
1 Introduction

If it could be demonstrated that any complex organ existed which could not possibly have been

formed by numerous, successive, slight modifications, my theory would absolutely break down.

—Charles Darwin, 1859

Conventionally, evolution by natural selection is almost inseparable from the notion

of accumulating successive slight variations. Notions of gradualism are deeply in-

grained in evolutionary thought and strongly influence our ideas about what kinds

of systems are evolvable and which are not. The very idea of large adaptive genetic

changes is considered unevolutionary. Indeed, attacking the plausibility of a linear

succession of incrementally improving protosystems is a common form of criticism

of evolutionary theory from Paley (1802) to Behe (1996), while asserting the plausi-

bility of such a succession is a common form of defense (Dawkins 1996).

In natural evolution there are a number of mechanisms that provide exceptional

forms of genetic change. For example, the eukaryotic cell (from which all plants

and animals are descended) has organelles (such as mitochondria and chloroplasts)

that were formed from the genetic integration of previously separate species of bacte-

ria. In these events, groups of organisms, formerly living in close symbiotic relation-

ship, were thus transformed into a new individual at a new level of organization

(Margulis 1970). It was suggested as early as 1909 (by Merezhkovsky) that such

symbiotic mechanisms, by bringing together the genetic material of two genetically

distinct organisms, provide an alternative to gradual evolutionary change. Similarly,

on a less dramatic but more frequent scale, sexual recombination has the potential to

bring together sets of coadapted genes from genetically distinct parents providing a

large genetic change that would be extremely unlikely from spontaneous point muta-

tions applied to either parent alone.

There has been disagreement about what impact such mechanisms should have on

our understanding of evolutionary processes. Some suggest that the genetic integra-

tion of symbionts cannot be very important in understanding evolutionary processes

in general simply because such events are rare. Also, sex is usually restricted to pop-

ulations that are genetically similar so the opportunity for radical genetic change

seems low. Moreover, for both sexual and symbiotic integration, it still seems likely

that any large genetic change would more likely be disastrous than beneficial. And

finally, even if it were the case that a particular adaptation resulted from genetic in-

tegration of di¤erent individuals, this might not be a substantive challenge to gradu-

alism since the genetic material provided by each of the component individuals was

(presumably) evolved gradually.

The biological fact of the genetic mechanisms is not disputed, and neither is their

role in enabling significant innovation such as the eukaryote cell. It is also clear that



large genetic changes could be selected for by natural selection if they were beneficial,

and mechanisms such as these provide large genetic changes that have evidently, at

least sometimes, been beneficial. Accordingly, it might seem that these mechanisms

do not require any fundamental change to the gradualist framework of evolution by

natural selection. However, a change is required.

In these mechanisms, genetic material is adapted in parallel in di¤erent individ-

uals, subpopulations, or species, and subsequently brought together. Thus the genetic

changes produced by such events are quite unlike the random genetic changes of, for

example, those produced by spontaneous genetic mutations. This parallel adaptation

enables these mechanisms to evolve systems that cannot be evolved through the lin-

ear accumulation of random genetic changes. Such a process does not introduce any-

thing teleological into evolution, and it still sits squarely within the framework of

evolution by natural selection. But it causes us to separate evolution by natural selec-

tion from the assumption of gradual change—not merely from the assumption of

strict gradualism, involving only ‘‘successive slight variations,’’ but from the linear

accumulation of random changes of any size.

This book uses evolutionary computation models to aid in the understanding of

these processes. Since the 1970s, considerable interest has developed within computer

science in computational optimization methods based loosely on Darwinian natural

selection. Work in evolutionary algorithms, EAs, is a highly active and rapidly grow-

ing field—the most well-known variety being genetic algorithms, GAs. Within this

field there is considerable interest in the possibility of methods that encapsulate prim-

itive functional units into higher-order components that can be reused in subsequent

evolution, which has obvious parallels with these biological mechanisms. There is

also significant controversy over the supposed utility of sexual recombination, or

crossover, in such algorithms; whether it a¤ords any special problem-solving utility

or whether spontaneous point mutation alone is just as good. In this book, by pro-

viding an answer to these computational questions we also gain an increased under-

standing of the adaptive capacity of sex and other compositional mechanisms in

nature. A computer science approach is useful, not just for providing a modeling

tool, but moreover in providing theoretical tools. Algorithmics and complexity

theory provide the means to properly formalize our questions and identify di¤erences

in adaptive processes in a fundamental sense. In particular, this enables us to pose

and answer a formal version of the following question: What kind of complex sys-

tems (if any) can be evolved with compositional mechanisms that cannot be evolved

through gradual evolution?

The answer to this question depends on modularity.1 I identify a particular form of

modular complexity, where subsystems can be evolved semi-independently despite
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important intermodule dependencies. Systems with this kind of modularity cannot be

evolved by gradual evolution because resolving the interdependencies between mod-

ules may require making specific large genetic changes. In fact, this class of system

typifies characteristics that are pathological for gradual evolution: the corresponding

fitness landscape is highly rugged, has many local optima creating broad fitness sad-

dles, and includes ‘‘irreducibly complex’’ adaptations that cannot be reached by a

linear succession of randomly modified protosystems. However, an evolving process

with compositional mechanisms does not necessarily have the same restrictions. With

compositional mechanisms that enable preadapted genetic material from di¤erent

individuals to be combined, genetic material from another individual can provide

specific large genetic changes, enabling continued adaptation. I provide results of

simulations to show that this class of modular system is easily evolvable under com-

positional evolution and not evolvable under gradual evolution. Thus, certain kinds

of complex systems, considered unevolvable under the gradualist framework of evo-

lution, are easily evolvable under compositional evolution.

The fact that compositional evolution can provide evolutionary adaptation that is

not possible in the gradualist framework causes us to rethink our notions of evolv-

ability (how easy or di‰cult it is for systems to evolve) and reassess the potential of

sex and symbiosis in evolutionary innovation. The simulations and analytic results

show us that there are fundamental di¤erences in the adaptive capacities of these

mechanisms, and help us to understand the conditions under which compositional

mechanisms provide an adaptive advantage.

This book has two main objectives: first, to present and develop the above argu-

ment that sex, symbiosis, and other compositional mechanisms move beyond the

normal ‘‘linear accumulation of random changes’’ dogma in evolutionary theory,

giving new results and theoretical work to support this view; and second and more

generally, to foster interdisciplinary exchange between evolutionary biology and evo-

lutionary computation, showing how some of the deepest questions in each of these

disciplines can be approached with the tools and insights of the other.

1.1 Gradual and Compositional Evolution

I propose the term compositional evolution to refer to evolutionary processes involv-

ing the combination of systems or subsystems of semi-independently preadapted ge-

netic material. A family of such mechanisms exists including sex, hybridization,

lateral gene transfer, allopolyploidy, and mechanisms of ‘‘symbiotic encapsulation’’

such as endosymbiosis, the genetic integration of symbionts (symbiogenesis), or other

mechanisms that encapsulate a group of simple entities into a complex entity at
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a higher level of organization, as exhibited in several of the major transitions in

evolution.

In contrast, the familiar gradualist framework of evolution refers to mechanisms

that sequentially accumulate random variations in genetic material, that is, the new

genetic material introduced by such changes has not been preadapted elsewhere as a

set. Thus gradual evolution is driven predominantly by small modifications, that is,

‘‘successive slight modifications’’ (Darwin 1859), though not exclusively so, in princi-

ple. This forms the basis of the normal understanding of evolutionary change. Chap-

ter 2 details the background of the gradualist framework of evolution and the

established notions of evolutionary di‰culty that, in fact, depend on this framework.

Figure 1.1 shows a schematic comparison of ancestral relationships in gradual evo-

lution and compositional evolution. Gradual evolution produces the familiar ances-

tral ‘‘tree’’ phylogeny (Haeckel 1876). Note that for any extant entity produced by

gradual evolution there is a single linear path (shown in bold) linking it to the root

of the tree via a succession of (small) random changes. In contrast, individuals

descended from a compositional event cannot be traced to the root of the tree via a

single linear path of gradual changes. Instead it is correct to respect the true multiple-

inheritance origin of this new lineage producing a disconnected ancestral graph

where the links to the root of new subtrees (shown by dashed lines) are of a di¤erent

kind to the rest of the graph. Specifically, not only are they two-to-one edges (con-

necting two nodes to a new third) but more significantly they do not indicate a suc-

cession of gradually changing intermediates.

It is useful to compare this depiction with other nontree diagrams of ancestral

relationships that have been o¤ered previously for various events at di¤erent scales

from horizontal gene transfer to symbiogenesis (e.g., Doolittle 2000; Rivera and

Figure 1.1
Gradual and compositional evolutionary processes. (a) The linear accumulation of random changes under
the normal framework of gradual evolutionary adaptation produces the familiar branching ancestral tree.
(b) In compositional evolution, in addition to the normal branching process of gradual evolution, there is
also the occasional creation of a new entity from the combination of preadapted genetic material from dif-
ferent individuals. This creates a new entity that may be genetically distant from both donor individuals.
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Lake 2004; Margulis 1970). Some of these diagrams depict all entities as fitting with-

in a tree and then add ‘‘exceptional’’ cross-links that indicate the exchange of genetic

material from one branch across to another (e.g., Doolittle 2000; Kim and Salisbury

2001)—see figure 1.2a. This depiction obscures the fact that the entities thus created

are not a small modification of either ancestral donor even though they may be (very

much) more similar to one than the other. Others depict the connections that bring

lineages together as smooth transitions (of the same type that draw branches apart in

di¤erentiation) (e.g., Margulis 1970; Rivera and Lake 2004)—see figure 1.2b. How-

ever, if the horizontal dimension of this diagram is supposed to represent genetic (or

phenotypic) diversity then this depiction is misleading since it is not the case that the

donors of genetic material in a compositional event evolve toward one another grad-

ually becoming genetically or phenotypically similar until they become indistinct and

form a single lineage. Even Doolittle, who proposes ‘‘uprooting the tree of life’’ in

light of evidence for horizontal gene transfer, uses a depiction of ancestral relation-

ships near the base of the graph using a uniform style of link in the form of figure

1.2b (despite challenging the adherence to a single common ancestor at the root of

the tree). Even though the unusual mechanisms of genetic variation are included in

these figures, these seemingly subtle issues in fact reveal a strong adherence to trees

with linear branching (Kim and Salisbury 2001) and thus gradualist assumptions.

Of course, a ‘‘median tree’’ is a useful construct for many purposes, especially

when the fraction of genetic material laterally transferred or composed is small, but

a strict tree discards information relevant to compositional mechanisms, and a tree

with added cross-links is somewhat inconsistent in what the edges of such a graph

represent.

The genetic variation mechanisms underlying gradual and compositional evolution

are shown in figure 1.3 and figure 1.4, respectively. Note that the genetic changes

Figure 1.2
Other depictions of compositional events. (a) An ancestral tree with ‘‘exceptions.’’ (b) A nontree graph.
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Figure 1.3
Gradual evolution via spontaneous point mutation. Each row represents an individual; each box represents
a gene; the value (0 or 1) in each box represents the di¤erent forms, or alleles, each gene may have. The
position of each gene is referred to as a locus, and the combination of alleles at all loci defines an organ-
ism’s genotype. When the genetic material is copied during reproduction, errors may be spontaneously
introduced—these are genetic mutations. Thus the descendents (shown in successive rows) have genotypes
that di¤er in one or more alleles. Under mutational variation, newly introduced genetic material (shown in
black) is random.

 

Figure 1.4
Mechanisms of compositional evolution. Left: sexual recombination: sections of genetic material may be
transferred as a set from one individual to another. Right: hierarchical encapsulation of symbiotic groups:
preadapted sets of genetic material may be assembled by endosymbiosis. In both mechanisms, newly intro-
duced genetic material has already been subject to selection. An interesting di¤erence between these mech-
anisms that is expanded in the models that follow is that whereas the size of individuals remains constant
under sexual recombination, the size of individuals grows under symbiotic encapsulation.
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produced by spontaneous point mutation may be large, a¤ecting numerous loci

simultaneously, if mutation rates are high. And presumably, there is some nonzero

chance that such large changes may be beneficial. But since the genetic changes

from mutation are random, beneficial large genetic changes are likely to be rare and

evolution is driven predominantly by the accumulation of small modifications. The

primary form of gradual variation mechanism in nature is spontaneous genetic

mutation, but other forms of genetic variation acting on one individual (or involving

genetically similar individuals) may also produce genetic changes that can be accom-

modated in the gradualist framework.

Of course, spontaneous point mutation as depicted in figure 1.3 is also involved, if

not required, for creating the diverse individuals undergoing the compositional

change shown in figure 1.4. But the fact remains that compositional mechanisms en-

able large genetic changes that (unlike changes from spontaneous point mutation,

whether they be large or small) are not arbitrary changes in the genetic material of

the recipient—rather, the changes that are thus enabled are informed by prior adap-

tation of the donor individual. The results of such processes are not formed by the

gradual accumulation of small changes, or random changes of any size, to either of

the ancestral types.

Compositional mechanisms, such as those depicted in the previous figure, form

part of a general evolutionary process of subdivision and integration. Abstractly, a

process of subdivision and integration exhibits the following components. Evolving

entities of di¤erent types are evolved in parallel lineages—that is, the population

of evolving entities is subdivided. Subsequently, some mechanism of integration

composes genetic material from di¤erent lineages together into a new entity. After

integration, integrated genetic material reproduces together. Figure 1.5 shows a sche-

matic of this process.

Mechanisms of subdivision and integration are seen at di¤erent scales in natural

systems. Specifically, at the single-species scale, the separate lineages involved may

be subpopulations of a given species, semi-isolated perhaps by virtue of spatial loca-

tion, and the mechanism of integration may be provided by migration and sexual re-

combination. At the multispecies scale, the separate lineages may be reproductively

isolated species, and integration may occur through horizontal gene transfer or endo-

symbiosis. Several of the major transitions in evolution share the characteristic that

‘‘entities that were capable of independent replication before the transition can repli-

cate only as part of a larger whole after it’’ (Maynard Smith and Szathmary 1995);

and this notion is important in providing the idea that processes of composition may

occur through several increases in scale.
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In evolutionary biology, the single-species scale is relevant to models such as shift-

ing balance theory (Wright 1977), and the multispecies scale is relevant to models

such as serial endosymbiosis theory (Margulis 1993a). In evolutionary computation,

the single-species scale is relevant to issues such as diversity maintenance methods,

the utility of crossover, and the building-block hypothesis (Holland 1975, 2000;

Goldberg 1989)—and the multispecies scale is relevant to models such as cooperative

coevolution (Potter 1997) and the explicit encapsulation of primitive components

into reusable composites in models such as automatic module acquisition (Angeline

and Pollack 1993).

1.2 The Algorithmic Paradigms of Evolution

I claim a fundamental distinction between gradual and compositional evolution

based on the likelihood of evolving certain kinds of complex systems. The basic

intuitions here are provided by analogy with well-known classes of optimization

algorithms in computer science. In optimization, di¤erent kinds of optimization algo-

Figure 1.5
Subdivision and integration in compositional evolution. A number of reproductive entities, shown by
nodes, in di¤erent lineages. Lines in the graph represent ancestral relationships with evolutionary time
progressing from left to right: (a) two particular lineages (light shading and dark shading) progress inde-
pendently in a subdivided population; (b) some mechanism of integration, such as sexual recombination or
symbiotic encapsulation, composes together preadapted subsets of genetic material from the previously
separate lineages; (c) the integrated genetic material is now replicated together. The integration of genetic
material from subdivided populations will occur repeatedly in compositional evolution.
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rithms are suitable for di¤erent kinds of problems according to the assumptions we

have about the dependencies between the problem variables being optimized. A

dependency between variables occurs when the optimal setting for one variable is

dependent on the setting of other variables. Table 1.1 outlines three main classes of

assumptions and the algorithm types that are appropriate for each of them. Starting

with the leftmost column, when we have no knowledge of the nature or structure of

interdependencies between the problem variables we might assume that the depen-

dencies are arbitrarily di‰cult. Such dependencies create a random, highly rugged

fitness surface, and the appropriate algorithmic paradigms for this class of problem

are exhaustive search or random search. Neither of these methods uses any assump-

tions about the problem domain to guide or reduce the search necessary and there-

fore the expected time to find high-fitness configurations of variables with these

methods is proportionate to the size of the entire search space. The total number of

possible configurations for a problem that has N variables, each being able to

take one of k values, is kN . This is an exponential function of N. It means that the

size of the search space grows very rapidly with the number of problem variables

and a search method that has an operating time proportional to this is feasible only

when the number of problem variables is small. In computer science, we say that

the computational complexity of a method like this is exponential. This is a very

important categorization because it means that the method is infeasible for large

problems.

At the other extreme, addressing the rightmost column, we may in other cases

hold di¤erent assumptions about the interdependencies of variables—in this case,

that interdependencies between variables are weak or few. This creates a relatively

Table 1.1
Algorithmic classes and their evolutionary analogues.

Dependency
of variables

Arbitrary
interdependencies

Modular
interdependencies

Few/weak
interdependencies

Landscape

Algorithmic
paradigm

exhaustive search,
random search

divide-and-conquer
problem decomposition

hill-climbing—accumula-
tion of small variations

Complexity KN NK KN

Evolutionary
analogue

‘‘impossible’’/
‘‘intelligent design’’

compositional
evolution

gradual evolution
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smooth and generally monomodal fitness landscape, where the appropriate algorith-

mic paradigms are ‘‘greedy’’ algorithms making incremental improvements, and the

simple class of ‘‘hill-climbing’’ algorithms which climb the local gradient in the fit-

ness landscape. When the assumption of weak interdependencies between variables

is correct, the expected time to find high-fitness configurations of variables is at worst

linear, that is, simply proportionate to the number of variables in the problem. This

is a very di¤erent class of computational complexity. It means that as N increases,

the di‰culty of solving the problem increases proportionately—a problem with 2N

variables is only twice as di‰cult as problem with N variables. Unlike exponential

complexity, this kind of increase is quite manageable and is feasible even for large N.

These two cases—on the one hand, arbitrary interdependencies and exponential

time complexity, and on the other hand, weak interdependencies and linear time

complexity—represent the naive extremes of the possibilities that might occur in a

problem domain. These extremes correspond closely to extreme positions prevalent

in evolutionary thought: specifically, if one assumes that the interdependencies be-

tween components of a natural system are arbitrarily di‰cult and complex then it is

inconceivable that that system evolved (or at least, the size of such systems that can

be achieved with ‘‘uninformed’’ processes is limited); in contrast, if one assumes that

the interdependencies between the components of a natural system are weak or few

then such systems are easily explained by the normal gradualist model of evolution-

ary change. Note, however, that if a search method is applied to an inappropriate

problem type it will not succeed. For example, when a hill-climber is applied to a

problem with arbitrarily di‰cult interdependencies it will not find high-fitness solu-

tions in less than exponential time (and will generally perform worse than random

search because it will follow local gradients that, in this case, will be uninformative).

This is why large complex problems with arbitrary interdependencies are unevolvable

under the gradualist framework of evolution.

In between these two extremes there are many other possibilities for the number,

structure, and nature of variable interdependencies, and in optimization there are

important algorithmic paradigms that address this range. One possibility for the

interdependencies of variables is that there may be strong and numerous interdepen-

dencies but that these dependencies may have a particular structure—for example, a

modular structure. It is not so obvious how to represent the high-dimensional land-

scape of a modular problem domain in the simple one-dimensional caricatures used

here, but as we will see later, although they may appear to be as rugged and unfor-

giving as landscapes with arbitrarily complex interdependencies, the properties of

semi-independence among problem variables create significant structure that can be
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exploited. The algorithmic paradigm that is appropriate for problems of this class

broadly includes those known as ‘‘divide-and-conquer’’ techniques. Divide-and-

conquer optimization is a form of problem decomposition that utilizes the modular

structure of a problem by breaking it into smaller subproblems that are easier to

solve, and using solutions to these subproblems to compose a solution to the problem

as a whole. For example, if a problem can be divided into two equal halves then each

requires time exponential in N=2 (i.e., half the number of problem variables), at

worst. If each subproblem can be further decomposed, and so on, the time complex-

ity of the whole process can be reduced to polynomial time—that is, the time to op-

timize the entire problem is some polynomial function of the number of variables in

the problem. This means that although large problems are not as easy to solve as

when the complexity is linear, they are still a lot easier than when the complexity is

exponential, and they remain feasible for large N. Consider how the values 2N (lin-

ear), N 2 (polynomial), and 2N (exponential) grow with increasing N. In computa-

tional complexity theory, the most important distinction is whether the complexity

of a method is exponential or less than exponential—if a method takes exponential

time it is simply infeasible for large problems, but if it is polynomial (or less) it is

feasible for large problems. So, when applied to problems of a suitable type, hill-

climbing and divide-and-conquer methods are feasible for large N.

Following these broad algorithmic classes, the basis of the central claim in this

book is that compositional evolutionary mechanisms can provide adaptation akin

to divide-and-conquer problem decomposition under certain circumstances. This

means that some kinds of large complex systems that could not feasibly be evolved

under the gradualist framework are nonetheless evolvable. As is the case for divide-

and-conquer methods in general, the adaptive advantage of compositional mecha-

nisms will depend on the structure of interdependencies in the problem domain—in

particular, the presence of a modular interdependency structure. If such a structure is

present, then compositional mechanisms may provide a form of adaptation that lies

in between, yet is fundamentally distinct from, either of the extreme scenarios men-

tioned above.

The possibility of compositional evolution, and the fundamental distinction from

gradual evolution, shares underlying intuitions with some previous work (e.g., Ber-

mudes and Margulis 1985; Margulis 1993a). But the association of these intuitive

ideas with this algorithmic class has not been previously developed, nor have formal

analyses of the relevant combinatorics been developed in evolutionary theory. In

computer science, the underling intuition here is basically that which underlies the

building-block hypothesis, which has been present in evolutionary computation,
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more or less explicitly, since its inception (Holland 1975, 2000). But despite several

attempts to demonstrate the validity of the hypothesis (e.g., Mitchell, Holland, and

Forrest 1995; Forrest and Mitchell 1993b), this has proved di‰cult. Chapter 3 details

the relevant background on concepts relevant to compositional evolution that appear

under various guises through both the evolutionary biology and evolutionary compu-

tation literature.

In large part, the di‰culty in formalizing the possible impact of compositional

evolution in natural evolution, and the di‰culty of demonstrating optimization of a

compositional style in artificial evolution, stems from an inadequate understanding

of modularity. In the next subsection, I introduce a class of complex systems that is

su‰cient to properly exemplify the di¤erence in the adaptive capacities of gradual

and compositional mechanisms.

1.3 Complex Systems with Modular Interdependency and Their (Un)evolvability

A system can be understood as modular if it can be described in terms of subsets of

variables that are semi-independent (Callebaut 2005, p. 6). Here we are interested in

whether modular subsystems have a semi-independent e¤ect on fitness. If this is the

case then it will be possible for them to evolve semi-independently. But usually the

utility of a module is not independent of context; it may depend strongly on the state

of the rest of the system. Accordingly, a module that is fit in one context may be very

di¤erent from a variant of that module that is fit in another context, and getting the

right modules together may be critically important for fitness. We understand a sys-

tem to be modular not because it has weak dependencies between subsystems, but

because the modules encapsulate the internal complexity of subsystems and thereby

reduce the dimensionality of the system. I call the property of having modules with

significant intermodule dependencies modular interdependency.

In this kind of system, changing a module to resolve intermodule dependencies

may require changing many genes simultaneously. Accordingly, gradual evolution is

unable to resolve the interdependencies between modules and is thus unable to find

high-fitness configurations of the system. In contrast, compositional mechanisms

can in principle ‘‘swap in’’ a module that has been preadapted in another individual.

Compositional mechanisms that are able to discover and manipulate modules e¤ec-

tively are thereby able to search combinations of modules and satisfy intermodule

dependencies more e¤ectively.

Chapter 4 details a particular class of system exhibiting modular interdependency

and builds on this to illustrate the distinction between gradual and compositional

evolution. I start with a basic pairwise relationship between variables: specifically, I
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define the fitness interactions between two variables such that a ‘‘fitness saddle’’ is

created. This is illustrated in figure 1.6.

I then use this pairwise interdependency over a larger system of variables to define

a system with modular interdependency. Figure 1.7 illustrates an example system

exhibiting modular interdependency. The highly regular and symmetric construc-

tion used in this particular example enables us to see clearly the underlying struc-

ture that is important (though the regularities of this example are not, in fact,

required). The dependency matrix on the left of the figure shows the strength of pair-

wise dependencies between eight problem variables, and the graph on the right

depicts the same relationships. Sets of dependencies with equal strengths are indi-

cated by appropriate borders in the table, and by the number of edges and (approxi-

mately) by the spatial proximity of nodes in the graph. The fitness of a given

configuration for the system of eight variables can be calculated from the sum of

pairwise interactions (as per figure 1.6) weighted by the corresponding entry in the

dependency matrix.

The salient feature of this structure is that there are subsets of variables in which

the variables are more strongly dependent on other variables within their own subset

than on variables in other subsets. This creates a dependency matrix where the large

Figure 1.6
A fitness saddle created by interdependency between two variables. A system of two variables, or features,
F1 and F2, showing nonadditive fitness interaction or epistasis. Left: The surface shows a fitness landscape
and the overlaid arrows show the paths of increasing fitness that can be followed by changing one feature
at a time. Right: This particular kind of interaction creates a fitness saddle that is shown more clearly on
the rotated view of the same surface. This fitness saddle creates two optima indicated by the large dots
located at AB and ab. An algorithm that arrives at ab cannot cross the fitness saddle to AB without chang-
ing both features at once.
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values are diagonalizable. But significantly, the values of the matrix that are o¤ the

diagonal, representing the strength of dependencies of variables across modules, are

nonzero. Clearly, the structure of dependencies in this example system are not just

modular but also hierarchically modular—that is, there are clusters and subclusters

of more strongly interdependent variables. This potentially allows an adaptive mech-

anism that is capable of exploiting modularity to decompose the system recursively,

or equivalently, to compose together subsolutions repeatedly. This kind of hierarchi-

cal decomposability is closely related to the notion of nearly decomposable systems

discussed by Simon (1969).

This kind of system may be interpreted in di¤erent ways as appropriate for di¤er-

ent domains. For example, we may interpret the graph on the right of figure 1.7 as

the network structure of a dynamical system where the future state of each variable is

dependent both on itself and the state of connected nodes (in the style of ‘‘random

Boolean networks,’’ Kau¤man 1993). A biological example using a dynamical inter-

pretation equates each variable with a gene, and interdependencies between variables

may represent transcription factor interactions that ‘‘upregulate’’ or ‘‘downregulate’’

one another. In this interpretation, the fitness of di¤erent configurations corresponds

to the stability of attractors in the gene expression dynamics. An alternate interpreta-

tion is that subsets of genes interact during development to control the attributes of

higher-level features, and sets of these interact to create still higher-level features, and

so on. If the interaction between genes in one subset and genes in another subset can

        

         

         

         

         

        

        

        

        

Figure 1.7
A system of variables exhibiting modular interdependency.
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be understood through the interaction of their respective higher-level features, then

the system will exhibit modular interdependency.

This system of modular interdependency is particularly suited to supporting the

general point—that certain kinds of complex systems that are considered unevolv-

able under the gradualist framework of evolution are easily evolvable under compo-

sitional evolution. Its clear modular structure makes it very easy for a compositional

mechanism to adapt; however, it also exhibits all the properties usually associated

with evolutionary di‰culty. Specifically, it creates a highly rugged fitness landscape

with an exponential number of local fitness peaks; the peaks are separated by broad

fitness saddles (in fact the higher the fitness of a peak the further it is to the next peak

of higher fitness); high-fitness configurations of the system are irreducibly complex

(in the sense that any small change to the configuration causes a catastrophic de-

crease in fitness); and finally, there is no guaranteed path of monotonically increasing

fitness leading to high-fitness configurations in this system. Figure 1.8 shows a cross

section through the fitness landscape created by a complex system with modular in-

terdependency that illustrates most of these features. However, all of these concepts

of evolutionary di‰culty are dependent on the assumption of gradual evolution.

Chapter 5 shows that this kind of system cannot be evolved by a gradual evolution-

ary process, regardless of the mutation rate that is used. In contrast, when such a

system is evolved under compositional evolution these properties of the system do

not create evolutionary di‰culty. This result depends on the presence of appropriate

modularity, a property that gradual evolution cannot exploit but compositional evo-

lution can.

Figure 1.8
A particular cross section through the fitness landscape of a system with modular interdependency. See
section 5.1 for details.
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1.4 Compositional Mechanisms

This book provides two highly abstract computational models to illustrate a su‰-

cient set of mechanisms and conditions for compositional evolution to produce sys-

tems with hierarchical modular interdependency. The first model is based on sexual

recombination (see figure 1.4, left); the second is based on symbiotic encapsulation—

the hierarchical encapsulation of symbiotic groups inspired by endosymbiosis and the

major evolutionary transitions (see figure 1.4, right).

Composition Based on Sexual Recombination

The simulation models in chapter 6 show that evolutionary processes with appropri-

ate population diversity and variation provided by sexual recombination are able

to provide compositional evolution. Specifically, a form of genetic algorithm using

sexual recombination, is able to quickly and reliably find the global optima in this

problem class. Di¤erent individuals in the population discover di¤erent modules,

and sexual recombination is able to ‘‘swap in’’ modules from one individual to

another to discover better combinations of modules that resolve the dependencies

between these modules. This provides our first successful example of compositional

evolution.

However, the ability of sexual recombination to search combinations of modules

is strongly dependent on assumptions about the ‘‘genetic map,’’ the placement or

ordering of genes on the chromosome (see figure 1.9). In linear chromosomes, a

system of genes must be mapped to positions on the chromosome, and the distance

between genes in this ordering a¤ects the likelihood that they will co-occur in o¤-

spring produced by recombining with other chromosomes. Ideally, features (nodes

in the graph of figure 1.7) which are functionally interdependent (shown by numer-

ous interaction lines) will be next to each other on the chromosome (figure 1.9, left).

In this case, sexual recombination (in some circumstances) will be able to recombine

subsystems e¤ectively. However, without such a favorable situation, functionally

interdependent subsets of genes may be arbitrarily positioned on the chromosome

(figure 1.9, right). I’ll call this a ‘‘random genetic map.’’ In this case, sexual recombi-

nation is unable to recombine subsystems e¤ectively—even though di¤erent well-

adapted modules may have been discovered in di¤erent members of the population,

they cannot be extracted as a unit and recombined e¤ectively. In biological systems,

the position of genes might be adaptively reordered, but in engineering domains

where the interdependencies of variables are not known a priori, we cannot assume

a favorable ordering of genes on the chromosome.
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Composition Based on Symbiotic Encapsulation

Despite the limitations of composition based on sex, the ability of compositional

mechanisms to exploit the structure of problems with modular interdependency is

not necessarily dependent on assumptions about the favorable positioning of genes

on the chromosome. In chapter 7, I provide a novel model of evolutionary adapta-

tion based on the encapsulation of coadapted simple entities into a new whole. This

symbiotic encapsulation model is derived from a mechanism of symbiogenesis or

endosymbiosis rather than sexual recombination, and enables compositional evolu-

tion in more general circumstances than that provided by sexual recombination.

The salient distinction between sexual recombination and symbiotic encapsulation

for our purposes is that whereas sexual recombination produces an o¤spring by

taking, on average, half the genetic material from one parent and half the genetic

material from a second parent, symbiotic encapsulation may simply take the union

of genetic material from both donor individuals. Naturally, this is most productive

when the expression of genetic material from the two parents is not mutually exclu-

sive. Accordingly, the model of this mechanism allows for the possibility of entities

Figure 1.9
The correspondence (or not) of the genetic map with epistatic dependencies. The graph of nodes represents
the strength of fitness dependencies of genes (subsets of genetic material) in the evolving system—this is
modular in both cases. In a ‘‘tight’’ genetic map the modularity of fitness dependencies corresponds well
with the strength of physical linkage between genes. However, if the position of genes in the genetic map
is arbitrary (random genetic map) the physical linkage of genetic material does not correspond well with
the fitness modularity of genetic material.
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that specify complementary characteristics rather than overlapping or mutually ex-

clusive genetic material. This allows whole individuals to represent a functional

module that can be assembled with another whole individual, and precludes the

need for a mechanism like sex to take a part of one individual and a part of another

where it is necessary to use the genetic map to bias which parts to take.

The model is also coevolutionary—involving the evolution of entities that are

evaluated in the context of one another and thereby coadapt. In contrast to the com-

mon adversarial relationships seen in many coevolutionary models (e.g., Hillis 1992;

Reynolds 1994; Pollack and Blair 1998), the coevolutionary relationships we are

most interested in here occur between entities having complementary adaptive abili-

ties (see Sigmund 1998).

The idea is that initially di¤erent specialist entities will evolve to cover di¤erent

complementary parts of the problem domain. Over time, the dependencies between

specialists will be resolved by forming unions between specialists to create new repro-

ductive entities at a higher level of organization. This process repeats, discovering

larger alliances until a complete solution is found—a generalist that solves all mod-

ules and resolves all intermodule dependencies in the hierarchical problem structure.

This model must accommodate entities of increasing size, as entities of many levels

of organization are modeled together, and thus requires a means to prevent large

suboptimal generalists from competitively excluding optimal specialists. This proved

to be a critical aspect of the model and required methods that step outside frame-

works previously familiar in evolutionary computation. The model developed, the

‘‘symbiogenic evolutionary adaptation model,’’ or SEAM (to invoke the notion of

joins), uses a selection scheme that explicitly respects the context sensitivity of an

entity’s fitness. That is, a proposed solution to a module may be good in one context

and not in another, in the same way that the fitness of an organism is strongly depen-

dent on environment. Selection in a varied environment may prevent competitive

exclusion of one type of entity by another if the niches they inhabit are distinct, but

in the case where one entity is fitter than another in all environments we may assume

that the former will competitively exclude the latter. This is modeled explicitly in

SEAM by retaining multidimensional measures of fitness coming from the perfor-

mance of a specialist in di¤erent contexts, and applying selection conservatively

using the ‘‘Pareto dominance’’ criterion. This provides an abstract form of auto-

matic niching in an ecosystem of di¤erent species and replaces the normal single-

dimensional fitness selection familiar in single-species models.

SEAM is able to properly identify and optimize the modules in this class of prob-

lem automatically and assemble them together to find larger modules repeatedly. It is

thus able to quickly and reliably find globally optimal configurations of the problem
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variables in this class of hierarchical modular interdependency systems. The behavior

of SEAM is entirely insensitive to the ordering of genes on the chromosome. Thus I

show that the algorithmic advantage of compositional mechanisms in this class of

problem is not dependent on assumptions of favorable gene ordering.

In summary, the abstract models of sexual recombination and symbiotic encapsu-

lation illustrate su‰cient sets of conditions under which the adaptive capacity of

compositional mechanisms is fundamentally di¤erent from that of gradual mecha-

nisms. Specifically, I show that these mechanisms are able to exploit modular

interdependency structure and provide e‰cient adaptation in cases where gradual

mechanisms are not able to do so. The models used illustrate that the adaptive poten-

tial of sexual crossover is sensitive to gene ordering on the chromosome, but this is

not a principled limitation of compositional mechanisms since a model based on

symbiotic encapsulation is insensitive to gene ordering.

Simulation results from these models and algebraic analysis provide an existence

proof for the central claim: certain kinds of complex systems, considered unevolvable

under the gradualist framework of evolution, are easily evolvable under composi-

tional mechanisms. More formally, chapter 8 shows that although the expected time

for a gradual mechanism to evolve systems with modular interdependency is expo-

nential in the size of the system, the expected time for the compositional mechanisms

is polynomial. This is a formal way of saying that systems of this kind quickly be-

come unevolvable to gradual mechanisms when they are of any significant size, but

that even large systems are easily evolvable via compositional mechanisms.

1.5 The Impact on Gradualism

These models and results significantly a¤ect the kinds of systems we consider to be

evolvable and unevolvable. For example, systems of many complex interdependent

parts can appear unevolvable—especially when any small change in the system

causes the system to cease functioning (Behe 1996). In general, when faced with the

existence of a particular complex system in nature, the normal approach to explain

how it may have evolved is to show that there exists a succession of protosystems

that are gradually increasing in function where each one is a small modification of

the last. Accordingly, a straightforward approach to explain the plausible evolution

of a system where it is proposed that any small change causes it to cease functioning

is to show that this is not in fact the case—that there does after all exist a succession

of gradually changing protosystems approaching the system in question (Dawkins

1996).

Introduction 19



More generally, we are interested in a‰rming the existence of a linear succession

of protosystems where each one is a plausible random genetic change from the last—

this tends to imply that changes will be small, but in principle, they may be changes

of any size so long as they are random. If such a succession can be found, or reason-

able hypotheses about the plausible existence of such a path can be upheld, then all

well and good. But the adherence to this framework, the linear accumulation of ran-

dom genetic changes, derives from assumptions about the underlying algorithmic

principles.

Specifically, the simulations and analyses show that the existence of a succession of

gradually changing protosystems is not, in principle, essential to explain the evolu-

tion of a complex adaptation. Although some intuitions to this e¤ect have been in

circulation, this book enables us to clarify the fundamental algorithmic distinction

between compositional and gradual mechanisms; to define a class of complex systems

that distinguishes their capabilities; to analyze the properties of such systems that

make them problematic for gradual evolution; and to provide a su‰cient set of cir-

cumstances under which they are easily evolvable via compositional mechanisms.

The contribution of these results to evolutionary biology is not, of course, to merely

point out that compositional variation mechanisms exist, but rather that composi-

tional evolution belongs in a di¤erent algorithmic paradigm from gradual evolution,

and that accordingly it can evolve things that gradual evolution cannot.

In chapter 8, I provide formal analyses of what ‘‘can evolve’’ and ‘‘cannot evolve’’

mean in a rigorous sense. This depends on showing that one process cannot be guar-

anteed to find high fitness points in less than time exponential in the size of the sys-

tem, and that another is guaranteed to find high fitness points in time that is at worst

a polynomial function of the size of the system. Basically these match with a biolo-

gist’s intuitions: if a fitness improvement requires many genetic sites to be changed

simultaneously to a specific new configuration, then the expected waiting time for

this when the changes are made randomly is exponential in the number of sites that

need to be changed. It just is not plausible for more than a small number of sites. In

chapter 8 I provide formal analyses of the compositional models to see how long they

take to make such changes, and show that (given some necessary assumptions) there

is always a relatively easy genetic change available to find fitness improvements in

these compositional models.

In chapter 9, I connect the features of the compositional models back to the hier-

archical structure of the modularity and discuss the mechanisms and principles nec-

essary for an evolutionary process to ‘‘scale up’’ evolution. Whereas mutational

processes start out and end up manipulating individual nucleotide sites, composi-

tional mechanisms begin this way but, through evolutionary time, scale up the varia-
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tional mechanism to manipulate larger, more meaningful components: genes, suites

of genes, and so on. This enables compositional processes to escape from the inherent

tension of variability and heritability that is inevitable in random-mutation-based

processes, for example.

I have introduced several important conceptual distinctions in the previous discus-

sion, so let me recap. The grandest distinction is between exponential complexity and

nonexponential complexity; in evolution these correspond to not-evolvable and

evolvable, respectively. Included within nonexponential complexity is linear com-

plexity and polynomial complexity. When applicable, hill-climbing is linear com-

plexity and divide-and-conquer problem decomposition is polynomial complexity;

so both of these are nonexponential. Gradual evolution is analogous to hill-climbing

and compositional evolution is analogous to divide-and-conquer, so both of these

make the evolution of large systems feasible when applicable. However, the types of

system to which they can be applied are di¤erent and some types of systems that are

feasible with compositional evolution (e.g., modular ones) are infeasible with gradual

evolution. Gradual evolution can be further divided into strict gradualism (small

changes only) and nonstrict, which may include large changes in principle. And

finally, compositional evolution can be implemented with di¤erent mechanisms

including sexual recombination and symbiotic encapsulation. These can both evolve

systems that gradual evolution cannot, but again they have di¤erent capabilities and

sexual recombination is limited in some ways that symbiotic encapsulation is not.

Is Gradualism Su‰cient?

The possibility of large adaptive changes, and the possible contrast with gradualism,

is already recognized in the evolutionary biology literature (see, e.g., Symbiosis as

a Source of Evolutionary Innovation, Margulis and Fester 1991). However, there is

disagreement about whether symbiotic encapsulation contradicts the supposed su‰-

ciency of gradualism to explain evolutionary change.

Ridley (1985), having specifically mentioned symbiosis as a possible source of

increases in complexity, states that ‘‘The Darwinian denies (as he must) that the com-

plex co-adaptation arose in a single chance event’’ (p. 35)—and ‘‘in all these cases,

including symbiosis, complex organs have been built up in small stages’’ (p. 41). So

each adaptation ‘‘appears at first impossible to build up in a series of small but

advantageous stages. But in fact they probably were’’ (p. 41). And thus Ridley con-

cludes that ‘‘[c]omplex adaptations must have evolved by the natural selection of a

large number of small mutations over a long period of time’’ (p. 42).

It is correct that the Darwinian must deny that a complex adaptation arose in a

single chance event. But we must not therefore conclude that linear incremental
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improvement is su‰cient to explain all adaptations. If Ridley is referring to the

components that were assembled, then maybe (presumably) they evolved gradually

(excluding the possibility of repeated endosymbiosis, for the moment). But the resul-

tant system containing both the component parts did not evolve gradually. It did not

evolve exclusively via the accumulation of a large number of small mutations be-

cause, in addition to this, there was a large inclusion of nonrandom genetic material

that was preadapted in a di¤erent lineage. And this means, as figure 1.1 shows, that

the resultant system is not derived from an unbroken line of small genetic changes.

But does this contradict Darwinian gradualism or not?

On the subject of the apparent contradiction with Darwinian change, Maynard

Smith (1991) states: ‘‘Symbiosis may give rise rather suddenly to evolutionary

novelty; it is therefore seen as presenting a challenge to Darwinian gradualism. I

think this is to misunderstand the reason why Darwin was a gradualist: essentially,

it was because the origin of a complex adaptation would be miraculous.’’ This does

not really support the idea that Darwinian gradualism is correct; in fact, it says that

Darwinian gradualism is incorrect, but that something deeper is still correct. Specifi-

cally, the deeper thing that is correct is the theory of evolution by natural selection—

but this needs to be separated from gradualism.

Maynard Smith then suggests that in light of mechanisms that exchange genetic

material across lineages, we see that a complex adaptation acquired in such a manner

is not ‘‘miraculous,’’ and—‘‘There is, therefore, no contradiction between Darwin’s

belief that complex adaptations arise by the natural selection of numerous inter-

mediates, and the possibility that new evolutionary potentialities may arise suddenly

if genetic material that has been programmed by selection in di¤erent ancestral lin-

eages is brought together by symbiosis’’ (ibid., p. 37).

Although it is easy to see that there is nothing miraculous, we should be careful

with what we conclude from this. Of course, if a complex adaptation arises by sym-

biosis it does not come out of thin air but arises from the assembly of ‘‘inter-

mediates.’’ But if we assume that intermediates must form a single, unbroken, linear

succession of small changes, then the possibility that a complex adaptation arises

suddenly by symbiosis does present a contradiction to this. We could give Maynard

Smith the benefit of the doubt here, but I think it would be fair to say that his state-

ment strongly suggests that it is fine to carry on as though compositional events do

not change anything important in our understanding of evolution, and that he has

overlooked the possibility that intermediates from parallel lineages may provide dif-

ferent a¤ordances than intermediates in a single lineage.

So, why is it important to make these seemingly nitpicky distinctions? We are

all agreed that evolution by natural selection explains these observations. Nothing
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miraculous has occurred. There are no large random mutations that are beneficial.

So what point is there in emphasizing that there is no linear succession of small ran-

dom changes that connects the result of a symbiotic event to its ancestral lineages?

The point is that by adhering to the framework of linear incremental improvement,

we miss the fact that compositional events radically alter the underlying algorithmic

principles and thereby the space of systems that can evolve. Compositional evolution

enables the evolution of systems that would be otherwise unevolvable, and if we

adhere to linear gradual evolution thinking, we make incorrect assumptions about

which kind of system is evolvable and which is unevolvable.

What does this say about the necessity and su‰ciency of gradualism in evolution-

ary change? Although there are no miraculous large changes, there are large changes.

And moreover, it is not possible to see where these (nonmiraculous) large beneficial

changes come from if we view evolution as a linear hill-climbing process. If the com-

ponents that are brought together in a compositional event evolved gradually then

gradualism is necessary in order to explain the evolution of the new entity. But it

should be clear that even if the components evolved gradually, the new entity was

not evolved gradually. Specifically, there is no path of small changes of monotoni-

cally increasing fitness approaching the configuration of features exhibited in this

new entity. Thus the evolution of this entity is not accommodated by the model of

linear incremental improvement.

A more fundamental question then arises from these considerations: if some entity

AB was created by the composition of entities A and B, each of which evolved grad-

ually, does it follow that AB could have evolved gradually (even if it did not in this

particular historical scenario)? I will show that this does not necessarily follow.

Specifically, I will show that it may be the case that although A and B are each inde-

pendently evolvable gradually, AB is not evolvable gradually as a whole—nor are

the two entities evolvable one after the other in a single individual. This will be the

case when A and B correspond to interdependent modules in the sense that I define in

chapter 4. As I will show, in systems with modular interdependency, each module

is independently evolvable but the two modules cannot evolve together gradually

because of dependencies acting between the modules.2 Put simply, when there are

interdependencies between A and B, it may be possible for A to evolve by linear in-

cremental improvement, but if it does it becomes essentially impossible for B to

evolve without causing dramatic fitness decreases by disrupting dependencies with

A, and vice versa. Nonetheless, if A and B each evolve in parallel in di¤erent individ-

uals then, even though not all variants of A work well with all variants of B (because

of the dependencies between them), searching combinations of di¤erent variants is a

relatively easy evolutionary process through compositional mechanisms.
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As stated, the strongest evidence supporting the claim that it does matter whether

genetic adaptations are accumulated linearly, or in parallel and then composed to-

gether, is that it changes our perception of what is evolvable and what is not. This is

why I am able to show that a complex system that has all the characteristics usually

associated with evolutionary di‰culty (an exponential number of local fitness peaks,

wide fitness saddles separating a local peak from the nearest point of higher fitness,

configurations that are irreducibly complex, and fitness optima that cannot be

reached through a linear succession of incremental improvements) is nonetheless

easily evolvable through compositional mechanisms. In the course of this book, I

will explain why this is possible by showing that compositional evolution belongs to

a di¤erent algorithmic class from simple mutation hill climbing.

1.6 Some Related Issues

There are numerous related issues in both evolutionary biology and evolutionary

computation that are raised by these models and results. In this section I briefly ac-

knowledge a few important ones.

Noncompositional Mechanisms

I need to distinguish compositional mechanisms from a few mechanisms that

may look similar superficially. Gould’s concept of punctuated equilibria (Gould and

Eldredge 1977) does not concern large genetic changes but merely the rate (the

unevenness of the rate) at which small changes accumulate—compositional mecha-

nisms concern large genetic changes. The notion of evolutionary jumps known as

‘‘saltations’’ (Goldschmidt 1940) concerns large genetic mutations (see also Mutation

Theory, DeVries 1909) but these are undirected random mutations, whereas the point

of the compositional models is to show that composition a¤ords directed genetic

changes that cannot be achieved with a higher mutation rate, for example. Mecha-

nisms such as genetic inversions and gene duplication (Ohno 1970) provide large ge-

netic mutations that introduce nonrandom genetic material that is considerably less

likely to be disruptive than a random genetic change of the same scale (because they

are a copy of genetic material that has already been subject to selection)—but this

genetic material has been subject to selection in the same individual as the rest of

the genetic material of the organism, rather than preadapted in a di¤erent genetic

context as it is in compositional mechanisms. Such duplications of existing genetic

material do not provide an increase in complexity in the same way that composi-

tional mechanisms do (Ridley 2001, p. 43). These mechanisms potentially exploit a

di¤erent kind of modularity, the repeated structures kind of modularity (like the fin-
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gers of a hand, or cells of a tissue), rather than the functional independence kind of

modularity (like metabolizing nutrients and detecting toxins) addressed in this book.

This also leads us to mention small genetic changes that can produce large pheno-

typic changes (such as homeotic genes, Lewis 1978). Such changes potentially enable

large changes in phenotype that are better than random but this is a di¤erent issue

from the large genetic changes addressed here.

Selection on Groups of Genes

Sewell Wright’s shifting balance theory, which describes evolutionary mechanisms

whereby a population may escape local optima on a fitness landscape, is related to

some of the models presented in this book. The models share some of the underlying

motives and thinking but there are significant di¤erences in the mechanisms (see sec-

tion 9.1). For example, genetic drift does not feature in my models for escaping local

optima.

The idea of compositional evolution based on symbiotic encapsulation is basically

the idea that subsets of genetic material that have evolved semi-independently be-

come part of a single individual at a new level of organization. This might sound

similar to group selection, where individuals are selected for their utility to the benefit

of the group rather than to themselves. And since this principle is applied recursively

through subsequent hierarchical levels, it might further appear to be a model of hier-

archical selection (Keller 1999; Gould 1982a, 2002). But this is not the case. Here we

are careful to consider the selfish interests of the parties involved in a symbiotic

encapsulation, as required by a microscopic, ‘‘selfish-gene’’-style model (Dawkins

1976).

Nonetheless, the notion of hierarchical selection makes good sense from an algo-

rithmic point of view. The principle that a¤ords e‰cient adaptation in these models

is that first searching combinations of small numbers of variables finds good small

modules, then searching combinations of modules finds bigger modules, and so on.

If the search were conducted solely at the lower level then suboptimal solutions

would result. And if the search were conducted solely at the higher level then the

combinatorics of the search space would be prohibitive. But by implicitly moving

incrementally from lower levels to higher levels we gain the algorithmic advantage

of a divide-and-conquer approach and the opportunity, in appropriate problem

domains, to find good global solutions e‰ciently. (See discussion section 9.1.)

Modularity

An important concept of modularity in the genetic algorithm literature is Holland’s

notion of ‘‘building blocks’’ (1975). This is closely related to the notion of modules
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we define in chapter 4, but it is distinct in several important respects. The modules

that the modified GA processes in the compositional model of chapter 6 are indeed

building blocks (but not necessarily small ones). In contrast, the modules used by

symbiotic encapsulation in chapter 7 are not building blocks: They are represented

by subsets of variables but there is no dependence between the position of genes on

the chromosome and the ability of this method to exploit modularity. Additionally,

it should not be assumed that the notion of modules implies a problem that can

be decomposed into separable subproblems. This is a mistake that has caused

widespread confusion in the controversy around the building-block hypothesis and

the operation of the GA. There may be strong nonlinear interactions between

modules—that is, modularity does not imply that a problem is separable.

The notions of hierarchical modularity, and hierarchical decomposability, relate

strongly to Herbert Simon’s (1969) ideas and the wealth of design-engineering and

social systems he refers to. However, chapter 4 shows that a system of hierarchical

modular interdependency does not depend on the idea of modules with weak inter-

module dependencies.

Finally, one of the best-known models of genetic dependencies is Kau¤man’s ‘‘NK

landscapes’’ (1993). When the number of variables involved in each dependency K is

large, they produce rugged landscapes that are very di‰cult for gradual evolution.

However, these landscapes have no structural modularity and are therefore also dif-

ficult for compositional evolution. We will see that two landscapes with the same

number of dependencies can be very di¤erent in di‰culty because of di¤erences in

the structure of those dependencies.

‘‘No Free Lunch’’ and the Building-Block Hypothesis

The ‘‘no free lunch’’ theorem (Wolpert and Macready 1997) basically says that ‘‘you

cannot get something for nothing’’—specifically, you cannot have an algorithm that

is better than random search unless you also restrict the class of problems to which it

is applied. One of the primary evolutionary computation aims of this book is to clar-

ify whether the EA can in some circumstances provide an algorithmic advantage

akin to divide-and-conquer problem decomposition as the intuition of the building-

block hypothesis suggests. As Wolpert and Macready rightly point out, for any algo-

rithm, the algorithmic advantage of the method is dependent on the class of problem

to which it is applied. Accordingly, it is not my intent to show that a GA, standard

or otherwise, is advantageous in all problem classes. On the contrary, I invest a good

deal of this book identifying and illustrating the properties of a particular problem

domain—specifically, the class of problems with modular interdependency. Thus,

any failure of the building-block hypothesis to explain the operation of the ‘‘simple

GA’’ in other problem domains is simply not relevant to my conclusions. But having
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said this, I find the intuition of the building-block hypothesis to be quite instructive.

In contrast, the ‘‘schema’’ theorem does not turn out to be useful in these models.

The schema theorem (Holland 1975) concerns the increase in copies of schemata

with above-average fitness in a population, and historically, it is considered responsi-

ble for the supply of building blocks for the building-block hypothesis. In the models

developed in this book, the notion of schemata, and schema combination, is very

useful, but we have no need to invoke or defend the schema theorem since the selec-

tion schemes are quite di¤erent.

1.7 Contributions

The main motives and goals of this book are: to foster and capitalize on two-way

interdisciplinary exchange between evolutionary biology and evolutionary computa-

tion, to provide a conceptual framework that incorporates a broader view of evolu-

tionary mechanisms than the gradualist framework, to understand the adaptive role

(if any) of symbiosis and symbiogenesis, and to better understand the competence of

genetic algorithms, and in particular the utility (if any) of crossover and the building-

block hypothesis.

The specific contributions for evolutionary computation include: 1. Clarifying the

structure of dependencies between variables in modular problem domains, in partic-

ular, hierarchically modular problems. (These are related to, but resolve important

limitations of, building-block problems in GA theory.) 2. Demonstrating the con-

ceptual contrast of hill climbing and divide-and-conquer problem decomposition

mechanisms in evolutionary algorithms. (This is related to, but more general than,

the notions of the building-block hypothesis.) 3. Providing a concrete illustration of

mechanisms that permit automatic module acquisition and assembly in evolutionary

algorithms. This provides a conceptual framework that accommodates cooperative

coevolution and function optimization, addressing fundamental issues such as repre-

sentational recoding and open-ended scalability in evolutionary search. 4. Providing

specific models for algorithmic methods such as methods for maintaining appropriate

schema diversity, and the use of partially specified genotypes to represent functional

or fitness dependencies.

The specific contributions for evolutionary biology closely parallel these: 1. Clari-

fying the structure of functional or fitness dependencies that produce di¤erent kinds

of evolutionary di‰culty. 2. Demonstrating the conceptual contrasts of gradual evo-

lution and compositional evolution, thereby broadening our interpretation of evolu-

tionary processes. 3. Providing a conceptual framework for evolution that begins to

accommodate adaptive roles for symbiosis and symbiogenesis. 4. Providing specific
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models for evolutionary processes and the role of issues such as the genetic map,

population-ecosystem diversity, population subdivision, and shifting balance theory.

The models themselves are quite simple: the fitness landscape can be defined in a

simple equation, and each algorithm can be defined in a few lines of pseudocode.

However, since the purpose of the models is an illustration of deeper conceptual

issues, they require a fair amount of setup in order to convey why the models are

the way they are, and what the results do and do not mean.

It is important to be clear about the scope and boundaries of this book and these

claims. I provide these models as an illustration of the important potential that these

mechanisms a¤ord in principle, and to encourage analysis of evolutionary processes

such as these that go beyond the usual gradualist conception of evolutionary change.

This follows a style of cross-disciplinary research such as, for example, connection-

ism, which did not claim to necessarily be an accurate model of the way that the cor-

tex worked in a detailed sense, but was nonetheless informative by demonstrating an

alternate possibility that presented a challenge to established cognitive science. More-

over, the mechanisms I explore are not arbitrary excursions into possible biologies.

First, abstract computational models such as these are relevant to natural evolution

at least in the sense that we demonstrate that it is possible for nonteleological

adaptive processes, that is, processes based only on fitness feedback, to behave in

this manner. Second, mechanisms of sexual recombination, horizontal gene transfer,

and symbiogenesis, for example, are a biological fact. Third, some of the other con-

cepts that are explored have a rich, albeit controversial, background in biological

thought—and throughout the book e¤ort is made to draw the relevant connections

to the biological literature and provide appropriate biological interpretations of

models and results.

Similarly, the computational contributions of this book are theoretic and con-

ceptual. The studies provide proof of concept for the algorithmic techniques and ad-

dress issues of principle, not empirical observations about engineering domains or

processes. But likewise, the computational models build on an established set of re-

search questions, algorithms, and conceptual ideas. Highly abstract models like those

presented here require further work to connect properly with detailed biological

knowledge and validate the many assumptions theoretical models require. But in the

meantime the fundamental algorithmic distinctions of the models prompt us to expand

the way we think about natural and artificial evolution to include new possibilities.

28 Chapter 1


