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In this chapter, we define the shuffle-cxchange graph and the Thompson grid

modcl of a chip. We also review the prc\'lous work on layouts for thc shufOe-

exchange graph. In Section 1.3, we dcscribe Thompson's straightforward

O(N2/ log1/ 2jV) -area layout for the N-node shufflc-exchange graph, and in Section

1.4, we describe rlocy and I .ciscrson's complex plane diagram. The complex plane

diagram is useful for finding good layouts of the shufOe-cxchange graph. For

example, I-Joey and Leiserson uscd the diagram to find an O(N2/ logil\')-area layout

for the N-node shufOe-e,xchange graph in [34]. In Chapter 2, we will use the

diagram to find a variety of layouts for the N-node shuffle-exchange graph

including one that requires only O(N2/ log-~/ 21V) area. The complex plane diagram

will also be used in Chapter 4 as an aid in the construction of good practical

layouts for small shuffle-exchange graphs.

1.1 The Shufnc-Exchange Graph

The sllufj7c-exchange graph comes in various sizes. In particular, there is an

N-node shuffle-exchange graph for every N \Iihich is a power of two. Each node of

the (N= 2A) -node shuffle-exchange graph is associated with a unique k-bit binary

string ak-J' , , ao' Two nodes wand wi arc linked via (J shufj7e edge if w' is a left

or right cyclic shift of w (i,e" if w = ak-J' , ,ao and w' = ak-) ' , ,a(/lk-J or



wI = a(j1 k-fo 0 . a f I

exchange edge

wI = ak-fo 0 . a] 1

shuffle -exchange graph in Figure 1-1.

solid lines

this convention throughout the

More importantly, however, the shuffle-exchange computer is capable of

performing a perfect shuffle on a set of data in a single parallel operation. For

example, consider a deck of 8 cards distributed among the 8 processors of the 8-

node shuffle-exchange graph so that processor 000 initially has card 0, processor

00/ initially has card / , processor 010 initially has card 2, and so foI1h. Next,
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respectively). Two nodes wand

if wand wI differ only in the last bit (i.e., if

or vice-versa). As an example, we

w' are linked via an

  w = ak - j " , ajO and

have drawn tile 8 - node

Note that Tile shuffle edges are drawn with

while the exchange edges are drawn with dashed lines , We shall follow

book ,
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Figure I -I : The 8-node shuffle-exchange graph

By replacing tl1e nodes and edges of the shllffle-exchange graph by processors

and wires (respectively), the shllffle-exchange graph can be transformed into a very

powerful parallel compllter (which we call the shufj7e-exchange computer). The

computational power of the shuffle-exchange computer is partly derived from the

fact that every pair of nodes in an N-node shuffle-exchange graph is linked by a

path containing at most 2logN edges and thus the communication time between

any pair of processors is short.



Among the many mathematical models that have been proposed for VLSI

computation. the most widely accepted is due to Thompson and is known as the

Tholnpson grid model [92, 93]. The grid model of a VLSI chip is quite simple. The

The power of card shuffling and its mathematical abstractions are well known

to magicians and mathematicians [23] as well as to computer scientists [87, 90]. For

a good survey of the computational power of the shuffle-exchange graph, we

recommend Schwartz' paper on ultracomputers [87]. In addition, Stone's paper

[90] contains a nice description of some important parallel algorithms based on the

shuffle-exchange graph.

1.2 The Thompson Grid Model

chip is presumed to consist of a grid of vertical and horizontal tracks which are

spaced apart by unit intervals. Processors are viewed as points and are located only

at the intersection of grid tracks. Two layers of interconnect are used to route the

wires. Vertical wires are routed in the top layer of interconnect and horizontal

wires are routed in the bottom layer. Hence wires may cross but cannot overlap

for any distance. Nor can wires overlap processors to which they are not adjacent

C'ontact cuts, which connect segments of the same \v'ire which are in different

layers, are also only located at the intersectioll of grid tracks. (The routing of wires

in this fashion is also known as layer per direction routing and Afanhatton routing.)

As an example. we have included a grid layout for tile 8-nodc shuffle-exchange

graph in F'igllre 1-2. As before. the shuffle edges are drawn with solid lines while
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  consider a (parallel) operation of the shuffle-exchange computer in which each

processor ap ,oo sends its card across a shuffle edge to the neighboring processor

 jacf12. It is easily verified that, after completion of the operation, processor 000

contains card 0 (the top card in the shuffled deck), processor 001 contains card 4

(the second card in the shuffled deck), and so forth.
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Practical considerations dictate that the area of a VLSI layout be as small as

possible. The area of a la J'oul in the grid model is defined to be tile product of the

number of horizontal tracks and tile number of ve11ical tracks which contain a

processor or wire segment of the layout. For example, the layout in Figure 2 has

area 48. As can be easily observed, this is far from optimal.
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the exchange edges are drawn with dash cd lines. Although we have not incllldcd

them in the figure, contact cuts would be placed at points \vhere a wire changes

direction. Also notice that we have omitted the self-loops in Figure 1-2 since they

are electrically redundant. In general, tile processors need not all be placed on a

single horizontal line (as they are in this example).

all 101 110 III000 001 100 010

Figure 1.2: A grid modelia; 'out of the 8- node shuffle-exchange graph.

Other measures of interest are the wire area, crossing number , maximum edge

length and maximum . edge crossing of a layout . The ~1)ire area of a layout is

defined to be the sum of the lengths of the wires in the la)Lout. ll1e crossi/lg

number is the number of points in the la)'out where two wires cross. The maximum

edge length is the length of the longest wire in the layout . The maximum edge

crossing is the ma.ximum number of points at which a single wire crosses other

wires. For example, the layout in Figure 1-2 has wire area 50, crossing number 8,



maximum edge length 9 and maximum edge crossing 4. l 'he reader can verify that

none of these values is optimal by skipping ahead to f "igure 4-3.
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1.3 An O(N2j logl / 2N) -,\ rea Layout

'rl1ompson \Jias the first to investigate VLSI la)'outs for the shllffle -exchange

graph. In his thesis [93], he sho\vcd that any layout for the N -node shuffle -

exchange graph requires at least Q(N2/ log21v') wire area. (We reprove this fact

using crossing number arguments in Part II of the u1csis.) In addition , he

described a layollt requiring only 0 (N2/ log 1/ 2 Iv') area. In what follows , we present

Thompson 's la)'out and give a simple proof Ulat it does, in fact, require just

O(N2/ logl/ 2N) area.

Given any k-bit string \1', define the size of tV to be the number of I -bits it

contains. For example, the size of 10110 is 3. Thompson 's idea was to layout the

N = 2k nodes of the shuffle -exchange graph on a straight line in order of

nondecrcasing size. It is easily seen that shuffle edges link nodes which have the

same size and that exchange edges link nodes which have sizes differing by one.

Thus the edges of such a layout are relatively short . In fact, nodes connected by

shuffle edges can be placed in groups, so that only 2 horizontal tracks are used for

all the shufne connections. The remaining horizontal tracks are occupied by

exchange edges.

The exchange edges are inse iled from left to right so that each exchange edge

occupies two vertical tracks and a portion of tl1e lowest horizontal track which is

cmpty at tl1e time of its insc/lion . (For example, Figure } - 2 displays a layout for

the S-nodc shufflc -exch.1nge dcsigned in this way.) This wcll -kno\\!n strategy for

inserting exchange edgcs guarantccs that the number of horizontal tracks used will

bc minimal , and equal to the maximllm number of cdges \\;hich must (at some

fixcd point ) overlap one another. Since exchange edges link /10des wllich diffcr in



for each s, where

in the complex plane. As each node of the (N = 2k)-node shuffle-exchange graph

corresponds to a k-bit binary string, it is possible to use the map to embed the
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I t is easy to show that

1.4.1 Definition

size by one , it is easily seen that the m . 1ximum overlap is at most O ( max B )

~ ~ k

where Bs is the number of nodes of size s .

Bs = C ( k , s )

C ( k , s ) = k ! / [ s ! ( k - s ) ! ]

is the well - known function for binomial coefficients . It is also well - known that

C ( k , s ) achieves its maximum value at s = k / 2 for any k . Using standard asymptotic

analysis , it is easily shown that C ( k , k / 2 ) - ( 2 / ' 11 ) / / 2 ( 2k / k / / l ) for large k . ( f ' or a

good review of such techniques , see Bender and Orszag ' s book [ 6 ] . ) Thus

Thompson ' s layout requires only 0 ( N / log / / 2 N ) horizontal tracks . Since only 1 or

2 vertical tracks are needed to embed the vertical portions of the edges incident to

any given node , we can conclude that T I10mpson ' s layout has area 0 ( N2 / log / / 2N ) .

1 . 4 The Complex Plane Diagram

In [ 34 ] , Hoey and Leiserson observed that there is a very natural embedding of

the shuffle - exchange graph in the complex plane . In what follows , we describe this

embedding ( henceforth referred to as the comple .x plane diagram ) and point out

some of its more important properties . In addition , we give a brief description of

t11e method used by Hoey and Leiserson to transform the diagram into an

O ( N2 / log  N ) - area layout for the N - node shuffle - exchange graph .

Let Ok = e27TVk denote the klh primitive root of unity. Given any k-bit

binary string w = Gk-J . . . Go. let p( ~) be the map which sends w to the point

j;(w) = Gk-If Jkk-1 + . . . + GlFik + Go



shuffle-exchange gr~lph in the complex plane. For example, we have done this for

t11e 32-node shuffle-exchange graph (whence k = 5) in Figure 1-3. As usual, we

have drawn the shuffle edges with solid lines and the exchange edges with dashed

lines. For simplicity, each node is labeled with its value instead of its 5-bit binary

string. ( 3y t11e va/ue of a node, we mean the numerical value of the associated

k-bit binary string. For example, the value of 01101 is 13.)
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Figure 1-3: The complex plane diagram for the 32-node

sh Lifile-exchange graph. (Taken from [34].)

1.4.2 Properties

Examinatioll of Figure 1-3 indicates that the complex planc diagram has some

very interesting propclties. First, it is apparc I1t that the shurOc edges occur in

cycles (which we call /lccklaccs) which are S)immctrically placed about the origin.
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+ a/ok2 + a Ook8k p(ak-1 . . . Go)

Thus traversal in the complex

plane.

Lemma 1.1: There are O(Nl/l) degenerate necklaces and N/ log N -
O(NI / 2/ log N) full necklaces in the N -node shufj7e-exchaflge graph

Proof A node \'Ii is in a degenerate nccklace if its binary representation has a

nontrivial symmetry with respect to cyclic shifts. Without loss of gencrality, such a

string of bits must consist of a block of k/p bits which is repeated p times where p

is some prime divisor of k. As there are 2k/p binary strings of length k/p , this

means that the number of nodes in dcgenerate necklaces is at most

~k
L 2k/p
p~1

:::; O(Nl/l) .

N - O(Nl/ l)

nodes, there

1l1C remaining

contains log N

nodes are in full necklaces. As each full neck]ace

N/ log NO (NI/2/ log N) full nccklaces. 0are

This phenomenon is easily explained by the following identity :

~ k + ~ k - /

= Gk - / uk Gk - ] Uk + . . .

~ k - / ~

= G k - 2u k + . . . + Gou k + G k - /

= P ( Gk - 2 ' " afflk - / ) '

of a shuffle edge corresponds to a 21J / k rotation

Except for degenerate cases, the preceding identity also indicates that each

necklace co!ltains k nodes, each a cyclic shift of the other. St Ich necklaces are

called full necklaces. Degenerate necklaces contain fewer than k nodes and,

because they must have some s)/mmetry, are mapped entirely to the origin of the

complex plane diagram. For example, {OOOOO} and {0101. 1010} are degenerate

necklaces while botJl { / 01, 011, IIO} and { / IIOO, 11001, 10011, 00111, 01110} are

full. As we note in the following lemma, the number of degenerate necklaces is

quite small compared to the number of full necklaces.



In some cases, several exchange edges arc contained in the same horizontal line

of the diagram. Such lines are called levels. For cxample, there are 9 levels in the

diagram of the J2-node shume-exchange graph shown in Figure 1-3. \\ 'e will use

the prop~rties of levels in Chaptcr 2 to find an 0 (N2/ 10g3/ 2 H) -area layout for the

lV-node shume-exchange graph. They will also be used in Chapter 4 to find good

practical layouts for small shuffle-exchange graphs.
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It \V'ill often be convenient to refcr to a necklace by one of its nodes. In

particular, we will lISl.: tile notation <~\) to indicate the fleck/ace gcflcraled by w.

This is simply the collection of cyclic shifts of ~v. For example, the necklace

generated by 101 is <101> = { 101, 011, IIO} .

1.4.3 An O(N2/ 1ogN} -,\ rca Layout

In [34], Hoey and Leiserson show how to use the complex plane diagram to

construct an O(N2/ log N) -area layout for the N-node shuffle-exchange graph.

Their method is quite complicated, however, and \A,-'e have chosen not to include it

here. The basic idea is to use the structural propellies of the complex plane

diagram to find an O(N/ logl/ 2 N) -separator for the N-node shuffle-exchange graph

whenever N is of the fonn 22' for some r~ O. The separator call U1cn used to

construct an O(N2/ log N) -arca layout by using Leiserson and Valiant's general

layout technique for gr~phs with known scpar~tors. (Separators and their

application to layouts are discussed in pall II .)

Exchange edges are also embedded in a very regular fashion in the complex

plane diagram. In fact, each exchange edge is embedded as a horizontal line

segment of unit length. 111is phenomenon is explained by the identity

p(ak-J. . . Aid} + 1 = ak-Jokk-J + . . . + ajOk + 1

= p( a k- J . . . a J 1) .



Shortly after writing [34], Hoey and leiserson found a far simpler O(N2/ log N) -

area layout for the N-nodc shufne exchange graph which was, in addition, valid for

all N. By tIle that time, however, we (as \'v'cll as several others) had also observed

that the complex plane diagram could be used to find a simple layout for the

shufne-cxchange graph. This layout is described in Chapter 2.
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