR space to TAG space, and
doing an associative retrieval with TAG space clamped . The new top of the
stack then appears in the Tuple Buffer . An empty stack may be denoted by a
tuple with a special " top of stack " marker as its car component . This tuple will
always be the last one in the chain . The procedures below do not check for
empty stack or stack full conditions .

Stack Push (x) =

{$TAG ~ COR & $x~ CAR;
$New Tag ~ TAG ;

$Assemble . tuple .in .buffer ;

$Store.tuple}

Stack Pop =

{$Oelete.tuple.from.memory & $COR~ TAG;
$Retrieve.by. TAG}

Notice that a New Tag operation is used by the stack push procedure to
generate a new tag for the cons that is about to become the top of the stack .

One way to avoid the problem of generating new tags dynamically when
building stacks is to construct a static linked list that is as long as the maximum
desired stack depth . The cell that is the top of the stack is maintained in the
Tuple Buffer , as before . (The initial contents of the Tuple Buffer will be the
last cell of the chain.) To push a new object onto this fixed stack, we use
associative retrieval to find the cell that points to the current one , make it
current , and store the new object into its car :

Fixed Stack Push (x) =

{un-COR;
Replace CAR(x) }

Fixed Stack Pop =

{Get CO R}

3 A recursive data structure is one whose instances are of the same type as their components .
Trees are recursive because their branch es are trees . Stacks are recursive because their tails are

stacks .

16 D.S. TOURETZKY

un Pop;
$Verify.CDR.retrieval;
if $Retrieval.failed

then exit-loop
endloop;
Get C DR}

This technique for returning to the top of the stack won ' t work for fixed
stacks because cells aren 't deleted when the stack is popped ; the current top of
stack must be marked somehow before an associative stack pop in order to
permit it to be found again . Any number of marking conventions may be
employed . For example , cells above the current top of the stack may have their
car set equal to their tag , so the sequential unpop operation can tell when it has
gone too far .

5 . 1 . Traversing binary trees

Associative retrieval allows one to nondestructively traverse binary trees of

$Retrieve.by.CAR}

Assoc Pop (x) =

{ $ x ~ CAR ;

Un Pop () =

{ un - COR }

Find Stack Top =

{ loop

Associative retrieval permits another interesting stack operation : associative
stack pop . This operation pops the stack back to the point where a specified
element is the top , in constant time . If the element appears on the stack more
than once , an instance can be picked at random . The items above the one
being sought are not deleted , so one can find the top of the stack again by
repeatedly un -popping it until the un -pop operation fails . In order to detect
when a retrieval has failed , we introduce a " verify " operation to confirm that
the retrieval has found a tuple whose specified component exactly matches the
cue supplied .

5. Associative Trees

In describing operations on tree structures , one must be careful to distinguish
between trees with direct representations (i .e., binary trees whose internal
nodes are unlabeled) , and more general sorts of trees . We will consider each
type in turn .

- unpopped once too many;
- TAG and CAR hold garbage

- COR still valid ; undo the failed Un Pop

17DYNAMIC SYMBOL STRUCTURES

4 We assume one-way pointers, as in normal LISP lists. If destructive operations are allowed,
then LISP can traverse binary trees without a control stack; this is the basis of certain sophisticated
garbage collection algorithms.

18 D.S. TOURETZKY

$ CAR ~ CDR ;

$Retrieve .by .CDR ;

if $TAG .eql .root then
exit

else

Backup
endif

Fig. 6. A binary tree. Tags used for the tuple encoding are shown in italics.

- must be parent 's cdr

- quit if parent is root

- continue backing up

end if}

One Subtlety in the above algorithm is the method of backing up from a
terminal node . The algorithm cannot know whether the current cell is the left
or right child of its parent . If it is the left child , its tag will appear as the second
element of its parent 's tuple ; if a right child its tag will appear as the third
element . Backing up is therefore a two -step operation . The Backup procedure
begins by assuming the current cell is a left child . It performs an un -car
operation , and then verifies that the retrieval succeeded . If so, the assumption
was correct , and the algorithm can now proceed to examine the cdr of the
parent cell . If the retrieval failed ; the terminal node must have been a right
child rather than a left child . The contents of TAG and CDR spaces are now
invalid , but CAR space, which was clamped during the retrieval , still holds the
tag of the child . After copying the contents of CAR space into CDR space, a
new retrieval can be run with CDR space clamped to find the correct parent .

Whenever it backs up from a node that is a right child , the algorithm
performs the backup procedure again . It will continue doing so until it either
backs up from a node that is a left child , or it backs up to the root from a right
child . In the latter case the entire tree has been visited , so the algorithm
terminates .

Figure 6 shows a sample binary tree , and Fig . 7 gives its representation as a
set of triples . A complete list of steps the traversal algorithm goes through
when applied to this tree is shown in Table 1.

DYNAMIC SYMBOL STRUCTURES 19

CAR

q
r

A

t

B

A

w

C

D

Fig. 7. The encoding of Fig. 6 as a set of triples.

transmit '"A"

-

. - - - - - - . - .

~

. ~ ~ ~ ~ ~ ~ . r . , .

~

. ~ ~ ~ ~ ~ ~

~

~

~

~

~

~

~ ~ . . , ~

~

~ ~ ~ ~ ~

~

~

~ ~

. . ~ ~ ~

" - '

"
- ' " - " ' - ' ~ " - ' , , - ,

"
- '

~
~ ~ ~ ~ ~

~

~ ~ ~ ~ ~ ~ ~ ~ ~

C
) oC) oo C) C) C) oC) oo C) oo ~

~
~ ~ ~ ~ ~

~

~ ~ R - ~ ~ R - ~ ~ <

c
: : : Ic : : : I : : Ic : ~

c : : : Ic : : : I : : Ic : : : I : : I (D

'
O () ' O () () ~

' 0 ' O () ' O () () ~ () () ; i !

~

> ~

~ . > ~

 (D

~

~ ~

~

~ ~

~ ~

Backup

�

Remember root is p .
(q , - , -)

(r , _ , _)

(- , r , _)

(s , - , -)

(t , - , -)

(- , t , -)

(u , - , -)

(- , u , -)

(- , - ' u)

(- , s , -)

(- , - , s)

(- , q , -)

(v , - , -)

(w , - , -)

(- , w , -)

(x , - , -)

(- , x , -)

(- , - ' x)

(- , v , -)

transmit "B"

transmit "A"

Associative retrieval failed .

Associative retrieval failed .

transmit "C"

transmit "0"

(p , q, v)
(q, r , s)
(r , Air)
(q, r , s)
(st , u)
(t , Bit)
(st , u)
(u, A , u)

Associative retrieval failed .

Associative retrieval failed.

-
- - - - - - - -

-
i

)
(~ < c - cn " ' . a " C

~

0

)
(~) (C " ' C " ' cn <

0
:

D

-
- - - - - - - -

(- , - , v) (p , q, v) At root , so done.

5 .2 . General tree manipulation

General trees , in which interior nodes are labeled and may have any number of

descendants , must be represented indirectly if one is using linked lists . As

mentioned previously , interpreted LISP programs are trees of this form . An

associative retrieval machine can manipulate general trees the same way LISP

does . For example , imagine that the parse tree of Fig . 8 is represented as a
linked list . Each node of the tree is a cons cell chain ; the car of the first cell

holds the node label , and the remaining cells hold the tags of the node 's

Table 1

Steps in traversing the tree of Fig . 6 .

Step Retrieval cue Retrieved tuple Action or comment

20 D.S. TOURETZKY

VP

/ I """""""""""'"
V Tense Adv

I I II I
the boy eat past

Fig. 8. Parse tree for " The boy ate quickly ."

quickly

(Sent
(Subject -NP

(Det (the))

(N (boy)))

(VP

(Verb (eat))

(Tense (past))

(Adv (quickly))))

children . We assume that terminal nodes are represented as chains with no
children , i .e., in parenthesis notation the tree would be written :

The following procedure locates a particular child of a parent node , given
the child 's label as input . For example , if the current node were VP , Find
Named Child ("Tense") would make the second child of the VP node be the
current node . We assume that the tuple representing the parent node (i .e. , the
tuple for the head cell in the parent node's cons cell chain) resides in the Tuple
Buffer when the procedure is invoked .

Find Named Child (x) =

{ loop
Get C DR ; - find next child

Get CAR ; - fetch child 's label

if $CAR .eql .x then - if this is the child we want

exitloop - then exit
else

un-CAR ; - else back up to the parent chain
endif - and iterate to check next child

endloop}

If node labels are unique , associative retrieval eliminates the need to search
a tree sequentially . For example , we can access any node of Fig . 8 in constant

21

The next procedure finds the parent of the current node by using associative
retrieval to follow pointers backward . It assumes that the model is able to

distinguish between symbols that are used as atoms and symbols that are used
as tags for composite objects . Only symbols denoting atoms can serve as node
labels .

Find Parent =

{ un-CAR;
loop

un-COR;
if $CAR.is.atomic.then

exit loop
end loop}

(tag, label, parent, rsib , Ichild) .

The tag field , as before , serves as a unique id for the tuple . The label field
contains the node 's label . A tree might have several nodes with the same label ,
but they would have different tags . The parent field holds the tag of the parent
of this node . The rsib field holds the tag of the node that is the right sibling of
this node . (If a node is a rightmost child , its rsib field will contain the parent 's
tag .) The lchild field holds the tag of the node 's leftmost child , or the node 's
own tag if it has no children . Figure 9 shows part of a tree represented this
way , and Fig . 10 shows the architecture of a hypothetical Boltz CO N S network
called Boltz CO N S-5 for supporting this richer tree representation . I

Using this representation , the procedures for finding a node 's parent , right
sibling , and leftmost child are straightforward associative retrievals similar to
the ones we 've seen before . Certain other retrievals are a little more complex .
To find a node 's left sibling , we look for a tuple with the same parent as the
current node , and the current node 's tag in its rsib field . This search combines
two cues into a single associative retrieval by clamping two symbol spaces
simultaneously :

5.3. A richer representation for general trees

We noW consider a richer representation for trees that allows access to a node 's
parent or any of its siblings or descendants with a single associative retrieval .
Each node will be a five -tuple :

DYNAMIC SYMBOL STRUCTURES

time with the following procedure :

Find Named Node(x) =
{$x~ CAR;
$Retrieve.by. CAR}

- back up to parent's chain

- back up to previous child
- here's the parent's node label

22 D.S. TOURETZKY

TAG:

. .

Get Left Most Sib =

{$TAG~ RSIB;

Fig . 9 . A richer representation for tree structures .

$ Retrieve . by . PARENT . & . RSIB }

To find a node ' s rightmost child we can exploit the fact that sibling chains

terminate by pointing back to the parent node . We simply search for a tuple

Fig. 10. A version of Boltz CO N S that could support richer tree representations.

Tuple
Buffer

Tuple
Memory

DYNAMIC SYMBOL STRUCTURES 23

w .ith this node ' s tag in both the p "arent and rsib fields :

Get Right Most Child =

{ $ TAG ~ PARENT & $ TAG ~ RSIB ;

$ Retrieve . by . PARENT . & . RSIB }

To locate an arbitrary named child of the current node , we search for the

tuple with this node as parent and the specified label ; there is no problem if

other nodes in the tree have the same label as long as they have a different

parent .

Get Named Child (x) =

{ $ TAG ~ PARENT & $ x ~ LABEL ;

$ Retrieve . by . PARENT . & . LABEL }

It should be clear from these examples that associative retrieval models are

not limited to reproducing the functionality of LISP cons cells . Any computa -

tional architecture based on pointers and structured objects is potentially

implementable this way .

6 . Connectionist Implementation

The low - level organization of Boltz CO N S is similar to that of DCPS , Touret -

zky and Hinton ' s distributed connectionist production system [24 , 28 , 29] . It is

constructed from essentially the same modules , hooked together in a different

way . This section gives an overview of the model ' s wiring and principles of

operation .

6 . 1 . Distributed memory representation

The organization of Tuple Memory is similar to the Working Memory of

DCPS . I will describe the simplest version of Boltz CO N S with only three

symbol spaces . Extension to more elaborate versions is straightforward .

Starting with a 25 - symbol alphabet , there are 253 = 15 , 625 triples that might

appear in the tuple memory . We assume that the memory is very sparse , so

that only a small fraction of these triples , typically one half to two dozen , will

be present at anyone time . Since the memory is extremely sparse , coarse

coding (explained below) can be used to reduce the number of units required

while adding a measure of redundancy and fault tolerance to the representation

[10 , 17] .

Tuple Memory consists of 2000 units , each of which has arandomly -

generated 6 x 3 receptive field table such as the one shown in Fig . 11 . The

table has three columns because we are encoding triples . The choice of six rows

is not critical ; it yields good performance (as measured by memory capacity ,

noise immunity , and amount of real memory required by the simulator) , but

five or seven rows would also work .

D.S. TOURETZKY24

Fig. 11. An example of a randomly-generated receptive field table for a Tuple Memory unit . The
receptive field of the unit is determined by the cross product of the three columns .

The receptive field of a unit is the set of triples generated by the cross-
product of the three columns of its receptive field table . A receptive field
contains 6 x 6 x 6 = 216 triples , so each receptor covers approximately 1.4% of
the space of all possible triples . Receptors are therefore " coarsely tuned " ;
hence the term " coarse coding ." This is also an example of a distributed
representation , because triples average (6/ 25)3 x 2000 = 27.648 receptors each .
Activity in anyone receptor does not constitute a representation of any
particular triple . Only a collective pattern of activity across a set of receptors
corresponds to a triple .

To store a triple in Tuple Memory one turns on all the units in whose
receptive field it falls . If we stored the triple (F , A , B) , for example , we would
turn on the unit depicted in Fig . 11 because it has an F in column 1, an A in
column 2, and a B in column 3. We would also turn on roughly 27 other units
that also meet these specifications. If we then stored (F , C, D) , its activity
pattern , which also contains about 28 units , would be superimposed (via
inclusive -or) on top of the previous pattern . The result is shown in Fig . 12, in
which 55 of the 2000 units are active .

An external observer can tell whether a triple is present by checking the
percentage of its receptors that are active . If the percentage is large enough ,
e.g., at least 75% , the triple may be deemed to be present . Boltz CO N S does
not actually compute these percentages ; the relative activation strengths of
triples determine which ones will be found when an associative retrieval is
performed . However , for debugging purposes it can be useful to display the
percentages of the most highly activated triples . Table 2 provides this information

for the case where (F , A , B) and (F , C, D) have just been stored. There is
a clear gap between present and absent triples ; the strongest triple not actually
present has only 40% activation . As the memory fills up , this gap gradually
narrows .

:
E

(/) 0 ~

11

()

-
<

- i A

I m

:
IJ

- U

~

' - 0 O
J

DYNAMIC SYMBOL STRUCTURES 25

.

. .

. . .
. .

.
.

. .
.

. .
.

. .

.

.
.

.
. .

.
.

. .
.

. .
.

.
.

. .
.

. .

.
.

. .
. . .

.
. . .

. .
.

.
.

MeMory !.Jindol .)

Fig. 12. The state of Tuple Memory after the triples (F , A , B) and (F , C, D) have both been
stored . There are 55 units active out of 2000 . There is no significance to the positions of these

units .

Table 2

The first dozen triples with the strongest representations when (F , A , B) and (F , C, D) have been
stored in memory

Levels of triple activation

Triple Percent Active Total

active receptors receptors

(F , A , B) 100% 28 / 28
(F , C, D) 100% 28 / 28

(F , A , D) 40% 11 / 27
(F , BiD) 38% 10 /26
(F , A , X) 37% 11 / 29
(S, A , B) 37% 10 / 27
(F , Q, D) 37% 10 /27
(F , C, N) 37% 10 / 27
(F , C, B) 37% 10 /27
(F , C, M) 35% 10 /28
(F , TiD) 35% 10 / 28
(N , C, D) 34% 10 /29

26 D.S. TOURETZKY

The levels of support for all 15,625 triples after (F , A , B) and (F , C, D) have been stored
in the Tuple Memory , represented by the 55 active units in Fig. 12.

Fig. 13.

Figure 13 is a graph of the activation levels of all 15,625 triples after
(F , A , B) and (F , C, D) have been stored. The dots' in this figure are associated
with triples , not with Tuple Memory units. Triple (A , A , A) is in the upper
left -hand corner, and (Y, Y, Y) in the lower right . The size of a dot indicates
the number of active Tuple Memory units whose receptive field includes that
triple . The dark horizontal band in the top quarter of the figure , called the
" F-band ," is an artifact of our storing two triples that both begin with F . The
two darkest spots in this band correspond to (F , A , B) and (F , C, D) . A
moderate thresholding operator applied to this figure produces Fig . 14, where
the triples with the highest activity levels stand out more clearly .

The 216 triples in a unit 's receptive field are not chosen independently . They
are generated by a Cartesian product of three sets, thereby forming a Cartesian
subspace of the entire symbol space. Similar triples will therefore tend to share
receptors. This is important for associative retrieval (in particular , it allows the

l

TAG , CAR and CDR spaces to extract the components of a triple) , but it can
also lead to interference effects if the memory fills up , or if many similar triples
are stored . Table 3 shows the expected number of receptors two triples share
as a function of the number of components they have in common , c. The

DYNAMIC SYMBOL STRUCTURES 27

Fig. 14. A moderately thresholded version of Fig. 13, where the (F, A, B) and (F, C, D) spots

expected fraction of overlap between receptors of two triples is (~)3-C; the
number of shared receptors is therefore (~)(3-C) x (!s)3 X 2000.

When several very similar triples are stored, a phenomenon called "local
blurring" results. This is illustrated in Fig. 15. The four triples (F, A, A),
(F, A, B), (F, A, C), and (F, A, D) have all been stored in Tuple Memory.
Other triples in the same local neighborhood of Cartesian product space, such
as (F, A, E), have a moderately high number of active receptors due to the
overlapping representation. This makes it difficult to decide whether they are

stand out more clearly.

Table 3

Degree of overlap between similar triples

Numer of Expected number Expected
symbols of shared percent of

in common receptors overlap

0 0 .25 0 .9 %

1 1.20 4 .3 %

2 5 .76 20 .8 %

3 27 .65 100 .0 %�

D.S. TOURETZKY28

Fig. 15. An illustration of local blurring from storing four closely-related triples: (F, A, A),
(F,A, B), (F, A, C), and (F,AiD). Other, similar triples receive a high degree of support, as
shown by the dark (FAx) line at the beginning of the F-band and the weaker (x, A, y) lines in

other bands. A light thresholding operator has been applied to enhance the image.

really present in the memory or not . But it is still clear that unrelated triples ,
such as (G, K , Q) , are absent .

Two other interesting properties of the memory are wort ~ mentioning . First ,
it has no fixed capacity ; it does not " fill up " in the conventional sense. Rather ,
as more items are added , the gap between present and absent triples narrows .
The result is a gradual decrease in retrieval accuracy , as the network finds it
increasingly difficult to distinguish triples that were actually stored from those
that emerged from overlaps with other triples . This sort of ~mooth performance

degradation , rather than sudden failure when a limit is exceeded , is
characteristic of connectionist models .

The second interesting property is the gradual decay of stored triples after a
long sequence of deletions of other triples . The more closely related the
deleted triples are to the stored one , the faster the fade out effect . This
phenomenon is again a consequence of the overlapping representations that
form a coarse-coded memory . One way to counteract the decay effect is to
recall a triple before -it completely fades away . We can then use the TAG ,

DYNAMIC SYMBOL STRUCTURES 29

CAR , and CDR spaces to regenerate the complete pattern for the triple in the
Tuple Buffer , and store the completed pattern back into Tuple Memory .

A recent study of the mathematics of this coarse coded symbol representation
indicates that it scales well and permits smooth tradeoffs among memory

capacity (the number of items simultaneously representable) , alphabet size,
and accuracy of retrieval II ?] .

6.2. The Tuple Buffer

The Tuple Buffer serves two distinct purposes . It is used to associatively
retrieve individual tupies from the Tuple Memory , given a cue from one of the
TAG , CAR , or CDR spaces. It is also used to assemble new tupies by
combining TAG , CAR , and CDR inputs . This section concentrates on just
retrieval .

During retrievals , the Tuple Buffer acts as a pullout network that extracts
one member from a collection of superimposed patterns , given some partial
specification of the pattern desired . The term " pullout network " is due to
Michael Mozer , who invented the concept independently at the same time as I
was implementing it under the name " clause space" in DCPS . Mozer proposed
the pullout network as a means for a perceptual system to attend to one object
in a c~mplex scene [13] . In DCPS, the two clause spaces extract elements from
working memory such that together the two elements match the left -hand side
of one production rule , and also satisfy a variable binding constraint common
to all rules .

The three components of a pullout network as used in DCPS and
Boltz CO N S are : a one-one excitatory mapping between the units in some
distributed memory and the units of the pullout network ; a competitive or
lateral inhibition mechanism that limits the total amount of activity in the
pullout netwo ~k to roughly enough to represent a single item ; and finally , a-set
of excitatory blases from higher -level spaces that determine which item the
network should pullout from memory . These components are illustrated in
Fig . 16.

The Tuple Buffer of Boltz CO N S consists of 2000 units , with one -one
excitatory connections from the 2000 Tuple Memory units . The Tuple Buffer
units have very high thresholds , counterbalanced by strong positive weights
from Tuple Memory . The result is that no matter how much excitation a Tuple
Buffer unit receives from the symbol spaces, it will not become active unless its
corresponding Tuple Memory unit is also active . This assures that the Tuple
Buffer can only retrieve existing tupies; it cannot hallucinate nonexistent ones.
Top -down excitatory blases are supplied by units in the TAG , CAR , or CDR
spaces, depending on which cue we are using for the retrieval .

The regulatory unit in Fig . 16 provides the lateral inhibition required by the
pullout network . It receives excitatory inputs from all Tuple Buffer units ; its

30 D.S. TOURETZKY

G
- - - - - - - - - -

- - -

- - - -

"

, - - - - - - - - - - - - - - - -

. ~, ---- --~.", ~ - - - - - -- - - - - - - - - - - ~ ~ Tuple
. ~ - - -

-' , Buffer

CAB

FED

M H J

Q K M

ST P

W Y R

Regulatory
Unit

Tuple
Memory

6.3. Symbol spaces

Input from
Higher Spaces

The TAG, CAR, and CDR spaces are called symbol spaces because their
global activity patterns represent individual symbols rather than tupies of
symbols. Each space is organized as a coarse-coded, distributed winner-take-all

Fig. 16. The structure of the Tuple Buffer acting as a pullout network.

graded output is then fed back to the Tuple Buffer units via inhibitory
connections . The amount of inhibition is set so that only about 28 units can
remain active in the Tuple Buffer , which is just enough to represent one tuple .
Exactly which tuple is chosen depends on the top -down blases the Tuple buffer
receives from the symbol spaces.

The use of a regulatory unit with 2N asymmetric connections (N excitatory
inputs and N inhibitory outputs , where N is the size of the Tuple Buffer) and a
graded rather than binary response would appear to violate the definition of a
Boltzmann machine . However , this structure is shown in [29] to be equivalent
to a pure Boltzmann machine in which the regulatory unit is replaced by ! N2
bidirectional inhibitory links between pairs of Tuple Buffer units . The advantage

of using a regulatory unit is that it implements lateral inhibition more

efficiently . Similar regulatory functions have been ascribed to interneurons in
real nervous systems.

DYNAMIC SYMBOL STRUCTURES 31

network containing 25 cliques , one for each of the 25 symbols in the alphabet .
See Feldman and Ballard [4] for a description of winner -take -all networks .
Each clique has 72 units that vote for its symbol . Each unit , being coarse-
coded , votes for three symbols . Thus , the symbol space contains l (25 x 72) =
600 units .

The units within a clique support each other via excitatory connections ,
while units in rival cliques compete with each other via inhibitory connections ,
as shown in Fig . 17. (If two units have at least one symbol in common , the
connection is excitatory .) The stable states of a symbol space are those where
all the units in one clique are active , and all the units in rival cliques are
inactive . Each of these stable states constitutes a global energy minimum when
the symbol space is considered in isolation . In actuality , connections from units
in other spaces bias the symbol space units so that one of the 25 stable states
will become a deeper energy minimum than any of the others .

Just as the Tuple Buffer is used both for retrieving tupies and for creating
new ones, the symbol spaces also play multiple roles . When a symbol space is
clamped , its units are prevented from changing state , but those that are active
supply top -down input to Tuple Buffer units via weighted connections between
the two spaces. For example , suppose the symbol F is clamped into TAG
space. During an associative retrieval , TAG units will supply excitatory inputs
to those Tuple Buffer units having F in the first column of their receptive field
tables . Each active Tuple Memory unit tries to turn on its corresponding Tuple
Buffer unit , but lateral inhibition limits the number of active Tuple Buffer units
to about 28. The bias supplied by the active TAG units will cause the Tuple
Buffer to select only the active units from Tuple Memory whose receptive field
tables contain F in the first column . Thus , given the retrieval cue (F , - , -) , the
Tuple Buffer selects some tuple beginning with F .

Fig. 17. Four nodes out of the 600 that make up a symbol space. Three of the nodes excite each
other because they include F in their receptive field ; they inhibit the fourth node, which does not

vote for F. (Inhibitory connections are drawn as dashed lines.)

32 D.S. TOURETZKY

The CAR and CDR spaces are also connected to the Tuple Buffer . Suppose
the tuple being retrieved from memory is (F , A , B) . The units active in the
Tuple Buffer will have an A in the second column of their receptive field table ,
and a B in the third column . Since the CAR and CDR spaces are not clamped ,
they are free to change state during the retrieval , and they are influenced by
the pattern emerging in the Tuple Buffer . This will eventually cause the A
clique to win the competition in CAR space. Its stable state has a deeper
energy minimum than the other letters , due to the bias supplied by the pattern
in the Tuple Buffer . Similarly , the B clique will win in CD R space.

The connections between symbol spaces and the Tuple Buffer are bidirectional
, which means that even the un clamped symbol spaces will influence the

behavior of Tuple Buffer units . During a retrieval with the cue (F , - , -) , if
there are several items stored in memory , there will probably be more than just
28 active units that happen to have an F in their receptive field table , even if
only one stored triple begins with F . The collective action of the CAR and
CDR spaces helps the Tuple Buffer to home in on the roughly 28 active units
that collectively code for a single tuple , such as (F , A , B) , that all 28 units
support .

6.4. Creating and deleting tupies

New tupies are created by clearing the Tuple Buffer and clamping the
component symbols into their respective symbol spaces. The units in each
symbol space will excite those Tuple Buffer units to which they have connections

. The thresholds of the Tuple Buffer units can be manipulated (by shutting

off input from Tuple Memory and supplying a nonspecific bias signal to all
units in the buffer) so that only those tuple buffer units that receive excitation
from the units in all three symbol spaces will become active . In effect , when
creating a new tuple the buffer computes the intersection of the activation it
receives from the TAG , CAR , and CDR units , as shown in Fig . 18.

After a new activity pattern has been established in the Tuple Buffer , it is
copied into the Tuple Memory by the mechanism shown in the bottom half of
Fig . 18. A set of gated one -one connections between the buffer and the
memory allow each active Tuple Buffer unit to turn on its corresponding Tuple
Memory unit . (Gating is implemented by multiplicative connections , drawn as
triangles in Fig . 18.) The gate keeps the connection inactive most of the time ,
except when a store signal issued . At that time the activity pattern in the Tuple
Buffer is transmitted to the Tuple Memory , where it is superimposed onto
(that is , inclusive -ored with) any existing pattern there .

Multiplicative connections are not part of the normal Boltzmann machine
model , although they are available in the " higher -order " Boltzmann machines
defined by Sejnowski [19] . We need not be concerned with that here , however ,
because during an annealing , which is the only time we rely on the Boltzmann

Tuple Buffer

store

signal delete

signal

DYNAMIC SYMBOLS T R Ucr URE S 33

CORTAG CAR

Tuple Memory

5 This observation is due to Hinton .

Fig. 18. Connections for storing/deleting the contents of the Tuple Buffer in Tuple Memory.

machine 's properties , all gates are fixed . If the gate is open , a gated connection
behaves like an ordinary connection ; if the gate is closed , the model behaves as
if the connection didn 't exist .

Tupies are deleted from the Tuple Memory using a set of gated inhibitory
connections , also shown in Fig . 18. First , the activity pattern of the tuple to be
deleted must be set up in the Tuple Buffer . This is normally done by a
retrieval , but it could also be done by assembling the tuple from individual
components in the three symbol spaces. When the deletion gate is opened ,
each active Tuple Buffer unit turns off its corresponding Tuple Memory unit .

The Tuple Memory units do no processing on their own . They serve merely
as latches to hold an activity pattern and apply it as input to the Tuple Buffer .
The same effect could be achieved without a Tuple Memory if the Tuple Buffer
units had modifiable rather than fixed thresholds .s Storing a pattern would be
achieved by lowering the thresholds of selected Tuple Buffer units , making
them more likely to come on . ,

On the other hand , storing tupies as activity patterns rather than as modified
thresholds allows multiple parallel access to Tuple Memory , as shown in Fig .
19. Some Boltz CO N S algorithms , such as those for permuting nodes in a tree ,
have faster and more straightforward implementations in a multiple -buffer
architecture . For example , using the richer tree representation of Section 5.3,
the algorithm below inserts a new node into a tree as a right sibling of the node

34 D.S. TOURETZKY

Fig . 19 . A variant of Boltz CO N S with multiple tuple buffers accessing the same memory .

currently in Tuple Buffer 1 . We assume that the components of this tuple are

also represented in the T A Gl , LAB ELl , PARENTI , RSIBl , and LCHILDI

spaces . The new node initially has no children :

Insert Node (x) =

{ $ New Tag ~ TAG2 &

$ x ~ LABEL2 &

$ PARENT1 ~ PARENT2 &

$ RSIB1 ~ RSIB2 &

$ Delete . tuple . 1 . from . memory ;

$ TAG2 ~ RSIB1 & $ TAG2 ~ LCHILD2 ;

$ Assemble . tuple . in . buffer . 1 &

$ Assemble . tuple . in . buffer . 2 ;

$ Store . tuple . 1 & $ Store . tuple . 2 }

6 . 5 . Communication between symbol spaces

Following pointer chains requires copying the activity pattern representing a

symbol from CAR or COR space into TAG space . Other operations , such as

following pointers backward , require copying in the opposite direction . Such

transfers are trivial if each of the 600 symbol units in the destination space has

the same three - letter receptive field as its counterpart in the source space . But

even if this is not the case , the transfer of symbols between spaces is easily (and

Tuple Tuple
Buffer 1 Buffer 2

Tuple
Memory

 F ,J ,W

E,JiM A ,G ,J

C ,J ,T B,KiM

B ,LiP

DYNAMIC SYMBOL STRUCTURES 35

Associative retrieval in Boltz CO N S is accomplished by parallel constraint
satisfaction using the Boltzmann Machine simulated annealing algorithm .
Assume that Tuple Memory holds the set of tupies shown in Fig . 4, and we
wish to find the tuple whose tag is p . We begin by clamping the symbol pinto
TAG space, that is , we turn on all the TAG units that include p in their
receptive field , and turn off the ones that don 't include p . The states of the

TAG Space CAR Space

-
- - - - -

I
I
I gateI

Fig . 20 . Gated connections between symbol spaces allow symbols to be copied from one space to
another . Using a many -to -many connection pattern , it isn 't necessary for units in the two spaces to

have identical receptive fields ; the two spaces need not even be of the same size .

more robustly) achieved using many-to-many connections between units that
have at least one letter in common. In this case the two spaces need not even
be of the same size. The transfer method is illustrated in Fig. 20. Suppose the
symbol J is represented in CAR space, meaning the first , second, and fourth
units are active. To transfer this symbol to TAG space we turn off all the TAG
units, hold the CAR units clamped so they cannot change state, and open the
gate on the two-way connections between the two spaces. The first two TAG
units in Fig. 20 will receive excitation from three connections each. The last
TAG unit , which does not code for J, will receive excitation from only one
connection; this spurious excitation comes from the fact that the last units in
TAG and CAR space both happen to code for P. With a high enough
threshold, the units that become active in TAG space will be only those that
code for J. (Recall that the connections within TAG space will cause J units to
excite their siblings and inhibit rival units, so any spurious activation from
CAR units will be more than compensated for by intraspace lateral
inhibition .)

The gate that controls this transfer is actually implemented by a set of
multiplicative connections from a line carrying the " transfer" signal onto each
of the connections between the two spaces. During an associative retrieval
there is no transfer signal (i .e., the gate is closed) , so these connections have
no effect.

6.6. Associative retrieval by parallel constraint satisfaction

D.S. TOURETZKY36

TAG units are then frozen so that they cannot change during the annealing . As
the annealing begins , the active TAG units supply excitation to the Tuple
Buffer units to which they are wired . At the same time , the active Tuple
Memory units , representing the superimposed patterns of all eleven stored
tupies , are exciting their corresponding Tuple Buffer units . Lateral inhibition
in the Tuple Buffer prevents more than a few dozen Tuple Buffer units from
being on simultaneously . The units that are most likely to be on are the ones
receiving the highest activation , that is , the ones receiving input from Tuple
Memory plus an extra boost from the clamped TAG space units . Therefore ,
the Tuple Buffer will tend to choose units that encode a tuple from the Tuple
Memory that begins with p .

The CAR and CDR spaces, being unclamped , are free to wander about
looking for an energy minimum . As the pattern in the Tuple Buffer develops
toward the representation of one particular tuple , it exerts an influence on the
CAR and CDR units . In CDR space, for example , units that vote for q will be
getting a lot of excitatory input from active Tuple Buffer units representing (p ,
Event7 , q) . This tends to make the clique for q be the winner in CDR space.

Because Boltz CO N S was built from the components of DCPS , it uses the
same settling algorithm for ass9ciative retrieval . This algorithm does most of its
work very quickly at a single temperature . It is more like rapid stochastic
search than simulated annealing .

DCPS solves a much harder problem than Boltz CO N S. DCPS must simultaneously
retrieve two triples that jointly satisfy two independent constraints : the

left -hand side pattern matching constraint and the variable binding constraint .
See [24] for details . Boltz CO N S, on the other hand , only retrieves one triple at
a time , subject to a single constraint : the influence that the clamped symbol
space exerts on the Tuple Buffer . Given the simplicity of the retrieval problem
in Boltz CO N S, it is likely that a simpler settling algorithm would give equally
good results . In particular , the Hopfield and Tank model [11] , which uses
deterministic continuous -valued units instead of stochastic binary ones , seems
an attractive alternative .

7. Managing a Distributed Memory

Boltz CO N S might be viewed as a short term or working me I11ory model for
processing conceptual structures . Human short -term memory has a distinctly
limited capacity . The few items P! esent at any given time will quickly fade or
be displaced unless some action is taken to retain them . In normal cognitive
processing we may expect these items to be created , manipulated , and discarded

at a rapid rate .

An acknowledgement of limited memory capacity leads to the question of
how memory resources might be allocated and recovered . Too little is known
about human information processing to support much speculation on this topic .

7.1. The allocation problem

Here are five increasingly sophisticated schemes for attacking the allocation
problem :

(1) Maintain a freelist
This te'chnique was used in early LISP implementations : all un allocated cells
are strung together in a linked list . A pointer to the head of the list is
maintained in a special register . New cells are allocated by popping them off
the free list ; in Boltz CO N S this means deleting the tuple from Tuple Memory
and then reusing its tag . The pop operation could be done efficiently in
Boltz CO N S without interfering with computations in progress by using a
second Tuple Buffer with associated symbol spaces, as in Fig . 19. One problem
with free lists is their inherent sequentiality . If there are multiple tuple buffers
interacting with the Tuple Memory simultaneously to build new structures ,
maintenance of the freelist becomes a bottleneck .

(2) Use a special marker for free cells
Each unallocated cons cell could have a special marker in its car and cdr which
could be picked up by associative retrieval . The problem with this approach is
that if there are many free cells , local blurring will degrade the accuracy of the
memory .

(3) Mark free cells by setting their car and cdr fields to their tag
This form of marking avoids local blurring . A constrained form of associative
retrieval could be used to find such self -referential cells . However , this would
interfere with some of the reclamation schemes proposed below .

(4) Pick a tag at random and verify that it 's unused
We can use associative retrieval to verify that there is no stored tuple with the

DYNAMIC SYMBOL STRUCTURES 37

However , to pursue the basic pointer structure analogy that gave birth to
Boltz CO N S, I will sketch and compare some candidate mechanisms .

Let us define allocation as the process of finding a fresh tag , meaning a tag
not in use by any currently -stored tuple . We define reclamation to mean
deleting " garbage " tupies representing cells no longer pointed to by any of the
concept structures currently in memory . To make this last idea more
concrete - without making any psychological claims - we assume that working
memory is organized as a tree whose root has a distinguished tag , and whose
children , which are unordered , are individual conceptual structures . A structure

can be converted to garbage by severing its connection to the root .

Smaller bits of garbage might be generated as a side effect of performing minor
surgery on graphs , such as deleting or permuting a few nodes . Thus , we expect
that normal operations on symbol structures will continually produce garbage
tupies that must be reclaimed to prevent the memory from filling up .

38 D.S. TOURETZKY

given tag . If the memory is sparse, the first tag we pick will probably be free . If
a tag is already in use, we can pick another tag at random and repeat the
process . As memory fills up this scheme becomes less efficient . Processing time
not only increases , it may also vary substantially depending on how lucky our
random guesses turn out to be .

(5) Use an inhibitory winner -take-all space
This idea was suggested by David Chapman at the Massachusetts Institute of
Technology . Create a special winner -take -all space whose units have inhibitory
connections directly from the Tuple Memory ; the connectivity is based on the
first column of the receptive field table . The winner -take -all units will have
negative thresholds (i .e. , positive blases) which cause them to turn on in the
absence of inhibition from Tuple Memory . The stable states of this network
will then correspond to symbols that do not appear as the tag of any tuple
present in Tuple Memory . We will also need excitatory connections within each
clique of units and inhibitory connections between rival cliques , as in an
ordinary winner -take -all space, to assure that only one symbol at a time is
chosen as the winner .

7.2. The reclamation problem

Here are four schemes for removing tupies that are no longer accessible .

(1) Activation decay of units in Tuple Memory
If the activation levels of tuple memory units are made to decay slowly towards
zero , the tupies those units represent will gradually fade from the memory . We
can retain those tupies that continue to be accessed by having each Tuple
Buffer unit refresh the activity level of its corresponding Tuple Memory unit at
the end of every associative retrieval . One problem with this approach is that ,
since the components of an object are represented by independent tupies , if we
continually access only some parts of an object , the other parts might fade
away , leaving an incomplete structure in memory . It would be impractical to
traverse an entire tree to refresh its tupies any time we access any part of it .
However , in architectures such as Touretzky and Geva 's DUCS model [27] ,
where composite objects are represented by a single large activity pattern that
is always retrieved as a whole , the use of exponential decay with refresh -on -
retrieval is feasible .

It 's not really clear if this is the right kind of reclamation , though . If the
system gets busy (i .e., is suddenly called upon to do a lot of processing) , it will
be generating and discarding new structures very rapidly . The decay mechanism

might then be unable to reclaim these structures quickly enough to prevent
memory from filling up . We could compensate for the higher processing speed
by increasing the decay rate of Tuple Memory units , but this will force us to
waste more processing resources on refresh . It would be better if garbage were
displaced by new data rather than simply allowing garbage to decay .

DYNAMIC SYMBOL STRUCTURES 39

Another source of decay comes from the effect of overlapping representations
due to coarse coding . Even if units ' activity levels remain constant , as we

delete many triples , some will share units with triples that were not meant to
be deleted . After many deletions , a triple can fade from memory unless it has
been periodically refreshed .

(2) Pick a tuple at random and see if no car or cdr points to its tag
If so, delete it , then check its car . If nothing points to the car , reclaim it and
continue along the car path ; otherwise check the cdr . When we get to the end
of a chain of reclaimed tupies we go back to random search again . If we use a
dedicated Tuple Buffer for this purpose , reclamation can occur in parallel with ,
and completely independent of , the creation and manipulation of non -garbage
structures .

(3) Monitor deletions
If the storage recovery mechanism is in random search mode when Boltz CO N S
deletes a tuple , it should immediately check the car and cdr of the deleted
tuple to see if they are tags (rather than atoms) , and if any tupies other than
the one just deleted contain those tags. If not , it can begin following a
reclamation path , starting with the subtree beginning with the now orphaned
tag , as in case (2) . If both the car and cdr point to now -orphaned subtrees , the
storage recovery mechanism need only pursue one of them . The other will be
picked up later by random search .

(4) Detect garbage tupies directly
One could perhaps design a special module to detect garbage tupies , i .e. ,
tupies not pointed to by any other tuple . This would be yet another variant on
the familiar winner -take -all network . A unit that votes for , say, the tag J ,
would have excitatory connections from Tuple Memory units with J in their tag
fields , and also inhibitory connections from Tuple Memory units with J in
either their car or cdr fields . Such a network should settle into a stable state

representing the tag of a tuple that was stored in memory but not pointed to by
any other stored tuple . One could then perform an ordinary associative
retrieval to access the tuple with this tag and delete it from memory . This
wouldn 't detect circular garbage , however .

Although use of dedicated hardware might seem an expensive way to detect
and reclaim garbage , recall that Boltz CO N S is modeling processing in short -
term or working memory , not long -term memory . Since the short -term memory

contains only a few moderately complex structured objects at a time , and

its contents are subject to rapid turnover , special storage recovery circuitry
might not be unreasonable .

8. Discussion

In the course of this paper , Boltz CO N S - evolved from a parallel associative

40 D.S. TOURETZKY

implementation of LISP cons cells into a more powerful and general purpose
symbol processor . The full architecture supports direct representations of
arbitrary tree structures based on a 5-tuple encoding , and it can perform
complex pointer manipulations using multiple buffers operating simultaneously
on its tuple memory . A variety of methods for dynamic allocation and
reclamation of memory resources were also discussed . In this final section I will
try to put the Boltz CO N S model in perspective .

8.1. Boltz CO N S and implementational connectionism

Boltz CO N S joins many other connectionist models in addressing an important
implementation question : How can intelligence emerge from the collective
activity of a mass of neurons ? One might approach this question at many
levels . At an extremely abstract theory of computation level , idealized neurons
function as boolean logic gates and latches , from which one can wire up a
Turing machine or any digital computer . Of course this approach ignores many
crucial biological constraints , such as the fact that individual neurons are
unreliable devices , or the fact that the human genome does not contain enough
information to specify precise point -to -point neural wiring for something as
complex as a computer . At the other extreme , if fidelity to biology rather than
theoretical simplicity is the main goal , one could try mapping proposed symbol
processing architectures directly onto actual brain structures . Neuroscientists
have had great success explaining the early stages of vision in terms of
receptive fields , cortical maps , hypercolumns , and so forth , but this approach
seems premature for symbol processing , which involves nonsensory ,
nongeometric representations .

Connectionist symbol processing theories therefore occupy a middle ground
between purely abstract computational architectures and purely data -driven
biological models . Connectionist modelers are concerned with computational
questions more than biological ones , but they try to work within hailing
distance of the biologists . Boltz CO N S in particular obeys several important
biological constraints . Its units are stochastic , and the failure of anyone of
them would have no observable effect on the model 's behavior . Units have

coarsely -tuned receptive fields ; they do not encode discrete symbols as a
grandmother cell would . And the mappings between modules (e.g., between
the symbol spaces and the Tuple Buffer) are rich and highly redundant , as is
the case in real neural systems.

I do not envision connectionist symbol processing moving closer to real
biological explanations any time soon . There are too many layers of description
between psychology and neuroscience where our understanding is extremely
limited . Connectionists will have to content themselves with studying the
computational properties of various abstract architectures , drawing inspiration
from biology where possible . One hopes that at some point in the future these

41

biological

8.3. Revisionist symbol processing

One of the most pressing questions facing connectionists is how the neuron -like
implementation of their models influences their view of what symbol processing
is about . If there were no influence , connectionism would merely be an
implementation technology rather than an alternative to classical processing . If
the influence proves to be fundamental , connectionist modeling could lead to
an entirely new understanding of symbol processing . This has not happened yet
to any great degree , but one must be patient .

In the case of Boltz CO N S, there are several areas where the choice of a..
connectionist implementation impacts the model . They are : coarse coding ,
combination of multiple cues, and closest-match search .

Coarse coding is a particularly " neural " representation strategy . The desire
to avoid local blurring ruled out certain conventions for marking atoms and the
termination of chains in Boltz CO N S that would have been perfectly acceptable
in noncoarse coded architectures . In addition , coarse coding predicts particular
types of error behavior as the memory fills up , and particular types of fading as
items are deleted .

8.2. Boltz CO N S and cognitive psychology

Like Anderson 's ACT * model [1] , Boltz CO N S raises questions about mental
representations . If there really are symbol structures in the brain , one can
legitimately ask about their functional properties , i .e. , properties defined at the
level of an abstract associative retrieval machine . Suppose , for example , that a
particular cognitive theory suggests that people manipulate tree structures in
their heads . One can ask: Does the brain use a direct or indirect representation
for these trees ? What tree manipulation primitives does it provide ? If nodes
are ordered , is it possible to access the rightmost child of a node as quickly as
the leftmost child ? How much time does it take to perform various sorts of
permutations on nodes ? The answers can reveal a lot about the underlying
cognitive architecture . Boltz CO N S-5 is a good illustration of the way a slight
architectural modification can turn a slow serial operation into a fast parallel
one .

Of course , people probably have much richer and more complex structures
than trees in their heads . The Boltz CO N S approach can be extended to
develop models of these structures and explore their computational properties .
In contrast , if one talks only about manipulating symbol structures , without
considering how they could be realized in neuron -like hardware , then it is not
meaningful to ask whether certain operations necessarily take longer or require
more resources than others .

DYNAMIC SYMBOL STRUCTURES

investigations will provide the necessary language for framing a
explanation of cognition .

tT
1

.
. ,

42 D.S. TOUR

The latter two areas where the effects of a connectionist implementation are
felt both involve associative retrieval . As mentioned in the introduction ,

associative retrieval is not unique to connectionist models. But the dividing line
between fast and slow operations is drawn differently when one takes a
connectionist approach . For example , for a conventional computer to perform
the associative retrievals used in Boltz CO N S-5, tupies would have to be stored
redundantly in five hash tables keyed on the TAG , LABEL , PARENT , RSIB ,
and LCHILD fields . Given one component of a tuple , it is easy to fetch the
entire tuple from the appropriate hash table in constant time , independent of
the number of tupies that have been stored . But that is as far as we can push
the hash table representation . Other operations that connectionist architectures
perform quickly will not map neatly onto hash tables .

One example is the combination of multiple cues, as in Section 5 .3, where
we used both the PARENT and RSIB fields to constrain a retrieval . In general ,
supplying more constraints causes a connectionist model to settle faster . But a
conventional machine using hash table representations will be slowed down . It
will either be forced to intersect the sets of entries retrieved from the PARENT

and RSIB hash tables (a serial process) , or it will have to maintain additional
hash tables keyed on all pairs of fields that might be used in a query . For more
complex representations , where the number of ways of combining multiple
cues would be much larger , this second approach would not be feasible .

Finally , connectionist associative retrieval architectures do more than retrieve
exact matches to a query. If there is no exact match, they can retrieve

the closest inexact match . Consider this example from DUCS , a connectionist
frame system . Given a frame describing a bird , and a request for the " nose" of
the bird , DUCS retrieves the closest slot to " nose , " which is " beak . " For an

elephant frame , the closest matching slot would be " trunk ." DUCS encodes
slot names as binary feature vectors and uses Hamming distance to determine
the closest match . Serial machines cannot access a closest matching item in
constant time ; hashing works only for exact matches .

In the current version of Boltz CO N S symbols are atomic ; they have no
semantic features that could be usd to determine closest match . But one could

easily imagine a version of Boltz CO N S in which symbols were semantic feature
vectors . For example , Dolan and Smolensky 's tensor product production
system TPPS (discussed further below) , which does allow for semantic features ,
could be adapted to form Tensor CO N S, much as DCPS gave rise to
Boltz CO N S .

8.4. Comparison with other connectionist models

Boltz CO N S occupies a unique point in the space of connectionist symbol
processing models. Like Pollack's Recursive Auto -Associative Memories [16] ,
it represents objects with fixed numbers of components occurring in fixed

DYNAMIC SYMBOL STRUCTURES 43

positions . This distinguish es these models from Derthick 's J.LKLONE [2] and
Touretzky and Geva 's DUCS [27] , which can represent objects with variable
numbers of components , and in which component names are not tied to fixed
positions in a vector . Another common point between Boltz CO N S and
RAAMs is that pointer following is their central operation . J.LKLONE performs

more interesting sorts of retrievals - actually inferences - based on parallel
constraint satisfaction . Following chains of pointers from one concept to

another is not its major purpose .
Boltz CO N S'. primary advantage over J.LKLONE and RAAMs is that it can

create new objects dynamically , by changing the activity pattern in its Tuple
Memory . J.L K LO N E 's knowledge is fixed in advance by its wiring pattern ,
which is compiled from a symbolic -level description of the domain . Although it
can incorporate a small amount of new information as part of each query , it
cannot retain this knowledge from one query to the next , or record the results
of its inferences . Hinton 's connectionist implementation of semantic nets [7]
could acquire new knowledge , but since the semantic net was encoded in
weights that were trained by the percept ron convergence procedure , the model
could only learn by repeated presentation of the entire set of training instances
by some external teacher . When viewed as a short -term or working memory
model , its knowledge was static .

RAAMs also have essentially static knowledge , as adding new structure
requires laborious training with backpropagation . However , RAAMs have an
interesting property : the " pointers " that backprop creates , rather than being
meaningless symbols as in Boltz CO N S, encode some features of the objects
they point to . They can thus serve as what Hinton [8] calls " reduced descriptions" that allow certain inferences to be made directly from the pointers

themselves , rather than from the objects the pointers designate .
Smolensky [21] has shown that the coarse-coded representation used in

DCPS and Boltz CO N S can be viewed as a subset of a tensor product
representation , in which each of the component symbols of a triple is replaced
by a vector . This is of more than theoretical interest , because it suggests that
the pullout mechanism and annealing process might be replaced by a faster
inner product operator that collapses a rank -3 tensor to a rank -2 tensor . (The
annealing in Boltz CO N S is already extremely fast , though ; in fact it is more
properly termed " quenching .") Dolan and Smolensky [3] recently reimplemented

DCPS using tensor product machinery in place of the coarse coded

memory , and report encouraging preliminary results . It remains to be seen
whether this approach offers any advantage in terms of number of units and
connections required , or accuracy of retrieval over the coarse-coded model .

Another way to exploit the tensor product representation would be to make
the pointers meaningful instead of arbitrary . In other words , let part of each
vector hold an arbitrary identifier , but use the other part to encode salient
features of the object being pointed to . This would allow pointers to act as

44 D.S. TOURETZKY

reduced descriptions , as they do in RAAMs . The hard problem that remains is
finding the right encoding of the distal object so that the pointer tells us
something useful . (This same problem was encountered in DUCS , which used
bit vectors as pointers but did not focus on salient features , since it was
domain -independent .) In a RAAM , backprop creates the encoding , but
Boltz CO N S would have to use another method in order to retain its dynamic
qualities . One possibility would be to use backprop to build an encoding
network , from general knowledge about a designated domain , that could
produce a useful reduced description of any structure in that domain . The
encoder could then be wired into Boltz CO N S and used to generate meaningful
reduced descriptions on the fly .

ACKNOWLEDGEMENT

4. J .A . Feldman and D .H
(1982) 205- 254.

I thank Geoffrey Hinton , Paul Smolensky , Jordan Pollack , Mark Derthick , Roni Rosenfeld ,

Charles Dolan , and David Chapman for helpful discussions and suggestions . This work was

supported by National Science Foundation grants IST - 8516330 and EET - 8716324 , and by contract

number NOOOI4 - 86 - K - 0678 from the Office of Naval Research .

REFERENCES

1 . J . R . Anderson , The Architecture of Cognition (Harvard University Press , Cambridge , MA ,

1983) .

2 . M . A . Derthick , Mundane reasoning by settling on a plausible model , Artificial Intelligence 46

(1990) 107 - 157 , this issue .

3 . C . P . Dolan and P . Smolensky , Implementing a connectionist production system using tensor

products , in : D . S . Touretzky , G . E . Hinton , and T . J . Sejnowski , eds . , Proceedings 1988

Connectionist Models Summer School (Morgan Kaufmann , Los Altos , CA , 1988) 265 - 272 .

Ballard , Connectionist models and their properties , Cognitive Sci . 6

9. Conclusions

Compared to Rumelhart and McClelland 's verb learning model , Boltz CO N S
does not venture terribly far from traditional notions of symbol processing .
Rather than being an eliminative theory , it affirms the reality of the symbolic
level . But on the other hand , it is not merely " LISP done with neurons ."
Boltz CO N S shows how the choice of a connectionist implementation can
influence one 's view of symbol processing in subtle ways . With richer , more
complex symbolic representations , the influence of connectionist architectures
should be more profound .

In a 1987 paper [26] , Mark Derthick and I argued that truly powerful
connectionist symbol processors require features of both the Boltz CO N S and
~KLONE -style models , to combine dynamic flexibility with powerful inference
capabilities . Recent progress on many fronts , including work reported in this
volume , lends encouragement that this may be feasible .

DYNAMIC SYMBOL STRUCTURES 45

5. J .A . Fodor and Z .W . Pylyshyn , Connectionism and cognitive architecture : A critical analysis ,
Cognition 28 (1988) 3- 71.

6. R .D . Greenblatt , T .F . Knight Jr , J. Hollow ay , D .A . Moon and D .L . Weinreb , The Lisp
machine , in : D .R . Barstow , H .E . Shrobe , and E . Sandewall , eds ., Interactive Programming
Environments (McGraw-Hill , New York , 1984) .

7. G .E . Hinton , Implementing semantic networks in parallel hardware , in : G .E . Hinton and J .A .
Anderson, Parallel Models of Associative Memory (Erlbaum , Hillsdale , NJ, 1981) .

8. G .E . Hinton , Mapping part- whole hierarchies onto connectionist networks, Artificial Intelligence
46 (1990) 47- 75, this issue.

9. G .E . Hinton and T .J . Sejnowsksi , Learning and relearning in Boltzmann machines , in : D .E .
Rumelhart , J..L . McClelland and the PDP Research Group , eds., Parallel Distributed Processing

: Explorations in the Microstructure of Cognition 1: Foundations (Bradford Books/MIT

Press, Cambridge , MA , 1986) .

10. G .E . Hinton , J .L . McClelland and DiE . Rumelhart , Distributed representations , in : D .E .
Rumelhart , J.L . McClelland and the PDP Research Group , eds., Parallel Distributed Processing

: Explorations in the Microstructure of Cognition 1: Foundations (Bradford Books/MIT

Pres S', Cambridge, MA , 1986) .
11. J.J . Hopfield and D . Tank , " Neural " computation of decisions in optimization problems , Bioi .

Cybern . 52 (1985) 151- 152.

12. J .L . McClelland , D .E . Rumelhart and G .E . Hinton , The appeal of parallel distributed
processing , in : D .E . Rumelhart , J.L . McClelland and the PDP Research Group , eds. , Parallel
Distributed Processing: Explorations in the Microstructure of Cognition 1: Foundations (Bradford

Books/MIT Press, Cambridge, MA , 1986).

13. M .C . Mozer , The perception of multiple objects : A parallel , distributed processing approach ,
Doctoral Dissertation , University of California , San Diego , CA (1987) .

14. A . Newell , Physical symbol systems, Cognitive Sci. 4 (1980) 135- 183.
15. S. Pinker and A . Prince , On language and connectionism : analysis of a parallel distributed

processing model of language acquisition , Cognition 28 (1988) 73- 193.

16. J. Pollack , Recursive distributed representations , Artificial Intelligence 46 (1990) 77- 105, this
issue .

17. R . Rosenfeld and D .S. Touretzky , Coarse -coded symbol memories and their properties ,
Complex Syst. 2 (4) (1988) 463- 484.

18. D .E . Rumelhart and J .L . McClelland , On learning the past tenses of English verbs , in : J .L .
McClelland , D .E . Rumelhart and the PDP Research Group , eds. , Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 2: Applications (Bradford Booksl
MIT Press, Cambridge, MA , 1986) .

19. T .J. Sejnowski, Higher -order Boltzmann machines, in : J.S. Denker , ed., Neural Networks for
Computing, AlP Conference Proceedings 151 (American Institute of Physics, New York , 1986)
398 - 403 .

20. P. Smolensky, On the hypothesis underlying connectionsm, Behav. Brain Sci. 11 (1) (1988) .
21 . P. Smolensky , Tensor product variable binding and the representation of symbolic structures in

connectionist systems , Artificial Intelligence 46 (1990) 159- 216 , this issue .
22 . D .S. Touretzky , Boltz CO N S: Reconciling connectionism with the recursive nature of stacks

and trees , in : Proceedings Eighth Annual Conference of the Cognitive Science Society ,
Amherst . MA (1986) 522 - 530 .

23 . D .S. Touretzky , Representing and transforming recursive objects in a neural network , or
" Trees do grow on Boltzmann machines" , Proceedings International Conference on Systems,
Man, and Cybernetics, Atlanta , GA (1986) 12- 16.

24. D .S. Touretzky , Analyzing the energy landscapes of distributed winner -take -all networks , in :
D .S. Touretzky , ed . , Advances in Neural Information Processing Systems 1 (Morgan Kauf -
mann, San Mateo , CA , 1989) .

46 DoS. TOURETZKY

25. D .S. Touretzky , Connectionism and compositional semantics, in : J.A . Barnden and JiB .
Pollack , eds. , Advances in Connectionist and Neural Computational Theory 2 : High Level
Connectionist Models (Ablex , Norwood , NJ, to appear) .

26 . D .S. Touretzky and MiA . Derthick , Symbol structures in connectionist networks : Five
properties and two architectures, Digest of Papers: COMPCON Spring 87, Thirty-Second
IEEE Computer Society International Conference, San Francisco, CA (1987) .

27. D .S. Touretzky and S. Geva, A distributed connectionist representation for concept structures
, in : Proceedings Ninth Annual Conference of the Cognitive Science Society, Seattle, W A

(1987) 155- 164.
28 . D .S. Touretzky and GiE . Hinton , Symbols among the neurons : details of a connectionist

inference architecture, in : Proceedings IJCAI -85, Los Angeles, CA (1985) 238- 243.
29 . D .S. Touretzky and GiE . Hinton , A distributed connectionist production system , Cognitive

Sci . 12 (3) (1988) 423- 466 .

30 . S. Ullman , Visual routines , in : S. Pinker , ed . , Visual Cognition (MIT Press, Cambridge , MA ,
1984) .

