Chapter 1

Introduction

The complexity of Boolean functions has been studied for almost 40 years. The
field has developed into a theory in this, perhaps short, period mainly because of the
success in defining both a set of complexity measures (those for circuit complexity
and for Turing machine complexity) and a surprising hierarchy of very robust com-
plexity classes. Moreover, characteristics of most of the defined classes have been
understood by showing complete problems for them. Relations between some of the
complexity classes have been discovered, and new models have been developed. The
main frustration of the theory has been, however, the inability of showing a separa-
tion of any two classes (excluding those obtained by diagonalization methods*). To
state it simply, the main problem remains unsolved: Though it is known that most
functions are complex [Sh49], we do not have an example of a simple function (say

in N P) that requires super-linear circuit size, or super-logarithmic circuit depth.

The reason for our inability to obtain non-trivial lower bounds is, perhaps, that
although the circuit model is elegantly simple, our understanding of the way it
computes is, at most, vague. There seems to be a need to develop more intuitive
ways of looking at computation. A new approach may give some clues as to where
to look for the heart of complexity and, at the same time, shed some light on how

to prove lower bounds.

In this thesis we would like to propose a new approach to circuit depth: The
Communication Complezity approach T. The approach is based on an equivalence
between the circuit depth of a given function, and the communication complexity

of a related problem. The bottom-line of the new approach i1s that it looks at

*Diagonalization methods are not strong enough to separate such classes as P and NP (see
[BGS75)).

tYannakakis independently discovered this equivalence which is implicit in [KPPY].
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a computation device as a separating device; that is, a device that separates the
words of a language from the non-words. The characterization of circuit depth in
terms of communication complexity is reminiscent of, but somehow more explicit
and intuitive than, the well-known relationship between circuits and alternating
machines [Ru80]. Among other things, the new approach allows us to view compu-
tation in a fop-down fashion. Also, the approach makes explicit the idea that flow

of information is a crucial term for understanding computation.

We will demonstrate that the communication complexity approach is very intu-
itive, and that it captures, in a strong way, the essence of circuit depth. We will do

so by:

e Giving new, simpler proofs to old results which become clearer in this new

setting.

e Proving a super-logarithmic monotone depth lower bound for the function

st-connectivity.

In 1985, work of Andreev [An85] and Razborov [Ra85a], later improved by Alon
and Boppana [AB], lead to exponential monotone size lower bounds for such func-
tionsin NP as CLIQUE. These results separate the monotone analogues of P and
NP. Though these results can be used to obtain exponential (in logn) monotone
depth lower bounds as well, the depth lower bound is always logarithmic in the
size bound. That is, the techniques apply to size rather than to depth. Our con-
tribution is to present monotone depth lower bounds which are super-logarithmic
in the size of the best circuit for the function considered. In this way, our results
complement those by Andreev and Razborov. We present a tight @(log2 n) depth

bound for st-connectivity *, a function which has O(n®log n) size monotone circuits.

We present an improved and simplified version of an early result giving a Q(log? n/loglog n)
bound. This was possible after J. Hastad and, independently, R. Boppana formulated and proved
lemma 5.1.1.



As a consequence, we get both a super-polynomial (n®*1°8™)) size lower bound for
monotone formulas computing st-connectivity, and a separation of the monotone

analogues of NC! and AC!.
This thesis is organized as follows:

In § 2, we give an overview of the relevant definitions and previous work of
both circuit complexity and communication complexity. In this chapter we treat
these fields as two unrelated ones. We present a slightly different treatment to
communication complexity from that in the literature. The main difference is that

we consider mainly search problems, as opposed to decision problems.

In § 3, we develop our main thesis by defining and proving the equivalence be-
tween circuit depth (or formula size) and a related search problem in communication
complexity. In this chapter we also vary the search problem in order to capture the
essence of monotone circuit depth. We finish the chapter by giving some general

consequences of the new approach.

In § 4, we demonstrate that the communication complexity approach is very
intuitive by ¢) Presenting new, more intuitive proofs for some old results; and
it) Defining some new concepts which come about naturally in the communication
approach. In § 4.1, we present new proofs of some results concerning slice functions,
and the relation between monotone and non-monotone computation. In § 4.2, we
show that the new approach may help us, not only to understand better some
known upper bounds, but also to improve upon the known ones. In this section we
present a couple of such examples. In § 4.3, we introduce the concept of a universal
relation (closely related to that of a universal circuit). We give both deterministic
as well as randomized protocols for these universal relations. We also show that,
while the universal relation has efficient randomized protocols, its monotone version
does not. Finally,in § 4.4, we present a new proof of a depth analogue of a theorem

of Khrapchenko. We believe that this example best exemplifies the power of the
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new setting.

In § 5, we demonstrate the usefulness of the new approach by presenting two
monotone depth lower bounds. In § 5.1 we present the depth lower bound for st-
connectivity. This is our main technical contribution. We would like to emphasize
that most of the ideas behind the proof, and even the flow of the argument, were
suggested by the new approach. In § 5.2, we present a recent result of Razborov

[Ra88] which uses communication complexity to give a monotone lower bound for
MINIMUM COVER.

In our last chapter, § 6, we comment upon some points regarding the approach in
general, and our proofs in particular. We also propose some open problems which,

we feel, will lead the way towards proving a general depth lower bound.

Preliminary results from this work have been published in [KW88]. The material
contained in § 5.2 did not appear in the thesis of the author but is included in order

to make this work more complete.



