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1.1 Computational Cognitive Neuroscience

How does the brain think? This is one of the most
challenging unsolved questions in science. Armed with
new methods, data, and ideas, researchers in a variety
of fields bring us closer to fully answering this question
each day. We can even watch the brain as it thinks, using
modern neuroimaging machines that record the biolog-
ical shadows of thought and transform them into vivid

color images. These amazing images, together with the
results from many other important techniques, have ad-
vanced our understanding of the neural bases of cogni-
tion considerably. We can consolidate these various dif-
ferent approaches under the umbrella discipline of cog-
nitive neuroscience, which has as its goal answering
this most important of scientific questions.

Cognitive neuroscience will remain a frontier for
many years to come, because both thoughts and brains
are incredibly complex and difficult to understand. Se-
quences of images of the brain thinking reveal a vast
network of glowing regions that interact in complex
ways with changing patterns of thought. Each picture
is worth a thousand words — indeed, language often
fails us in the attempt to capture the richness and sub-
tlety of it all. Computational models based on bio-
logical properties of the brain can provide an impor-
tant tool for understanding all of this complexity. Such
models can capture the flow of information from your
eyes recording these letters and words, up to the parts of
your brain activated by the different word meanings, re-
sulting in an integrated comprehension of this text. Al-
though our understanding of such phenomena is still in-
complete, these models enable us to explore their under-
lying mechanisms, which we can implement on a com-
puter and manipulate, test, and ultimately understand.

This book provides an introduction to this emerging
subdiscipline known as computational cognitive neu-
roscience: simulating human cognition using biologi-
cally based networks of neuronlike units (neural net-
works). We provide a textbook-style treatment of the
central ideas in this field, integrated with computer sim-
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ulations that allow readers to undertake their own ex-
plorations of the material presented in the text. An im-
portant and unique aspect of this book is that the ex-
plorations include a number of large-scale simulations
used in recent original research projects, giving students
and other researchers the opportunity to examine these
models up close and in detail.

In this chapter, we present an overview of the basic
motivations and history behind computational cogni-
tive neuroscience, followed by an overview of the sub-
sequent chapters covering basic neural computational
mechanisms (part I) and cognitive phenomena (part II).
Using the neural network models in this book, you will
be able to explore a wide range of interesting cognitive
phenomena, including:

Visual encoding: A neural network will view natural
scenes (mountains, trees, etc.), and, using some basic
principles of learning, will develop ways of encoding
these visual scenes much like those your brain uses
to make sense of the visual world.

Spatial attention: By taking advantage of the interac-
tions between two different streams of visual process-
ing, you can see how a model focuses its attention
in different locations in space, for example to scan a
visual scene. Then, you can use this model to sim-
ulate the attention performance of normal and brain-
damaged people.

Episodic memory: By incorporating the structure of
the brain area called the hippocampus, a neural net-
work will become able to form new memories of ev-
eryday experiences and events, and will simulate hu-
man performance on memory tasks.

Working memory: You will see that specialized bio-
logical mechanisms can greatly improve a network’s
working memory (the kind of memory you need to
multiply 42 by 17 in your head, for example). Fur-
ther, you will see how the skilled control of working
memory can be learned through experience.

Word reading: You can see how a network can learn
to read and pronounce nearly 3,000 English words.
Like human subjects, this network can pronounce
novel nonwords that it has never seen before (e.g.,
“mave” or “nust”), demonstrating that it is not sim-

ply memorizing pronunciations — instead, it learns
the complex web of regularities that govern English
pronunciation. And, by damaging a model that cap-
tures the many different ways that words are repre-
sented in the brain, you can simulate various forms
of dyslexia.

Semantic representation: You can explore a network
that has “read” every paragraph in this textbook and
in the process acquired a surprisingly good under-
standing of the words used therein, essentially by not-
ing which words tend to be used together or in similar
contexts.

Task directed behavior: You can explore a model of
the “executive” part of the brain, the prefrontal cor-
tex, and see how it can keep us focused on perform-
ing the task at hand while protecting us from getting
distracted by other things going on.

Deliberate, explicit cognition: A surprising number
of things occur relatively automatically in your brain
(e.g., you are not aware of exactly how you trans-
late these black and white strokes on the page into
some sense of what these words are saying), but you
can also think and act in a deliberate, explicit fash-
ion. You’ll explore a model that exhibits both of these
types of cognition within the context of a simple cat-
egorization task, and in so doing, provides the begin-
nings of an account of the biological basis of con-
scious awareness.

1.2 Basic Motivations for Computational
Cognitive Neuroscience

1.2.1 Physical Reductionism

The whole idea behind cognitive neuroscience is the
once radical notion that the mysteries of human thought
can be explained in much the same way as everything
else in science — by reducing a complex phenomenon
(cognition) into simpler components (the underlying bi-
ological mechanisms of the brain). This process is just
reductionism, which has been and continues to be the
standard method of scientific advancement across most
fields. For example, all matter can be reduced to its
atomic components, which helps to explain the various
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properties of different kinds of matter, and the ways in
which they interact. Similarly, many biological phe-
nomena can be explained in terms of the actions of un-
derlying DNA and proteins.

Although it is natural to think of reductionism in
terms of physical systems (e.g., explaining cognition
in terms of the physical brain), it is also possible to
achieve a form of reductionism in terms of more ab-
stract components of a system. Indeed, one could argue
that all forms of explanation entail a form of reduction-
ism, in that they explain a previously inexplicable thing
in terms of other, more familiar constructs, just as one
can understand the definition of an unfamiliar word in
the dictionary in terms of more familiar words.

There have been many attempts over the years to
explain human cognition using various different lan-
guages and metaphors. For example, can cognition be
explained by assuming it is based on simple logical op-
erations? By assuming it works just like a standard se-
rial computer? Although these approaches have borne
some fruit, the idea that one should look to the brain
itself for the language and principles upon which to ex-
plain human cognition seems more likely to succeed,
given that the brain is ultimately responsible for it all.
Thus, it is not just reductionism that defines the essence
of cognitive neuroscience — it is also the stipulation
that the components be based on the physical substrate
of human cognition, the brain. This is physical reduc-
tionism.

As a domain of scientific inquiry matures, there is a
tendency for constructs that play a role in that domain to
become physically grounded. For example, in the bio-
logical sciences before the advent of modern molecular
biology, ephemeral, vitalistic theories were common,
where the components were posited based on a theory,
not on any physical evidence for them. As the molecular
basis of life was understood, it became possible to de-
velop theories of biological function in terms of real un-
derlying components (proteins, nucleic acids, etc.) that
can be measured and localized. Some prephysical theo-
retical constructs accurately anticipated their physically
grounded counterparts; for example, Mendel’s theory of
genetics anticipated many important functional aspects
of DNA replication, while others did not fare so well.

Similarly, many previous and current theories of hu-

man cognition are based on constructs such as “atten-
tion” and “working memory buffers” that are based on
an analysis of behaviors or thoughts, and not on phys-
ical entities that can be independently measured. Cog-
nitive neuroscience differs from other forms of cogni-
tive theorizing in that it seeks to explain cognitive phe-
nomena in terms of underlying neurobiological com-
ponents, which can in principle be independently mea-
sured and localized. Just as in biology and other fields,
some of the nonphysical constructs of cognition will
probably fit well with the underlying biological mech-
anisms, and others may not (e.g., Churchland, 1986).
Even in those that fit well, understanding their biolog-
ical basis will probably lead to a more refined and so-
phisticated understanding (e.g., as knowing the biolog-
ical structure of DNA has for understanding genetics).

1.2.2 Reconstructionism

However, reductionism in all aspects of science — par-
ticularly in the study of human cognition — can suf-
fer from an inappropriate emphasis on the process of
reducing phenomena into component pieces, without
the essential and complementary process of using those
pieces to reconstruct the larger phenomenon. We refer
to this latter process as reconstructionism. It is simply
not enough to say that the brain is made of neurons;
one must explain how billions of neurons interacting
with each other produce human cognition. Teitelbaum
(1967) argued for a similar complementarity of scien-
tific processes — analysis and synthesis — in the study
of physiological psychology. Analysis entails dissect-
ing and simplifying a system to understand its essential
elements; synthesis entails combining elements and un-
derstanding their interactions.

The computational approach to cognitive neuro-
science becomes critically important in reconstruction-
ism: it is very difficult to use verbal arguments to re-
construct human cognition (or any other complex phe-
nomenon) from the action of a large number of interact-
ing components. Instead, we can implement the behav-
ior of these components in a computer program and test
whether they are indeed capable of reproducing the de-
sired phenomena. Such simulations are crucial to devel-
oping our understanding of how neurons produce cog-
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a) b)

Figure 1.1: Illustration of the importance of reconstruction-
ism — it is not enough to say that the system is composed of
components (e.g., two gears as in a), one must also show how
these components interact to produce overall behaviors. In b,
the two gears interact to produce changes in rotational speed
and torque — these effects emerge from the interaction, and
are not a property of each component individually.

nition. This is especially true when there are emergent
phenomena that arise from these interactions without
obviously being present in the behavior of individual
elements (neurons) — where the whole is greater than
the sum of its parts. The importance of reconstruction-
ism is often overlooked in all areas of science, not just
cognitive neuroscience, and the process has really only
recently become feasible with the advent of relatively
affordable fast computers.

Figure 1.1 shows a simple illustration of the impor-
tance of reconstructionism in understanding how sys-
tems behave. Here, it is not sufficient to say that the
system is composed of two components (the two gears
shown in panel a). Instead, one must also specify that
the gears interact as shown in panel b, because it is only
through this interaction that the important “behavioral”
properties of changes in rotational speed and torque can
emerge. For example, if the smaller gear drives the
larger gear, this achieves a decrease in rotational speed
and an increase in torque. However, if this same driving
gear were to interact with a gear that was even smaller
than it, it would produce the opposite effect. This is
essentially what it means for the behavior to emerge
from the interaction between the two gears, because it
is clearly not a property of the individual gears in isola-
tion. Similarly, cognition is an emergent phenomenon
of the interactions of billions of neurons. It is not suf-
ficient to say that the cognitive system is composed of
billions of neurons; we must instead specify how these
neurons interact to produce cognition.

1.2.3 Levels of Analysis

Although the physical reductionism and reconstruction-
ism motivations behind computational cognitive neuro-
science may appear sound and straightforward, this ap-
proach to understanding human cognition is challenged
by the extreme complexity of and lack of knowledge
about both the brain and the cognition it produces. As a
result, many researchers have appealed to the notion of
hierarchical levels of analysis to deal with this complex-
ity. Clearly, some levels of underlying mechanism are
more appropriate for explaining human cognition than
others. For example, it appears foolhardy to try to ex-
plain human cognition directly in terms of atoms and
simple molecules, or even proteins and DNA. Thus, we
must focus instead on higher level mechanisms. How-
ever, exactly which level is the “right” level is an im-
portant issue that will only be resolved through further
scientific investigation. The level presented in this book
represents our best guess at this time.

One approach toward thinking about the issue of lev-
els of analysis was suggested by David Marr (1982),
who introduced the seductive notion of computational,
algorithmic, and implementational levels by forging
an analogy with the computer. Take the example of a
program that sorts a list of numbers. One can specify
in very abstract terms that the computation performed
by this program is to arrange the numbers such that
the smallest one is first in the list, the next largest one
is next, and so on. This abstract computational level
of analysis is useful for specifying what different pro-
grams do, without worrying about exactly how they go
about doing it. Think of it as the “executive summary.”

The algorithmic level then delves into more of the
details as to how sorting actually occurs — there are
many different strategies that one could adopt, and they
have various tradeoffs in terms of factors such as speed
or amount of memory used. Critically, the algorithm
provides just enough information to implement the pro-
gram, but does not specify any details about what lan-
guage to program it in, what variable names to use, and
so on. These details are left for the implementational
level — how the program is actually written and exe-
cuted on a particular computer using a particular lan-
guage.
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Marr’s levels and corresponding emphasis on the
computational and algorithmic levels were born out of
the early movements of artificial intelligence, cogni-
tive psychology, and cognitive science, which were
based on the idea that one could ignore the underly-
ing biological mechanisms of cognition, focusing in-
stead on identifying important computational or cog-
nitive level properties. Indeed, these traditional ap-
proaches were based on the assumption that the brain
works like a standard computer, and thus that Marr’s
computational and algorithmic levels were much more
important than the “mere details” of the underlying neu-
robiological implementation.

The optimality or rational analysis approach, which
is widely employed across the “sciences of complex-
ity” from biology to psychology and economics (e.g.,
Anderson, 1990), shares the Marr-like emphasis on the
computational level. Here, one assumes that it is pos-
sible to identify the “optimal” computation or function
performed by a person or animal in a given context, and
that whatever the brain is doing, it must somehow be
accomplishing this same optimal computation (and can
therefore be safely ignored). For example, Anderson
(1990) argues that memory retention curves are opti-
mally tuned to the expected frequency and spacing of
retrieval demands for items stored in memory. Under
this view, it doesn’t really matter how the memory re-
tention mechanisms work, because they are ultimately
driven by the optimality criterion of matching expected
demands for items, which in turn is assumed to follow
general laws.

Although the optimality approach may sound attrac-
tive, the definition of optimality all too often ends up
being conditioned on a number of assumptions (includ-
ing those about the nature of the underlying implemen-
tation) that have no real independent basis. In short,
optimality can rarely be defined in purely “objective”
terms, and so often what is optimal in a given situation
depends on the detailed circumstances.

Thus, the dangerous thing about both Marr’s levels
and these optimality approaches is that they appear to
suggest that the implementational level is largely irrel-
evant. In most standard computers and languages, this
is true, because they are all effectively equivalent at the
implementational level, so that the implementational is-

sues don’t really affect the algorithmic and computa-
tional levels of analysis. Indeed, computer algorithms
can be turned into implementations by the completely
automatic process of compilation. In contrast, in the
brain, the neural implementation is certainly not derived
automatically from some higher-level description, and
thus it is not obviously true that it can be easily de-
scribed at these higher levels.

In effect, the higher-level computational analysis
has already assumed a general implementational form,
without giving proper credit to it for shaping the whole
enterprise in the first place. However, with the advent
of parallel computers, people are beginning to realize
the limitations of computation and algorithms that as-
sume the standard serial computer with address-based
memory — entirely new classes of algorithms and ways
of thinking about problems are being developed to take
advantage of parallel computation. Given that the brain
is clearly a parallel computer, having billions of com-
puting elements (neurons), one must be very careful in
importing seductively simple ideas based on standard
computers.

On the other end of the spectrum, various researchers
have emphasized the implementational level as primary
over the computational and algorithmic. They have
argued that cognitive models should be assembled by
making extremely detailed replicas of neurons, thus
guaranteeing that the resulting model contains all of the
important biological mechanisms (e.g., Bower, 1992).
The risk of this approach is complementary to those that
emphasize a purely computational approach: without
any clear understanding of which biological properties
are functionally important and which are not, one ends
up with massive, complicated models that are difficult
to understand, and that provide little insight into the
critical properties of cognition. Further, these models
inevitably fail to represent all of the biological mecha-
nisms in their fullest possible detail, so one can never
be quite sure that something important is not missing.

Instead of arguing for the superiority of one level
over the other, we adopt a fully interactive, balanced
approach, which emphasizes forming connections be-
tween data across all of the relevant levels, and striking
a reasonable balance between the desire for a simpli-
fied model and the desire to incorporate as much of the
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Cognitive Phenomena

Neurobiological Mechanisms

Principles

Figure 1.2: The two basic levels of analysis used in this text,
with an intermediate level to help forge the links.

known biological mechanisms as possible. There is a
place for both bottom-up (i.e., working from biological
facts “up” to cognition), top-down (i.e., working from
cognition “down” to biological facts), and, most impor-
tant, interactive approaches, where one tries to simulta-
neously take into account constraints at the biological
and cognitive levels.

For example, it can be useful to take a set of facts
about how neurons behave, encode them in a set of
equations in a computer program, and see how the kinds
of behaviors that result depend on the properties of these
neurons. It can also be useful to think about what cog-
nition should be doing in a particular case (e.g., at the
computational level, or on some other principled basis),
and then derive an implementation that accomplishes
this, and see how well that characterizes what we know
about the brain, and how well it does the cognitive job it
is supposed to do. This kind of interplay between neuro-
biological, cognitive and principled (computational and
otherwise) considerations is emphasized throughout the
text.

To summarize our approach, and to avoid the unin-
tended associations with Marr’s terminology, we adopt
the following hierarchy of analytical levels (figure 1.2).
At its core, we have essentially a simple bi-level
physical reductionist/reconstructionist hierarchy, with a
lower level consisting of neurobiological mechanisms,
and an upper level consisting of cognitive phenomena.
We will reduce cognitive phenomena to the operation of
neurobiological mechanisms, and show, through simu-
lations, how these mechanisms produce emergent cog-
nitive phenomena. Of course, our simulations will have
to rely on simplified, abstracted renditions of the neuro-
biological mechanisms.

To help forge links between these two levels of anal-
ysis, we have an auxiliary intermediate level consisting

of principles presented throughout the text. We do not
think that the brain nor cognition can be fully described
by these principles, which is why they play an auxiliary
role and are shown off to one side of the figure. How-
ever, they serve to highlight and make clear the connec-
tion between certain aspects of the biology and certain
aspects of cognition. Often, these principles are based
on computational-level descriptions of aspects of cog-
nition. But, we want to avoid any implication that these
principles provide some privileged level of description
(i.e., like Marr’s view of the computational level), that
tempts us into thinking that data at the two basic em-
pirical levels (cognition and neurobiology) are less rele-
vant. Instead, these principles are fundamentally shaped
by, and help to strike a good balance between, the two
primary levels of analysis.

The levels of analysis issue is easily confused with
different levels of structure within the nervous system,
but these two types of levels are not equivalent. The
relevant levels of structure range from molecules to in-
dividual neurons to small groups or columns of neu-
rons to larger areas or regions of neurons up to the en-
tire brain itself. Although one might be tempted to say
that our cognitive phenomena level of analysis should
be associated with the highest structural level (the en-
tire brain), and our neurobiological mechanisms level of
analysis associated with lower structural levels, this is
not really accurate. Indeed, some cognitive phenomena
can be traced directly to properties of individual neu-
rons (e.g., that they exhibit a fatiguelike phenomenon if
activated too long), whereas other cognitive phenom-
ena only emerge as a result of interactions among a
number of different brain areas. Furthermore, as we
progress from lower to higher structural levels in suc-
cessive chapters of this book, we emphasize that spe-
cific computational principles and cognitive phenomena
can be associated with each of these structural levels.
Thus, just as there is no privileged level of analysis,
there is no privileged structural level — all of these lev-
els must be considered in an interactive fashion.

1.2.4 Scaling Issues

Having adopted essentially two levels of analysis, we
are in the position of using biological mechanisms op-
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erating at the level of individual neurons to explain
even relatively complex, high-level cognitive phenom-
ena. This raises the question as to why these basic
neural mechanisms should have any relevance to un-
derstanding something that is undoubtedly the product
of millions or even billions of neurons — certainly we
do not include anywhere near that many neurons in our
simulations! This scaling issue relates to the way in
which we construct a scaled-down model of the real
brain. It is important to emphasize that the need for
scaling is at least partially a pragmatic issue having to
do with the limitations of currently available computa-
tional resources. Thus, it should be possible to put the
following arguments to the test in the future as larger,
more complex models can be constructed. However,
scaled-down models are also easier to understand, and
are a good place to begin the computational cognitive
neuroscience enterprise.

We approach the scaling problem in the following
ways.

� The target cognitive behavior that we expect (and ob-
tain) from the models is similarly scaled down com-
pared to the complexities of actual human cognition.

� We show that one of our simulated neurons (units)
in the model can approximate the behavior of many
real neurons, so that we can build models of multi-
ple brain areas where the neurons in those areas are
simulated by many fewer units.

� We argue that information processing in the brain
has a fractal quality, where the same basic proper-
ties apply across disparate physical scales. These ba-
sic properties are those of individual neurons, which
“show through” even at higher levels, and are thus
relevant to understanding even the large-scale behav-
ior of the brain.

The first argument amounts to the idea that our neu-
ral network models are performing essentially the same
type of processing as a human in a particular task, but
on a reduced problem that either lacks the detailed in-
formation content of the human equivalent or represents
a subset of these details. Of course, many phenomena
can become qualitatively different as they get scaled up

a) b)

Figure 1.3: Illustration of scaling as performed on an image
— the original image in (a) was scaled down by a factor of
8, retaining only 1/8th of the original information, and then
scaled back up to the same size and averaged (blurred) to pro-
duce (b), which captures many of the general characteristics
of the original, but not the fine details. Our models give us
something like this scaled-down, averaged image of how the
brain works.

or down along this content dimension, but it seems rea-
sonable to allow that some important properties might
be relatively scale invariant. For example, one could
plausibly argue that each major area of the human cor-
tex could be reduced to handle only a small portion of
the content that it actually does (e.g., by the use of a
16x16 pixel retina instead of 16 million x 16 million
pixels), but that some important aspects of the essential
computation on any piece of that information are pre-
served in the reduced model. If several such reduced
cortical areas were connected, one could imagine hav-
ing a useful but simplified model of some reasonably
complex psychological phenomena.

The second argument can perhaps be stated most
clearly by imagining that an individual unit in the model
approximates the behavior of a population of essentially
identical neurons. Thus, whereas actual neurons are dis-
cretely spiking, our model units typically (but not ex-
clusively) use a continuous, graded activation signal.
We will see in chapter 2 that this graded signal pro-
vides a very good approximation to the average num-
ber of spikes per unit time produced by a population of
spiking neurons. Of course, we don’t imagine that the
brain is constructed from populations of identical neu-
rons, but we do think that the brain employs overlapping
distributed representations, so that an individual model
unit can represent the centroid of a set of such repre-
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sentations. Thus, the population can encode much more
information (e.g., many finer shades of meaning), and
is probably different in other important ways (e.g., it
might be more robust to the effects of noise). A visual
analogy for this kind of scaling is shown in figure 1.3,
where the sharp, high-resolution detail of the original
(panel a) is lost in the scaled-down version (panel b),
but the basic overall structure is preserved.

Finally, we believe that the brain has a fractal char-
acter for two reasons: First, it is likely that, at least in
the cortex, the effective properties of long-range con-
nectivity are similar to that of local, short-range con-
nectivity. For example, both short and long-range con-
nectivity produce a balance between excitation and in-
hibition by virtue of connecting to both excitatory and
inhibitory neurons (more on this in chapter 3). Thus, a
model based on the properties of short-range connectiv-
ity within a localized cortical area could also describe a
larger-scale model containing many such cortical areas
simulated at a coarser level. The second reason is basi-
cally the same as the one given earlier about averaging
over populations of neurons: if on average the popula-
tion behaves roughly the same as the individual neuron,
then the two levels of description are self-similar, which
is what it means to be fractal.

In short, these arguments provide a basis for opti-
mism that models based on neurobiological data can
provide useful accounts of cognitive phenomena, even
those that involve large, widely distributed areas of the
brain. The models described in this book substanti-
ate some of this optimism, but certainly this issue re-
mains an open and important question for the compu-
tational cognitive neuroscience enterprise. The follow-
ing historical perspective on this enterprise provides an
overview of some of the other important issues that have
shaped the field.

1.3 Historical Context

Although the field of computational cognitive neuro-
science is relatively young, its boundaries are easily
blurred into a large number of related disciplines, some
of which have been around for quite some time. In-
deed, research in any aspect of cognition, neuroscience,
or computation has the potential to make an important

contribution to this field. Thus, the entire space of this
book could be devoted to an adequate account of the
relevant history of the field. This section is instead in-
tended to merely provide a brief overview of some of
the particularly relevant historical context and motiva-
tion behind our approach. Specifically, we focus on the
advances in understanding how networks of simulated
neurons can lead to interesting cognitive phenomena,
which occurred initially in the 1960s and then again in
the period from the late ‘70s to the present day. These
advances form the main heritage of our approach be-
cause, as should be clear from what has been said ear-
lier, the neural network modeling approach provides a
crucial link between networks of neurons and human
cognition.

The field of cognitive psychology began in the late
1950s and early ‘60s, following the domination of the
behaviorists. Key advances associated with this new
field included its emphasis on internal mechanisms for
mediating cognition, and in particular the use of explicit
computational models for simulating cognition on com-
puters (e.g., problem solving and mathematical reason-
ing; Newell & Simon, 1972). The dominant approach
was based on the computer metaphor, which held that
human cognition is much like processing in a standard
serial computer.

In such systems, which we will refer to as “tra-
ditional” or “symbolic,” the basic operations involve
symbol manipulation (e.g., manipulating logical state-
ments expressed using dynamically-bound variables
and operators), and processing consists of a sequence
of serial, rule-governed steps. Production systems
became the dominant framework for cognitive model-
ing within this approach. Productions are essentially
elaborate if-then constructs that are activated when their
if-conditions are met, and they then produce actions that
enable the firing of subsequent productions. Thus, these
productions control the sequential flow of processing.
As we will see, these traditional, symbolic models serve
as an important contrast to the neural-network frame-
work, and the two have been in a state of competition
from the earliest days of their existence.

Even though the computer metaphor was dominant,
there was also considerable interest in neuronlike pro-
cessing during this time, with advances like: (a) the
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McCulloch and Pitts (1943) model of neural process-
ing in terms of basic logical operations; (b) Hebb’s
(1949) theory of Hebbian learning and the cell as-
sembly, which holds that connections between coac-
tive neurons should be strengthened, joining them to-
gether; and (c) Rosenblatt’s (1958) work on the per-
ceptron learning algorithm, which could learn from
error signals. These computational approaches built
on fundamental advances in neurobiology, where the
idea that the neuron is the primary information process-
ing unit of the brain became established (the “neuron
doctrine”; Shepherd, 1992), and the basic principles
of neural communication and processing (action poten-
tials, synapses, neurotransmitters, ion channels, etc.)
were being developed. The dominance of the computer
metaphor approach in cognitive psychology was nev-
ertheless sealed with the publication of the book Per-
ceptrons (Minsky & Papert, 1969), which proved that
some of these simple neuronlike models had significant
computational limitations — they were unable to learn
to solve a large class of basic problems.

While a few hardy researchers continued studying
these neural-network models through the ‘70s (e.g.,
Grossberg, Kohonen, Anderson, Amari, Arbib, Will-
shaw), it was not until the ‘80s that a few critical ad-
vances brought the field back into real popularity. In the
early ‘80s, psychological (e.g., McClelland & Rumel-
hart, 1981) and computational (Hopfield, 1982, 1984)
advances were made based on the activation dynamics
of networks. Then, the backpropagation learning al-
gorithm was rediscovered by Rumelhart, Hinton, and
Williams (1986b) (having been independently discov-
ered several times before: Bryson & Ho, 1969; Wer-
bos, 1974; Parker, 1985) and the Parallel Distributed
Processing (PDP) books (Rumelhart et al., 1986c; Mc-
Clelland et al., 1986) were published, which firmly es-
tablished the credibility of neural network models. Crit-
ically, the backpropagation algorithm eliminated the
limitations of the earlier models, enabling essentially
any function to be learned by a neural network. Another
important advance represented in the PDP books was a
strong appreciation for the importance of distributed
representations (Hinton, McClelland, & Rumelhart,
1986), which have a number of computational advan-
tages over symbolic or localist representations.

Backpropagation led to a new wave of cognitive mod-
eling (which often goes by the name connectionism).
Although it represented a step forward computation-
ally, backpropagation was viewed by many as a step
backward from a biological perspective, because it was
not at all clear how it could be implemented by bio-
logical mechanisms (Crick, 1989; Zipser & Andersen,
1988). Thus, backpropagation-based cognitive model-
ing carried on without a clear biological basis, causing
many such researchers to use the same kinds of argu-
ments used by supporters of the computer metaphor to
justify their approach (i.e., the “computational level”
arguments discussed previously). Some would argue
that this deemphasizing of the biological issues made
the field essentially a reinvented computational cogni-
tive psychology based on “neuronlike” processing prin-
ciples, rather than a true computational cognitive neu-
roscience.

In parallel with the expanded influence of neural net-
work models in understanding cognition, there was a
rapid growth of more biologically oriented modeling.
We can usefully identify several categories of this type
of research. First, we can divide the biological mod-
els into those that emphasize learning and those that
do not. The models that do not emphasize learning
include detailed biophysical models of individual neu-
rons (Traub & Miles, 1991; Bower, 1992), information-
theoretic approaches to processing in neurons and net-
works of neurons (e.g., Abbott & LeMasson, 1993; At-
ick & Redlich, 1990; Amit, Gutfreund, & Sompolin-
sky, 1987; Amari & Maginu, 1988), and refinements
and extensions of the original Hopfield (1982, 1984)
models, which hold considerable appeal due to their
underlying mathematical formulation in terms of con-
cepts from statistical physics. Although this research
has led to many important insights, it tends to make less
direct contact with cognitively relevant issues (though
the Hopfield network itself provides some centrally im-
portant principles, as we will see in chapter 3, and has
been used as a framework for some kinds of learning).

The biologically based learning models have tended
to focus on learning in the early visual system, with an
emphasis on Hebbian learning (Linsker, 1986; Miller,
Keller, & Stryker, 1989; Miller, 1994; Kohonen, 1984;
Hebb, 1949). Importantly, a large body of basic neu-
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roscience research supports the idea that Hebbian-like
mechanisms are operating in neurons in most cogni-
tively important areas of the brain (Bear, 1996; Brown,
Kairiss, & Keenan, 1990; Collingridge & Bliss, 1987).
However, Hebbian learning is generally fairly computa-
tionally weak (as we will see in chapter 5), and suffers
from limitations similar to those of the 1960s genera-
tion of learning mechanisms. Thus, it has not been as
widely used as backpropagation for cognitive modeling
because it often cannot learn the relevant tasks.

In addition to the cognitive (connectionist) and bio-
logical branches of neural network research, consider-
able work has been done on the computational end. It
has been apparent that the mathematical basis of neu-
ral networks has much in common with statistics, and
the computational advances have tended to push this
connection further. Recently, the use of the Bayesian
framework for statistical inference has been applied to
develop new learning algorithms (e.g., Dayan, Hinton,
Neal, & Zemel, 1995; Saul, Jaakkola, & Jordan, 1996),
and more generally to understand existing ones. How-
ever, none of these models has yet been developed to
the point where they provide a framework for learning
that works reliably on a wide range of cognitive tasks,
while simultaneously being implementable by a reason-
able biological mechanism. Indeed, most (but not all)
of the principal researchers in the computational end of
the field are more concerned with theoretical, statistical,
and machine-learning kinds of issues than with cogni-
tive or biological ones.

In short, from the perspective of the computational
cognitive neuroscience endeavor, the field is in a some-
what fragmented state, with modelers in computational
cognitive psychology primarily focused on understand-
ing human cognition without close contact with the
underlying neurobiology, biological modelers focused
on information-theoretic constructs or computationally
weak learning mechanisms without close contact with
cognition, and learning theorists focused at a more com-
putational level of analysis involving statistical con-
structs without close contact with biology or cogni-
tion. Nevertheless, we think that a strong set of cogni-
tively relevant computational and biological principles
has emerged over the years, and that the time is ripe for
an attempt to consolidate and integrate these principles.

1.4 Overview of Our Approach

This brief historical overview provides a useful con-
text for describing the basic characteristics of the ap-
proach we have taken in this book. Our core mech-
anistic principles include both backpropagation-based
error-driven learning and Hebbian learning, the cen-
tral principles behind the Hopfield network for interac-
tive, constraint-satisfaction style processing, distributed
representations, and inhibitory competition. The neu-
ral units in our simulations use equations based di-
rectly on the ion channels that govern the behavior of
real neurons (as described in chapter 2), and our neu-
ral networks incorporate a number of well-established
anatomical and physiological properties of the neocor-
tex (as described in chapter 3). Thus, we strive to es-
tablish detailed connections between biology and cog-
nition, in a way that is consistent with many well-
established computational principles.

Our approach can be seen as an integration of a
number of different themes, trends, and developments
(O’Reilly, 1998). Perhaps the most relevant such devel-
opment was the integration of a coherent set of neural
network principles into the GRAIN framework of Mc-
Clelland (1993). GRAIN stands for graded, random,
adaptive, interactive, (nonlinear) network. This frame-
work was primarily motivated by (and applied to) issues
surrounding the dynamics of activation flow through a
neural network. The framework we adopt in this book
incorporates and extends these GRAIN principles by
emphasizing learning mechanisms and the architectural
properties that support them.

For example, there has been a long-standing desire
to understand how more biologically realistic mecha-
nisms could give rise to error-driven learning (e.g., Hin-
ton & McClelland, 1988; Mazzoni, Andersen, & Jor-
dan, 1991). Recently, a number of different frameworks
for achieving this goal have been shown to be vari-
ants of a common underlying error propagation mecha-
nism (O’Reilly, 1996a). The resulting algorithm, called
GeneRec, is consistent with known biological mecha-
nisms of learning, makes use of other biological proper-
ties of the brain (including interactivity), and allows for
realistic neural activation functions to be used. Thus,
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this algorithm plays an important role in our integrated
framework by allowing us to use the principle of back-
propagation learning without conflicting with the desire
to take the biology seriously.

Another long-standing theme in neural network mod-
els is the development of inhibitory competition mecha-
nisms (e.g., Kohonen, 1984; McClelland & Rumelhart,
1981; Rumelhart & Zipser, 1986; Grossberg, 1976).
Competition has a number of important functional ben-
efits emphasized in the GRAIN framework (which we
will explore in chapter 3) and is generally required for
the use of Hebbian learning mechanisms. It is tech-
nically challenging, however, to combine competition
with distributed representations in an effective manner,
because the two tend to work at cross purposes. Never-
theless, there are good reasons to believe that the kinds
of sparse distributed representations that should in prin-
ciple result from competition provide a particularly ef-
ficient means for representing the structure of the nat-
ural environment (e.g., Barlow, 1989; Field, 1994; Ol-
shausen & Field, 1996). Thus, an important part of our
framework is a mechanism of neural competition that
is compatible with powerful distributed representations
and can be combined with interactivity and learning in
a way that was not generally possible before (O’Reilly,
1998, 1996b).

The emphasis throughout the book is on the facts
of the biology, the core computational principles just
described, which underlie most of the cognitive neu-
ral network models that have been developed to date,
and their interrelationship in the context of a range of
well-studied cognitive phenomena. To facilitate and
simplify the hands-on exploration of these ideas by the
student, we take advantage of a particular implementa-
tional framework that incorporates all of the core mech-
anistic principles called Leabra (local, error-driven and
associative, biologically realistic algorithm). Leabra is
pronounced like the astrological sign Libra, which em-
phasizes the balance between many different objectives
that is achieved by the algorithm.

To the extent that we are able to understand a wide
range of cognitive phenomena using a consistent set of
biological and computational principles, one could con-
sider the framework presented in this book to be a “first
draft” of a coherent framework for computational cog-

nitive neuroscience. This framework provides a useful
consolidation of existing ideas, and should help to iden-
tify the limitations and problems that will need to be
solved in the future.

Newell (1990) provided a number of arguments in fa-
vor of developing unified theories of cognition, many
of which apply to our approach of developing a co-
herent framework for computational cognitive neuro-
science. Newell argued that it is relatively easy (and
thus relatively uninformative) to construct specialized
theories of specific phenomena. In contrast, one en-
counters many more constraints by taking on a wider
range of data, and a theory that can account for this
data is thus much more likely to be true. Given that our
framework bears little resemblance to Newell’s SOAR
architecture, it is clear that just the process of making
a unified architecture does not guarantee convergence
on some common set of principles. However, it is clear
that casting a wider net imposes many more constraints
on the modeling process, and the fact that the single set
of principles can be used to model the wide range of
phenomena covered in this book lends some measure of
validity to the undertaking.

Chomsky (1965) and Seidenberg (1993) also dis-
cussed the value of developing explanatory theories that
explain phenomena in terms of a small set of indepen-
dently motivated principles, in contrast with descriptive
theories that essentially restate phenomena.

1.5 General Issues in Computational Modeling

The preceding discussion of the benefits of a unified
model raises a number of more general issues regarding
the benefits of computational modeling1 as a method-
ology for cognitive neuroscience. Although we think
the benefits generally outweigh the disadvantages, it is
also important to be cognizant of the potential traps and
problems associated with this methodology. We will
just provide a brief summary of these advantages and
problems here.

1We consider both models that are explicitly simulated on a com-
puter and more abstract mathematical models to be computational
models, in that both are focused on the computational processing of
information in the brain.
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Advantages:

Models help us to understand phenomena. A com-
putational model can provide novel sources of insight
into behavior, for example by providing a counter-
intuitive explanation of a phenomenon, or by rec-
onciling seemingly contradictory phenomena (e.g.,
by complex interactions among components). Seem-
ingly different phenomena can also be related to each
other in nonobvious ways via a common set of com-
putational mechanisms.

Computational models can also be lesioned and then
tested, providing insight into behavior following spe-
cific types of brain damage, and in turn, into normal
functioning. Often, lesions can have nonobvious ef-
fects that computational models can explain.

By virtue of being able to translate between func-
tional desiderata and the biological mechanisms that
implement them, computational models enable us to
understand not just how the brain is structured, but
why it is structured in the way it is.

Models deal with complexity. A computational mo-
del can deal with complexity in ways that verbal ar-
guments cannot, producing satisfying explanations of
what would otherwise just be vague hand-wavy ar-
guments. Further, computational models can handle
complexity across multiple levels of analysis, allow-
ing data across these levels to be integrated and re-
lated to each other. For example, the computational
models in this book show how biological properties
give rise to cognitive behaviors in ways that would be
impossible with simple verbal arguments.

Models are explicit. Making a computational model
forces you to be explicit about your assumptions and
about exactly how the relevant processes actually
work. Such explicitness carries with it many poten-
tial advantages.

First, explicitness can help in deconstructing psycho-
logical concepts that may rely on homunculi to do
their work. A homunculus is a “little man,” and many
theories of cognition make unintended use of them
by embodying particular components (often “boxes”)
of the theory with magical powers that end up doing
all the work in the theory. A canonical example is

the “executive” theory of prefrontal cortex function:
if you posit an executive without explaining how it
makes all those good decisions and coordinates all
the other brain areas, you haven’t explained too much
(you might as well just put pinstripes and a tie on the
box).

Second, an explicitly specified computational model
can be run to generate novel predictions. A compu-
tational model thus forces you to accept the conse-
quences of your assumptions. If the model must be
modified to account for new data, it becomes very
clear exactly what these changes are, and the scien-
tific community can more easily evaluate the result-
ing deviance from the previous theory. Predictions
from verbal theories can be tenuous due to lack of
specificity and the flexibility of vague verbal con-
structs.

Third, explicitness can contribute to a greater appre-
ciation for the complexities of otherwise seemingly
simple processes. For example, before people tried to
make explicit computational models of object recog-
nition, it didn’t seem that difficult or interesting a
problem — there is an anecdotal story about a scien-
tist in the ‘60s who was going to implement a model
of object recognition over the summer. Needless to
say, he didn’t succeed.

Fourth, making a computational model forces you to
confront aspects of the problem that you might have
otherwise ignored or considered to be irrelevant. Al-
though one sometimes ends up using simplifications
or stand-ins for these other aspects (see the list of
problems that follows), it can be useful to at least
confront these problems.

Models allow control. In a computational model you
can control many more variables much more pre-
cisely than you can with a real system, and you can
replicate results precisely. This enables you to ex-
plore the causal role of different components in ways
that would otherwise be impossible.

Models provide a unified framework. As we dis-
cussed earlier, there are many advantages to using a
single computational framework to explain a range
of phenomena. In addition to providing a more strin-
gent test of a theory, it encourages parsimony and
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also enables one to relate two seemingly disparate
phenomena by understanding them in light of a
common set of basic principles.

Also, it is often difficult for people to detect incon-
sistency in a purely verbal theory — we have a hard
time keeping track of everything. However, a compu-
tational model reveals inconsistencies quite readily,
because everything has to hang together and actually
work.

Problems:

Models are too simple. Models, by necessity, involve
a number of simplifications in their implementation.
These simplifications may not capture all of the rele-
vant details of the biology, the environment, the task,
and so on, calling into question the validity of the
model.

Inevitably, this issue ends up being an empirical one
that depends on how wrong the simplifying assump-
tions are and how much they influence the results.
It is often possible for a model to make a perfectly
valid point while using a simplified implementation
because the missing details are simply not relevant
— the real system will exhibit the same behavior for
any reasonable range of detailed parameters. Fur-
thermore, simplification can actually be an important
benefit of a model — a simple explanation is easier to
understand and can reveal important truths that might
otherwise be obscured by details.

Models are too complex. On the flip side, other critics
complain that models are too complex to understand
why they behave the way they do, and so they con-
tribute nothing to our understanding of human behav-
ior. This criticism is particularly relevant if a modeler
treats a computational model as a theory, and it points
to the mere fact that the model reproduces a set of
data as an explanation of this data.

However, this criticism is less relevant if the mod-
eler instead identifies and articulates the critical prin-
ciples that underly the model’s behavior, and demon-
strates the relative irrelevance of other factors. Thus,
a model should be viewed as a concrete instantiation

of broader principles, not as an end unto itself, and
the way in which the model “uses” these principles
to account for the data must be made clear. Unfor-
tunately, this essential step of making the principles
clear and demonstrating their generality is often not
taken. This can be a difficult step for complex mod-
els (which is, after all, one of the advantages of mod-
eling in the first place!), but one made increasingly
manageable with advances in techniques for analyz-
ing models.

Models can do anything. This criticism is inevitably
leveled at successful models. Neural network mod-
els do have a very large number of parameters in the
form of the adaptable weights between units. Also,
there are many degrees of freedom in the architec-
ture of the model, and in other parameters that deter-
mine the behavior of the units. Thus, it might seem
that there are so many parameters available that fit-
ting any given set of behavioral phenomena is unin-
teresting. Relatedly, because of the large number of
parameters, sometimes multiple different models can
provide a reasonable account of a given phenomenon.
How can one address this indeterminacy problem to
determine which is the “correct” model?

The general issues of adopting a principled, explana-
tory approach are relevant here — to the extent that
the model’s behavior can be understood in terms of
more general principles, the success of the model
can be attributed to these principles, and not just to
random parameter fitting. Also, unlike many other
kinds of models, many of the parameters in the net-
work (i.e., the weights) are determined by principled
learning mechanisms, and are thus not “free” for the
modeler to set. In this book, most of the models use
the same basic parameters for the network equations,
and the cases where different parameters were used
are strongly motivated.

The general answer to the indeterminacy problem
is that as you apply a model to a wider range of
data (e.g., different tasks, newly discovered biolog-
ical constraints), and in greater detail on each task
(e.g., detailed properties of the learning process), the
models will be much more strenuously tested. It thus
becomes much less likely that two different models
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can fit all the data (unless they are actually isomor-
phic in some way).

Models are reductionistic. One common concern is
that the mechanistic, reductionistic models can never
tell us about the real essence of human cognition. Al-
though this will probably remain a philosophical is-
sue until very large-scale models can be constructed
that actually demonstrate realistic, humanlike cogni-
tion (e.g., by passing the Turing test), we note that re-
constructionism is a cornerstone of our approach. Re-
constructionism complements reductionism by trying
to reconstruct complex phenomena in terms of the re-
duced components.

Modeling lacks cumulative research. There seems to
be a general perception that modeling is somehow
less cumulative than other types of research. This
perception may be due in part to the relative youth
and expansive growth of modeling — there has been
a lot of territory to cover, and a breadth-first search
strategy has some obvious pragmatic benefits for re-
searchers (e.g., “claiming territory”). As the field be-
gins to mature, cumulative work is starting to appear
(e.g., Plaut, McClelland, Seidenberg, & Patterson,
1996 built on earlier work by Seidenberg & McClel-
land, 1989, which in turn built on other models) and
this book certainly represents a very cumulative and
integrative approach.

The final chapter in the book will revisit some of
these issues again with the benefit of what comes in be-
tween.

1.6 Motivating Cognitive Phenomena and Their
Biological Bases

Several aspects of human cognition are particularly sug-
gestive of the kinds of neural mechanisms described in
this text. We briefly describe some of the most impor-
tant of these aspects here to further motivate and high-
light the connections between cognition and neurobiol-
ogy. However, as you will discover, these aspects of
cognition are perhaps not the most obvious to the av-
erage person. Our introspections into the nature of our
own cognition tend to emphasize the “conscious” as-
pects (because this is by definition what we are aware

of), which appear to be serial (one thought at a time)
and focused on a subset of things occurring inside and
outside the brain. This fact undoubtedly contributed to
the popularity of the standard serial computer model for
understanding human cognition, which we will use as a
point of comparison for the discussion that follows.

We argue that these conscious aspects of human cog-
nition are the proverbial “tip of the iceberg” floating
above the waterline, while the great mass of cognition
that makes all of this possible floats below, relatively
inaccessible to our conscious introspection. In the ter-
minology of Rumelhart et al. (1986c), neural networks
focus on the microstructure of cognition. Attempts to
understand cognition by only focusing on what’s “above
water” may be difficult, because all the underwater stuff
is necessary to keep the tip above water in the first place
— otherwise, the whole thing will just sink! To push
this metaphor to its limits, the following are a few illu-
minating shafts of light down into this important under-
water realm, and some ideas about how they keep the
“tip” afloat. The aspects of cognition we will discuss
are:

� Parallelism

� Gradedness

� Interactivity

� Competition

� Learning

Lest you get the impression that computational cog-
nitive neuroscience is unable to say anything useful
about conscious experience, or that we do not address
this phenomenon in this book, we note that chapter 11
deals specifically with “higher-level cognition,” which
is closely associated with conscious experience. There
we present a set of ideas and models that provide the
bridge between the basic mechanisms and principles de-
veloped in the rest of the book, and the more sequential,
discrete, and focused nature of conscious experience.
We view these properties as arising partly due to spe-
cializations of particular brain areas (the prefrontal cor-
tex and the hippocampus), and partly as a result of the
emergent phenomena that arise from the basic proper-
ties of neural processing as employed in a coordinated
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processing system. This chapter emphasizes that there
is really a continuum between what we have been refer-
ring to as conscious and subconscious processing.

1.6.1 Parallelism

Everyone knows the old joke about not being able to
walk and chew gum at the same time. This is a sim-
ple case of processing multiple things in parallel (doing
more than one thing at the same time). In our every-
day experience, there are lots of examples of a situation
where this kind of parallel processing is evident: hav-
ing a conversation while driving or doing anything else
(cooking, eating, watching TV, etc.); hearing your name
at a cocktail party while talking to someone else (the
aptly named “cocktail party effect”); and speaking what
you are reading (reading aloud), to name just a few.

What may come as a surprise to you is that each of
the individual processes from the above examples is it-
self the product of a large number of processes working
in parallel. At the lowest level of analysis, we know that
the human brain contains something like 10 billion neu-
rons, and that each one contributes its little bit to over-
all human cognition. Thus, biologically, cognition must
emerge from the parallel operation of all these neurons.
We refer to this as parallel distributed processing (PDP)
— the processing for any given cognitive function is
distributed in parallel across a large number of indi-
vidual processing elements. This parallelism occurs at
many different levels, from brain areas to small groups
of neurons to neurons themselves.

For example, when you look at a visual scene, one
part of your brain processes the visual information to
identify what you are seeing, while another part identi-
fies where things are. Although you are not aware that
this information is being processed separately, people
who have lesions in one of these brain areas but not the
other can only do one of these things! Thus, the ap-
parently seamless and effortless way in which we view
the world is really a product of a bunch of specialized
brain areas, operating “under the hood” in a tightly co-
ordinated fashion. As this hood is being opened using
modern neuroimaging techniques, the parallelism of the
brain is becoming even more obvious, as multiple brain
areas are inevitably activated in most cognitive tasks.

Figure 1.4: Example of graded nature of categorical repre-
sentations: Is the middle item a cup or a bowl? It could be
either, and lies in between these two categories.

Parallel processing can make it challenging to under-
stand cognition, to figure out how all these subprocesses
coordinate with each other to end up doing something
sensible as a whole. In contrast, if cognition were just
a bunch of discrete sequential steps, the task would be
much easier: just identify the steps and their sequence!
Instead, parallelism is more like the many-body prob-
lem in physics: understanding any pairwise interaction
between two things can be simple, but once you have
a number of these things all operating at the same time
and mutually influencing each other, it becomes very
difficult to figure out what is going on.

One virtue of the approach to cognition presented in
this book is that it is based from the start on parallel
distributed processing, providing powerful mathemati-
cal and intuitive tools for understanding how collective
interactions between a large number of processing units
(i.e., neurons) can lead to something useful (i.e., cogni-
tion).

1.6.2 Gradedness

In contrast with the discrete boolean logic and bi-
nary memory representations of standard computers,
the brain is more graded and analog in nature. We
will see in the next chapter that neurons integrate infor-
mation from a large number of different input sources,
producing essentially a continuous, real valued number
that represents something like the relative strength of
these inputs (compared to other inputs it could have re-
ceived). The neuron then communicates another graded
signal (its rate of firing, or activation) to other neu-
rons as a function of this relative strength value. These
graded signals can convey something like the extent or
degree to which something is true. In the example in
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Figure 1.5: Graded activation values are important for rep-
resenting continuous dimensions (e.g., position, angle, force,
color) by coarse coding or basis-function representations as
shown here. Each of the four units shown gives a graded ac-
tivation signal roughly proportional to how close a point is
along the continuous dimension to the unit’s preferred point,
which is defined as the point where it gives its maximal re-
sponse.

figure 1.4, a neuron could convey that the first object
pictured is almost definitely a cup, whereas the second
one is maybe or sort-of a cup and the last one is not
very likely to be a cup. Similarly, people tend to classify
things (e.g., cup and bowl) in a graded manner accord-
ing to how close the item is to a prototypical example
from a category (Rosch, 1975).

Gradedness is critical for all kinds of perceptual and
motor phenomena, which deal with continuous underly-
ing values like position, angle, force, and color (wave-
length). The brain tends to deal with these continua in
much the same way as the continuum between a cup
and a bowl. Different neurons represent different “pro-
totypical” values along the continuum (in many cases,
these are essentially arbitrarily placed points), and re-
spond with graded signals reflecting how close the cur-
rent exemplar is to their preferred value (see figure 1.5).
This type of representation, also known as coarse cod-
ing or a basis function representation, can actually give
a precise indication of a particular location along a con-
tinuum, by forming a weighted estimate based on the
graded signal associated with each of the “prototypical”
or basis values.

Another important aspect of gradedness has to do
with the fact that each neuron in the brain receives in-
puts from many thousands of other neurons. Thus, each
individual neuron is not critical to the functioning of
any other — instead, neurons contribute as part of a
graded overall signal that reflects the number of other
neurons contributing (as well as the strength of their in-
dividual contributions). This fact gives rise to the phe-

nomenon of graceful degradation, where function de-
grades “gracefully” with increasing amounts of damage
to neural tissue. Simplistically, we can explain this by
saying that removing more neurons reduces the strength
of the signals, but does not eliminate performance en-
tirely. In contrast, the CPU in a standard computer will
tend to fail catastrophically when even one logic gate
malfunctions.

A less obvious but equally important aspect of grad-
edness has to do with the way that processing happens
in the brain. Phenomenologically, all of us are probably
familiar with the process of trying to remember some-
thing that does not come to mind immediately — there
is this fuzzy sloshing around and trying out of different
ideas until you either hit upon the right thing or give
up in frustration. Psychologists speak of this in terms
of the “tip-of-the-tongue” phenomenon, as in, “its just
at the tip of my tongue, but I can’t quite spit it out!”
Gradedness is critical here because it allows your brain
to float a bunch of relatively weak ideas around and see
which ones get stronger (i.e., resonate with each other
and other things), and which ones get weaker and fade
away. Intuition has a similar flavor — a bunch of rela-
tively weak factors add up to support one idea over an-
other, but there is no single clear, discrete reason behind
it.

Computationally, these phenomena are all examples
of bootstrapping and multiple constraint satisfac-
tion. Bootstrapping is the ability of a system to “pull
itself up by its bootstraps” by taking some weak, in-
complete information and eventually producing a solid
result. Multiple constraint satisfaction refers to the abil-
ity of parallel, graded systems to find good solutions to
problems that involve a number of constraints. The ba-
sic idea is that each factor or constraint pushes on the
solution in rough proportion to its (graded) strength or
importance. The resulting solution thus represents some
kind of compromise that capitalizes on the convergence
of constraints that all push in roughly the same direc-
tion, while minimizing the number of constraints that
remain unsatisfied. If this sounds too vague and fuzzy
to you, don’t worry — we will write equations that ex-
press how it all works, and run simulations showing it
in action.
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1.6.3 Interactivity

Another way in which the brain differs from a standard
serial computer is that processing doesn’t just go in only
one direction at a time. Thus, not only are lots of things
happening at the same time (parallelism), but they are
also going both forward and backward too. This is
known as interactivity, or recurrence, or bidirectional
connectivity. Think of the brain as having hierarchically
organized processing areas, so that visual stimuli, for
example, are first processed in a very simple, low-level
way (e.g., in terms of the little oriented lines present in
the image), and then in subsequent stages more sophis-
ticated features are represented (combinations of lines,
parts, objects, configurations of objects, etc.). This is at
least approximately correct. In such a system, interac-
tivity amounts to simultaneous bottom-up and top-down
processing, where information flows from the simple
to the more complex, and also from the more complex
down to the simple. When combined with parallelism
and gradedness, interactivity leads to a satisfying solu-
tion to a number of otherwise perplexing phenomena.

For example, it was well documented by the 1970s
that people are faster and more accurate at identifying
letters in the context of words than in the context of ran-
dom letters (the word superiority effect). This finding
was perplexing from the unidirectional serial computer
perspective: Letters must be identified before words can
be read, so how could the context of a word help in the
identification of a letter? However, the finding seems
natural within an interactive processing perspective: In-
formation from the higher word level can come back
down and affect processing at the lower letter level.
Gradedness is critical here too, because it allows weak,
first-guess estimates at the letter level to go up and ac-
tivate a first-guess at the word level, which then comes
back down and resonates with the first-guess letter es-
timates to home in on the overall representation of the
word and its letters. This explanation of the word supe-
riority effect was proposed by McClelland and Rumel-
hart (1981). Thus, interactivity is important for the
bootstrapping and multiple constraint satisfaction pro-
cesses described earlier, because it allows constraints
from all levels of processing to be used to bootstrap and
converge on a good overall solution.

Figure 1.6: Ambiguous letters can be disambiguated in the
context of words (Selfridge, 1955), demonstrating interactiv-
ity between word-level processing and letter-level processing.

There are numerous other examples of interactivity
in the psychological literature, many of which involve
stimuli that are ambiguous in isolation, but not in con-
text. A classic example is shown in figure 1.6, where the
words constrain an ambiguous stimulus to look more
like an H in one case and an A in the other.

1.6.4 Competition

The saying, “A little healthy competition can be a good
thing,” is as true for the brain as it is for other domains
like economics and evolution. In the brain, competi-
tion between neurons leads to the selection of certain
representations to become more strongly active, while
others are weakened or suppressed (e.g., in the context
of bootstrapping as described above). In analogy with
the evolutionary process, the “survival of the fittest”
idea is an important force in shaping both learning and
processing to encourage neurons to be better adapted
to particular situations, tasks, environments, and so on.
Although some have argued that this kind of competi-
tion provides a sufficient basis for learning in the brain
(Edelman, 1987), we find that it is just one of a number
of important mechanisms. Biologically, there are ex-
tensive circuits of inhibitory interneurons that provide
the mechanism for competition in the areas of the brain
most central to cognition.

Cognitively, competition is evident in the phe-
nomenon of attention, which has been most closely as-
sociated with perceptual processing, but is clearly ev-
ident in all aspects of cognition. The phenomenon of
covert spatial attention, as demonstrated by the Pos-
ner task (Posner, 1980) is a good example. Here,
one’s attention is drawn to a particular region of visual
space by a cue (e.g., a little blinking bar on a computer
screen), and then another stimulus (the target) is pre-
sented shortly thereafter. The target appears either near
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the cue or in the opposite region of space, and the sub-
ject must respond (e.g., by pressing a key on the com-
puter) whenever they detect the onset of the target stim-
ulus. The target is detected significantly faster in the
cued location, and significantly slower in the noncued
location, relative to a baseline of target detection with-
out any cues at all. Thus, the processing of the cue
competes with target detection when they are in dif-
ferent locations, and facilitates it when they are in the
same location. All of this happens faster than one can
move one’s eyes, so there must be some kind of internal
(“covert”) attention being deployed as a result of pro-
cessing the cue stimulus. We will see in section 8.5 that
these results, and several other related ones, can be ac-
counted for by a simple model that has competition be-
tween neurons (as mediated by the inhibitory interneu-
rons).

1.6.5 Learning

The well-worn nature versus nurture debate on the de-
velopment of human intelligence is inevitably decided
in terms of both. Thus, both the genetic configuration
of the brain and the results of learning make important
contributions. However, this fact does nothing to ad-
vance our understanding of exactly how genetic con-
figuration and learning interact to produce adult human
cognition. Attaining this understanding is a major goal
of computational cognitive neuroscience, which is in
the unique position of being able to simulate the kinds
of complex and subtle interdependencies that can exist
between certain properties of the brain and the learning
process.

In addition to the developmental learning process,
learning occurs constantly in adult cognition. Thus, if
it were possible to identify a relatively simple learning
mechanism that could, with an appropriately instanti-
ated initial architecture, organize the billions of neurons
in the human brain to produce the whole range of cog-
nitive functions we exhibit, this would obviously be the
“holy grail” of cognitive neuroscience. For this reason,
this text is dominated by a concern for the properties of
such a learning mechanism, the biological and cogni-
tive environment in which it operates, and the results it
might produce. Of course, this focus does not diminish

the importance of the genetic basis of cognition. In-
deed, we feel that it is perhaps only in the context of
such a learning mechanism that genetic parameters can
be fully understood, much as the role of DNA itself in
shaping the phenotype must be understood in the con-
text of the emergent developmental process.

A consideration of what it takes to learn reveals an
important dependence on gradedness and other aspects
of the biological mechanisms discussed above. The
problem of learning can be considered as the problem of
change. When you learn, you change the way that infor-
mation is processed by the system. Thus, it is much eas-
ier to learn if the system responds to these changes in a
graded, proportional manner, instead of radically alter-
ing the way it behaves. These graded changes allow the
system to try out various new ideas (ways of process-
ing things), and get some kind of graded, proportional
indication of how these changes affect processing. By
exploring lots of little changes, the system can eval-
uate and strengthen those that improve performance,
while abandoning those that do not. Thus, learning
is very much like the bootstrapping phenomenon de-
scribed with respect to processing earlier: both depend
on using a number of weak, graded signals as “feelers”
for exploring possibly useful directions to proceed fur-
ther, and then building on those that look promising.

None of this kind of bootstrapping is possible in a
discrete system like a standard serial computer, which
often responds catastrophically to even small changes.
Another way of putting this is that a computer program
typically only works if everything is right — a program
that is missing just one step typically provides little in-
dication of how well it would perform if it were com-
plete. The same thing is true of a system of logical re-
lationships, which typically unravels into nonsense if
even just one logical assertion is incorrect. Thus, dis-
crete systems are typically too brittle to provide an ef-
fective substrate for learning.

However, although we present a view of learning that
is dominated by this bootstrapping of small changes
idea, other kinds of learning are more discrete in na-
ture. One of these is a “trial and error” kind of learning
that is more familiar to our conscious experience. Here,
there is a discrete “hypothesis” that governs behavior
during a “trial,” the outcome of which (“error”) is used
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to update the hypothesis next time around. Although
this has a more discrete flavor, we find that it can best
be implemented using the same kinds of graded neu-
ral mechanisms as the other kinds of learning (more on
this in chapter 11). Another more discrete kind of learn-
ing is associated with the “memorization” of particular
discrete facts or events. It appears that the brain has a
specialized area that is particularly good at this kind of
learning (called the hippocampus), which has properties
that give its learning a more discrete character. We will
discuss this type of learning further in chapter 9.

1.7 Organization of the Book

This book is based on a relatively small and coherent set
of mechanistic principles, which are introduced in part I
of the text, and then applied in part II to understanding
a range of different cognitive phenomena. These prin-
ciples are implemented in the Leabra algorithm for the
exploration simulations. These explorations are woven
throughout the chapters where the issues they address
are discussed, and form an integral part of the text. To
allow readers to get as much as possible out of the book
without doing the simulations, we have included many
figures and have carefully separated the procedural as-
pects from the content using special typesetting.

Because this book emphasizes the linkages and in-
teractions between biology, computational principles,
and a wide variety of human cognitive phenomena, we
cannot provide exhaustive detail on all potentially rel-
evant aspects of neuroscience, computation, or cogni-
tion. We do attempt to provide references for deeper
exploration, however. Relatedly, all of the existing sup-
porting arguments and details are not presented for each
idea in this book, because in many cases the student
would likely find this tedious and relatively uninfor-
mative. Thus, we expect that expert neuroscientists,
computational/mathematical researchers, and cognitive
psychologists may find this book insufficiently detailed
in their area of expertise. Nevertheless, we provide a
framework that spans these areas and is consistent with
well-established facts in each domain.

Thus, the book should provide a useful means for ex-
perts in these various domains to bridge their knowl-
edge into the other domains. Areas of current debate

in which we are forced to make a choice are presented
as such, and relevant arguments and data are presented.
We strive above all to paint a coherent and clear pic-
ture at a pace that moves along rapidly enough to main-
tain the interest (and fit within the working memory
span) of the reader. As the frames of a movie must fol-
low in rapid enough succession to enable the viewer to
perceive motion, the ideas in this book must proceed
cleanly and rapidly from neurobiology to cognition for
the coherence of the overall picture to emerge, instead
of leaving the reader swimming in a sea of unrelated
facts.

Among the many tradeoffs we must make in accom-
plishing our goals, one is that we cannot cover much of
the large space of existing neural network algorithms.
Fortunately, numerous other texts cover a range of com-
putational algorithms, and we provide references for the
interested reader to pursue. Many such algorithms are
variants on ideas covered here, but others represent dis-
tinct frameworks that may potentially provide impor-
tant principles for cognition and/or neurobiology. As
we said before, it would be a mistake to conclude that
the principles we focus on are in any way considered
final and immutable — they are inevitably just a rough
draft that covers the domain to some level of satisfaction
at the present time.

As the historical context (section 1.3) and overview
of our approach (section 1.4) sections made clear, the
Leabra algorithm used in this book incorporates many
of the important ideas that have shaped the history of
neural network algorithm development. Throughout the
book, these principles are introduced in as simple and
clear a manner as possible, making explicit the histor-
ical development of the ideas. When we implement
and explore these ideas through simulations, the Leabra
implementation is used for coherence and consistency.
Thus, readers acquire a knowledge of many of the stan-
dard algorithms from a unified and integrated perspec-
tive, which helps to understand their relationship to one
another. Meanwhile, readers avoid the difficulties of
learning to work with the various implementations of
all these different algorithms, in favor of investing ef-
fort into fully understanding one integrated algorithm
at a practical hands-on level. Only algebra and simple
calculus concepts, which are reviewed where necessary,
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are required to understand the algorithm, so it should be
accessible to a wide audience.

As appropriate for our focus on cognition (we con-
sider perception to be a form of cognition), we empha-
size processing that takes place in the human or mam-
malian neocortex, which is typically referred to simply
as the cortex. This large, thin, wrinkled sheet of neu-
rons comprising the outermost part of the brain plays
a disproportionally important role in cognition. It also
has the interesting property of being relatively homoge-
neous from area to area, with the same basic types of
neurons present in the same basic types of connectivity
patterns. This is principally what allows us to use a sin-
gle type of algorithm to explain such a wide range of
cognitive phenomena.

Interactive, graphical computer simulations are used
throughout to illustrate the relevant principles and how
they interact to produce important features of human
cognition. Detailed, step-by-step instructions for ex-
ploring these simulations are provided, together with a
set of exercises for the student that can be used for eval-
uation purposes (an answer key is available from the
publisher). Even if you are not required to provide a
written answer to these questions, it is a good idea to
look them over and consider what your answer might
be, because they do raise important issues. Also, the
reader is strongly encouraged to go beyond the step-
by-step instructions to explore further aspects of the
model’s behavior.

In terms of the detailed organization, part I covers
Basic Neural Computational Mechanisms across five
chapters (Individual Neurons, Networks of Neurons, and
three chapters on Learning Mechanisms), and part II
covers Large-Scale Brain Area Organization and Cog-
nitive Phenomena across five chapters (Perception and
Attention, Memory, Language, and Higher-Level Cog-
nition, with an introductory chapter on Large-Scale
Brain Area Functional Organization). Each chapter be-
gins with a detailed table of contents and an introduc-
tory overview of its contents, to let the reader know the
scope of the material covered. When key words are de-
fined or first used extensively, they are highlighted in
bold font for easy searching, and can always be found
in the index. Simulation terms are in the font as
shown.

,! Procedural steps to be taken in the explorations are
formatted like this, so it is easy to see exactly what you
have to do, and allows readers who are not running the
model to skip over them.

Summaries of the chapters appear at the end of each
one (this chapter excluded), which encapsulate and in-
terrelate the contents of what was just read. After that,
a list of references for further reading is provided. We
hope you enjoy your explorations!

1.8 Further Reading

The original PDP (parallel-distributed processing) vol-
umes, though somewhat dated, remain remarkably rel-
evant: Rumelhart, McClelland, and PDP Research
Group (1986c), McClelland, Rumelhart, and PDP Re-
search Group (1986).

An excellent collection of the important early pa-
pers in neural networks can be found in Anderson and
Rosenfeld (1988).

For other views on the basic premises of cognitive
neuroscience and levels of analysis, we suggest: Marr
(1982), chapter 1; Sejnowski and Churchland (1989);
Shallice (1988), chapter 2; Posner, Inhoff, Friedrich,

and Cohen (1987); Farah (1994); Kosslyn (1994).
For a developmentally-focused treatment of compu-

tational neural network modeling, see: Elman et al.
(1996) and Plunkett and Elman (1997).

For other treatments of computational modeling us-
ing artificial neural networks, see: Hertz, Krogh, and
Palmer (1991), Ballard (1997), Anderson (1995), Mc-
Cleod, Plunkett, and Rolls (1998), and Bishop (1995).

For an encyclopedic collection of computational neu-
ral network models and more general brain-level theo-
ries, see Arbib (1995).


