
1 Introduction to Programming Concepts

There is no royal road to geometry.
— Euclid’s reply to Ptolemy, Euclid (fl. c. 300 B.C.)

Just follow the yellow brick road.
— The Wonderful Wizard of Oz, L. Frank Baum (1856–1919)

Programming is telling a computer how it should do its job. This chapter gives a
gentle, hands-on introduction to many of the most important concepts in program-
ming. We assume you have had some previous exposure to computers. We use the
interactive interface of Mozart to introduce programming concepts in a progressive
way. We encourage you to try the examples in this chapter on a running Mozart
system.

This introduction only scratches the surface of the programming concepts we will
see in this book. Later chapters give a deep understanding of these concepts and
add many other concepts and techniques.

1.1 A calculator

Let us start by using the system to do calculations. Start the Mozart system by
typing:

oz

or by double-clicking a Mozart icon. This opens an editor window with two frames.
In the top frame, type the following line:

{Browse 9999*9999}

Use the mouse to select this line. Now go to the Oz menu and select Feed Region.
This feeds the selected text to the system. The system then does the calculation
9999*9999 and displays the result, 99980001, in a special window called the
browser. The curly braces { . . . } are used for a procedure or function call. Browse
is a procedure with one argument, which is called as {Browse X}. This opens the
browser window, if it is not already open, and displays X in it.
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1.2 Variables

While working with the calculator, we would like to remember an old result, so that
we can use it later without retyping it. We can do this by declaring a variable:
declare
V=9999*9999

This declares V and binds it to 99980001. We can use this variable later on:

{Browse V*V}

This displays the answer 9996000599960001. Variables are just shortcuts for
values. They cannot be assigned more than once. But you can declare another
variable with the same name as a previous one. The previous variable then becomes
inaccessible. Previous calculations that used it are not changed. This is because
there are two concepts hiding behind the word “variable”:

The identifier. This is what you type in. Variables start with a capital letter
and can be followed by any number of letters or digits. For example, the character
sequence Var1 can be a variable identifier.

The store variable. This is what the system uses to calculate with. It is part of
the system’s memory, which we call its store.

The declare statement creates a new store variable and makes the variable
identifier refer to it. Previous calculations using the same identifier are not changed
because the identifier refers to another store variable.

1.3 Functions

Let us do a more involved calculation. Assume we want to calculate the factorial
function n!, which is defined as 1× 2× · · · × (n− 1)× n. This gives the number of
permutations of n items, i.e., the number of different ways these items can be put
in a row. Factorial of 10 is:

{Browse 1*2*3*4*5*6*7*8*9*10}

This displays 3628800. What if we want to calculate the factorial of 100? We would
like the system to do the tedious work of typing in all the integers from 1 to 100.
We will do more: we will tell the system how to calculate the factorial of any n. We
do this by defining a function:
declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end

The declare statement creates the new variable Fact. The fun statement defines
a function. The variable Fact is bound to the function. The function has one
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argument N, which is a local variable, i.e., it is known only inside the function
body. Each time we call the function a new local variable is created.

Recursion

The function body is an instruction called an if expression. When the function is
called, then the if expression does the following steps:

It first checks whether N is equal to 0 by doing the test N==0.

If the test succeeds, then the expression after the then is calculated. This just
returns the number 1. This is because the factorial of 0 is 1.

If the test fails, then the expression after the else is calculated. That is, if N is
not 0, then the expression N*{Fact N-1} is calculated. This expression uses Fact,
the very function we are defining! This is called recursion. It is perfectly normal
and no cause for alarm.

Fact uses the following mathematical definition of factorial:

0! = 1

n! = n× (n− 1)! if n > 0

This definition is recursive because the factorial of N is N times the factorial of N-1.
Let us try out the function Fact:

{Browse {Fact 10}}

This should display 3628800 as before. This gives us confidence that Fact is doing
the right calculation. Let us try a bigger input:

{Browse {Fact 100}}

This will display a huge number (which we show in groups of five digits to improve
readability):

933 26215

44394 41526 81699 23885 62667 00490 71596 82643 81621 46859

29638 95217 59999 32299 15608 94146 39761 56518 28625 36979

20827 22375 82511 85210 91686 40000 00000 00000 00000 00000

This is an example of arbitrary precision arithmetic, sometimes called “infinite
precision,” although it is not infinite. The precision is limited by how much memory
your system has. A typical low-cost personal computer with 256 MB of memory
can handle hundreds of thousands of digits. The skeptical reader will ask: is this
huge number really the factorial of 100? How can we tell? Doing the calculation by
hand would take a long time and probably be incorrect. We will see later on how
to gain confidence that the system is doing the right thing.
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Combinations

Let us write a function to calculate the number of combinations of k items taken
from n. This is equal to the number of subsets of size k that can be made from a set
of size n. This is written

(
n
k

)
in mathematical notation and pronounced “n choose

k.” It can be defined as follows using the factorial:
(
n

k

)
=

n!

k! (n− k)!

which leads naturally to the following function:
declare
fun {Comb N K}

{Fact N} div ({Fact K}*{Fact N-K})
end

For example, {Comb 10 3} is 120, which is the number of ways that 3 items can be
taken from 10. This is not the most efficient way to write Comb, but it is probably
the simplest.

Functional abstraction

The definition of Comb uses the existing function Fact in its definition. It is always
possible to use existing functions when defining new functions. Using functions
to build abstractions is called functional abstraction. In this way, programs are
like onions, with layers upon layers of functions calling functions. This style of
programming is covered in chapter 3.

1.4 Lists

Now we can calculate functions of integers. But an integer is really not very much
to look at. Say we want to calculate with lots of integers. For example, we would
like to calculate Pascal’s triangle1:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

. . . . . . . . . . .

1. Pascal’s triangle is a key concept in combinatorics. The elements of the nth row are
the combinations

`
n
k

´
, where k ranges from 0 to n. This is closely related to the binomial

theorem, which states (x+ y)n =
Pn

k=0

`
n
k

´
xky(n−k) for integer n ≥ 0.
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Figure 1.1: Taking apart the list [5 6 7 8].

This triangle is named after scientist and philosopher Blaise Pascal. It starts with
1 in the first row. Each element is the sum of the two elements just above it to
the left and right. (If there is no element, as on the edges, then zero is taken.) We
would like to define one function that calculates the whole nth row in one swoop.
The nth row has n integers in it. We can do it by using lists of integers.

A list is just a sequence of elements, bracketed at the left and right, like [5 6 7

8]. For historical reasons, the empty list is written nil (and not []). Lists can be
displayed just like numbers:

{Browse [5 6 7 8]}

The notation [5 6 7 8] is a shortcut. A list is actually a chain of links, where each
link contains two things: one list element and a reference to the rest of the chain.
Lists are always created one element at a time, starting with nil and adding links
one by one. A new link is written H|T, where H is the new element and T is the
old part of the chain. Let us build a list. We start with Z=nil. We add a first link
Y=7|Z and then a second link X=6|Y. Now X references a list with two links, a list
that can also be written as [6 7].

The link H|T is often called a cons, a term that comes from Lisp.2 We also call
it a list pair. Creating a new link is called consing. If T is a list, then consing H and
T together makes a new list H|T:

2. Much list terminology was introduced with the Lisp language in the late 1950s and has
stuck ever since [137]. Our use of the vertical bar comes from Prolog, a logic programming
language that was invented in the early 1970s [45, 201]. Lisp itself writes the cons as (H
. T), which it calls a dotted pair.
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Figure 1.2: Calculating the fifth row of Pascal’s triangle.

declare
H=5
T=[6 7 8]
{Browse H|T}

The list H|T can be written [5 6 7 8]. It has head 5 and tail [6 7 8]. The cons
H|T can be taken apart, to get back the head and tail:
declare
L=[5 6 7 8]
{Browse L.1}
{Browse L.2}

This uses the dot operator “.”, which is used to select the first or second argument
of a list pair. Doing L.1 gives the head of L, the integer 5. Doing L.2 gives the tail
of L, the list [6 7 8]. Figure 1.1 gives a picture: L is a chain in which each link
has one list element and nil marks the end. Doing L.1 gets the first element and
doing L.2 gets the rest of the chain.

Pattern matching

A more compact way to take apart a list is by using the case instruction, which
gets both head and tail in one step:
declare
L=[5 6 7 8]
case L of H|T then {Browse H} {Browse T} end

This displays 5 and [6 7 8], just like before. The case instruction declares two
local variables, H and T, and binds them to the head and tail of the list L. We say
the case instruction does pattern matching, because it decomposes L according
to the “pattern” H|T. Local variables declared with a case are just like variables
declared with declare, except that the variable exists only in the body of the case
statement, i.e., between the then and the end.
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1.5 Functions over lists

Now that we can calculate with lists, let us define a function, {Pascal N}, to
calculate the nth row of Pascal’s triangle. Let us first understand how to do the
calculation by hand. Figure 1.2 shows how to calculate the fifth row from the fourth.
Let us see how this works if each row is a list of integers. To calculate a row, we
start from the previous row. We shift it left by one position and shift it right by one
position. We then add the two shifted rows together. For example, take the fourth
row:

[1 3 3 1]

We shift this row left and right and then add them together element by element:

[1 3 3 1 0]

+ [0 1 3 3 1]

Note that shifting left adds a zero to the right and shifting right adds a zero to the
left. Doing the addition gives

[1 4 6 4 1]

which is the fifth row.

The main function

Now that we understand how to solve the problem, we can write a function to do
the same operations. Here it is:
declare Pascal AddList ShiftLeft ShiftRight
fun {Pascal N}

if N==1 then [1]
else

{AddList {ShiftLeft {Pascal N-1}} {ShiftRight {Pascal N-1}}}
end

end

In addition to defining Pascal, we declare the variables for the three auxiliary
functions that remain to be defined.

The auxiliary functions

To solve the problem completely, we still have to define three functions: ShiftLeft,
which shifts left by one position, ShiftRight, which shifts right by one position,
and AddList, which adds two lists. Here are ShiftLeft and ShiftRight:
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fun {ShiftLeft L}
case L of H|T then

H|{ShiftLeft T}
else [0] end

end

fun {ShiftRight L} 0|L end

ShiftRight just adds a zero to the left. ShiftLeft traverses L one element at a
time and builds the output one element at a time. We have added an else to the
case instruction. This is similar to an else in an if: it is executed if the pattern
of the case does not match. That is, when L is empty, then the output is [0], i.e.,
a list with just zero inside.

Here is AddList:
fun {AddList L1 L2}

case L1 of H1|T1 then
case L2 of H2|T2 then

H1+H2|{AddList T1 T2}
end

else nil end
end

This is the most complicated function we have seen so far. It uses two case

instructions, one inside another, because we have to take apart two lists, L1 and
L2. Now we have the complete definition of Pascal. We can calculate any row of
Pascal’s triangle. For example, calling {Pascal 20} returns the 20th row:
[1 19 171 969 3876 11628 27132 50388 75582 92378
92378 75582 50388 27132 11628 3876 969 171 19 1]

Is this answer correct? How can we tell? It looks right: it is symmetric (reversing
the list gives the same list) and the first and second arguments are 1 and 19, which
are right. Looking at figure 1.2, it is easy to see that the second element of the
nth row is always n− 1 (it is always one more than the previous row and it starts
out zero for the first row). In the next section, we will see how to reason about
correctness.

Top-down software development

Let us summarize the methodology we used to write Pascal:

The first step is to understand how to do the calculation by hand.

The second step is to write a main function to solve the problem, assuming that
some auxiliary functions are known (here, ShiftLeft, ShiftRight, and AddList).

The third step is to complete the solution by writing the auxiliary functions.

The methodology of first writing the main function and filling in the blanks
afterward is known as top-down software development. It is one of the best known
approaches to program design, but it gives only part of the story as we shall see.
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1.6 Correctness

A program is correct if it does what we would like it to do. How can we tell whether
a program is correct? Usually it is impossible to duplicate the program’s calculation
by hand. We need other ways. One simple way, which we used before, is to verify
that the program is correct for outputs that we know. This increases confidence in
the program. But it does not go very far. To prove correctness in general, we have
to reason about the program. This means three things:

We need a mathematical model of the operations of the programming language,
defining what they should do. This model is called the language’s semantics.

We need to define what we would like the program to do. Usually, this is a
mathematical definition of the inputs that the program needs and the output that
it calculates. This is called the program’s specification.

We use mathematical techniques to reason about the program, using the seman-
tics. We would like to demonstrate that the program satisfies the specification.

A program that is proved correct can still give incorrect results, if the system on
which it runs is incorrectly implemented. How can we be confident that the system
satisfies the semantics? Verifying this is a major undertaking: it means verifying
the compiler, the run-time system, the operating system, the hardware, and the
physics upon which the hardware is based! These are all important tasks, but they
are beyond the scope of the book. We place our trust in the Mozart developers,
software companies, hardware manufacturers, and physicists.3

Mathematical induction

One very useful technique is mathematical induction. This proceeds in two steps.
We first show that the program is correct for the simplest case. Then we show that,
if the program is correct for a given case, then it is correct for the next case. If we
can be sure that all cases are eventually covered, then mathematical induction lets
us conclude that the program is always correct. This technique can be applied for
integers and lists:

For integers, the simplest case is 0 and for a given integer n the next case is n+1.

For lists, the simplest case is nil (the empty list) and for a given list T the next
case is H|T (with no conditions on H).

Let us see how induction works for the factorial function:

{Fact 0} returns the correct answer, namely 1.

3. Some would say that this is foolish. Paraphrasing Thomas Jefferson, they would say
that the price of correctness is eternal vigilance.
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Assume that {Fact N-1} is correct. Then look at the call {Fact N}. We see that
the if instruction takes the else case (since N is not zero), and calculates N*{Fact
N-1}. By hypothesis, {Fact N-1} returns the right answer. Therefore, assuming
that the multiplication is correct, {Fact N} also returns the right answer.

This reasoning uses the mathematical definition of factorial, namely n! = n×(n−1)!
if n > 0, and 0! = 1. Later in the book we will see more sophisticated reasoning
techniques. But the basic approach is always the same: start with the language
semantics and problem specification, and use mathematical reasoning to show that
the program correctly implements the specification.

1.7 Complexity

The Pascal function we defined above gets very slow if we try to calculate higher-
numbered rows. Row 20 takes a second or two. Row 30 takes many minutes.4 If you
try it, wait patiently for the result. How come it takes this much time? Let us look
again at the function Pascal:
fun {Pascal N}

if N==1 then [1]
else

{AddList {ShiftLeft {Pascal N-1}} {ShiftRight {Pascal N-1}}}
end

end

Calling {Pascal N} will call {Pascal N-1} two times. Therefore, calling {Pascal

30} will call {Pascal 29} twice, giving four calls to {Pascal 28}, eight to
{Pascal 27}, and so forth, doubling with each lower row. This gives 229 calls
to {Pascal 1}, which is about half a billion. No wonder that {Pascal 30} is
slow. Can we speed it up? Yes, there is an easy way: just call {Pascal N-1} once
instead of twice. The second call gives the same result as the first. If we could just
remember it, then one call would be enough. We can remember it by using a local
variable. Here is a new function, FastPascal, that uses a local variable:
fun {FastPascal N}

if N==1 then [1]
else L in

L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}

end
end

We declare the local variable L by adding “L in” to the else part. This is just like
using declare, except that the identifier can only be used between the else and
the end. We bind L to the result of {FastPascal N-1}. Now we can use L wherever
we need it. How fast is FastPascal? Try calculating row 30. This takes minutes

4. These times may vary depending on the speed of your machine.
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with Pascal, but is done practically instantaneously with FastPascal. A lesson
we can learn from this example is that using a good algorithm is more important
than having the best possible compiler or fastest machine.

Run-time guarantees of execution time

As this example shows, it is important to know something about a program’s
execution time. Knowing the exact time is less important than knowing that the
time will not blow up with input size. The execution time of a program as a function
of input size, up to a constant factor, is called the program’s time complexity. What
this function is depends on how the input size is measured. We assume that it is
measured in a way that makes sense for how the program is used. For example, we
take the input size of {Pascal N} to be simply the integer N (and not, e.g., the
amount of memory needed to store N).

The time complexity of {Pascal N} is proportional to 2n. This is an exponential
function in n, which grows very quickly as n increases. What is the time com-
plexity of {FastPascal N}? There are n recursive calls and each call takes time
proportional to n. The time complexity is therefore proportional to n2. This is a
polynomial function in n, which grows at a much slower rate than an exponential
function. Programs whose time complexity is exponential are impractical except for
very small inputs. Programs whose time complexity is a low-order polynomial are
practical.

1.8 Lazy evaluation

The functions we have written so far will do their calculation as soon as they are
called. This is called eager evaluation. There is another way to evaluate functions
called lazy evaluation.5 In lazy evaluation, a calculation is done only when the
result is needed. This is covered in chapter 4 (see section 4.5). Here is a simple lazy
function that calculates a list of integers:
fun lazy {Ints N}

N|{Ints N+1}
end

Calling {Ints 0} calculates the infinite list 0|1|2|3|4|5|.... This looks like an
infinite loop, but it is not. The lazy annotation ensures that the function will only
be evaluated when it is needed. This is one of the advantages of lazy evaluation: we
can calculate with potentially infinite data structures without any loop boundary
conditions. For example:

5. Eager and lazy evaluation are sometimes called data-driven and demand-driven evalu-
ation, respectively.
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L={Ints 0}
{Browse L}

This displays the following, i.e., nothing at all about the elements of L:

L<Future>

(The browser does not cause lazy functions to be evaluated.) The “<Future>”
annotation means that L has a lazy function attached to it. If some elements of
L are needed, then this function will be called automatically. Here is a calculation
that needs an element of L:

{Browse L.1}

This displays the first element, namely 0. We can calculate with the list as if it were
completely there:

case L of A|B|C|_ then {Browse A+B+C} end

This causes the first three elements of L to be calculated, and no more. What does
it display?

Lazy calculation of Pascal’s triangle

Let us do something useful with lazy evaluation. We would like to write a function
that calculates as many rows of Pascal’s triangle as are needed, but we do not know
beforehand how many. That is, we have to look at the rows to decide when there
are enough. Here is a lazy function that generates an infinite list of rows:
fun lazy {PascalList Row}

Row|{PascalList
{AddList {ShiftLeft Row} {ShiftRight Row}}}

end

Calling this function and browsing it will display nothing:
declare
L={PascalList [1]}
{Browse L}

(The argument [1] is the first row of the triangle.) To display more results, they
have to be needed:
{Browse L.1}
{Browse L.2.1}

This displays the first and second rows.
Instead of writing a lazy function, we could write a function that takes N, the

number of rows we need, and directly calculates those rows starting from an initial
row:
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fun {PascalList2 N Row}
if N==1 then [Row]
else

Row|{PascalList2 N-1
{AddList {ShiftLeft Row} {ShiftRight Row}}}

end
end

We can display 10 rows by calling {Browse {PascalList2 10 [1]}}. But what
if later on we decide that we need 11 rows? We would have to call PascalList2
again, with argument 11. This would redo all the work of defining the first 10 rows.
The lazy version avoids redoing all this work. It is always ready to continue where
it left off.

1.9 Higher-order programming

We have written an efficient function, FastPascal, that calculates rows of Pascal’s
triangle. Now we would like to experiment with variations on Pascal’s triangle. For
example, instead of adding numbers to get each row, we would like to subtract
them, exclusive-or them (to calculate just whether they are odd or even), or many
other possibilities. One way to do this is to write a new version of FastPascal for
each variation. But this quickly becomes tiresome. Is it possible to have just a single
version that can be used for all variations? This is indeed possible. Let us call it
GenericPascal. Whenever we call it, we pass it the customizing function (adding,
exclusive-oring, etc.) as an argument. The ability to pass functions as arguments is
known as higher-order programming.

Here is the definition of GenericPascal. It has one extra argument Op to hold
the function that calculates each number:
fun {GenericPascal Op N}

if N==1 then [1]
else L in

L={GenericPascal Op N-1}
{OpList Op {ShiftLeft L} {ShiftRight L}}

end
end

AddList is replaced by OpList. The extra argument Op is passed to OpList.
ShiftLeft and ShiftRight do not need to know Op, so we can use the old versions.
Here is the definition of OpList:
fun {OpList Op L1 L2}

case L1 of H1|T1 then
case L2 of H2|T2 then

{Op H1 H2}|{OpList Op T1 T2}
end

else nil end
end

Instead of doing the addition H1+H2, this version does {Op H1 H2}.
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Variations on Pascal’s triangle

Let us define some functions to try out GenericPascal. To get the original Pascal’s
triangle, we can define the addition function:

fun {Add X Y} X+Y end

Now we can run {GenericPascal Add 5}.6 This gives the fifth row exactly as
before. We can define FastPascal using GenericPascal:

fun {FastPascal N} {GenericPascal Add N} end

Let us define another function:

fun {Xor X Y} if X==Y then 0 else 1 end end

This does an exclusive-or operation, which is defined as follows:

X Y {Xor X Y}

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive-or lets us calculate the parity of each number in Pascal’s triangle, i.e.,
whether the number is odd or even. The numbers themselves are not calculated.
Calling {GenericPascal Xor N} gives the result:

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

. . . . . . . . . . . . .

Some other functions are given in the exercises.

1.10 Concurrency

We would like our program to have several independent activities, each of which
executes at its own pace. This is called concurrency. There should be no interference

6. We can also call {GenericPascal Number.´+´ 5}, since the addition operation
´+´ is part of the module Number. But modules are not introduced in this chapter.
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Figure 1.3: A simple example of dataflow execution.

among the activities, unless the programmer decides that they need to communi-
cate. This is how the real world works outside of the system. We would like to be
able to do this inside the system as well.

We introduce concurrency by creating threads. A thread is simply an executing
program like the functions we saw before. The difference is that a program can have
more than one thread. Threads are created with the thread instruction. Do you
remember how slow the original Pascal function was? We can call Pascal inside
its own thread. This means that it will not keep other calculations from continuing.
They may slow down, if Pascal really has a lot of work to do. This is because the
threads share the same underlying computer. But none of the threads will stop.
Here is an example:
thread P in

P={Pascal 30}
{Browse P}

end
{Browse 99*99}

This creates a new thread. Inside this new thread, we call {Pascal 30} and then
call Browse to display the result. The new thread has a lot of work to do. But this
does not keep the system from displaying 99*99 immediately.

1.11 Dataflow

What happens if an operation tries to use a variable that is not yet bound? From
a purely aesthetic point of view, it would be nice if the operation would simply
wait. Perhaps some other thread will bind the variable, and then the operation can
continue. This civilized behavior is known as dataflow. Figure 1.3 gives a simple
example: the two multiplications wait until their arguments are bound and the
addition waits until the multiplications complete. As we will see later in the book,
there are many good reasons to have dataflow behavior. For now, let us see how
dataflow and concurrency work together. Take, e.g.:
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declare X in
thread {Delay 10000} X=99 end
{Browse start} {Browse X*X}

The multiplication X*X waits until X is bound. The first Browse immediately
displays start. The second Browse waits for the multiplication, so it displays
nothing yet. The {Delay 10000} call pauses for 10000 ms (i.e., 10 seconds). X is
bound only after the delay continues. When X is bound, then the multiplication
continues and the second browse displays 9801. The two operations X=99 and X*X

can be done in any order with any kind of delay; dataflow execution will always
give the same result. The only effect a delay can have is to slow things down. For
example:
declare X in
thread {Browse start} {Browse X*X} end
{Delay 10000} X=99

This behaves exactly as before: the browser displays 9801 after 10 seconds. This
illustrates two nice properties of dataflow. First, calculations work correctly in-
dependent of how they are partitioned between threads. Second, calculations are
patient: they do not signal errors, but simply wait.

Adding threads and delays to a program can radically change a program’s ap-
pearance. But as long as the same operations are invoked with the same arguments,
it does not change the program’s results at all. This is the key property of dataflow
concurrency. This is why dataflow concurrency gives most of the advantages of
concurrency without the complexities that are usually associated with it. Dataflow
concurrency is covered in chapter 4.

1.12 Explicit state

How can we let a function learn from its past? That is, we would like the function
to have some kind of internal memory, which helps it do its job. Memory is needed
for functions that can change their behavior and learn from their past. This kind of
memory is called explicit state. Just like for concurrency, explicit state models an
essential aspect of how the real world works. We would like to be able to do this in
the system as well. Later in the book we will see deeper reasons for having explicit
state (see chapter 6). For now, let us just see how it works.

For example, we would like to see how often the FastPascal function is used. Is
there some way FastPascal can remember how many times it was called? We can
do this by adding explicit state.

A memory cell

There are lots of ways to define explicit state. The simplest way is to define a
single memory cell. This is a kind of box in which you can put any content. Many
programming languages call this a “variable.” We call it a “cell” to avoid confusion
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with the variables we used before, which are more like mathematical variables, i.e.,
just shortcuts for values. There are three functions on cells: NewCell creates a new
cell, := (assignment) puts a new value in a cell, and @ (access) gets the current
value stored in the cell. Access and assignment are also called read and write. For
example:
declare
C={NewCell 0}
C:=@C+1
{Browse @C}

This creates a cell C with initial content 0, adds one to the content, and displays it.

Adding memory to FastPascal

With a memory cell, we can let FastPascal count how many times it is called.
First we create a cell outside of FastPascal. Then, inside of FastPascal, we add
1 to the cell’s content. This gives the following:
declare
C={NewCell 0}
fun {FastPascal N}

C:=@C+1
{GenericPascal Add N}

end

(To keep it short, this definition uses GenericPascal.)

1.13 Objects

A function with internal memory is usually called an object. The extended version
of FastPascal we defined in the previous section is an object. It turns out that
objects are very useful beasts. Let us give another example. We will define a counter
object. The counter has a cell that keeps track of the current count. The counter
has two operations, Bump and Read, which we call its interface. Bump adds 1 and
then returns the resulting count. Read just returns the count. Here is the definition:
declare
local C in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end

end

The local statement declares a new variable C that is visible only up to the
matching end. There is something special going on here: the cell is referenced
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by a local variable, so it is completely invisible from the outside. This is called
encapsulation. Encapsulation implies that users cannot mess with the counter’s
internals. We can guarantee that the counter will always work correctly no matter
how it is used. This was not true for the extended FastPascal because anyone
could look at and modify the cell.

It follows that as long as the interface to the counter object is the same, the user
program does not need to know the implementation. The separation of interface and
implementation is the essence of data abstraction. It can greatly simplify the user
program. A program that uses a counter will work correctly for any implementation
as long as the interface is the same. This property is called polymorphism. Data
abstraction with encapsulation and polymorphism is covered in chapter 6 (see
section 6.4).

We can bump the counter up:
{Browse {Bump}}
{Browse {Bump}}

What does this display? Bump can be used anywhere in a program to count how
many times something happens. For example, FastPascal could use Bump:
declare
fun {FastPascal N}

{Browse {Bump}}
{GenericPascal Add N}

end

1.14 Classes

The last section defined one counter object. What if we need more than one counter?
It would be nice to have a “factory” that can make as many counters as we need.
Such a factory is called a class. Here is one way to define it:
declare
fun {NewCounter}
C Bump Read in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end
counter(bump:Bump read:Read)

end

NewCounter is a function that creates a new cell and returns new Bump and Read

functions that use the cell. Returning functions as results of functions is another
form of higher-order programming.
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C={NewCell 0} C:=2 C:=1

C={NewCell 0} C:=1 C:=2

time

final content of C is 1

final content of C is 2
First execution:

Second execution:

Figure 1.4: All possible executions of the first nondeterministic example.

We group the Bump and Read functions together into a record, which is
a compound data structure that allows easy access to its parts. The record
counter(bump:Bump read:Read) is characterized by its label counter and by
its two fields, called bump and read. Let us create two counters:
declare
Ctr1={NewCounter}
Ctr2={NewCounter}

Each counter has its own internal memory and its own Bump and Read functions.
We can access these functions by using the “.” (dot) operator. Ctr1.bump accesses
the Bump function of the first counter. Let us bump the first counter and display
its result:

{Browse {Ctr1.bump}}

Toward object-oriented programming

We have given an example of a simple class, NewCounter, that defines two opera-
tions, Bump and Read. Operations defined inside classes are usually called methods.
The class can be used to make as many counter objects as we need. All these
objects share the same methods, but each has its own separate internal memory.
Programming with classes and objects is called object-based programming.

Adding one new idea, inheritance, to object-based programming gives object-
oriented programming. Inheritance means that a new class can be defined in terms
of existing classes by specifying just how the new class is different. For example, say
we have a counter class with just a Bump method. We can define a new class that
is the same as the first class except that it adds a Read method. We say the new
class inherits from the first class. Inheritance is a powerful concept for structuring
programs. It lets a class be defined incrementally, in different parts of the program.
Inheritance is quite a tricky concept to use correctly. To make inheritance easy to
use, object-oriented languages add special syntax for it. Chapter 7 covers object-
oriented programming and shows how to program with inheritance.
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1.15 Nondeterminism and time

We have seen how to add concurrency and state to a program separately. What
happens when a program has both? It turns out that having both at the same time
is a tricky business, because the same program can give different results from one
execution to the next. This is because the order in which threads access the state can
change from one execution to the next. This variability is called nondeterminism.
Nondeterminism exists because we lack knowledge of the exact time when each
basic operation executes. If we would know the exact time, then there would be
no nondeterminism. But we cannot know this time, simply because threads are
independent. Since they know nothing of each other, they also do not know which
instructions each has executed.

Nondeterminism by itself is not a problem; we already have it with concurrency.
The difficulties occur if the nondeterminism shows up in the program, i.e., if it is
observable. An observable nondeterminism is sometimes called a race condition.
Here is an example:
declare
C={NewCell 0}
thread

C:=1
end
thread

C:=2
end

What is the content of C after this program executes? Figure 1.4 shows the two
possible executions of this program. Depending on which one is done, the final
cell content can be either 1 or 2. The problem is that we cannot say which. This
is a simple case of observable nondeterminism. Things can get much trickier. For
example, let us use a cell to hold a counter that can be incremented by several
threads:
declare
C={NewCell 0}
thread I in

I=@C
C:=I+1

end
thread J in

J=@C
C:=J+1

end

What is the content of C after this program executes? It looks like each thread just
adds 1 to the content, making it 2. But there is a surprise lurking: the final content
can also be 1! How is this possible? Try to figure out why before continuing.
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time

C={NewCell 0} I=@C J=@C C:=I+1

(C contains 1) (C contains 1)(I equals 0) (J equals 0)(C contains 0)

C:=J+1

Figure 1.5: One possible execution of the second nondeterministic example.

Interleaving

The content can be 1 because thread execution is interleaved. That is, threads take
turns each executing a little. We have to assume that any possible interleaving can
occur. For example, consider the execution of figure 1.5. Both I and J are bound
to 0. Then, since I+1 and J+1 are both 1, the cell gets assigned 1 twice. The final
result is that the cell content is 1.

This is a simple example. More complicated programs have many more possible
interleavings. Programming with concurrency and state together is largely a ques-
tion of mastering the interleavings. In the history of computer technology, many
famous and dangerous bugs were due to designers not realizing how difficult this re-
ally is. The Therac-25 radiation therapy machine is an infamous example. Because
of concurrent programming errors, it sometimes gave its patients radiation doses
that were thousands of times greater than normal, resulting in death or serious
injury [128].

This leads us to a first lesson for programming with state and concurrency: if
at all possible, do not use them together! It turns out that we often do not need
both together. When a program does need to have both, it can almost always be
designed so that their interaction is limited to a very small part of the program.

1.16 Atomicity

Let us think some more about how to program with concurrency and state. One
way to make it easier is to use atomic operations. An operation is atomic if no
intermediate states can be observed. It seems to jump directly from the initial state
to the result state. Programming with atomic actions is covered in chapter 8.

With atomic operations we can solve the interleaving problem of the cell counter.
The idea is to make sure that each thread body is atomic. To do this, we need a way
to build atomic operations. We introduce a new language entity, called a lock, for
this. A lock has an inside and an outside. The programmer defines the instructions
that are inside. A lock has the property that only one thread at a time can be
executing inside. If a second thread tries to get in, then it will wait until the first
gets out. Therefore what happens inside the lock is atomic.
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We need two operations on locks. First, we create a new lock by calling the
function NewLock. Second, we define the lock’s inside with the instruction lock L

then ... end, where L is a lock. Now we can fix the cell counter:
declare
C={NewCell 0}
L={NewLock}
thread

lock L then I in
I=@C
C:=I+1

end
end
thread

lock L then J in
J=@C
C:=J+1

end
end

In this version, the final result is always 2. Both thread bodies have to be guarded
by the same lock, otherwise the undesirable interleaving can still occur. Do you see
why?

1.17 Where do we go from here?

This chapter has given a quick overview of many of the most important concepts
in programming. The intuitions given here will serve you well in the chapters to
come, when we define in a precise way the concepts and the computation models
they are part of. This chapter has introduced the following computation models:

Declarative model (chapters 2 and 3). Declarative programs define mathematical
functions. They are the easiest to reason about and to test. The declarative model
is important also because it contains many of the ideas that will be used in later,
more expressive models.

Concurrent declarative model (chapter 4). Adding dataflow concurrency gives a
model that is still declarative but that allows a more flexible, incremental execution.

Lazy declarative model (section 4.5). Adding laziness allows calculating with
potentially infinite data structures. This is good for resource management and
program structure.

Stateful model (chapter 6). Adding explicit state allows writing programs whose
behavior changes over time. This is good for program modularity. If written well,
i.e., using encapsulation and invariants, these programs are almost as easy to reason
about as declarative programs.

Object-oriented model (chapter 7). Object-oriented programming is a program-
ming style for stateful programming with data abstractions. It makes it easy to use
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powerful techniques such as polymorphism and inheritance.

Shared-state concurrent model (chapter 8). This model adds both concurrency
and explicit state. If programmed carefully, using techniques for mastering inter-
leaving such as monitors and transactions, this gives the advantages of both the
stateful and concurrent models.

In addition to these models, the book covers many other useful models such as the
declarative model with exceptions (section 2.7), the message-passing concurrent
model (chapter 5), the relational model (chapter 9), and the specialized models of
part II.

1.18 Exercises

1. A calculator. Section 1.1 uses the system as a calculator. Let us explore the
possibilities:

(a) Calculate the exact value of 2100 without using any new functions. Try
to think of shortcuts to do it without having to type 2*2*2*...*2 with one
hundred 2s. Hint: use variables to store intermediate results.

(b) Calculate the exact value of 100! without using any new functions. Are
there any possible shortcuts in this case?

2. Calculating combinations. Section 1.3 defines the function Comb to calculate
combinations. This function is not very efficient because it might require calculating
very large factorials. The purpose of this exercise is to write a more efficient version
of Comb.

(a) As a first step, use the following alternative definition to write a more
efficient function:
(
n

k

)
=

n× (n− 1)× · · · × (n− k + 1)

k × (k − 1)× · · · × 1
Calculate the numerator and denominator separately and then divide them.
Make sure that the result is 1 when k = 0.

(b) As a second step, use the following identity:(
n

k

)
=

(
n

n− k

)

to increase efficiency even more. That is, if k > n/2, then do the calculation
with n− k instead of with k.

3. Program correctness. Section 1.6 explains the basic ideas of program correctness
and applies them to show that the factorial function defined in section 1.3 is correct.
In this exercise, apply the same ideas to the function Pascal of section 1.5 to show
that it is correct.

4. Program complexity. What does section 1.7 say about programs whose time
complexity is a high-order polynomial? Are they practical or not? What do you
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think?

5. Lazy evaluation. Section 1.8 defines the lazy function Ints that lazily calculates
an infinite list of integers. Let us define a function that calculates the sum of a list
of integers:
fun {SumList L}

case L of X|L1 then X+{SumList L1}
else 0 end

end

What happens if we call {SumList {Ints 0}}? Is this a good idea?

6. Higher-order programming. Section 1.9 explains how to use higher-order pro-
gramming to calculate variations on Pascal’s triangle. The purpose of this exercise
is to explore these variations.

(a) Calculate individual rows using subtraction, multiplication, and other
operations. Why does using multiplication give a triangle with all zeros? Try
the following kind of multiplication instead:

fun {Mul1 X Y} (X+1)*(Y+1) end

What does the 10th row look like when calculated with Mul1?

(b) The following loop instruction will calculate and display 10 rows at a time:

for I in 1..10 do {Browse {GenericPascal Op I}} end

Use this loop instruction to make it easier to explore the variations.

7. Explicit state. This exercise compares variables and cells. We give two code
fragments. The first uses variables:
local X in

X=23
local X in

X=44
end
{Browse X}

end

The second uses a cell:
local X in

X={NewCell 23}
X:=44
{Browse @X}

end

In the first, the identifier X refers to two different variables. In the second, X refers
to a cell. What does Browse display in each fragment? Explain.

8. Explicit state and functions. This exercise investigates how to use cells together
with functions. Let us define a function {Accumulate N} that accumulates all its
inputs, i.e., it adds together all the arguments of all calls. Here is an example:
{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}
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This should display 5, 105, and 150, assuming that the accumulator contains zero
at the start. Here is a wrong way to write Accumulate:
declare
fun {Accumulate N}
Acc in

Acc={NewCell 0}
Acc:=@Acc+N
@Acc

end

What is wrong with this definition? How would you correct it?

9. Memory store. This exercise investigates another way of introducing state: a
memory store. The memory store can be used to make an improved version of
FastPascal that remembers previously calculated rows.

(a) A memory store is similar to the memory of a computer. It has a series
of memory cells, numbered from 1 up to the maximum used so far. There are
four functions on memory stores: NewStore creates a new store, Put puts a
new value in a memory cell, Get gets the current value stored in a memory
cell, and Size gives the highest-numbered cell used so far. For example:
declare
S={NewStore}
{Put S 2 [22 33]}
{Browse {Get S 2}}
{Browse {Size S}}

This stores [22 33] in memory cell 2, displays [22 33], and then displays 2.
Load into the Mozart system the memory store as defined in the supplements
file on the book’s Web site. Then use the interactive interface to understand
how the store works.

(b) Now use the memory store to write an improved version of FastPascal,
called FasterPascal, that remembers previously calculated rows. If a call asks
for one of these rows, then the function can return it directly without having
to recalculate it. This technique is sometimes called memoization since the
function makes a “memo” of its previous work. This improves its performance.
Here’s how it works:

First make a store S available to FasterPascal.

For the call {FasterPascal N}, let m be the number of rows stored in
S, i.e., rows 1 up to m are in S.

If n > m, then compute rows m+ 1 up to n and store them in S.

Return the nth row by looking it up in S.

Viewed from the outside, FasterPascal behaves identically to FastPascal

except that it is faster.

(c) We have given the memory store as a library. It turns out that the memory
store can be defined by using a memory cell. We outline how it can be done
and you can write the definitions. The cell holds the store contents as a list of
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the form [N1|X1 ... Nn|Xn], where the cons Ni|Xi means that cell number
Ni has content Xi. This means that memory stores, while they are convenient,
do not introduce any additional expressive power over memory cells.

(d) Section 1.13 defines a counter object. Change your implementation of the
memory store so that it uses this counter to keep track of the store’s size.

10. Explicit state and concurrency. Section 1.15 gives an example using a cell to
store a counter that is incremented by two threads.

(a) Try executing this example several times. What results do you get? Do
you ever get the result 1? Why could this be?

(b) Modify the example by adding calls to Delay in each thread. This changes
the thread interleaving without changing what calculations the thread does.
Can you devise a scheme that always results in 1?

(c) Section 1.16 gives a version of the counter that never gives the result 1.
What happens if you use the delay technique to try to get a 1 anyway?


