
Chapter 1

Dimensions

1.1 The Problem of Modeling Representations

1.1.1 Three Levels of Representation
Cognitive science has two overarching goals. One is explanatory: by
studying the cognitive activities of humans and other animals, the sci-
entist formulates theories of different aspects of cognition. The theories
are tested by experiments or by computer simulations. The other goal
is constructive: by building artifacts like robots, animats, chess-playing
programs, and so forth, cognitive scientists aspire to construct systems
that can accomplish various cognitive tasks. A key problem for both
kinds of goals is how the representations used by the cognitive system
are to be modeled in an appropriate way.

Within cognitive science, there are currently two dominating
approaches to the problem of modeling representations. The symbolic
approach starts from the assumption that cognitive systems can be
described as Turing machines. From this view, cognition is seen as
essentially being computation, involving symbol manipulation. The
second approach is associationism, where associations among different
kinds of information elements carry the main burden of representa-
tion.1 Connectionism is a special case of associationism that models asso-
ciations using artificial neuron networks. Both the symbolic and the
associationistic approaches have their advantages and disadvantages.
They are often presented as competing paradigms, but since they attack
cognitive problems on different levels, I argue later that they should
rather be seen as complementary methodologies.

There are aspects of cognitive phenomena, however, for which
neither symbolic representation nor associationism appear to offer
appropriate modeling tools. In particular it appears that mechanisms
of concept acquisition, which are paramount for the understanding of
many cognitive phenomena, cannot be given a satisfactory treatment
in any of these representational forms. Concept learning is closely tied
to the notion of similarity, which has turned out to be problematic for
the symbolic and associationistic approaches.
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Here, I advocate a third form of representing information that is
based on using geometrical structures rather than symbols or connec-
tions among neurons. On the basis of these structures, similarity rela-
tions can be modeled in a natural way. I call my way of representing
information the conceptual form because I believe that the essential
aspects of concept formation are best described using this kind of 
representation.

The geometrical form of representation has already been used in
several areas of the cognitive sciences. In particular, dimensional rep-
resentations are frequently employed within cognitive psychology. As
will be seen later in the book, many models of concept formation and
learning are based on spatial structures. Suppes et al. (1989) present the
general mathematics that are applied in such models. But geometrical
and topological notions also have been exploited in linguistics. There
is a French tradition exemplified by Thom (1970), who very early
applied catastrophe theory to linguistics, and Petitot (1985, 1989, 1995).
And there is a more recent development within cognitive linguistics
where researchers like Langacker (1987), Lakoff (1987), and Talmy
(1988) initiated a study of the spatial and dynamic structure of “image
schemas,” which clearly are of a conceptual form.2 As will be seen in
the following chapter, several spatial models have also been proposed
within the neurosciences.

The conceptual form of representions, however, has to a large extent
been neglected in the foundational discussions of representations. It
has been a common prejudice in cognitive science that the brain is
either a Turing machine working with symbols or a connectionist
system using neural networks. One of my objectives here is to show
that a conceptual mode based on geometrical and topological repre-
sentations deserves at least as much attention in cognitive science as
the symbolic and the associationistic approaches.

Again, the conceptual representations should not be seen as com-
peting with symbolic or connectionist (associationist) representations.
There is no unique correct way of describing cognition. Rather, the
three kinds mentioned here can be seen as three levels of representa-
tions of cognition with different scales of resolution.3 Which level pro-
vides the best explanation or ground for technical constructions
depends on the cognitive problem area that is being modeled.

1.1.2 Synopsis
This is a book about the geometry of thought. A theory of conceptual
spaces will be developed as a particular framework for representing
information on the conceptual level. A conceptual space is built upon
geometrical structures based on a number of quality dimensions. The
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main applications of the theory will be on the constructive side of 
cognitive science. I believe, however, that the theory can also explain
several aspects of what is known about representations in various bio-
logical systems. Hence, I also attempt to connect the theory of concep-
tual spaces to empirical findings in psychology and neuroscience.

Chapter 1 presents the basic theory of conceptual spaces and, in a
rather informal manner, some of the underlying mathematical notions.
In chapter 2, representations in conceptual spaces are contrasted to
those in symbolic and connectionistic models. It argues that symbolic
and connectionistic representations are not sufficient for the aims of
cognitive science; many representational problems are best handled by
using geometrical structures on the conceptual level.

In the remainder of the book, the theory of conceptual spaces is used
as a basis for a constructive analysis of several fundamental notions in
philosophy and cognitive science. In chapter 3 is argued that the tra-
ditional analysis of properties in terms of possible worlds semantics is
misguided and that a much more natural account can be given with
the aid of conceptual spaces. In chapter 4, this analysis is extended to
concepts in general. Some experimental results about concept formation
will be presented in this chapter. In both chapters 3 and 4, the notion
of similarity will be central.

In chapter 5, a general theory for cognitive semantics based on con-
ceptual spaces is outlined. In contrast to traditional philosophical the-
ories, this kind of semantics is connected to perception, imagination,
memory, communication, and other cognitive mechanisms.

The problem of induction is an enigma for the philosophy of science,
and it has turned out to be a problem also for systems within artificial
intelligence. This is the topic of chapter 6 where it is argued that the
classical riddles of induction can be circumvented, if inductive reason-
ing is studied on the conceptual level of representation instead of on
the symbolic level.

The three levels of representation will motivate different types of
computations. Chapter 7 is devoted to some computational aspects
with the conceptual mode of representation as the focus. Finally, in
chapter 8 the research program associated with representations in con-
ceptual spaces is summarized and a general methodological program
is proposed.

As can be seen from this overview, I throw my net widely around
several problem areas within the cognitive science. The book has two
main aims. One is to argue that the conceptual level is the best mode of
representation for many problem areas within cognitive science. The
other aim is more specific; I want to establish that conceptual spaces can
serve as a framework for a number of empirical theories, in 
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particular concerning concept formation, induction, and semantics. I
also claim that conceptual spaces are useful representational tools for
the constructive side of cognitive science. As an independent issue, I
argue that conceptual representations serve as a bridge between sym-
bolic and connectionist ones. In support of this position, Jackendoff
(1983, 17) writes: “There is a single level of mental representation, con-
ceptual structure, at which linguistic, sensory, and motor information are
compatible.” The upshot is that the conceptual level of representation
ought to be given much more emphasis in future research on cognition.

It should be obvious by now that it is well nigh impossible to give a
thorough treatment of all the areas mentioned above within the covers
of a single book. Much of my presentation will, unavoidably, be pro-
grammatic and some arguments will, no doubt, be seen as rhetorical.
I hope, however, that the examples of applications of conceptual spaces
presented in this book inspire new investigations into the conceptual
forms of representation and further discussions of representations
within the cognitive sciences.

1.2 Conceptual Spaces as a Framework for Representations

We frequently compare the experiences we are currently having to
memories of earlier episodes. Sometimes, we experience something
entirely new, but most of the time what we see or hear is, more or less,
the same as what we have already encountered. This cognitive capac-
ity shows that we can judge, consciously or not, various relations
among our experiences. In particular, we can tell how similar a new
phenomenon is to an old one.

With the capacity for such judgments of similarity as a background,
philosophers have proposed different kinds of theories about how
humans concepts are structured. For example, Armstrong (1978, 116)
presents the following desiderata for an analysis of what unites 
concepts:4

If we consider the class of shapes and the class of colours, then
both classes exhibit the following interesting but puzzling char-
acteristics which it should be able to understand:
(a) the members of the two classes all have something in common
(they are all shapes, they are all colours)
(b) but while they have something in common, they differ in that
very respect (they all differ as shapes, they all differ as colours)
(c) they exhibit a resemblance order based upon their intrinsic
nature (triangularity is like circularity, redness is more like orange-
ness than redness is like blueness), where closeness of resemblance
has a limit in identity
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(d) they form a set of incompatibles (the same particular cannot
be simultaneously triangular and circular, or red and blue all
over).

The epistemological role of the theory of conceptual spaces to be pre-
sented here is to serve as a tool in modeling various relations among
our experiences, that is, what we perceive, remember, or imagine. In
particular, the theory will satisfy Armstrong’s desiderata as shown in
chapter 3. In contrast, it appears that in symbolic representations the
notion of similarity has been severely downplayed. Judgments of sim-
ilarity, however, are central for a large number of cognitive processes.
As will be seen later in this chapter, such judgments reveal the dimen-
sions of our perceptions and their structures (compare Austen Clark
1993).

When attacking the problem of representing concepts, an important
aspect is that the concepts are not independent of each other but can
be structured into domains; spatial concepts belong to one domain, 
concepts for colors to a different domain, kinship relations to a third,
concepts for sounds to a fourth, and so on. For many modeling appli-
cations within cognitive science it will turn out to be necessary to sep-
arate the information to be represented into different domains.

The key notion in the conceptual framework to be presented is that
of a quality dimension. The fundamental role of the quality dimensions
is to build up the domains needed for representing concepts. Quality
dimensions will be introduced in the following section via some basal
examples.

The structure of many quality dimensions of a conceptual space will
make it possible to talk about distances along the dimensions. There is
a tight connection between distances in a conceptual space and simi-
larity judgments: the smaller the distances is between the representa-
tions of two objects, the more similar they are. In this way, the similarity
of two objects can be defined via the distance between their represent-
ing points in the space. Consequently, conceptual spaces provide us
with a natural way of representing similarities.

Depending on whether the explanatory or the constructive goal of
cognitive science is in focus, two different interpretations of the quality
dimensions will be relevant. One is phenomenal, aimed at describing the
psychological structure of the perceptions and memories of humans
and animals. Under this interpretation the theory of conceptual space
will be seen as a theory with testable consequences in human and
animal behavior.

The other interpretation is scientific where the structure of the dimen-
sions used is often taken from some scientific theory. Under this inter-
pretation the dimensions are not assumed to have any psychological
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validity but are seen as instruments for predictions. This interpretation
is oriented more toward the constructive goals of cognitive science. The
two interpretations of the quality dimensions are discussed in section
1.4.

1.3 Quality Dimensions

As first examples of quality dimensions, one can mention temperature,
weight, brightness, pitch and the three ordinary spatial dimensions height,
width, and depth. I have chosen these examples because they are closely
connected to what is produced by our sensory receptors (Schiffman
1982). The spatial dimensions height, width, and depth as well as
brightness are perceived by the visual sensory system,5 pitch by the
auditory system, temperature by thermal sensors and weight, finally,
by the kinaesthetic sensors. As explained later in this chapter, however,
there is also a wealth of quality dimensions that are of an abstract non-
sensory character.

The primary function of the quality dimensions is to represent
various “qualities” of objects.6 The dimensions correspond to the dif-
ferent ways stimuli are judged to be similar or different.7 In most cases,
judgments of similarity and difference generate an ordering relation of
stimuli. For example, one can judge tones by their pitch, which will
generate an ordering from “low” to “high” of the perceptions.

The dimensions form the framework used to assign properties to
objects and to specify relations among them. The coordinates of a point
within a conceptual space represent particular instances of each dimen-
sion, for example, a particular temperature, a particular weight, and so
forth. Chapter 3 will be devoted to how properties can be described
with the aid of quality dimensions in conceptual spaces. The main idea
is that a property corresponds to a region of a domain of a space.

The notion of a dimension should be understood literally. It is
assumed that each of the quality dimensions is endowed with certain
geometrical structures (in some cases they are topological or ordering
structures). I take the dimension of “time” as a first example to illus-
trate such a structure (see figure 1.1). In science, time is modeled as 
a one-dimensional structure that is isomorphic to the line of real
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numbers. If “now” is seen as the zero point on the line, the future cor-
responds to the infinite positive real line and the past to the infinite
negative line.

This representation of time is not phenomenally given but is to some
extent culturally dependent. People in other cultures have a different
time dimension as a part of their cognitive structures. For example, in
some cultural contexts, time is viewed as a circular structure. There is,
in general, no unique way of choosing a dimension to represent a par-
ticular quality but a wide array of possibilities.

Another example is the dimension of “weight” which is one-
dimensional with a zero point and thus isomorphic to the half-line of
nonnegative numbers (see figure 1.2). A basic constraint on this dimen-
sion that is commonly made in science is that there are no negative
weights.8

It should be noted that some quality “dimensions” have only a dis-
crete structure, that is, they merely divide objects into disjoint classes.
Two examples are classifications of biological species and kinship rela-
tions in a human society. One example of a phylogenetic tree of the
kind found in biology is shown in figure 1.3. Here the nodes represent
different species in the evolution of, for example, a family of organ-
isms, where nodes higher up in the tree represent evolutionarily older
(extinct) species.

The distance between two nodes can be measured by the length 
of the path that connects them. This means that even for discrete
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dimensions one can distinguish a rudimentary geometrical structure.
For example, in the phylogenetic classification of animals, it is mean-
ingful to say that birds and reptiles are more closely related than reptiles
and crocodiles. Some of the properties of discrete dimensions, in par-
ticular in graphs, are further discussed in section 1.6 where a general
mathematical framework for describing the structures of different
quality dimensions will be provided.

1.4 Phenomenal and Scientific Interpretations of Dimensions

To separate different uses of quality dimensions it is important to intro-
duce a distinction between a phenomenal (or psychological) and a scientific
(or theoretical) interpretation (compare Jackendoff 1983, 31–34). The
phenomenal interpretation concerns the cognitive structures (percep-
tions, memories, etc.) of humans or other organisms. The scientific
interpretation, on the other hand, treats dimensions as a part of a
scientific theory.9

As an example of the distinction, our phenomenal visual space is not
a perfect 3-D Euclidean space, since it is not invariant under all linear
transformations. Partly because of the effects of gravity on our per-
ception, the vertical dimension (height) is, in general, overestimated in
relation to the two horizontal dimensions. That is why the moon looks
bigger when it is closer to the horizon, while it in fact has the same
“objective” size all the time. The scientific representation of visual
space as a 3-D Euclidean space, however, is an idealization that is math-
ematically amenable. Under this description, all spatial directions 
have the same status while “verticality” is treated differently under 
the phenomenal interpretation. As a consequence, all linear coordinate
changes of the scientific space preserve the structure of the space.

Another example of the distinction is color which is supported here
by Gallistel (1990, 518–519) who writes:

The facts about color vision suggest how deeply the nervous
system may be committed to representing stimuli as points in
descriptive spaces of modest dimensionality. It does this even for
spectral compositions, which does not lend itself to such a repre-
sentation. The resulting lack of correspondence between the 
psychological representation of spectral composition and spectral
composition itself is a source of confusion and misunderstanding
in scientific discussions of color. Scientists persist in refering to
the physical characteristics of the stimulus and to the tuning char-
acteristics of the transducers (the cones) as if psychological color
terms like red, green, and blue had some straightforward transla-
tion into physical reality, when in fact they do not.
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Gallistel’s warning against confusion and misunderstanding of the
two types of representation should be taken seriously.10 It is very easy
to confound what science says about the characteristics of reality and
our perceptions of it.

The distinction between the phenomenal and the scientific interpre-
tation is relevant in relation to the two goals of cognitive science pre-
sented above. When the dimensions are seen as cognitive entities—that
is, when the goal is to explain naturally occuring cognitive processes—
their geometrical structure should not be derived from scientific theo-
ries that attempt to give a “realistic” description of the world, but 
from psychophysical measurements that determine how our phenome-
nal spaces are structured. Furthermore, when it comes to providing a
semantics for a natural language, it is the phenomenal interpretations
of the quality dimensions that are in focus, as argued in chapter 5.

On the other hand, when we are constructing an artificial system, the
function of sensors, effectors, and various control devices are in general
described in scientifically modeled dimensions. For example, the input
variables of a robot may be a small number of physically measured
magnitudes, like the brightness of a patch from a video image, the
delay of a radar echo, or the pressure from a mechanical grip. Driven
by the programmed goals of the robot, these variables can then be
transformed into a number of physical output magnitudes, for ex-
ample, as the voltages of the motors controlling the left and the right
wheels.

1.5 Three Sensory Examples: Color, Sound, and Taste

A phenomenally interesting example of a set of quality dimensions 
concerns color perception. According to the most common perceptual
models, our cognitive representation of colors can be described by three
dimensions: hue, chromaticness, and brightness. These dimensions are
given slightly different mathematical mappings in different models.
Here, I focus on the Swedish natural color system (NCS) (Hård and
Sivik 1981) which is extensively discussed by Hardin (1988, chapter 3).
NCS is a descriptive model—it represents the phenomenal structure of
colors, not their scientific properties.

The first dimension of NCS is hue, which is represented by the famil-
iar color circle. The value of this dimension is given by a polar coordi-
nate describing the angle of the color around the circle (see figure 1.4).
The geometrical structure of this dimension is thus different from the
quality dimensions representing time or weight which are isomorphic
to the real line. One way of illustrating the differences in geometry 
is to note that we can talk about phenomenologically complementary
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colors—colors that lie opposite each other on the color circle. In contrast
it is not meaningful to talk about two points of time or two weights being
“opposite” each other.

The second phenomenal dimension of color is chromaticness (satu-
ration), which ranges from grey (zero color intensity) to increasingly
greater intensities. This dimension is isomorphic to an interval of the
real line.11 The third dimension is brightness which varies from white to
black and is thus a linear dimension with two end points. The two latter
dimensions are not totally independent, since the possible variation of
the chromaticness dimension decreases as the values of the brightness
dimension approaches the extreme points of black and white, respec-
tively. In other words, for an almost white or almost black color, there
can be very little variation in its chromaticness. This is modeled by
letting that chromaticness and brightness dimension together generate
a triangular representation (see figure 1.5). Together these three dimen-
sions, one with circular structure and two with linear, make up the
color space. This space is often illustrated by the so called color spindle
(see figure 1.6).

The color circle of figure 1.4 can be obtained by making a horizontal
cut in the spindle. Different triangles like the one in figure 1.5 can be
generated by making a vertical cut along the central axis of the color
spindle.

As mentioned above, the NCS representation is not the only mathe-
matical model of color space (see Hardin 1988 and Rott 1997 for some
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alternatives). All the alternative models use dimensions, however, and
all of them are three-dimensional. Some alternatives replace the circu-
lar hue by a structure with corners. A controversy exists over which
geometry of the color space best represents human perception. There
is no unique answer, since the evaluation partly depends on the aims
of the model. By focusing on the NCS color spindle in my applications,
I do not claim that this is the optimal representation, but only that it 
is suitable for illustrating some aspects of color perception and of con-
ceptual spaces in general.

The color spindle represents the phenomenal color space. Austen
Clark (1993, 181) argues that physical properties of light are not rele-
vant when describing color space. His distinction between intrinsic and
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The chromaticness-brightness triangle of the NCS (from Sivik and Taft 1994, 150). The
small circle marks which sector of the color spindle has been cut out.

Figure 1.6
The NCS color spindle (from Sivik and Taft 1994, 148).
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extrinsic features in the following quotation corresponds to the dis-
tinction between phenomenal features and those described by scientific
theories:

[A]n analysis of sensory qualities should mention only intrinsic
features of the quality space: extrinsic features can be no part of
the analysis.

This suggestion implies that the meaning of a colour predicate
can be given only in terms of its relations to other colour predi-
cates. The place of the colour in the psychological colour solid is
defined by those relations, and it is only its place in the solid that
is relevant to its identity. . . .

More general support for the second part of the quotation have been
given by Shepard and Chipman (1970, 2) who point out that what is
important about a representation is not how it relates to what is repre-
sented, but how it relates to other representations:12

[T]he isomorphism should be sought—not in the first-order rela-
tion between (a) an individual object, and (b) its corresponding
internal representation—but in the second-order relation between
(a) the relations among alternative external objects, and (b) the
relations among their corresponding internal representations.
Thus, although the internal representation need not itself be
square, it should (whatever it is) at least have a closer functional
relation to the internal representation for a rectangle than to that,
say, for a green flash or the taste of persimmon.

The “functional relation” they refer to concerns the tendency of dif-
ferent responses to be activated together. Such tendencies typically
show up in similarity judgments. Thus, because of the structure of the
color space, we judge that red is more similar to purple than to yellow,
for example, even though we cannot say what it is in the subjective
experience of the colors that causes this judgment.13

Nevertheless, there are interesting connections between phenomenal
and physical dimensions, even if they are not perfectly matched. The
hue of a color is related to the wavelengths of light, which thus is the
main dimension used in the scientific description of color. Visible light
occurs in the range of 420–700 nm. The geometrical structure of the
(scientific) wavelength dimension is thus linear, in contrast to the cir-
cular structure of the (phenomenal) hue dimension.

The neurophysiological mechanisms underlying the mental repre-
sentation of color space are comparatively well understood. In partic-
ular, it has been established that human color vision is mediated by the
cones in the retina which contain three kinds of pigments. These pig-
ments are maximally sensitive at 445 nm (blue-violet), 535 nm (green)
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and 570nm (yellow-red) (see figure 1.7). The perceived color emerges
as a mixture of input from different kinds of cones. For instance, “pure”
red is generated by a mixture of signals from the blue-violet and the
yellow-red sensitive cones.

The connections between what excites the cones and rods in the
retina, however, and what color is perceived is far from trivial. Accord-
ing to Land’s (1977) results, the perceived color is not directly a func-
tion of radiant energy received by the cones and rods, but rather it is
determined by “lightness” values computed at three wavelengths.14

Human color vision is thus trichromatic. In the animal kingdom we
find a large variation of color systems (see for example Thompson
1995); many mammals are dichromats, while others (like goldfish and
turtles) appear to be tetrachromats; and some may even be pentachro-
mats (pigeons and ducks). The precise geometric structures of the color
spaces of the different species remain to be established (research which
will involve very laborious empirical work). Here, it suffices to say that
the human color space is but one of many evolutionary solutions to
color perception.

We can also find related spatial structures for other sensory qualities.
For example, consider the quality dimension of pitch, which is basically
a continuous one-dimensional structure going from low tones to high.
This representation is directly connected to the neurophysiology of
pitch perception (see section 2.5).

Apart from the basic frequency dimension of tones, we can find some
interesting further structure in the cognitive representation of tones.
Natural tones are not simple sinusoidal tones of one frequency only
but constituted of a number of higher harmonics. The timbre of a tone,
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Absorption spectra for three types of cone pigments (from Buss 1973, 203).
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which is a phenomenal dimension, is determined by the relative
strength of the higher harmonics of the fundamental frequency of the
tone. An interesting perceptual phenomenon is “the case of the mis-
sing fundamental.” This means that if the fundamental frequency is
removed by artificial methods from a complex physical tone, the phe-
nomenal pitch of the tone is still perceived as that corresponding to the
removed fundamental.15 Apparently, the fundamental frequency is not
indispensable for pitch perception, but the perceived pitch is deter-
mined by a combination of the lower harmonics (compare the “vowel
space” presented in section 3.8).

Thus, the harmonics of a tone are essential for how it is perceived:
tones that share a number of harmonics will be perceived to be similar.
The tone that shares the most harmonics with a given tone is its octave,
the second most similar is the fifth, the third most similar is the fourth,
and so on. This additional “geometrical” structure on the pitch dimen-
sion, which can be derived from the wave structure of tones, provides
the foundational explanation for the perception of musical intervals.16

This is an example of higher level structures of conceptual spaces to be
discussed in section 3.10.

As a third example of sensory space representations, the human 
perception of taste appears to be generated from four distinct types 
of receptors: salt, sour, sweet, and bitter. Thus the quality space repre-
senting taste could be described as a four-dimensional space. One such
model was put forward by Henning (1916), who suggested that phe-
nomenal gustatory space could be described as a tetrahedron (see
figure 1.8). Henning speculated that any taste could be described as a
mixture of only three primaries. This means that any taste can be rep-
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resented as a point on one of the planes of the tetrahedron, so that no
taste is mapped onto the interior of the tetrahedron.

There are other models, however, that propose more than four 
fundamental tastes.17 Which is the best model of the phenomenal gus-
tatory space remains to be established. This will involve sophisticated
psychophysical measurement techniques. Suffice it to say that the gus-
tatory space quite clearly has some nontrivial geometrical structure.
For instance, we can meaningfully claim that the taste of a walnut is
closer to the taste of a hazelnut than to the taste of popcorn in the same
way as we can say that the color orange is closer to yellow than to blue.

1.6 Some Mathematical Notions

The dimensions of conceptual spaces, as illustrated in these examples,
are supposed to satisfy certain structural constraints. In this section,
some of the mathematical concepts that will be used in the following
chapters are presented in greater detail. Since most of the examples of
quality dimensions will have geometrical structures, I focus here on
some fundamental notions of geometry.18

An axiomatic system for geometry can, in principle, be constructed
from two primitive relations, namely betweenness and equidistance
defined over a space of points. In most treatments, however, lines and
planes are also taken to be primitive concepts (see, for example, Borsuk
and Szmielew 1960), but these notions will only play a marginal role
here.

1.6.1 Betweenness
One of the fundamental geometrical relations is betweenness, a concept
frequently applied in this book. Let S denote the set of all points in a
space. The betweenness relation is a ternary relation B(a, b, c) over
points in S, which is read as “point b lies between points a and c.” The
relation is supposed to satisfy some fundamental axioms. The simplest
ones are the following:19

B0: If B(a, b, c), then a, b and c are distinct points.
B1: If B(a, b, c), then B(c, b, a).

In words: “If b is between a and c, then b is between c and a.”

B2: If B(a, b, c), then not B(b, a, c).

“If b is between a and c, then a is not between c and b.”

B3: If B(a, b, c) and B(b, c, d), then B(a, b, d).

“If b is between a and c and c is between b and d, then b is between a
and d.”
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B4: If B(a, b, d) and B(b, c, d), then B(a, b, c).

“If b is between a and d and c is between b and d, then b is between a
and c.”

These axioms are satisfied for a large number of ordered structures.20

It is easy to see that they are true of ordinary Euclidean geometry;
however, they may also be valid in some “weaker” structures like
graphs. If we define B(a, b, c) as “there is some path from a to c that
passes through b,” then axioms B1, B3, and B4 are all valid. B2 is also
valid if the graph is a tree (that is, if it does not contain any loops).

In contrast, if B(a, b, c) is defined as “b is on the shortest path from a
to c,” then axiom B3 need not be valid in all graphs as figure 1.9 shows.
In this figure, b is on the shortest path from a to c, and c is on the short-
est path from b to d, but b is not on the shortest path from a to d (nor
is c).

This example shows that for a given ordered structure there may be
more than one way of defining a betweenness relation. I will come back
to this point in the following chapters, as it is important for an analy-
sis of concept formation.

From B1–B4 it immediately follows:

lemma 1.1 (i) If B(a, b, c) and B(b, c, d), then B(a, c, d); (ii) If B(a, b, d)
and B(b, c, d), then B(a, c, d).

In principle, the notion of a line can be defined with the aid of the
betweenness relation (Borsuk and Szmielew 1960, 57), by saying that
the line through points a and c, in symbols Lac, consists of the set of
points b such that B(a, b, c) or B(b, a, c) or B(a, c, b) (together with the
points a and c themselves). Unless further assumptions are made,
however, concerning the structure of the set S of points, the lines
defined in this way may not look like the lines we know from ordinary
geometry. For example, the line between a and d in figure 1.9 will
consist of all the points a, b, c, d and e.21 Still, one can prove the fol-
lowing property of all lines:
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Figure 1.9
Graph violating axiom B3 when B(a, b, c) is defined as “b is on the shortest path from a
to c.”
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lemma 1.2 If a, b, c and d are four points on a line and B(a, b, d) and
B(a, c, d), then either B(a, b, c) or B(a, c, b) or b = c.

Furthermore, a plane can be defined with the aid of lines and the
betweenness relation.22 Once we have the notions of lines and planes,
most of traditional geometry can be constructed.

The basic axioms for betweenness can be supplemented with an
axiom for density:

B5: For any two points a and c in S, there is some point b such
that B(a, b, c).

Of course, there are quality dimensions; for example, all discrete
dimensions, for which axiom B5 is not valid.

As is well known from the theory of rational numbers, density does
not imply continuity.23

1.6.2 Equidistance
The second primitive notion of geometry is that of equidistance. It is a
four-place relation E(a, b, c, d) which is read as “point a is just as far
from point b as point c is from point d.” The basic axioms for the rela-
tion E are the following (Borsuk and Szmielew 1960, 60):

E1: If E(a, a, p, q), then p = q.
E2: E(a, b, b, a).
E3: If E(a, b, c, d) and E(a, b, e, f ), then E(c, d, e, f ).

lemma 1.3 (i) If E(a, b, c, d) and E(c, d, e, f), then E(a, b, e, f ). (ii) If 
E(a, b, c, d), then E(a, b, d, c).24

The following axiom connects the betweenness relation B with the
equidistance relation E:

E4: If B(a, b, c), B(d, e, f ), E(a, b, d, e) and E(b, c, e, f ), then E(a, c, d, f ).

E4 says essentially that if b is between a and c, then the distance
between a and c is the sum of the distance between a and b and the dis-
tances between b and c. Because sums of distances cannot be defined
explicitly using only the relations B and E, however, the condition is
expressed in a purely relational way.

1.6.3 Metric Spaces
The equidistance relation is a qualitative notion of distance. A stronger
notion is that of a metric space. A real-valued function d(a,b) is said to
be a distance function for the space S if it satisfies the following condi-
tions for all points a, b, and c in S:
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D1: d(a, b) ≥ 0 and d(a, b) = 0 only if a = b. (minimality)
D2: d(a, b) = d(b, a). (symmetry)
D3: d(a, b) + d(b, c) ≥ d(a, c). (triangle inequality)

A space that has a distance function is called a metric space. 
For example, in the two-dimensional space R2, the Euclidean distance 
dE(x, y) = ÷((x1 - y1)2 + (x2 - y2)2) satisfies D1–D3. Also a finite graph
where the distance between points a and b is defined as the number of
steps on the shortest path between a and b is a metric space.

In a metric space, one can define a betweenness relation B and an
equidistance relation E in the following way:

Def B: B(a, b, c) if and only if d(a, b) + d(b, c) = d(a, c).
Def E: E(a, b, c, d) if and only if d(a, b) = d(c, d).

It is easy to show that if d satisfies D1–D3, then B and E defined in
this way satisfies B1, B2, B4, and E1–E4. B3 is not valid in general as is
shown by the graph in figure 1.9, where the distance between points a
and b is defined as the number of steps on the shortest path between a
and b. B3, however, is valid in tree graphs.

1.6.4 Euclidean and City-Block Metrics
For the Euclidean distance function, the betweenness relation defined
by Def B, results in the standard meaning so that all points between a
and b are the ones on the straight line between a and b. As illustrated in
figure 1.10, equidistance can be represented by circles in the sense that
the set of points at distance d from a point c form a circle with c as center
and d as the radius.

There is more then one way, however, of defining a metric on R2.
Another common metric is the so called city-block metric, defined as
follows, where Ôx1 - y1Ô denotes the absolute distance between x1 and
y1:

(1.1)

For the city-block measure, the set of points at distance d from a point
c form a diamond with c as center (see figure 1.11).

It should be noted that the city-block metric depends on the direction
of the x and y axes in R2, in contrast to the Euclidean metric, which is
invariant under all rotations of the axes. The set of points between
points a and b, as given by Def B, is not a straight line for the city-block
metric, but the rectangle generated by a and b and the directions of the
axes (see figure 1.12).

It follows that, for a given space, there is not a unique meaning of
“between”; different metrics generate different betweenness relations.
Further examples of this are given in chapter 3.

   d x y x y x yC , .( ) = - + -1 1 2 2
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Figure 1.10
Equidistances under the Euclidean metric.
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Figure 1.11
Equidistances under the city-block metric.
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Figure 1.12
The set of points between a and b defined by the city-block metric.
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The Euclidean and city-block metrics can be generalized in a straight-
forward way to the n-dimensional Cartesian space Rn by the following
equations:

(1.2)

(1.3)

They are special cases of the class of Minkowski metrics defined by

(1.4)

where we thus have as special cases dE(x, y) = d2(x, y) and dC(x, y) =
d1(x, y).25

Equations (1.2)–(1.4) presume that the scales of the different dimen-
sions are identical so that the distance measured along one of the axes
is the same as that measured along another. In psychological contexts,
however, this assumption is often violated. A more general form of dis-
tance is obtained by putting a weight wi on the distance measured along
dimension i (see, for example, Nosofsky 1986):

(1.5)

(1.6)

In these equations, wi is the “attention-weight” given to dimension i
(the role of attention-weights in determining the “salience” of dimen-
sions discussed in section 4.2). Large values of wi “stretch” the con-
ceptual space along dimension i, while small values of wi will “shrink”
the space along that dimension. In the following, I refer to the more
general definitions given by equations (1.5) and (1.6) when Euclidean
or city-block distances are mentioned.

1.6.5 Similarity as a Function of Distance
In studies of categorization and concept formation, it is often assumed
that the similarity of two stimuli can be determined from the distances
between the representations of the stimuli in the underlying psy-
chological space. But then what is this functional relation between 
similarity and distance? A common assumption in the psychological
literature (Shepard 1987, Nosofsky 1988a, 1988b, 1992, Hahn and
Chater 1997) is that similarity is an exponentially decaying function of dis-
tance. If sij expresses the similarity between two objects i and j and dij

their distance, then the following formula, where c is a general “sensi-
tivity” parameter, expresses the relation between the two measures:

(1.7)

Shepard (1987) calls this the universal law of generalization and he
argues that it captures the similarity-based generalization perfor-

s eij
c dij= - ◊ .

d x y w x yC i i i i, .( ) = ◊ -S

d x y w x yE i i i i, .( ) = ◊ -( )S 2

d x y x yk
k

i i i
k, ,( ) = -S

   d x y x yC i i i, .( ) = -S
   d x y x yE i i i, .( ) = -( )S 2
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mances of subjects in a variety of settings. An underlying motiva-
tion for the equation is that matching and mismatching properties 
are combined multiplicatively rather than additively (Nosofsky 1992,
Medin, Goldstone, and Gentner 1993, 258). Given some additional
mathematical assumptions, this corresponds to an exponential decay
of similarity.

Nosofsky (1986) argues that the exponential function in (1.7) should
be replaced by a Gaussian function of the following form:

(1.8)

I will not enter the debate on which of these two functional forms is
the more generally valid. Here it suffices to notice that for both equa-
tions the similarity between two objects drops quickly when the dis-
tance between the objects is relatively small, while it drops much more
slowly when the distance is relatively large.

The mathematical notions that have been introduced in this section
will prove their usefulness when the theories of properties and con-
cepts are presented in chapters 3 and 4.

1.7 How Dimensions Are Identified

In a conceptual space that is used as a framework for a scientific theory
or for construction of an artificial cognitive system, the geometrical 
or topological structures of the dimensions are chosen by the scientist
proposing the theory or the constructor building the system. The 
structures of the dimensions are tightly connected to the measurement
methods employed to determine the values on the dimensions in exper-
imental situations (compare Sneed 1971 and Suppes et al. 1989). Thus,
the choice of dimensions in a given constructive situation will partly
depend on what sensors are assumed to be used and their function.

In contrast, the dimensions of a phenomenal conceptual space are not
obtainable immediately from the perceptions or actions of the subjects,
but have to be infered from their behavior. There are a number of sta-
tistical techniques for identifying the dimensions of a phenomenal
space. Here, I only introduce one of the most well-known methods,
namely multidimensional scaling (MDS).26 In section 4.10, a different
technique will be presented in connection with an analysis of “shell
space,” and in section 6.5 a method based on artificial neuron networks
is described.

If the coordinates of two points are known for all dimensions of a
metric conceptual space, it is easy to calculate the distance between the
points using the metric that goes along with the space. MDS concerns
the reverse problem; starting from subjects’ judgments about the 
similarities of two stimuli, MDS is used to determine the number of

s eij
c dij= - ◊ 2

.
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dimensions in the underlying phenomenal space and the scaling of the
space. The goal is to obtain as high a correlation as possible between
the similarity judgments of the subjects and the corresponding dis-
tances in the estimated dimensional space.

A MDS analysis starts out from a set of data concerning judgments
of similarities of a class of stimuli. The similarity judgments can be
numerical, but they are often given in an ordinal form obtained from
a scale ranging from “very similar” to “very dissimilar.” The judgments
given by the individual subjects are normally averaged before they are
fed into a MDS algorithm (such as Kruskal’s 1964 KYST).

The investigator chooses the number n of dimensions in the space to
be estimated and the metric (normally Euclidean or city-block) to be
used in defining distances in the space. Starting from an initial assign-
ment of coordinates to the stimuli in an n-dimensional space, the MDS
algorithm then systematically adjusts the coordinates to achieve a 
progressively better fit to the data from the similarity judgments. The
degree of misfit between the data and the estimated space is normally
measured by a “stress function.”27 The algorithm stops when the stress
of the estimated space no longer decreases.

As an example, Shepard (1962a,b) applied “proximity analysis,”
which is a variant of MDS to a selection of fourteen hues. Subjects were
asked to rate the similarity of each pair of hues on an ordinal scale from
1 to 5. The result of the analysis was the structure shown in figure 1.13.
In this figure, the MDS program placed the stimuli points in a two-
dimensional space. The curved line connecting them was drawn by
Shepard. As can be seen, it forms a circle based on two opponent axes,
red-green and blue-yellow, in almost perfect fit with the hypothesized
color circle.

The higher the dimension n of the estimated space, the smaller is the
resulting minimal stress. Thus, arbitrarily good fit can be achieved by
increasing n. This means that it is a methodological problem to decide
what value of n to use in a model. Unless there are strong a priori
reasons for assuming that the underlying phenomenal space has a
certain number of dimensions, one often looks for a (rather small)
number n where the computed stress of n + 1 dimensions is not
significantly smaller than the stress of n dimensions.28

One problem with MDS is that it can be difficult to give a psycho-
logical interpretation of the dimensions generated by the algorithm
(given a choice of n). Austen Clark (1993, 124) formulates the problem
as follows:

The number of dimensions of the MDS space corresponds to the
number of independent ways in which stimuli in that modality
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can be sensed to resemble or differ, but the dimensions per se have
no meaning. Indeed, it will be seen that a key step in explaining
a quality space is to find interpretable axes. Sometimes one can
provide them with a neurophysiological interpretation. Only then
can one claim to have determined what the differentiative attrib-
utes of encodings are, as opposed to knowing simply how many
of them there are.

Apart from the neurophysiological interpretations that Clark men-
tions, investigators often have hypotheses about quality dimensions
that could generate the subjects’ similarity judgments. So-called 
“property vector fitting” can then be used to verify the presence of such
hypothesized dimensions.29 This means that, by regression analysis, 
a stimulus attribute can be correlated with a vector in the space gen-
erated by an MDS method. If a high correlation can be found, this 
indicates that a dimension corresponding to the stimulus attribute is
represented in the space. This technique does not guarantee, however,
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Figure 1.13
A MDS analysis of hues. Stimuli are marked by wavelength in nanometers (from Shepard
1962b, 236).
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that all the dimensions in a space generated by MDS can be given a
meaningful psychological interpretation.

1.8 Integral and Separable Dimensions

A conceptual space is defined here as a set of quality dimensions with
a geometrical structure. Now it is time to consider the relations among
the dimensions in a conceptual space.

Certain quality dimensions are integral in the sense that one cannot
assign an object a value on one dimension without giving it a value 
on the other (Garner 1974, Maddox 1992, Melara 1992). For example,
an object cannot be given a hue without also giving it a brightness
value. Or a pitch of a sound always goes along with a certain loudness.
Dimensions that are not integral are said to be separable, as for example
the size and hue dimensions.30 The distinction between integral and
separable dimensions will play an important role in the analysis of
properties and concepts in chapters 3 and 4. Melara (1992, 274) presents
the distinction as follows:

What is the difference psychologically, then, between interacting
[integral] and separable dimensions? In my view, these dimen-
sions differ in their similarity relations. Specifically, interact-
ing and separable dimensions differ in their degree of cross-
dimensional similarity, a construct defined as the phenomenal sim-
ilarity of one dimension of experience with another. I propose that
interacting dimensions are higher in cross-dimensional similarity
than separable dimensions.

Several empirical tests have been proposed to decide whether two
perceptual dimensions are separable or integral (see Maddox 1992 
for an excellent survey and analysis of these tests). One test is called
“speeded classification.” The stimuli in this test consists of four com-
binations of two levels of two dimensions x and y (say size and hue).
If the x-levels are x1 and x2 (for example, large and small) and the y-
values y1 and y2 (for example, green and yellow), we can denote the
four stimuli (x1, y1), (x1, y2), (x2, y1), and (x2, y2) respectively. In the control
condition, subjects are asked to categorize, as quickly as possible, the
level of one dimension, say x, while the other is held constant, by being
presented with either (x1, y1) or (x2, y1) as stimulus (alternatively, (x1, y2)
or (x2, y2)). In the filtering condition, the subjects are asked to categorize
the level of the same dimension while the other is varied inde-
pendently. In this condition, the stimulus set thus consists of all four
stimuli. Now, if the mean reaction time in the filtering condition is
longer than in the control condition, the irrelevant dimension, in this
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case y, is said to interfere with the test dimension x. According to 
the speeded classification test, x and y are then classified as integral.
The underlying assumption is that two separable dimensions can be
attended selectively, while this is difficult for two integral dimensions;
in separable dimensions, the subjects can “filter out” information from
the irrelevant dimension.

Another test is the “redundancy task” (Garner 1974). The stimuli and
the control condition are the same as in the previous test. In the redun-
dancy condition, only two of the four stimuli are utilized, either (x1, y1)
and (x2, y2) or (x1, y2) and (x2, y1). The values of the two dimension are
thus correlated so that the value of one allows the subject to predict the
value of the other. The subject is presented with one of the two stimuli
and is also here asked to categorize, as quickly as possible, the value
of one dimension, say x. If the mean reaction time is shorter than in the
control condition, the subjects are said to exhibit a redundancy gain.
According to the redundancy task, the dimensions are then classified
as integral.

A third test, the so-called “direct dissimilarity scaling,” concerns the
metric of the conceptual space that best explains how subjects judge 
the similarity of different stimuli that vary along the two dimensions
(Attneave 1950, Shepard 1964). In this test, the stimuli consist of all
combinations of several levels of the two dimensions x and y. The sub-
jects are then presented with all possible pairs of stimuli, one at a time,
and are asked to judge the dissimilarity of the stimuli on a scale from 1
to 10. This test is an operational way of deciding the distance function
in a metric perceptual space.

Using MDS or some other method, the data are fitted into a two-
dimensional space. If the Euclidean metric fits the data best, the dimen-
sions are classified as integral; while if the city-block metric gives the
best result, they are classified as separable. If two dimensions are sep-
arable, the dissimilarity of two stimuli is obtained by adding the dis-
similarity along each of the two dimensions, as is done in the city-block
metric. In contrast, when the dimensions are integral, the dissimilarity
is determined by both dimensions taken together, which motivates a
Euclidean metric (compare the above quotation from Melara on cross-
dimensional similarity).

Conversely, suppose we are in the constructive mode and attempt to
design a conceptual space for solving some cognitive task. If we decide
that two dimensions are integral, we should use the Euclidean metric
to determine distances and degrees of similarity; while if we decide
that the dimensions are separable, the city-block metric should be used
instead. Even in scientific theories the relations among dimensions 
can vary. For example, time and space are treated as separable in 
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Newtonian mechanics, while the four-dimensional space-time forms an
integral set of dimensions in relativity theory (with its own special
Minkowski metric).

The notion of a domain is central in this book, and it is used in con-
nection with concept formation in chapter 4, with cognitive semantics
in chapter 5, and with induction in chapter 6. Using the concepts of this
section, I can now define a domain as a set of integral dimensions that
are separable from all other dimensions. The three-color dimensions are a
prime example of a domain in this sense since hue, chromaticness, and
brightness are integral dimensions that presumably are separable from
other quality dimensions.31 Another example could be the tone domain
with the basic dimensions of pitch and loudness.32 The most fundamen-
tal reason for decomposing a cognitive structure into domains is the
assumption that an object can be assigned certain properties indepen-
dently of other properties. An object can be assigned the weight of “one
kilo” independently of its temperature or color.

A conceptual space can then be defined as a collection of one or more
domains. It should be emphasized that not all domains in conceptual
spaces are assumed to be metric. Sometimes a domain is just an order-
ing or a graph with no distance defined. And even if distances are
defined for the different domains of a conceptual space, the domains
may be “incommensurable” in the sense that there is no common scale
to express distances on the entire space.

The domains of a conceptual space should not be seen as totally inde-
pendent entities, but they are correlated in various ways since the prop-
erties of the objects modeled in the space covary. For example, ripeness
and color domains covary in the space of fruits. These correlations are
discussed in connection with the model of concepts in section 4.3 and
in connection with induction in section 6.6.33

Conceptual spaces will be the focus of my study of representations
on the conceptual level. A point in a space represents a possible object
(see section 4.8). The properties of the objects are determined by its
location in the space. As will be argued in chapter 3, properties are rep-
resented by regions of a domain. As was seen in section 1.5, however,
what is important is not the exact form of the representation but rather
the relations between different areas of a conceptual space.

1.9 On the Origins of Quality Dimensions

In the previous sections I have given several examples of quality
dimensions from different kinds of domains. There appears to be dif-
ferent types of dimensions, so a warranted question is: Where do the
dimensions come from? I do not believe there is a unique answer to
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this question. In this section, I will try to trace the origins of different
kinds of quality dimensions.

First, some of the quality dimensions appear to be innate or devel-
oped very early in life. They are to some extent hard-wired in our
nervous system, as for example the sensory dimensions presented in
section 1.5. This probably also applies to our representations of ordi-
nary space. Since domains of this kind are obviously extremely impor-
tant for basic activities like getting around in the environment, finding
food, and avoiding danger, there is evolutionary justification for the
innateness assumption. Humans and other animals that did not have
a sufficiently adequate representation of the spatial structure of the
external world were disadvantaged by natural selection.

The brains of humans and animals contain topographic areas that
map different kinds of sense modalities onto spatial areas (see section
2.5 for more connections to neuroscience). The structuring principles of
these mappings are basically innate, even if the fine tuning is estab-
lished during the development of the human or animal.34 The same
principles appear to govern most of the animal kingdom. Gallistel
(1990, 105) argues:

[T]he intuitive belief that the cognitive maps of “lower” animals
are weaker than our own is not well founded. They may be
impoverished relative to our own (have less on them) but they
are not weaker in their formal characteristics. There is experi-
mental evidence that even insect maps are metric maps.

Quine (1969, 123) notes that something like innate quality dimen-
sions are needed to make learning possible:

Without some such prior spacing of qualities, we could never
acquire a habit; all stimuli would be equally alike and equally dif-
ferent. These spacings of qualities, on the part of men and other
animals, can be explored and mapped in the laboratory by exper-
iments in conditioning and extinction. Needed as they are for all
learning, these distinctive spacings cannot themselves all be
learned; some must be innate.

The point is that without an initial structure, the world would be just
a “blooming, buzzing confusion” (James 1890). We need some dimen-
sions to get learning going.

Once the process has started, however, new dimensions can be
added by the learning process.35 One kind of example comes from
studies of children’s cognitive development. Smith (1989, 146–47)
argues that
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working out a system of perceptual dimension, a system of kinds
of similarities, may be one of the major intellectual achievements
of early childhood. . . . The basic developmental notion is one of
differentiation, from global syncretic classes of perceptual resem-
blance and magnitude to dimensionally specific kinds of same-
ness and magnitude.

Two-year-olds can represent whole objects, but they cannot reason
about the dimensions of these objects. Goldstone and Barsalou (1998,
252) note:36

Evidence suggests that dimensions that are easily separated by
adults, such as the brightness and size of a square, are treated 
as fused together for children. . . . For example, children have
difficulty identifying whether two objects differ on their bright-
ness or size even though they can easily see that they differ in
some way. Both differentiation and dimensionalization occur
throughout one’s lifetime.

Consequently, learning new concepts is often connected with expand-
ing one’s conceptual space with new quality dimensions. For example,
consider the (phenomenal) dimension of volume. The experiments 
on “conservation” performed by Piaget and his followers indicate that
small children have no separate representation of volume; they confuse
the volume of a liquid with the height of the liquid in its container. It is
only at about the age of five years that they learn to represent the two
dimensions separately. Similarly, three- and four-year-olds confuse high
with tall, big with bright, and so forth (Carey 1978).37

Along the same lines, Shepp (1983) argues that the developmental
shift is from integral dimensions to separable:

[Y]ounger children have been described as perceiving objects as
unitary wholes and failing to attend selectively. This characteri-
zation is strikingly similar to the perception and attention of an
adult when performing with integral dimensions. In contrast,
older children are characterized as perceiving objects according
to values on specific dimensions and as succeeding in selective
attention. Such a description accurately describes an adult’s 
perception and attention when confronted with separable dimen-
sions. On the basis of these parallels, we have suggested the
hypothesis that dimensional combinations that are perceived as
separable by the older child and adult are perceived as integral
by the young child.

Still other dimensions may be culturally dependent.38 Take time, for
example; in some cultures time is conceived to be circular—the world
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keeps returning to the same point in time and the same events occur
over and over again; and in other cultures it is hardly meaningful at
all to speak of time as a dimension. A sophisticated time dimension,
with a full metric structure, is needed for advanced forms of planning
and coordination with other individuals, but it is not necessary for the
most basic activities of an organism. As a matter of fact, the standard
Western conception of time is a comparatively recent phenomenon
(Toulmin and Goodfield 1965).

The examples given here indicate that many of the quality dimen-
sions of human conceptual spaces are not directly generated from
sensory inputs.39 This is even clearer when we use concepts based on
the functions of artifacts or the social roles of people in a society. Even if
we do not know much about the geometrical structures of these dimen-
sions, it is quite obvious that there is some such nontrivial structure.
This has been argued by Marr and Vaina (1982) and Vaina (1983), who
give an analysis of functional representation where functions of an
object are determined by the actions it allows. I return to the analysis
of actions and functional properties in section 3.10.3.

Culture, in the form of interactions among people, may in itself 
generate constraints on conceptual spaces. For example, Freyd (1983,
193–194) puts forward the intriguing proposal that conceptual spaces
may evolve as a representational form in a community just because
people have to share knowledge:

There have been a number of different approaches towards 
analyzing the structures in semantic domains, but what these
approaches have in common is the goal of discovering constraints
on knowledge representation. I argue that the structures the 
different semantic analyses uncover may stem from shareability
constraints on knowledge representation. . . . So, if a set of terms
can be shown to behave as if they are represented in a three-
dimensional space, one inference that is often made is that there
is both some psychological reality to the spatial reality (or some
formally equivalent formulation) and some innate necessity to it.
But it might be that the structural properties of the knowledge
domain came about because such structural properties provide
for the most efficient sharing of concepts. That is, we cannot be
sure that the regularities tell us anything about how the brain can
represent things, or even “prefer” to, if it didn’t have to share con-
cepts with other brains.

Here Freyd hints at an economic explanation of why we have con-
ceptual spaces; they facilitate the sharing of knowledge.40 Section 
5.8 shows that since efficient sharing of knowledge is one of the 

Dimensions 29

CEP1  12/21/99 6:10 PM  Page 29



fundamental requirements of communication, Freyd’s argument will
provide an independent justification for the representational role of
conceptual spaces.

Finally, some quality dimensions are introduced by science. Witness,
for example, Newton’s distinction between weight and mass, which is
of pivotal importance for the development of his celestial mechanics
but which has hardly any correspondence in human perception. To the
extent we have mental representations of the masses of objects in dis-
tinction to their weights, these are not given by the senses but have to
be learned by adopting the conceptual space of Newtonian mechanics
in our representations. The role of new dimensions in science will be
further discussed in section 6.4.

1.10 Conclusion

The main purpose of this chapter has been to present the notions of
dimensions and domains that constitute the fundamentals of the theory
of conceptual spaces. Throughout the book, I apply constructions using
conceptual spaces to material from several research areas like seman-
tics, cognitive psychology, philosophy of science, neuroscience, neural
networks, and machine learning. I hope that these constructions will
establish the viability of the conceptual level of representation.

So what kind of theory is the theory of conceptual spaces? Is it an
empirical, normative, computational, psychological, neuroscientific, or
linguistic theory? The answer is that the theory of conceptual spaces is
used in two ways in this book. On a general level, it is a framework for
cognitive representations. It should be seen as a complement to the sym-
bolic and the connectionist approaches that forms a bridge between
these two forms of representation. On a more specific level, the frame-
work of conceptual spaces can then be turned into empirically testable
theories or constructive models by filling in specific dimensions with
certain geometrical structures, specific measurement methods, specific
connections to other empirical phenomena, and so forth.

Cognitive science has two predominant goals: to explain cognitive
phenomena and to construct artificial systems that can solve various
cognitive tasks. My primary aim here is to use conceptual spaces in
constructive tasks. In the following chapters, I outline how they can be
used in computational models of concept formation and induction and 
I also show that they are useful for representing the meanings of dif-
ferent kinds of linguistic expressions in a computational approach to
semantics. The confidence in the aptness of the theory of conceptual
spaces should increase, however, if the theory can also be used to
explain various empirical phenomena. Consequently, I also connect the
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theory to empirical material from psychology, neuroscience, and lin-
guistics, even though I do not attempt to give a complete evaluation of
the empirical potency of the theory.

Conceptual spaces are static in the sense that they only describe the
structure of representations. A full model of cognitive mechanisms 
not only includes the representational form, but also a description of
the processes operating on the representations. A particular conceptual
space is, in general, compatible with several types of processes, and it
must therefore be complemented with a description of the dynamics of
the representations to generate testable predictions (see, for example,
Port and van Gelder 1995, Scott Kelso 1995, van Gelder 1998). This topic
is treated in chapter 7.

Finally, a philosophical question: What is the ontological status of
conceptual spaces? I view conceptual spaces as theoretical entities that
can be used to explain and predict various empirical phenomena con-
cerning concept formation (the role of theoretical entities is discussed
further in section 6.4). In particular, the distances associated with
metric space should be seen as theoretical terms. And if similarity is
defined by distances via equation (1.7) or (1.8), similarity will be a the-
oretical term, too (compare Medin, Goldstone, and Gentner 1993, 255).
Since my basic methodological position is instrumentalistic, I avoid
questions about how real the dimensions of conceptual spaces are but
view them as instruments for predictive and constructive purposes
(compare, for example, the question of what the equator is).

Some of the neurophysiological correlates of the phenomenal dimen-
sions are presented in section 2.5. By being correlated to empirical phe-
nomena in different ways, the assumptions about the dimensions will
have testable empirical consequences. These consequences can then 
be seen as defining the content of the theory (compare Sneed 1971 and
Stegmüller 1976). Furthermore, when constructing artificial systems,
the dimensions of the conceptual spaces will function as the framework
for the architecture of the systems that, for example, will determine the
role of the sensors in the system.

In brief, my instrumentalist standing means that I eschew philo-
sophical discussions of how “real” conceptual spaces are. The impor-
tant thing is that we can do things with them. To manifest this is the
objective of the rest of the book.
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