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t Yannakakis independently discovered this equivalence wllicll is implicit in [KPPY].

Chapter 1

Introduction

The complexity of Boolean functions has been studied for almost 40 years . The

field has developed into a theory in this , perhaps short , period mainly because of the

success in defining both a set of complexity measures (those for circuit complexity

and for Turing machine complexity) and a surprising hierarchy of very robust complexity 

classesT\loreover, characteristics of most of the defined classes have been

understood by showing complete problems for them . Relations between some of the

complexity classes have been discovered , and new models have been developed . The

main frustration of the theory has been, however, the inability of showing a separation 

of any two classes (excluding those obtained by diagonalization methods. ). To

state it simply , the main problem remains unsolved : Though it is known that most

functions are complex [Sh19], we do not have an example of a simple function (say

in N P) that requires super-linear circuit size, or super-logarithmic circuit depth.

The reason for our inability to obtain non-trivial lower bounds is, perhaps , that

although the circuit model is elegantly simple , our understanding of the way it

computes is, at most , vague. There seems to be a need to develop more intuitive

ways of looking at computation . A new approach may give some clues as to where

to look for the heart of complexity and , at the same time , shed some light on how

to prove lo \\'er bounds .

In this thesis we would like to propose a new approach to circuit depth : The

Communication Complexity approach t . The approach is based on an equivalence

between the circuit depth of a given function , and the communication complexity

of a related problem . The bottom -line of the new approach is that it looks at
�

. Diagonalization methods are not strong enough to separate such classes as P and N P (see
[BGS7S]).



a computation device as a separating device; that is, a device that separates the

words of a language from the non-words . The characterization of circuit depth in

terms of communication complexity is reminiscent of , but somehow more explicit

and intuitive than , the well -known relationship between circuits and alternating

machines [Ru80] . Among other things , the new approach allows us to view computation 

in a top-down fashion . Also , the approach makes explicit the idea that flow

of information is a crucial term for understanding computation .

simpler

Chapter 1. Introduction2

. Giving new ,

setting .

proofs to old results which become clearer in this new

\ Ve will demonstrate that the communication complexity approach is very intuitive

, and that it captures , in a strong way, the essence of circuit depth . We will do

so by :

. Proving a super-logarithmic monotone depth lower bound for the function

st-connectivity .

In 1985, work of Andreev [An85] and Razborov [Ra85a] , later improved by Alon

and Boppana [AB] , lead to exponential monotone size lower bounds for such functions 
in N P as CLIQUE . These results separate the monotone analogues of P and

N P . Though these results can be used to obtain exponential (in log n) monotone

depth lower bounds as well , the depth lower bound is always logarithmic in the

size bound . That is, the techniques apply to size rather than to depth . Our contribution 

is to present monotone depth lower bounds which are super-logarithmic

in the size of the best circuit for the function considered . In this way , our results

complement those by Andreev and Razborov. \Ve present a tight G(log2 n) depth

bound for sf-connectivity ~, a function which has O( n3log n) size monotone circuits.

! We present an improved and simplified version of an early result giving a O(lo~ n/ log log n)
bound . This ' ' 'as possible after J . I lastad and , independently , fl . Boppana formulated and proved
lemma 5 , 1 . 1 .
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As a consequence, we get both a super-polynomial (n11(logn)) size lower bound for

monotone formulas computing st-connectivity , and a separation of the monotone

analogues of N C1 and Ac1 .

This thesis is organized as follows :

In   2, we give an overview of the relevant definitions and previous work of

both circuit complexity and communication complexity . In this chapter we treat

these fields as two unrelated ones. We present a slightly different treatment to

communication complexity from that in the literature . The main difference is that

we consider mainly search problems , as opposed to decision problems .

In   3, we develop our main thesis by defining and proving the equivalence between 

circuit depth (or formula size) and a related search problem in communication

complexity . In this chapter we also vary the search problem in order to capture the

essence of monotone circuit depth . We finish the chapter by giving some general

consequences of the new approach .

In   4, we demonstrate that the communication complexity approach is very

intuitive by i) Presenting new, more intuitive proofs for some old results ; and

ii ) Defining some new concepts which come about naturally in the communication

approach . In   4 .1, we present new proofs of some results concerning slice functions ,

and the relation between monotone and non-monotone computation . In   4.2, we

show that the new approach may help us, not only to understand better some

known upper bounds , but also to improve upon the known ones. In this section we

present a couple of such examples . In   4.3, we introduce the concept of a universal

relation (closely related to that of a universal circuit ) . We give both deterministic

as well as randomized protocols for these universal relations . We also show that ,

while the universal relation has efficient randomized protocols , its monotone version

does not . Finally , in   4.4, we present a new proof of a depth analogue of a theorem

of Khrapchenko . \ Ve believe that this example best exemplifies the power of the
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ne\v setting .

In   5 , we demonstrate the use  fulness of the new approach by presenting two

monotone depth lower bounds . In   5 . 1 we present the depth lower bound for st -

connectivity . This is our main technical contribution . \ Ve would like to emphasize

that most of the ideas behind the proof , and even the flow of the argument , were

suggested by the new approach . In   5 . 2 , we present a recent result of Razborov

[ Ra88 ] whicll uses communication complexity to give a monotone lower bound for

MINIMUM COVER .

In our last chapter ,   6 , \ ve comment upon some points regarding the approach in

general , and our proofs in particular . \ Ve also propose some open problems which ,

we feel , will lead tIle way towards proving a general deptIl lower bound .

Preliminary results from this work have been published in [ K \ V88 ] . The material

contained in   5 . 2 did not appear in the thesis of the author but is included in order

to make this work more complete .


