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What makes a language a natural language? One long-standing and fruitful 
approach holds that a language is natural just in case it is learnable.

Antedating this focus on learnability , though, was a mathematically grounded
taxonomy that sought to classify the power of grammatical theories via the
string sets (languages) the theories could generate- their weak generative capacity

. Weak generative capacity analysis can sometimes identify inadequate

grammatical theories: for example, since most linguists would say that any
natural grammar must be able to generate sentences of unbounded length, we
can disqualify any grammatical system that generates only finite languages.
For the most part , formal grammatical analysis has remained firmly wed-
ded to weak generative capacity and the Chomsky hierarchy of finite-state,
context-free, context-sensitive, and type-O languages. Linguists still quarrel
about whether the set of English sentences (regarded just as a set of strings)
is context-free or not , or whether one or another formalism can generate the
strictly context-sensitive string pattern xx .

This book aims to update that analytic tradition by using a more recent
, powerful, and refined classification tool of modern computer science:

computational complexity theory. It explains what complexity theory is and
how to use it to analyze several current grammatical formalisms, ranging from
lexical-functional grammar, to morphological analysis systems, to generalized
phrase structure grammar; and it outlines its strengths and limits .!

lOther recent formal approach es also seek alternatives to weak generative capacity analysis
. For example, Rounds, Manaster-Ramer, and Friedman (1986) propose that natural

language grammars cannot be "too large" in the sense that the number of sentences they
can generate must be substantially larger than the number of nonterminals they contain.
This formal constraint, plainly intertwined with the issues of succinctness and learnability
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1.1 Complexity Theory as a Theoretical
Probe

Complexity theory studies the computational resources- usually time
and memory space- needed to solve particular problems , abstracting away
from the details of the algorithm and machine used to solve them . It gives
us robust classification schemes- complexity classes- telling us that certain

problems are likely or certain to be computationally tractable or intractable -
where , roughly speaking , "tractable " means always solvable in a reasonable

amount of time and / or space on an ordinary computer . It works by comparing
new problems to problems already known to be tractable or intractable . (Section 

1.2 below says more , still informally , about what we mean by a tractable

or intractable problem and how we show a new problem to be tractable or
intractable . Chapter 2 gives a more formal account .)

Importantly , this classification holds regardless of what algorithm we
use or how many top- notch programmers we hire - in other words , a hard

problem can 't be switched into an easier complexity class by using a clever
algorithm - and it holds regardless of whether we use a modest PC or a much
faster mainframe computer . Abstracting away from computer and algorithm

:ietails seems especially apt for consideration of linguistic processing , since

for the most part we don ' t know what algorithm or computing machinery
the brain uses, but we do know - with the linguist 's help - something about
the abstract natural language problems that language processing mechanisms

must grapple with .2

If we ' re investigating the processing difficulty of grammatical problems , complexity 

theory offers four main advantages over weak generative capacity analYSIS

:

. It is more direct and more refined . If we want to know something about

how long it takes to process a grammatical problem on a computer ,

then that ' s what complexity theory tells us , without going through any

intermediate steps linking weak generative capacity to time or space use .

so dear to the linguist ' s heart , may also yield interesting results , yet is quite distinct from

the results of conventional complexity theory .

2Given complexity theory ' s focus on " ordinary " computers , those interested in the impact 

of parallel computation on our results should consult section 1 .4 .5 at the end of this

chapter and section 2 .4 in the next .
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further , we can set up many more than just the four rough categories of
the Chomsky hierarchy - and that 's useful for probing the complexity of
systems that don 't fit neatly into the finite -state - context -free- context -

sensitive picture . (See section 1.2 and chapters 2 and 8 for examples.)

. It is more accurate . Weak generative capacity results can give a misleading 
picture of processing difficulty . For example , just because a

grammatical system uses finite -state machinery does not guarantee that

it can be efficiently processed; chapter 5 shows why . Similarly , strictly
context -free generative power does not guarantee efficient parsability
(see chapters 7 and 8).

. It is more robust . We have already mentioned the theory 's independence
from details of computer model and algorithm . But it can also tell us

something about the beneficial effects of parallel computation , if any,
without having to wait to buy a parallel computer (see sections 1.4 and
2.4).

. It is more helpful . Since complexity analysis can tell us why a grammatical 
formalism is too complex , it can also sometimes tell us how to

make it less complex . Chapters 8 and 9 show how to use complexity
theory to revise generalized phrase structure grammar so as to make it

much more tractable (though still potentially difficult ).

But some might question why we need this computational armament at all .

Isn 't it enough just to pick grammatical machinery that has more than enough
power to describe natural languages , and and then go out and use it ? One

reason we need help from complexity theory and other tools is that using a
powerful metalanguage to express grammars - whether it 's drawn from mathematics 

or plain English - doesn 't give us much guidance toward writing down

only natural grammars instead of unwittingly composing unnatural ones.

To take a standard linguistic example , suppose we use the language of
context -free grammars as our descriptive machinery . Then we can write down
natural grammar rules for English like these:

VP- + Verb NP PP - +Prep NP

but we can also write down the unnatural rules ,

VP - + Noun NP PP - + VP Noun PP

In this case, the generality of the machinery blinds us to some of the natural

structure of the problem - we miss the fact that every phrase of type X has
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a distinguished head of the same type, with verb phrases headed by verbs,
prepositional phrases by prepositions, and so forth (as expressed in many
modern frameworks by X theory). For linguistic purposes, a better framework
would yield only the natural grammars, steering us clear of such errors.

We should like to enlist complexity theory in this same cause. Implicitly,
our faith in complexity analysis boils down to this: complexity analysis tells
us why problems are easy or hard to solve, hence giving us insight into the
information processing structure of grammatical systems. It can help pinpoint 

the exact way in which our formalized systems seem to allow too much
latitude- for instance, identifying the parts of our apparatus that let us describe 

languages that seem more difficult to process than natural languages.
Especially deserving of closer scrutiny are formal devices that can express
problems requiring blind, exhaustive, and computationally intractable search
for their solution. Informally, such computationally difficult problems don't
have any special structure that would support an efficient solution algorithm,
so there's little choice but brute force, trying every possible answer combination 

until we find one that works. Thus, it 's particularly important to
examine features of a framework that allow such problems to beencoded-
making sure there's not some special structure to the natural problem that's
been missed in the formalism.

In fact, problems that require combinatorial search might well be char-
acterized as unnaturally hard problems.3 While there is no a priori reason
why a theory of grammatical competence must guarantee efficient processing

, there is every reason to believe that natural language has an intricate
computational structure that is not reflected in combinatorial search methods

. Thus, a formalized problem that requires such search probably leaves
unmentioned some constraints of the natural problem. We'll argue in chapter 

6 that the best grammatical framework will sometimes leave a residue of
worst-case computational difficulty, so hard problems don't automatically indicate 

an overly general formalism; like other tools, complexity results should
be interpreted intelligently, in the light of other evidence. But even when
the framework must allow hard problems, we believe the intractability still
warns that we may have missed some of the particular structure of natural
language- and it can guide us toward what and where. Performance methods
may well assume special properties of natural language beyond those that are
guaranteed by the grammatical formalism, hence succeeding when the special

3Such problems are difficult even if one allows a physically realistic amount of parallel
computation; see section 1.4.5.
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properties hold , but failing in harder situations where they do not . In chapters 
5 and 6 we explore such a possibility (among other topics ) , sketching

a processing method that assumes natural problems typically have a more
modular and local structure than computationally difficult problems .

To consider a simple example here , chapter 5 studies the dictionary -
retrieval component of a natural language processing system : for instance , a

surface form like tries may be recovered as the underlying form try +s. We
can solve this abstract problem by modeling possible spelling changes with

a set of finite -state transducers that map between surface and underlying
forms . However , this two-level model can demand exhaustive search. For

example , when processing the character sequences p i . . ." left -to- right , the
two- level system must decide whether or not to change the surface " i " to an

underlyingy " , guessing that underlying word is something like spy +s. But
this guess could go awry because the underlying word could be spiel , and
when we look closely at the range of problems allowed by the two- level model ,
full combinatorial search- guessing and backtracking - seems to be required .
In fact , chapter 5 shows that the backtracking isn 't just symptomatic of a
bad algorithm for implementing this model ; in the general case, the two- level

model is computationally intractable , independent of algorithm and computer
design .

In practice , two- level processing for natural languages does involve
search, but less search than we find when we run the reduction that demonstrates 

possible intractability . We should therefore ask whether there is something 
special about the structure of the natural problems that makes them

more manageable than the formal model would suggest- something that the
model fails to capture , hence allowing unnaturally difficult situations to arise.

Chapter 6 suggests that this might be so, for preliminary results indicate that

a weaker but noncombinatorial processing method - constraint propagation -
may suffice for natural spelling -change systems . The constraint -propagation
method assumes natural spelling changes have a local and separable character
that is not implied in the two- level model .

If our approach is on the right track , then a grammatical formalism that

in effect poses brute -force problems should make us suspicious ; complexity
analysis gives us reason to suspect that the special structure of the human

linguistic system is not being exploited . Then complexity analysis may help
pinpoint the computational sore spots that deserve special attention , suggesting 

additional restrictions for the grammatical systems or alternative , approx -
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imate solution methods. Chapter 4 applies complexity-theory diagnostic aids
to help repair lexical-functional grammar; as we mentioned earlier, chapters 8
and 9 do the same for generalized phrase structure grammar.

But when linguistic scrutiny bears out the basic validity of the formal 
system- when the grammatically defined natural problems are just plain

hard- then the complexity diagnosis suggests where to seek performance constraints
. Chapter 3 gives an example based on a simple grammatical system

that contains just the machinery of agreement (like the agreement between
a noun phrase subject and a verb in English) and lexical ambiguity (in English

, a word such as kiss can be either a noun or a verb). This system is
computationally intractable , but in a way that 's roughly reflected in human
performance: sentences that lack surface information of categorial features
are hard to process, as we see from the sentence BUFFALO BUFFALO BUF-
FALO. We mention this example again in chapters 3 and 6.

Finally , if a grammatical problem is easy, then complexity analysis again
can tell us why that 's so, based on the structure of the problem rather than the
particular algorithms we've picked for solving the problem; it can help tell us
why our fast algorithms work fast. In a similar way, it can help us recognize
systems in which fast processing is founded on unrealistic restrictions (for
instance, perhaps a prohibition against lexical ambiguity ).

To give the reader a further glimpse of our methods and results, the
rest of this chapter quickly and informally surveys what complexity theory is
about, how we apply it to actual grammatical systems, and what its limits are.
The next chapter takes a more detailed and thorough look at the connection
between complexity theory and natural language.

Section 1.2 introduces a few core concepts from complexity theory: it
identifies the class P as the class of tractable problems, includes the hardest

problems of the class )/ P in the class of intractable problems, and briefly
discuss es how we can use representative problems in each class to tell us
something about the complexity of new problems. Section 1.3 illustrates how
we apply complexity theory techniques to grammatical systems by analyzing
an artificially simplified grammatical formalism. Section 1.4 briefly reviews
the virtues and limits of complexity analysis for cognitive science, addressing
questions about idealization, compilation effects, and parallel computation .
Section 1.5 concludes the chapter with an outline of the rest of the book,
highlighting our main results.
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1.2

We know that some problems can be solved quickly on ordinary computers ,

while others cannot be. Complexity theory captures our intuitions by defining
classes that lump together entire sets of problems that are easy to solve or
not .

1.2.1 Problem VB. algorithm complexity

We have said several times that we aim to study problem complexity ,
not algorithm complexity , because it 's possible - even easy- to write a slow

algorithm for an easy problem , and this could be seriously misleading . So
let us drive home this distinction early on , before moving on to problem
complexity analysis itself .

Consider the problem of searching a list of alphabetically sorted names
to retrieve a particular one. Many algorithms solve this problem , but some

of them are more efficient than others . For example , if we're looking for
"Bloomfield ," we could simply scan through our list starting with the "A "
words , comparing the name we want against the names we see until we hit

the right name . In the worst case we might have to search all the way through
to the end to find the one we're looking for - for a list of n names, this would
be at worst proportional to n basic comparisons .

This smacks of brute -force search, though it 's certainly not the exponential 
search we're usually referring to when we mention brute -force methods .

Another algorithm does much better by exploiting the structure of the problem
. If we look at the middle name in our list - say, "Je sperse n" - we can

compare it to our target name . If that name ranks alphabetically below our
target , then we repeat our procedure by taking just the top half of our list of

names, finding the middle in that new halved list , and comparing it against
our target . (If the name ranks alphabetically above our target , then we repeat 

our search in the bottom half of the list .) It 's easy to see that in the

worst case this binary search algorithm makes fewer comparisons - we can

keep halving things only so far before we get a lone name in each half , and

the number of splits is roughly proportional to log2 n . This second algorithm
exploits the special structure of our alphabetically sorted list to work better

than blind search. In this case then , complexity lies in the algorithm , not in
the problem .
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1.2 .2 Easy and hard problems ; P and NP

With the algorithm - problem distinction behind us, we can move on
to look at problem complexity . Easy-to- solve problems include alphabetical
sorting , finite -state parsing , and context -free language recognition , among
others . For example , context -free language recognition takes at worst time

proportional to Ix13, where Ixl is the number of words in the sentence, if
we use a standard context -free recognition algorithm like CKY (Hopcroft

and Ullman 1979) . Indeed , all of the above-mentioned problems take time
proportional to n , or log nn log n , or n3, where n measures the "size" of the

problem to solve. More generally , all such problems take at most some polynomial 
amount of time to solve on a computer - at most time proportional

to nj , for some integer j . Complexity theory dubs this the class P : the class

of problems solvable (by some algorithm or other ) in polynomial time on an
ordinary computer . (Recall that an algorithm 's complexity is to be distinguished 

from a problem 's complexity : it 's possible to write a bad alphabetic

sorting algorithm that takes more than polynomial time , yet the sorting problem 
is in P . Significantly , it 's not possible to write a preternaturally good

algorithm that takes less time in the worst case than the complexity of the
problem would indicate .)

Still other problems seem to take longer to solve no matter what algorithm 
one tries . Consider the following example , known as Satisfiability or

SAT : Given an arbitrary Boolean formula like the following :

(x V Y V z) A (Y V z V u) A (x V z V u) A (x V Y V u)

is there an assignment of true and false to the variables such that the whole

expression is true ? In this case we say that the formula is satisfiable , otherwise
, unsatisfiable . Note that A is logical and while V is logical or , so every

clause in parentheses has to have at least one literal that is true , where x is
true if x is false , and vice -versa .4

4 We assume that satisfiability formulas are in conjunctive normal form , stated as a co 1-
lection of clauses each of which contains any number of negated or un negated variables

(so-called l* ~ ) in the form x or x . Each clause must contain at least one literal that is
true . A slightly more general version of Boolean expressions is sometimes used, for example

, in Hopcroft and Ullman (1979:325) . It is easy to show that the more restricted version
entails no loss of generality ; again see Hopcroft and Ullman (1979:328- 330) . Our example
illustrates a particularly restricted version of satisfiability where there are exactly three
so- called literals per clause , dubbed 9SAT . As we shall see in chapter 2, this restricted
problem is just as hard as the unrestricted version of satisfiability , where there are any
number of literals per clause .
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Figure 1 . 1 : Exponential growth limits solvable problem sizes . A cubic - time algorithm 

( second line in the table ) can solve problems of size 100 in a second , while

a corresponding exponential time algorithm ( last line ) would take far too long .

The entries in the table , modeled after Garey and Johnson ( 1979 ) , assume that

each algorithm instruction takes 1 microsecond , but the shape of the curve relating

problem size to processing time is more important than the exact time values .

There ' s good reason to identify SAT as a prototypical computationally

intractable problem . Let us see why . If you try to solve this example in your

head , you ' ll quickly note that you mentally run through every possible combination 

of assignments , testing each in turn . With n binary - valued variables

in an arbitrary formula , there are 2n possible truth - value assignments to test .

In fact , every known algorithm for solving this problem takes at least time

proportional to 2n , or exponential time , where the number of variables n can

obviously rise proportionally with length of the tested input formula .

Figure 1 . 1 , adapted from Garey and Johnson ( 1979 ) , shows why we

say that P corresponds to the class of computationally tractable problems ,

while problems for which only exponential solution algorithms are known -

including SAT - are intractable . Assuming that a solution algorithm ' s run -

ning time is proportional to the problem size to be solved , the first line in

the table shows that if an algorithm takes time proportional to n3 , then even

large - sized problems can be done in a second or less . But we can ' t wait

around for an exponential - time algorithm working on a problem of the same

SIze .

Of course , there are familiar pitfalls in comparing exponential time

and polynomial time algorithms - nl0ooo can be quite slow , particularly for

smaller values of n , when compared to 2n or 2o . 01n . But in fact it turns out

that this bifurcation fares quite well in classifying naturally occurring com -

Problem size , n

Time

complexity 10 50 100
.001 . 125 1 .0

n3 second second second

.001 35 .7 1015

2n second years centuries
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Problems with no effic solution1.2.3

puter science problems ; if a problem is efficiently solvable at all , it will in
general be solvable by a polynomial algorithm of low degree, and this seems
to hold for linguistically relevant problems as well .5

What class of problems does SAT fall into , then ? The difficult part
about SAT seems to be guessing all the possible truth assignments - 2n of

them , for n distinct variables . Suppose we had a computer that could try
out all these possible combinations , in parallel , without getting "charged" for
this extra ability . We might imagine such a computer to have a "guessing"

component (a factory -added option ) that writes down a guess- just a list -
of the true and false assignments . Given any SAT formula , we could verify

quite quickly whether any guess works : just scan the formula , checking the
tentative assignment along the way. It should be clear that checking a guess
will not take very long , proportional to the length of the tested formula (we
will have to scan down our guess list a few times , but nothing worse than

that ; since the list is proportional to n in length , to be conservative we could

say that we will have to scan it n times , for a total time proportional to n2 ).
In short , checking or verifying one guess will take no more than polynomial
time and so is in P , and tractable .

Therefore , our hypothetical computer that can tryout all guesses in

parallel , without being charged for guessing wrong , would be able to solve
SAT in polynomial time . Such a computer is called nondeterministic (for a
more precise definition , see chapter 2, section 2.1) , and the class of problems
solvable by a Nondeterministic computer in Polynomial time is dubbed NP .

Plainly , all the problems in P are also in NP , because a problem solvable 
in deterministic polynomial time can be solved by our guessing computer

simply by "switching off " the guessing feature . But SAT is in NP and not
known to be in P . For the practically minded , this poses a problem , because

our hypothetical guessing computer doesn't really exist ; all we have are deterministic 
computers , fast or slow , and with the best algorithms we know these

all take exponential time to solve general SAT instances . (See section 1.4 for
a discussion of the potentials for parallel computation .) In fact , complexity

5 However. there are some lin.g-uistic formalisms whose language recognition problems
take time proportional to n6, such 80S Head Grammars (Pollard 1984), and some linguistic
problems such 80S morphological analysis tend to have short inputs. We take up these
matters again in chapter 2 and elsewhere.
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theorists have discovered many hundreds of problems like SAT. for which
only exponential -time deterministic algorithms are known , but which have

efficient nondeterministic solutions . For this reason , among others , computer
scientists strongly suspect that P =1= N P .

Complexity theory says more than this , however : it tells us that problems 
like SAT serve to "summarize " the complexity of an entire class like NP ,

in the sense that if we had an algorithm for solving SAT in deterministic polynomial 
time then we would have an algorithm for solving all the problems in

N P in detenninistic polynomial time , and we would have P = NP . (We'll see
why that 's so just below and in the next section .) Such problems are dubbed
NP -hard , since they are ''as hard as'' any problem in NP . If an NP -hard

problem is also known to be in N P- solvable by our hypothetical guessing
computer , as we showed SAT to be- then we say that it is NP -complete .

Roughly speaking then , all NP -complete problems like SAT are in the

same computational boat : solvable , so far as we know , only by exponential -
time algorithms . Because there are many hundreds of such problems , because
none seems to be tractable , and because the tractability of anyone of them

would imply the tractability of all , the P =I NP hypothesis is correspondingly
strengthened . In short , showing that a problem is NP -hard or NP -complete
is enough to show that it 's unlikely to be efficiently solvable by computer . We
stress once more that such a result about a problem '8 complexity holds independently 

of any algorithm 's complexity and independently of any ordinary

computer model .6

We pause here to clear up one technical point . Frequently we will
contrast polynomial -time algorithms with combinatorial search and other

exponential -time algorithms . However , even if P =1= NP - as seems overwhelmingly 
likely - it might turn out that the true complexity of hard problems 

in N Plies somewhere between polynomial time and exponential time .

For instance , the function nlog n outstrips any polynomial because (informally
) its degree keeps slowly increasing , but the function grows less rapidly

than an exponential function (Hopcroft and Ullman 1979:341) . However , because 
only exponential -time algorithms are currently known for NP -complete

problems , we will continue to say informally that problems in NP seem to
require combinatorial search.

6We discuss familiar caveats to this claim in chapter 2; these include the possibility of
heuristics that work for problems encountered in practice, the effect of preprocessing, and
the possibility of parallel speedup.
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Because demonstrating that a problem is NP -hard or NP -complete forms

the linchpin for the results described in the rest of the book , we will briefly
describe the key idea behind this method and , in the next section , illustrate

how to apply it to a very simple , artificial grammatical system ; for a more
formal , systematic discussion , see chapter 2.

Showing that one problem is computationally as difficult as another
relies on the technique of problem transformation or reduction , illustrated in

figure 1.2. Given a new problem T , there are three steps to demonstrating
that T is NP -hard , and there 's a fourth to show T is NP -complete :

1. Start with some known NP-hard (or NP-complete) problemS . Selection
of S is usually bMed on some plain correspondence between Sand T

(see the example just below and chapter 2 for further examples).

2. Construct a mapping II (called a reduction) from instances of the known
problemS to instances of the new problem T , and show that the map-
ping takes polynomial time or less to compute . In this book , problems
will always be posed as decision problems that have either Yes or No
answers, e.g., is a particular Boolean formula satisfiable or not ?7

3. Show that II preserves Yes and No answers to problems . That is, if S
has a Yes answer on some instance x , then T must have a Yes answer

on its instance II (x) , and similarly for No answers.

4. If an NP -completeness proof is desired , show in addition that T is in

JI P , that is, can be solved by a "guessing" computer in polynomial
time . Note that this step isn 't required to demonstrate computational

intractability , because an NP -hard problem is at least as hard as any

problem in JlP .

If one likes to think in terms of subroutines, then such a polynomial-time
reduction shows that the new problem T must be at least as hard to solve

as the problemS of known complexity , for the following reason. If we had

a polynomial -time subroutine for solving T , then S could also be solved in
polynomial time . We could use the mapping n to convert instances of S
into instances of T , and then use the polynomial -time subroutine for solving

7Well-defined problems that don't have simple Yes/ No answers- such as "what 's the
shortest cycle in this graph ?" - can always be reformulated as decision problems ; see Garey
and Johnson 1979 :19 - 21 .
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Figure 1.2: Reduction shows that a new problem is complex by rapidly transforming
instances of a known difficult problem to a new problem , with the same Yes/ No
answers .
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(Rapid)

New Problem
instances

(with same Yes/ No solutions)

�

T on this converted problem . The answer returned for T always coincides

with the original answer for S , because n is known to preserve answers .

Because we also know that n can be computed in polynomial time , and

since the composition of two polynomial - time subroutines is also polynomial -

time , this procedure would solve S in polynomial time . But the problemS ,

such as SAT , is NP -hard and not thought to be solvable in polynomial time .

Therefore eitherS and all other problems in NP are efficiently solvable , a

tremendous surprise , or else no polynomial - time subroutine for T exists .

In short , our reduction proves that the new problem T is at least as hard

the old one S with respect to polynomial time reductions . Either T is even

harder than S , or else the two are in the same computational boat . (One can

now see why the problem transfonnation itself must be " fast " - polynomial

time or better - for otherwise we would introduce spurious complexity and

could not make this argument .)

Before proceeding with a more linguistically oriented example in the

next section , we 'll consider the obvious question of how all this can ever get
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started. Step 1 of the reduction technique demands that we start with a
known NP-hard or NP-complete problem, and we've said several times that
SAT fits the bill . But how does one get things off the ground to show that
SAT is NP-complete? There is no choice but to confront the definition of NP-
hardness directly : we must show that , given any algorithm that runs on our
hypothetical "guessing" computer in polynomial time, we can (in polynomial
time) build a corresponding SAT problem that gives the same answers as that
algorithm . Such a construction shows that SAT instances can "simulate" any
polynomial-time nondeterministic algorithm on any ordinary computer, and
so SAT is NP-hard. In fact , SAT must also be NP-complete, as it 's clearly
solvable by our guessing computer.8 Starting with SAT as a base, we can
begin to use reduction to show that other problems are NP-hard or NP-
complete. Section 2.2 in the next chapter shows how this is done, including
how to transform SAT to 3SAT.

14

1.3 A Simple Grammatical Reduction

To give an introduction to how we use reduction to analyze grammatical for -
malisms , in this section we consider a very simple and artificial grammatical

example . Readers familiar with how reductions work may skip this discussion ;
chapter 3 contains a more formal treatment of a similar problem .

Our grammatical system express es two basic linguistic process es: lexical 
ambiguity (words can be either nouns or verbs ) and agreement (as in

subject -verb agreement in English ) . These process es surface in many natural 
languages in other guises, for example , languages with case agreement

between nouns and verbs .

In particular , our artificial grammatical system exhibits a special kind
of global agreement : once a particular word is picked as a noun or a verb in

a sentence, any later use of that word in the same sentence must agree with

the previous one- and so its syntactic category must also be the same. (One
might like to think of this as a sort of syntactic analog of the vowel harmony
that appears within words in languages like Thrkish : all the vowels of a series

of Thrkish suffix es may have to agree in certain features with a preceding
root vowel .)

8 Chapter 2 gives more detail on this. Garey and Johnson (1979:38-44) give a full proof,
originally by Cook (1971).



Chapter 1 15

apple bananas, apples banana, AND apples bananas

The one exception to this agreement is when a word ends in asuffixs .

Then , it must disagree with the same preceding or following word without
the suffix . Finally , this language 's sentences contain any number of clauses,
with three words per clause, and each clause must contain at least one verb .

For example , if we temporarily ignored (for brevity ) the requirement
that a clause must contain three words , then

could be a sentence. It 's hard to tell what 's a noun and what 's a verb , given
the lexical ambiguity that holds ; if apple is a verb , then apples must not be,
so banana is the only possible verb in the second clause- so far , so good . But
then apples and bananas must both be nouns , and the last clause has no verb .
Consequently , apple has to be a noun instead , and bananas must be the verb

of the first clause. Banana is then a noun , but we already know apples is a
verb , so the second clause is okay. Finally , the last clause now has two verbs ,

so the whole thing is a sentence (except for the three-word requirement).

How hard will it be to recognize sentences generated by a grammatical
system like this ? One might try many different algorithms , and never be sure

of having found the best one. But it is precisely here that complexity theory 's
power comes to the fore . A simple reduction can tell us that this general problem 

is computationally intractable - NP -hard - and almost certainly , there 's

no easy way to recognize the sentences of languages like this .

It should be clear that this artificial grammatical system is but a thinly
disguised version of the restricted SAT problem - known as 3SAT - where

there are exactly three literals (negated or unnegated variables) per clause.
Some proofs are simplified if 3SAT is defined to require exactly three distinct
literals per clause, though we will not always impose this requirement .9

Given any 3SAT instance, it is easy to quickly transfonn it into alanguage 
recognition problem in our grammatical framework, with corresponding 

Yes/ No answers. The verb-noun ambiguity stands for whether a literal
gets assigned true or false ; agreement together with disagreement via the 8

marker replaces truth assignment consistency , so that if an x is assigned true
(that is, is a verb) in one place, it has the same value everywhere, and if it is x
(has the 8 marker) it gets the opposite value; finally , demanding one verb per

9It is easy to show that 3SAT - like SAT - is NP -complete ; see section 2.2 . Also , it is
easy to show that the restriction to distinct literals is inessential .
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(x V Y V z ) A (y V z V u) A (x V z V u ) A (x V Y V u)

We can convert this satisfiability fonnula to a possible sentence in our hypothetical 
language by turning u , x , y , and z into words (e.g., apple, banana

, carrot , . . .) , adding the disagreement marker 8 when required , putting

a comma after each clause (as you might do in English ) , and sticking an and
before the last clause. Running this through our reduction processor yields a
sentence with four clauses of three words each:

clause is just like requiring one true literal per satisfiability clause. The actual
transfonnation simply replaces variable names with words , adds 8 markers to

words corresponding to negated literals , tidies things up by setting off each
clause with a comma , and deletes the extraneous logical notation . The result

is a sentence to test for membership in the language generated by our artificial 
grammar . Plainly , this conversion can be done in polynomial time , so

we've satisfied steps 1 and 2 of our reduction technique .l0

Figure 1.3 shows the reduction procedure in action on one example problem 
instance . The figure shows what happens to the Boolean formula given

earlier :

apple bananas carrots , banana carrot dandelion , apple carrot dandelions , AND

apples banana dandelion

We now check step 3 of the reduction technique : answer preservation .

The output sentence is grammatical in our artificial system if and only if

each clause contains at least one verb . But this is so if and only if the
original formula was satisfiable . Since this holds no matter what formula we

started with , the transformation preserves problem solutions , as desired . We

conclude that the new grammatical formalism can pose problems that are

NP -hard . Remember how potent this result is : we now know that no matter

what algorithm or ordinary computer we pick , this grammatical problem is

computationally intractable .

Our example also illustrates a few subtle points about problem reductions 
to keep in mind throughout the remainder of the book . When a reduction 

involves constructing some grammar G , the language L (G ) that the

grammar generates will often be a particularly simple language ; for instance ,�

lO We can just sweep through the original formula left -to- rightj the only thing to keep
track of is which variables (words) we've already seen, and this we can do by writing these
down in a list we (at worst ) have to rescan n times .



(Replace literal names ; add s to words corresponding 
to negated literals ; delete V 's; replace 

V '8 with commas , and the last /\ with

and ; delete parentheses )
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!
New problem

instance

Is " apple bananas carrots, banana carrot dandelion
, apple carrot dandelions, AND apples

banana dandelion" grammatical ?

Figure 1.3: A reduction from 3SAT shows ambiguity -plus -agreement to be hard .
This example shows how just one 3SAT problem instance may be rapidly transformed 

to a corresponding sentence to test for membership in an artificial grammar
. In this case, the original formula is satisfiable with x , y , and z set to true ,

and the corresponding sentence is grammatical , so Yes answers to the original and
new problems coincide as desired .

L ( G) might contain only the single string "# " , or L ( G) might be the empty
set. (Section 5.7.2 uses an example of this sort .) It 's important to distinguish
between the complexity of the set L ( G) (certainly trivial , if L ( G) = { # } )
and the difficulty of figuring out from the grammar G whether  L ( G) contains
some string . For example , we might know that no matter what happens , the

reduction always constructs a grammar that generates either the empty set
or the set { # } - either way, a language of trivial complexity- yet it might
still be very hard to figure out which one of those two possible languages a
given G would generate . In technical terms , this means we must distinguish
the complexity of the recognition problem for some class of grammars from
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1.4 The Idealizations of Complexity Theory

  Having seen a bit of what complexity theory is about , and how we can use

it to show that a grammatical fonnalism can pose intractable (NP -hard )
problems , we now step back a bit and question whether this technique - like
all mathematical tools - commits us to idealizations that lead us in the right
direction . We believe the answer is Yes, and in this section we'll briefly survey
why we think so. In the next chapter , sections 2.3 and 2.4 delve more deeply

into each of these issues (and consider some others besides).

To evaluate the idealizations of complexity theory , we must reconsider
our goals in using it . Complexity theory can tell us why the processing

problems for a formalized grammatical system have the complexity they do ,
whether the problems are easy or difficult . By probing sources of processing
difficulty , it can suggest ways in which the formalism and processing methods
may fail to reflect the special structure of a problem . Thus , complexity theory
can tell us where to look for new constraints on an overly powerful system ,
whether they are imposed as constraints on the grammatical formalism or
as performance constraints . It can also help isolate unnatural restrictions on
suspiciously simple systems . In a nutshell , these goals require that our ide-
alizations must be natural ones- in the sense that they don 't run roughshod
over the grammatical systems themselves , contorting them so that we lose
touch with what we want to discover .

the complexity of an individual language that some grammar from the class
generates.

A second, related point is the distinction between the input to the problem 
transformation algorithm (an instance of a problem of known complexity)

and the string inputs to the problems of known and unknown complexity;
these problem inputs are typically simple strings. In all , then, there are three
distinct "inputs" to keep track of, and these can be easily confused when all
three are string languages that look alike.

To summarize, while our example is artificial , our method and moral are
not . Chapters 3- 9 use exactly the same technique. The only difference is that
later on we'll work with real grammatical formalisms, use fancier reductions,
and sometimes use other hard problems besides SAT. (Section 2.2 outlines
these alternative problems.)
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We feel that the potential "unnaturalness " surrounding mathematical
results in general must be addressed : are the grammatical problems posed in
such a way that they lead to the insights we desire? Although a discussion
of those insights must wait for later chapters , here we can at least show that
the idealizations we've adopted are designed to be as natural and nonartificial 

as possible . Some of our basic idealizations seem essential : given current

ignorance about human brainpower , we want to adopt an approach as independent 
of algorithm and machines as possible , and that 's exactly what the

theory buys us. Other idealizations need more careful support because they
seem more artificial . The following sections will address several issues. First ,
there are questions about complexity theory 's measures of problem complexity

; we'll consider the assumption that problems can grow without bound , the

relevance to grammatical investigations of linguistically bizarre NP -complete
problems such as SAT , and the status of the more traditional "complexity "
yardstick of weak generative capacity . Next , we'll discuss our assumption
that we should study the complexity of grammatical 8 Y8tem8, which corresponds 

to posing certain kinds of problems (universal problems ) rather than

others ; and finally , we'll turn to our reliance on invariance with respect to
8erial computer models .

19

1 . 4 . 1 The role of arbitrarily large problems

Complexity theory assumes that problems can grow arbitrarily in size ;

for instance , thE ( length of Boolean formulas in the SAT problem can grow

arbitrarily , and algorithms for solving SAT must work on an infinity of SAT

instances . We adopt this idealization wholeheartedly simply because we have

to in order to use complexity theory at all . That ' s because the complexity

of a problem that ' s bounded in size is actually zero , according to the way

complexity theory works - so the theory would tell us nothing at all if we

assumed that grammatical problems couldn ' t grow without bound . II

Some might question this infinity - based assumption for natural lan -

guage . After all , the sentences we encounter are all of bounded length -

Il  That result is not as strange as it first appears . It ' s simply because one can solve , in

advance , all the problems less than a certain size , and store the results in a giant table .

Then the small problems may be rapidly retrieved , in bounded time , and large problems

can be rejected out of hand as soon as we ' ve seen enough symbols to realize they ' re too

big . In this case , then , complexity doesn ' t depend on the problem size at all . For instance ,

we can certainly number and then solve all the satisfiability problems less than 8 clauses

long with 3 literals per clause .



certainly less than 100 words long. The number of distinct words in a natural
language, though very large, is also bounded. Therefore, natural language
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problems are always bounded in size; they can 't grow as complexity theory
assumes. Aren 't then the complexity results irrelevant because they apply
only to problems with arbitrarily long sentences or arbitrarily large dictionaries

, while natural languages all deal with finite -sized problems ?

It is comforting to see that this argument explodes on complexity theoretic 
grounds just as it does in introductory linguistics classes. The familiar

linguistic refrain against finiteness runs like this : Classifying a language as
finite or not isn 't our raison d 'etre. The question appears in a different light if
our goal is to determine the form and content of linguistic know ledge. When
we say that languages are infinite , we don 't really intend a simple classifica -
tion . Instead , what we mean is that once we have identified the principles
that seem to govern the construction of sentences of reasonable length , there
doesn't seem to be any natural bound on the operation of those principles .
The principles - that is, the principles of grammar - characterize indefinitely
long sentences, but very long sentences aren 't used in practice because of
other factors that don 't seem to have anything to do with how sentences are

put together . If humans had more memory , greater lung capacity , and longer
lifespan - so the standard response goes- then the apparent bound on the
length of sentences would be removed .

In just the same way, complexity theorists standardly generalize problems 
along natural dimensions : for instance , they study the playing of checkers 

on an arbitrary n x n board , rather than "real " checkers, because then

they can use complexity theory to study the structure and difficulty of the
problem . The problem with looking at problems of bounded size is that
results are distorted by the boring possibility of just writing down all the
answers beforehand . If we study checkers as a bounded game, it comes out

(counterintuitively !) as having no appreciable complexity - just calculate all
the moves in advance- but if we study arbitrary n x n boards , we learn that

checkers is computationally intractable (as we suspected ) .12 Thus , the ideal -
ization of unboundedness is necessary for the same reason in both linguistics
and complexity theory : by studying problems of arbitrary size we remove
factors that would obscure the structure of the domain we're studying .

�

12In fact , this checkers generalization is probably harder than problems in ) I Pi it is
PSPACE - hard . See Garey and Johnson ( 1979 :173) for this result and chapter 2 for a definition 

of PSPACE , consisting of the problems that can be solved by an ordinary computer

in polynomial space.
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Related is the question of whether it 's valid to place a bound on some

particular parameter k of a problem - such as the length of a grammar rule

or the number of variables in a SAT problem - in order to remove a factor

from the complexity formula , while leaving other parameters of the problem

unbounded . Here , the answer depends on the details of the problem . As

a general rule , we obscure complexity instead of improving it if we simply

impose a bound . For instance , if the complexity of our algorithm is 2k . n3 ,

we haven ' t helped anything if we set a bound of k = 50 and then bound our

computational effort by K .n3 where K = 25 . But this kind of truncation can

be genuinely valid if a linguistically justified bound produces a small constant

in the complexity formula , or (more interestingly ) if the bound can actually

be exploited in an algorithm - for instance by using resolution on 2SAT (see

section 1.4 .2) or by building some small and clever table into the program .13

(Sections 7 .10 and 9 .1.2 discuss computational and linguistic considerations

that bear on the possibility of limiting the length of one computationally

troublesome kind of grammar rule .)

Except in these special situations , truncation buys nothing but obfuscation

, for the algorithm will behave just the same on the truncated problem

as it does on the full problem - except that its complexity curve will artificially 

level out when the bound is reached . For instance , if we use a standard

exponential algorithm to process SAT formulas , but limit the formulas to at

most 10 distinct variables , we can expect the complexity curve to resemble

the one shown in figure 1.4 . Before the bound on variables is reached , longer

formulas can get exponentially harder because they can contain more and

more variables whose truth -values must be guessed ; but after the bound is

reached , runtime will increase at a much slower rate .

Since complexity theory deals in asymptotes , the complexity formula

will be derived from the flattened -out portion of the curve , and the problem

will look easy . But the initial , exponentially growing portion of the curve

tells a different tale - naturally so , since by hypothesis we ' re using the same

exponential algorithm as always . Nothing about any special structure of the

13In addition , more sophisticated "truncation " moves are possibleS . Weinstein has
suggested that one option for a theory of performance involves quickly transforming a
competence grammar G into a performance grammar f (G) that can be rapidly processed.
The function ( "truncates " the full grammar in such a way that the symmetric difference
between the languages L (G) and L (f (G)) i~ negligible , in some natural sense that remains
to be clarified ; for instance , the truncated grammar might reject center-embedding or
flatten deeply right -branching constructions . Many questions arise, among them the status
of G and the relationship between the formalism (s) in which G and f (G) are expressed.



22 Introduction

....

.

.

.
Maximum
runtime .

.

.
.

Problem size

Figure 1 . 4 : If a bounded problem is derived by pure truncation of a difficult parameter

, with no change in an underlying exponential algorithm , we can expect

runtime to grow exponentially at first and then level off when the artificial bound

is reached .

truncated problem has been exploited ; there ' s only the happy circumstance

of a finite search space , and lurking below a patina of efficiency , brute - force

search still reigns . Clearly , the initial region of the curve tells us more about

the structure of the algorithm than the artificially flattened part . In a case

like this , truncation is not an appropriate move because it only muddies

the water . Just as in the linguistic case - when the structure of grammatical

constraints could be better understood by considering unbounded problems -

the structure of the algorithm is better revealed by considering how it operates

on unlimited cases , without the truncation bound .

We conclude that if we want to use computational complexity theory

then it makes sense to think of natural language processing problems as . ]

they are of arbitrary size , even if they are not . To do otherwise is to risk

masking the symptoms of exponential - time search through artificial means .



Chapter 1 23

1.4 .2 Why hard problems needn ' t be artificial

A second basic assumption of our approach is that the P- )J P distinction
isn 't just an artificial one for natural languages : that hard problems like SAT
do turn up in natural grammatical systems , and what 's more , such problems
do highlight the information processing structure of natural grammars .

The worry about artificiality seems to boil down to this : problems like
SAT don 't seem to be much like anything that any natural language processor
would ever compute . Indeed , if by hypothesis natural problems are easier
than SAT , then we might automatically avoid. computational difficulty by

using the frameworks only for real linguistic tasks instead of mathematical
troublemaking .

Again , both our natural language analyses and complexity theory itself 
dismiss such worries as groundless . First , natural grammars do contain

hard problems : as chapter 3 shows, the difficulty of processing sentences like
BUFFALO BUFFALO BUFFALO seems to arise precisely because grammars can
pose difficult problems . Similarly , chapter 5's spelling -change and dictionary
system is computationally intractable as shown by a reduction that at least

superficially mirrors ordinary language process es like vowel harmony . Finally ,
chapter 8 and appendix B show that generalized phrase structure grammar
parsing can be difficult in practice .

Restrictions to "natural " cases, then , won 't automatically save us from

intractability . But this is no surprise to the complexity theorist . Here too ,
examples demonstrate that unless one exploits the special information structure 

of a problem , "natural " restrictions may not suffice to win processing

efficiency .

A good example is a restricted version of SAT where there are two literals 
per clause, known as 2SAT . 2SAT is easier than 3SAT - it 's in Pand

so doesn't require exponential time for solution ; yet if you take the usual
exponential algorithm for SAT and expect it to run faster on 2SAT problems
because they 're easier, you will be sorely disappointed . The SAT algorithm
will simply do the same kind of combinatorial search as before and will take
exponential time . One must use a specialized algorithm such as resolution

theorem proving to get any mileage out of the special structure of this restricted 
problem .14 There 's no reason why the same thing shouldn 't happen

14In particular , the "special " structure is that there are two literals per clause . When
resolution combines two such clauses together , the resolvent , by definition , is no longer
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with grammatical machinery - a problem that 's not intrinsically hard can be
made difficult through failings of the grammatical framework , perhaps not
obvious ones. In fact , section 7.8.1 gives an example of an easy problem
that ' s made to look difficult when it ' s encoded in a context - free grammar .

1.4 .3 Weak generative capacity can be misleading

Like our complexity tools , considerations of weak generative capacity

can aid us in linguistic investigations; recall Chomsky's (1956) early demonstration 
of the inadequacy of finite-state descriptions of natural languages,

which was based partially on grounds of weak generative capacity . Yet for
many reasons, weak generative capacity alone may not give good clues about
the appropriateness or processing difficulty of a grammatical formalism - one
fundamental reason that we generally reject weak generative capacity analysis
as too blunt and focus on complexity classifications instead .

A weak-generative -capacity restriction to strictly context -free languages
is often thought to guarantee efficient parsability , but no such result holds .

The reason, briefly , is that some context -free languages are generated only
by very large context -free grammars - and grammar size does affect parsing
time for all known general context -free parsing algorithms . We won 't belabor
this point here , as it is adequately discussed in chapters 7 and 8.

Similarly , models based on finite -state automata are often considered

the hallmark of computational efficiency . Yet they , too , can lead one astray .
While it is true that some finite -state problems are easy, other finite -state
problems can be computationally costly . One must carefully examine how
finite -state machinery is being used before pronouncing it safe from compu -
tational intractability ; oversights have led to much confusion in the linguistics
literature . Most researchers know casually that it 's fast to figure out whether
a sentence can be accepted or rejected by a finite -state automaton . No search
is involved ; the machine just process es the sentence one word at a time , and
at the end , it just gives a Yes or No answer- the sentence either is or is not

accepted . In short , the problem of finite -state recognition is easy.

But one cannot always rely on this approach to model all finite -state

process es. For example , suppose we wanted to know the complexity of finite -

than the length of either of the original clauses . This monotonicity allows resolution to
work in polynomial time . If one tries the same trick with 3SAT , then one quickly discovers
that resolved clauses can grow in length , frustrating a polynomial time solution .
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state parsing . That is, suppose we wanted not simply a Yes/ No nod from our
automaton , but a detailed description of the sentence's internal structure -

perhaps a sequence of word category names. After all , this cuts closer to the
heart of what we want from natural language analysis . But it looks like a

harder problem , because it demands more information . Do our previous results 
about mere finite -state recognition apply ? (In general , parsing is harder

than recognition because a parsing algorithm must output a representation of

how a sentence was derived with respect to a particular grammar , not merely
a Yes/ No recognition answer .)

Even if a problem is carefully posed, a solution in terms of finite -state

machinery may be inappropriate if it does not accurately reflect the underlying 
constraints of a language . Rather , the finite - state character may be an

accidental by-product , one that has little to do with the nature of the constraints 
that characterize the problem . In such a case, considerations of weak

generative capacity are uninformative at best and misleading at worst . As
was noted many years ago, weak generative capacity analysis serves as a kind

of "stress test " that doesn't tell us much unless a grammar jails the test :

The study of weak generative capacity is of rather marginal linguistic 
interest . It is important only in those cases where some

proposed theory fails even in weak generative capacity - that is,
where there is some natural language even the sentences of which

cannot be enumerated by any grammar permit  ted by this theory 
. . . . It is important to note , however , that the fundamental

defect of [many systems] is not their limitation in weak generative
capacity but rather their many inadequacies in strong generative
capacity . . . . Presumably , discussion of weak generative capacity 

marks only a very early and primitive stage of the study of

generative grammar . (Chomsky 1965:60f )

Flaws in a formal system can easily go undetected by weak generative capacity
analysis .

  To see what goes wrong in a specific example , consider another simple 
artificial language , a bounded palindrome language- a set of sentences

shorter than some fixed length k that can be read the same backwards or

forwards . Over the alphabet a, b, c with a length restriction of 3, this gives
us the language a, b, c, aa, bb, cc, aaa , aba, aca, hub, bbb, bcb, cac, cbc, ccc.
Now , it is well known that an infinite palindrome language over the same alphabet 

cannot be generated by any finite -state grammar ; the implicit mirror -



image pairing between similar letters demands a context -free system . But our

k-bounded palindrome language contains only a finite number of sentences,
hence is technically and mechanically finite -state ; therefore , the finite -state

framework fails to break under the stress test of generative capacity .
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But despite the fact that the language is finite - state , it is seriously misleading 
to stop and conclude that the finite -state framework accurately ex -

presses the underlying constraints of this language . Just as with our earlier

2SAT vs . 3SAT example , it 's instructive to consider the details of what 's

happening . What kind of finite - state machine generates our bounded palindrome 
language ? Going through the tedious exercise of constructing the

machine , say for k = 6 , one finds that the underlying automaton , though

indeed finite - state , represents a kind of huge brute - force encoding of all possible 
sentences - just a list , if you will . And just as with our exhaustive

combinatorial algorithms , nothing about the special mirror - image structure

of palindromes is exploited ; such a machine could have just as easily encoded
a random , finite list of sentences . It makes sense to remove this unilluminating 

accident by idealizing to an infinite palindrome language - which isn ' t

finite - state - and then imposing boundedness as a separate condition .

Many examples of this kind also exist in natural languages . For example
, many reduplicative process es- the kind that double constituents like syllables

, roots , affixes , and so forth - in fact duplicate only a bounded amount

of material . Technically , then , they can be encoded with context - free or even

finite - state machinery , though the related language { ww } where w ranges

over unbounded strings is strictly not context - free . But clearly , the reduplicated 
material 's boundedness may tell us nothing about the true nature of the

constraints that are involved . In this case too , the machinery may pass the

weak generative capacity test for accidental reasons . The point is that simple 
classification - the question of whether natural languages are context - free ,

for instance - doesn ' t have a privileged position in linguistic investigations .

Unless very carefully used , the classification scheme of weak generative capacity 
may well be too blunt to tell us anything illuminating about natural

languages .I5 We prefer complexity theory because it gives us more direct

insight into the structure of grammatical problems .

15 Rounds , Manaster -Ramer , and Friedman (1986) have more to sayan related points .
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fixed-language recognition

Beyond these basic idealizations , we have posed the grammatical problems 
described in the rest of this book in a particular way. Because our

problem descriptions sometimes seem at odds with those familiar from the

tradition of weak generative capacity analysis , we shall briefly review why

27

1.4 .4 Universal vs .
problems

16For example, the FLR problem for context -free languages takes only time proportional
to n3, as is well known (Hopcroft and Ullman 1979) . However, the corresponding universal
problem , where the grammar must be taken directly into account . is much harder : it is

These two problems may look very much alike , but they are not . Universal

grammar problems contain two variables : the grammar and an input sentence

. Fixed language recognition problems contain one variable , just the

sentence to recognize . No particular grammar is specified - just as no particular 

grammar is mentioned when we say that a certain string language is

or isn ' t context - free , in the weak generative capacity approach . Generally

speaking , universal problems are harder , because the grammar is variable : a

potential solution algorithm must be braced for any possible grammar thrown

at it . In contrast , FLR problems are easier : because one is permit  ted to vary

the grammar at will to get the most efficient algorithm possible , and because 

no grammar is mentioned in the problem , there ' s no " grammar size "

parameter to appear in complexity formulas . 16�

we think our approach heads in the right direction ; in the next chapter , section 

2 . 3 provides a more complete discussion of the same issue .

We aim to study the complexity of entire families of grammars - namely ,

those specified by some linguistic formalism , like lexical - functional grammar

or generalized phrase structure grammar . This leads most naturally to the

following complexity problems , which are most often called universal problems

because they deal with an entire grammatical class :

Given a grammar G ( in some grammatical framework ) and a string x ,

is x in the language generated by G ?

We contrast this way of posing complexity problems with the way such problems 

are often stated in the weak generative capacity tradition , dubbed fixed

language recognition problems ( FLR problems ) :

Given a string x , is x in some independently specified set of strings

L ?
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Even though FLR problems are usually easier in a formal sense, they
are misleadingly so. In a nutshell , FLR problems ignore grammars , parsing ,
and complexity theory practice , while universal problems focus on all these
things in the right way- they explicitly grapple with grammars instead of
languages , take into account parsing difficulties , and accord with complexity
theory practice :

. Universal problems study entire grammatical families by definition ,
while FLR problems consider only language complexity and so allow

one to vary the grammar at will . Implicitly , an FLR problem can allow 
one to completely ignore the grammatical formalism under study

just to get the simplest language complexity possible . But this cuts
directly against our aim to study properties of the grammatical for -
malisms themselves , not just the languages they happen to generate .
In addition , if one believes that grammars , not languages , are mentally
represented , acquired , and used, then the universal problem is more
appropriate .

. Universal problems consider all relevant inputs to parsing problems ,
while FLR problems do not . First of all , we're interested in parsing
with respect to linguistically relevant grammars ; we're not just interested 

in language recognition problems . Second, we know that grammar

size frequently enters into the running time of parsing algorithms , usually 
multiplied by sentence length . For example , the maximum time

to recognize a sentence of length n of a general context -free language

using the Earley algorithm is proportional to IGI2 . n3 where IGI is the
size of the grammar , measured as the total number of of symbols it

takes to write the grammar down (Earley 1968) . What 's more , it 's
typically the grammar size that dominates : because a natural language
grammar will have several hundred rules but a sentence will be just a
dozen words long , it 's often been noted that grammar size contributes

more than the input sentence length to parsing time . (See Berwick and
Weinberg (1984) , as well as appendix B for some evidence of this effect
in generalized phrase structure grammars .) Because this is a relevant
input to the final complexity tally , we should explicitly consider it .

. A survey of the computational literature confirms that universal problems 
are widely adopted , for many of the reasons sketched above. For

P-complete (as difficult as any problem that takes deterministic time nj ) (Jones and Laaser
1976).



example, Hopcroft and Ullman (1979:139) define the context-free grammar 
recognition problem as follows: "Given a context-free grammar G

and a string x . . . is x in [the language generated by G]?" Garey and
Johnson (1979), in a standard reference work in the field of computa-
tional complexity, give all 10 automata and language recognition problems 

covered in the book (1979:265- 271) in universal form: "Given an

instance of a machine/ grammar and an input , does the machine/ grammar 
accept the input ?"
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All of these considerations favor the use of universal problems , but it is also

fair to ask whether one could somehow preprocess a problem in some way -
particularly a problem that includes a grammar - to bypass apparent com-
putational intractability . After all , a child learning language may have a lot
of time at its disposal to discover some compact , highly efficient grammatical

form to use. Similarly , people are thought to use just one grammar to process
sentences, not a family of grammars . So isn 't the FLR model the right one
after all ?

The preprocessing issue- essentially , the issue of compilation - is a subtle 
one that we'll address in detail in the next chapter (section 2.3) . However ,

we can summarize our main points here . Compilation suffers from a number
of defects .

First of all , compilation is neither computationally free nor even always
computationally possible. Compilation cannot be invoked simply as apromis -
sory note; one must at least hint at an effective compilation step.

Second, if we permit just any sort of preprocessing changes to the grammar 
in order to get a language that is easy to process, then there is atremendous 

temptation to ignore the grammatical formalism and allow clever programming 
(the unspecified preprocessing) to take over. If , on the other hand,

we believe that grammars are incorporated rather directly into models of
language use, then this independence seems too high a price to pay.

Finally , known compilation steps for spelling change and dictionary
retrieval systems, lexical-functional grammar, generalized phrase structure
grammars, and subsystems of GPSGs known as ID / LP grammars all fail :
they cannot rescue us from computational intractability . Typically , what
happens is that compilation expands the grammar size so much that parsing
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algorithms take exponential time.17 See chapters 4, 5, 7, and 8 for the details,
and chapter 2 (section 2.3) for a more thorough discussion of the compilation
Issue.

This invariance stems from a fundamental equation linking serial (ordinary
) computation time to the maximum possible speedup won via parallel

computation . We envision a computer where many thousands of processors

30

1.4 .5 The effect of parallel computation

  17 Of course , this does not rule out the possibility of a much more clever kind of preprocessing
. It 's just that no such examples have been forthcoming , and they all run the risk of

destroying any close connection between the grammatical theory and language processing
(if that kind of transparencys desirable) .

18 Chapter 2 briefly mentions the related topics of approximate solution algorithms but
does not address yet another area of modern complexity - probabilistic algorithms - that
might also shed light on grammatical formalisms . The end of chapter 2 also discuss es the
relevance of fixed -network "relaxation " neural models for solving hard problems , such as
the neural model recently described by Hopfield and Tank (1986).

A final issue is that , for the most part , the complexity classes we use here
remain firmly wedded to what we've been calling "ordinary" computers-
serial computers that execute one instruction at a time. We have already
stressed that complexity results are invariant with respect to a wide range of
such sequential computer models.

This invariance is a plus- if the sequential computer model is the right
kind of idealization. However, since many believe the brain uses some sort
of parallel computation , it is important to ask whether a shift to parallel
computers would make any difference for our complexity probes. Complexity 

researchers have developed a set of general models for describing parallel

computation that subsume all parallel machines either proposed or actually
being built today; here we can only briefly outline one way to think about parallel 

computation effects and their impact, reserving more detailed discussion
for section 2.4 of chapter 2.18

Importantly , it doesn't appear that parallel computers will affect our
complexity results. NP-hard problems are still intractable on any physically
realizable parallel computer. Problems harder than that are harder still .
In brief , we can still use our complexity classification to probe grammatical
theories.
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speedup using parallel processing; these include context -free language recognition , as mentioned 
(but probably not the corresponding universal context -free parsing problem ) ; sorting

; and the graph connectivity problem . This superfast parallel speedup may be closely
related to the possibility of representing these problems as highly separable (modular )
planar graphs.

work together (synchronously) to solve a single problem.

Serial time Parallel time

to solve .$: x

a problem # of parallel

This equation subsumes a wide range of examples . Suppose we have only a
fixed number , k , of parallel processors . Our equation tells us that the best we

could hope for would be a constant speedup . To do better than this requires
a number of processors that varies with the input problem size.

Consider for example context -free language recognition ; this takes time

proportional to n3 , where n as usual is input sentence length . Suppose we
had proportional to n2 parallel processors ; then our equation suggests that
the maximum speedup would yield parallel processing time proportional to
n. Kosaraju (1975) shows how this speedup can in fact be attained by simple
array automaton parsers for context -free languages .

Using this equation , what would it take to solve an NP -hard problem in
parallel polynomial time ? It 's easy to see that we would need more than a

polynomial number of processors : because the left -hand side of the equation

for serial time could be proportional to 2n (recall that we assume that NP-
hard problems cannot be solved in polynomial time and in fact all known

solution algorithms take exponential time), and because the first factor on
the right would be proportional to nj (polynomial time), in order for the
inequality to hold we could need an exponential number of parallel processors .

If we reconsider figure 1.1 in ten D S of processors instead of microseconds ,
we see that the required number of processors would quickly outstrip the number 

we can build , to say nothing of the difficulty of connecting them all together
. Of course, we could build enough processors for small problems - but

small problems are within the reach of serial machines as well . We conclude

that if a grammatical problem is NP -hard or worse, parallel computation

won 't really rescue it .19 We can rest secure that our complexity analyses
stand - though we hope that the theory of parallel complexity can lead to
even more fine-grained and illuminating results in the future .

19 Section 2 .4 of chapter 2 discuss es certain problems that benefit from a superfast
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1.5 An Outline of Things to Come

Having said something about what complexity analysis is and how it works ,

we conclude with a summary of what ' s to come : a more thorough look at

complexity theory and its application to several grammatical systems .

Chapter 2 : Before plunging into new and unfamiliar technical territory , any

reader deserves an account of what to expect . Chapter 2 fills this need

for readers unfamiliar with complexity theory . It sketch  es more formally

the core concepts of complexity theory and the notation we ' ll use in the

rest of the book . It also surveys the key problem transformations - like

the one we used in our toy grammar example - that we ' ll use later on .

Finally , it address  es in more depth the questions raised in chapter 1 :

whether our complexity theory idealizations are the right ones , including 

such topics as the effects of compilation and parallel computers .

Chapter 3 : Agreement and lexical ambiguity are pervasive in natural languages

: in English , subjects must agree with verbs in number and person

, while many words like kiss can be either nouns or verbs . Chapter 

3 defines a general class of agreement grammars ( A Gs ) to formalize

these notions , and shows that these two mechanisms alone suffice to

make a grammatical formalism computationally intractable . Because of

the simplicity of the result , any grammatical theory that incorporates

agreement and lexical ambiguity - including most existing theories -

will inherit the computational intractability of A Gs . To resolve this

dilemma , section 3 . 3 argues that this difficulty reflects a real possibility

in natural language , and that performance theory truncations may be

required to win efficient sentence processing .

Chapter 4 : Lexical - functional grammar ( LFG ) has been proposed as acom -

putationally more efficient grammatical formalism than transformational 

grammar ( Kaplan and Bresnan 1982 ) . Chapter 4 shows that

LFGs contain enough agreement machinery and lexical ambiguity to

inherit the intractability of A Gs . Nothing in the LFG formalism , then ,

accounts for efficient human sentence processing ; we need to supply

an additional performance theory and / or new formal restrictions here .

Chapter 4 proposes linguistic constraints - importing more X theory

into the lexical - functional framework - as well as locality constraints to

improve computational tractability .
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that straightforward extensions of known parsing algorithms will work
efficiently with these grammars , chapter 7 proves that this is not so:

though writing down a free-word -order language in ill / IP form can often 
be beneficial , in the worst case, the sentences of an arbitrary ill

system cannot be efficiently parsed . Here again the proof gives us some

clues as to why natural free-word -order languages don 't generally run

into this difficulty , and suggests some natural constraints that might
salvage computational tractability . Appendix A gives formal proofs for
this chapter 's claims .

Chapter 8 : Generalized phrase structure grammar (GPSG ) , a recent linguistic 
theory , also seems to promise efficient parsing algorithms for its

grammars , but this chapter shows that nothing in the formal framework

of GPSG guarantees this . Modern GPSGs include a complex system of
features and rules . While feature systems- simply saying that a noun
phrase like dogs is singular and animate - may seem innocuous , much to

our surprise they are not . It is an error to sweep features under the rug :
the feature system of GPSG is very powerful , and this chapter shows
that even determining what the possible feature -based syntactic categories 

of a GPSG are can be computationally difficult . Talcen together ,

the components of GPSG are extraordinarily complex . The problem of
parsing a sentence using an arbitrary GPSG is very hard indeed - harder
than parsing sentences of arbitrary LFGs , harder than context -sensitive

language recognition , and harder even than playing checkers on an n x n

board . (See appendix B for some actual calculations of English GPSG
grammar sizes.) The analysis pinpoints unnatural sources of complexity 

in the GPSG system , paving the way for the following chapter 's

linguistic and computational constraints .

Chapter 9 : Drawing on the computational insights of chapter 8, this chapter
proposes several restrictions that rid GPSGs of some computational
difficulties . For example , we strictly enforce X theory , constrain the

distribution of gaps, and limit immediate dominance rules to binary

branching (reducing the system 's unnatural ability to count categories ) .
These restrictions do help . However , because revised GPSGs retain

machinery for feature agreement and lexical ambiguity , revised GPSGs ,
like A Gs, can be computationally intractable . Chapter 9 suggests this
as a good place to import independently motivated performance constraints

- substantive constraints on human sentence processing that

aren 't a part of the grammatical formalism .


