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Introduction

1.1

An Unanswered

Question

The aspects of music explored in this bookÐmeter, phrase structure,

contrapuntal structure, pitch spelling, harmony, and keyÐare well

known and, in some ways, well understood. Every music student is

taught to label chords, to spell notes correctly, to identify modulations,

to identify a piece as being in 3/4 or 4/4, and to recognize the phrases of a

sonata and the voices of a fugue. At more advanced levels of musical

discourse, these structures are most often simply taken for granted as

musical facts. It is rarely considered a contribution to music theory to

identify the phrases or the sequence of harmonies in a piece, nor is there

often disagreement about such matters. In psychology, too, each of these

facets of music has been explored to some extent (some to a very con-

siderable extent), and there are grounds for believing that all of them are

important aspects of music cognition, not merely among trained musi-

cians but among listeners in general.

In short, there appears to be broad agreement as to the general char-

acter of these structures, the particular form they take in individual

pieces, and their reality and importance in music cognition. In another

respect, however, our knowledge of these aspects of music is much less

advanced. If we assume that harmony, metrical structure, and the like

are real and important factors in musical listening, then listening must

involve extracting this information from the incoming notes. How, then,

is this done; by what process are these structures inferred? At present,

this is very much an open question. It is fair to say that no fully satisfac-

tory answer has been offered for any of the kinds of structure listed

above; in some areas, answers have hardly even been proposed. I will



present a general approach to this problem, based on the concept of

preference rules, which leads to highly effective procedures for inferring

these kinds of information from musical inputs. Because my approach is

computational rather than experimental, I must be cautious in my claims

about the psychological validity of the models I propose. At the very

least, however, the current approach provides a promising hypothesis

about the cognition of basic musical structures which warrants further

consideration and study.

While exploring processes of information extraction is my main goal,

the framework I propose also sheds light on a number of other issues.

First of all, music unfolds in time; we do not wait until the end of a piece

to begin analyzing it, but rather, we interpret it as we go along, some-

times revising our interpretation of one part in light of what happens

afterwards. Preference rule systems provide a useful framework for

characterizing this real-time process. The preference rule approach also

provides insight into other important aspects of musical experience, such

as ambiguity, tension, and expectation. Finally, as well as providing a

powerful theory of music perception, the preference rule approach also

sheds valuable light on what are sometimes called the ``generative'' pro-

cesses of music: composition and performance. I will argue that pref-

erence rule systems play an important role in composition, acting as

fundamentalÐthough ¯exibleÐconstraints on the compositional pro-

cess. In this way, preference rules can contribute not only to the descrip-

tion of music perception, but of music itself, whether at the level of

musical styles, individual pieces, or structural details within pieces. The

preference rule approach also relates in interesting ways to issues of

musical performance, such as performance errors and expressive timing.

An important question to ask of any music theory is what corpus of

music it purports to describe. My main concern in this book is with

Western art music of the eighteenth and nineteenth centuries: what is

sometimes called ``common-practice'' music or simply ``tonal'' music.1 I

have several reasons for focusing on this corpus. First, this is the music

with which I have the greatest familiarity, and thus the music about

which I am most quali®ed to theorize. Second, common-practice music

brings with it a body of theoretical and experimental research which is

unparalleled in scope and sophistication; the current study builds on this

earlier work in many ways which I will do my best to acknowledge.

Third, a large amount of music from the common-practice corpus is

available in music notation. Music notation provides a representation

which is convenient for study and can also easily be converted into a
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format suitable for computer analysis. This contrasts with much popular

music and non-Western music, where music notation is generally not

available. (There are problems with relying on music notation as well, as

I will discuss below.) Despite this limited focus, I believe that many

aspects of the model I present are applicable to kinds of music outside

the Western canon, and at some points in the book I will explore this

possibility.

Another question arises concerning the subject matter of this study.

No one could deny that the kinds of musical structure listed above are

important, but music has many other important aspects too. For exam-

ple, one could also cite motivic structure (the network of melodic seg-

ments in a piece that are heard as similar or related); melodic schemata

such as the gap-®ll archetype (Meyer 1973) and the 1̂-7̂-4̂-3̂ schema

(Gjerdingen 1988); and the conventional ``topics''Ðmusical gestures

with extramusical meaningsÐdiscussed by Ratner (1980) and others.

In view of this, one might ask why I consider only the aspects of music

listed earlier. An analogy may be useful in explaining what these kinds

of musical structure have in common, and the role they play in music

cognition.

Any regular observer of the news media will be familiar with the term

``infrastructure.'' As the term is commonly used, ``infrastructure'' refers

to a network of basic structures and services in a societyÐlargely related

to transportation and communicationÐwhich are required for the soci-

ety to function. (The term is most often heard in the phrase ``repairing

our crumbling infrastructure''Ða frequent promise of politicians.) To my

mind, ``infrastructure'' implies two important things. Infrastructure is

supposed to be ubiquitous: wherever you go (ideally), you will ®nd the

roads, power lines, water mains, and so on that are needed for life and

business. Secondly, infrastructure is a means to an end: water mains and

power lines do not normally bring us joy in themselves, but they facilitate

other thingsÐhomes, schools, showers, VCRsÐwhose contribution to

life is more direct. In both of these respects, the aspects of music listed

earlier could well be regarded as an ``infrastructure'' for tonal music.

Metrical structure and harmony are ubiquitous: roughly speaking, every

piece, in fact every moment of every piece, has a metrical structure and

a harmonic structure. Melodic archetypes and topics, by contrast, are

occasional (though certainly common). Few would argue, I think, that

every bit of tonal music is a melodic archetype or a topic. Secondly, while

the structures I discuss here may sometimes possess a kind of direct

musical value in their own right, they function largely as means to other
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musical ends. In many cases, these musical ends are exactly the kinds

of occasional structures just mentioned. A topic or melodic archetype

requires a certain con®guration of contrapuntal, metrical, and harmonic

structures, and perhaps others as well; indeed, such higher-level patterns

are often characterized largely in infrastructural terms (I will return to

this point in chapter 12). My aim here is not, of course, to argue for

either ``ubiquitous'' or ``occasional'' structures as more important than

the otherÐeach is important in its own way; my point, rather, is that

ubiquitous structures form a ``natural kind'' and, hence, an appropriate

object of exclusive study.

1.2

Goals and

Methodology

Discourse about music adopts a variety of methods and pursues a variety

of goals. In this section I will explain the aims of the current study and

my method of achieving them. It is appropriate to begin with a discussion

of the larger ®eld in which this study can most comfortably be placed, a

relatively new ®eld known as music cognition.

Music cognition might best be regarded as the musical branch of cog-

nitive scienceÐan interdisciplinary ®eld which has developed over the

last thirty years or so, bringing together disciplines relating to cognition,

such as cognitive psychology, arti®cial intelligence, neuroscience, and

linguistics. Each of the disciplines contributing to cognitive science brings

its own methodological approach; and each of these methodologies has

been fruitfully applied to music. The methodology of cognitive psychol-

ogy itself is primarily experimental: human subjects are given stimuli and

asked to perform tasks or give verbal reports, and the psychological

processes involved are inferred from these. A large body of experimental

work has been done on music cognition; this work will frequently be

cited below. In theoretical linguistics, by contrast, the methodology has

been largely introspectionist. The reasoning in linguistics is that, while

we do not have direct intuitions about the syntactic structures of sen-

tences, we do have intuitions about whether sentences are syntactically

well-formed(andperhapsaboutother things, suchaswhether twosentences

are identical in meaning). These well-formedness judgments constitute a

kind of data about linguistic understanding. By simply seeking to con-

struct grammars that make the right judgments about well-formednessÐ

linguists reasonÐwe will uncover much else about the syntactic structure

of the language we are studying (and languages in general). The intro-

spectionist approach to music cognition is re¯ected in work by music

theorists such as Lerdahl and Jackendoff (1983) and Narmour (1990).
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(This is not to say, however, that music theory in general should be

regarded as introspectionist cognitive science; I will return to this point.)

The methods of arti®cial intelligence are also important in music cog-

nition. Here, attempts are made to gain insight into a cognitive process

by trying to model it computationally. Often, the aim is simply to devise

a computational system which can perform a particular process (for

example, yielding a certain desired output for a given input); while there

is no guarantee that such a program performs the process the same way

humans do it, such an approach may at least shed some light on the

psychological mechanisms involved.2 In some cases, this approach has

received empirical support as well, in that neurological mechanisms have

been found which actually perform the kind of functions suggested by

computational models (see Bruce & Green 1990, 87±104, for discussion

of examples in the area of vision). As we will see, this, too, is a widely

used approach in music cognition. Finally, cognition can be approached

from a neurological or anatomical perspective, through studies of electric

potentials, brain disorders, and the like. This approach has not been

pursued as much as others in music cognition, though some progress has

been made; for example, much has been learned regarding the localiza-

tion of musical functions in the brain.3

Despite their differing methodologies, the disciplines of cognitive

science share certain assumptions. All are concerned with the study of

intelligent systems, in particular, the human brain. It is widely assumed,

also, that cognitive processes involve representations, and that expla-

nations of cognitive functions should be presented in these terms. This

assumption is very widely held, though not universally.4 To appreciate its

centrality, one need only consider the kinds of concepts and entities that

have been proposed in cognitive science: for example, edge detectors and

primal sketches in vision, tree structures and constituents in linguistics,

prototypes and features in categorization, networks and schemata in

knowledge representation, loops and buffers in memory, problem spaces

and productions in problem-solving, and so on. All of these are kinds of

mental representations, proposed to explain observed facts of behavior

or introspection. A second important assumption is the idea of ``levels of

explanation.'' A cognitive process might be described at a neurological

level; but one might also describe it at a higher, computational level,

without worrying about how it might be instantiated neurologically. A

computational description is no less real than a neurological one; it is

simply more abstract. It is assumed, further, that a cognitive system,

described at a computational level, might be physically instantiated in
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quite different ways: for example, in a human brain or on a computer.

This assumption is crucial for arti®cial intelligence, for it implies that a

computer running a particular program might be put forth as a descrip-

tion or model of a cognitive system, albeit a description at a very abstract

level.5

This background may be helpful in understanding the goals and

methodology of the current study. My aim in this study is to gain insight

into the processes whereby listeners infer basic kinds of structure from

musical input. My concern is with what Lerdahl and Jackendoff (1983,

3) call ``experienced listeners'' of tonal music: people who are familiar

with the style, though not necessarily having extensive formal training in

it. My methodology in pursuing this goal was both introspectionist and

computational. For a given kind of structure, it was ®rst necessary to

determine the correct analysis (metrical, harmonic, etc.) of many musical

excerpts. Here my approach was mainly introspective; I relied largely on

my own intuitions as to the correct analyses of pieces. However, I some-

times relied on other sources as well. With some of the kinds of structure

explored here, the correct analysis is at least partly explicit in music

notation. For example, metrical structure is indicated by rhythmic nota-

tion, time signatures, and barlines. For the most part, the structures

implied by the notation of pieces concur with my own intuitions (and I

think those of most other listeners), so notation simply provided added

con®rmation.6 I then sought models to explain how certain musical

inputs might give rise to certain analyses; and I devised computational

implementations of these models, in order to test and re®ne them. With

each kind of structure, I performed a systematic test of the model (using

some source other than my own intuitions for the correct analysisÐ

either the score or analyses done by other theorists) to determine its level

of success.

The goals and methodology I have outlined could be questioned in

several ways. The ®rst concerns the computational nature of the study.

As mentioned earlier, the mere fact that a model performs a process

successfully certainly does not prove that the process is being performed

cognitively in the same way. However, if a model does not perform a

process successfully, then one knows that the process is not performed

cognitively in that way. If the model succeeds in its purpose, then one has

at least a hypothesis for how the process might be performed cognitively,

which can then be tested by other means. Computer implementations are

also valuable, simply because they allow one to test objectively whether a

model can actually produce the desired outputs. In the current case, the
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programs I devised often did not produce the results I expected, and led

me to modify my original models signi®cantly.

Another possible line of criticism concerns the idea of ``correct'' anal-

yses, and the way I arrived at them. It might seem questionable for me,

as a music theorist, to take my intuitions (or those of another music

theorist) about musical structure to represent those of a larger popula-

tion of ``experienced listeners.'' Surely the hearing of music theorists has

been in¯uenced (enhanced, contaminated, or just changed) by very special-

ized and unusual training. This is, indeed, a problematic issue. However,

two points should be borne in mind. First, it is certainly not out of the

question that untrained and highly trained listeners have much in com-

mon in at least some aspects of their music cognition. This is of course

the assumption in linguistics, where linguists take their own intuitions

about syntactic well-formedness (despite their highly specialized training

in this area) to be representative of those of the general population. Sec-

ondly, and more decisively, there is an impressive body of experimental

work suggesting that, broadly speaking, the kinds of musical representa-

tions explored here are psychologically real for a broad population of

listeners; I will refer to this work often in the chapters that follow. Still, I

do not wish to claim that music theorists hear things like harmony, key,

and so on exactly the same way as untrained listeners; surely they do not.

Much further experimental work will be needed to determine how much,

and in what ways, music cognition is affected by training.

Quite apart from effects of training, one might argue that judg-

ments about the kinds of structures described here vary greatly among

individualsÐeven among experts (or non-experts). Indeed, one might

claim that there is so much subjectivity in these matters that the idea of

pursuing a ``formal theory of listeners' intuitions'' is misguided.7 I do not

deny that there are sometimes subjective differences about all of the kinds

of structure at issue here; however, I believe there is much more agree-

ment than disagreement. The success of the computational tests I present

here, where I rely on sources other than myself for the ``correct'' analysis,

offers some testimony to the general agreement that is found in these

areas. (One might also object that, even for a single listener, it is over-

simpli®ed to assume that a single analysis is always preferred to the

exclusion of all others. This is certainly true; ambiguity is a very real and

important part of music cognition, and one which is considerably illu-

minated by a preference rule approach, as I discuss in chapter 8.)

An important caveat is needed about the preceding discussion. My

concern here is with aspects of music perception which I assume to be
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shared across a broad population of listeners familiar with tonal music. I

must emphasize, however, that I am not at all assuming that these prin-

ciples are innate or universal. Rather, it is quite possible that they are

learned largely from exposure to musicÐjust as language is, for example

(at least, some aspects of language). I will argue in later chapters that

some aspects of the models I propose have relevance to kinds of music

outside the Western canon. However, I will take no position on the

questions of universality and innateness; in my view, there is not yet

suf®cient basis for making claims about these matters.

1.3

Music Cognition

and Music Theory

I suggested above that some work in music theory might be regarded as

introspectionist cognitive scienceÐwork seeking to reveal cognitive pro-

cesses through introspection, much as linguists do with syntax. Indeed,

music theory has played an indispensable role in music cognition as a

source of models and hypotheses; much music-related work in cognitive

psychology has been concerned with testing these ideas. However, it

would be a mistake to regard music theory in general as pursuing the

same goals as music cognition. Cognitive science is concerned, ultimately,

with describing and explaining cognitive processes. In the case of music

cognition, this normally implies processes involved in listening, and

sometimes performance; it might also involve processes involved in

composition, although this area has hardly been explored. I have argued

elsewhere that, while some music theory is concerned with this goal,

much music theory is not; rather, it is concerned with enhancing our

listening, with ®nding new structures in pieces which might enrich our

experience of them (Temperley in press-b). Many music theorists state

this goal quite explicitly. I have called the latter enterprise ``suggestive

theory''; this is in contrast to the enterprise of ``descriptive theory,''

which aims to describe cognitive processes. Consider Z-related sets, a

widely used concept in pitch-class set theory: two pitch-class sets are Z-

related if they have the same intervallic content, but are not of the same

set-type (related by transposition or inversion). I believe few theorists

would claim that people hear Z-related sets (except as a result of study-

ing set theory); rather, Z-related sets serve to enhance or enrich our

hearing of certain kinds of music once we are aware of them.

The goal of studying pieces of music in order to understand them more

fully, and to enrich our experience of them as much as possible, is an

enormously worthwhile one. However, suggesting ways of enhancing

our hearing is a goal quite different from describing our hearing. There is
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a good deal of confusion about this point in music theory, and it is often

unclear how speci®c theories or analyses are to be construed. This is

particularly apparent with Schenkerian analysis, a highly in¯uential

approach to the study of tonal music. While some theorists have con-

strued Schenkerian theory in a psychological way, others have viewed it

as a suggestive theory: a means of enhancing and expanding our hearing

of tonal music. Of course, it is possible that a theory could be suggestive

in some respects and descriptive in others. My own view is that some

aspects of Schenkerian theory are highly relevant to cognition; in partic-

ular, Schenkerian analysis draws our attention to subtleties of contra-

puntal structure which are often not explicit in notation. (I discuss this

further in chapter 8.) With other aspects of Schenkerian theory the rela-

tionship to listening is less clear, especially the ``reductive'' or hierarchical

aspect. But to exclude aspects of Schenkerian theory (or any other music

theory) from a cognitive theory of tonal music is not at all to reject or

dismiss them. Rather, it is simply to maintain that their value is not, pri-

marily, as contributions to a theory of music cognitionÐa position that

many Schenkerian analysts have endorsed.

The psychological, rather than suggestive, perspective of the current

study cannot be emphasized too strongly, and should always be kept in

mind. For example, when I speak of the ``correct'' analysis of a pieceÐas

I often willÐI mean the analysis that I assume listeners hear, and thus

the one that my model will have to produce in order to be correct. I do

not mean that the analysis is necessarily the best (most musically satis-

fying, informed, or coherent) one that can be found. (A similar point

should be made about the term ``preference rule.'' Preference rules are

not claims about what is aesthetically preferable; they are simply state-

ments of fact about musical perception.) I have already acknowledged

that, in assuming a single analysis shared by all listeners, I am assuming a

degree of uniformity that is not really present. In making this assump-

tion, I do not in any way mean to deny the importance and interest of

subjective differences; such differences are simply not my concern for the

moment. I do maintain, however, that the differences between us, as lis-

teners, are not so great that any attempt to describe our commonalities is

misguided or hopeless.

1.4

The Input

Representation

An important issue to consider with any computer model is the input

representation that is used. The preference rule systems discussed here

all use essentially the same input representation. This is a list of notes,
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giving the on-time, off-time (both in milliseconds) and pitch of each

noteÐwhat I will refer to as a ``note-list.'' We can also think of this as a

two-dimensional representation, with pitch on one axis and time on the

other; each pitch-event is represented as a line segment on the plane, with

the length of the line corresponding to the duration of the event. Such a

representation is sometimes known as a ``piano-roll,'' since it resembles

the representations of pieces used with player pianos in the early twen-

tieth century. Figure 1.1 shows part of the piano-roll representation for

a performance of a Bach Gavotte (the score for the excerpt is shown

below). Pitches in the input representation are categorized into steps of

Figure 1.1
A ``piano-roll'' representation of the opening of the Gavotte from Bach's French
Suite No. 5 in G major (generated from a performance by the author on a MIDI
keyboard). The score for the excerpt is shown below.
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the chromatic scale; following convention, integers are used to represent

pitches, with middle C � 60. In an important sense, then, the pitch axis

of the ``piano-roll'' representation is discrete, not continous. The time

axis, however, is essentially continuous; pitch-events are not quantized

rhythmically in any signi®cant way (except at the very small level of

milliseconds). Other acoustic information such as timbre and amplitude

is excluded from the input. (Some of the models also require additional

information as input; for example, several of the models require metrical

structure. I will discuss this further below.)

In assuming a ``piano-roll'' representation as input, I am avoiding the

problem of deriving pitch information from actual sound. This problem

Ðsometimes known as ``music recognition'' or ``automatic transcrip-

tion''Ðhas been studied extensively, and proves to be highly complex

(Moorer 1977; Foster, Schloss, & Rockmore 1982; Tanguiane 1993).

The sounds of the music must be separated out from the other back-

ground sounds that are always present in any natural environment; the

individual frequencies that make up the sound must be grouped together

to form notes; and the notes must be correctly quantized to the right

pitch categories, factoring out vibrato, bad intonation, and so on. How-

ever, this process is not our concern here; in the following chapters, the

existence of an accurate piano-roll representation will simply be taken

for granted.

One might wonder what evidence there is that listeners actually form

piano-roll representations. Of course very few people could accurately

report such representations; but this may be because such information is

largely unconscious or not easily articulated. Most evidence for the real-

ity of piano-roll representations is indirect, and somewhat inconclusive.

For example, the fact that listeners are generally able to learn a melody

from hearing it (at least if they hear it enough times), and recognize it

later or reproduce it by singing, suggests that they must be extracting the

necessary pitch and duration information. Another possible argument for

the reality of piano-roll representations is that the kinds of higher-level

structures explored hereÐwhose general psychological reality has been

quite strongly established, as I will discussÐrequire a piano-roll input in

order to be derived themselves. For example, it is not obvious how one

could ®gure out what harmonies were present in a passage without

knowing what notes were present. I should point out, however, that

several proposals for deriving aspects of the infrastructureÐspeci®cally

harmony, contrapuntal structure, and keyÐassume exactly this: they

assume that these kinds of structure can be extracted without ®rst
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extracting pitch information. These proposals will be discussed below,

and I will suggest that all of them encounter serious problems. I think

a case could be made, then, that the reality of ‘‘infrastructure’’ levels

provides strong evidence for the reality of piano-roll representations,

since there is no other plausible way that infrastructure levels could be

derived.

It was noted above that the input representation does not contain any

quantization of events in the time dimension. This is, of course, true to

the situation in actual listening. In performed music, notes are not played

with perfect regularity; there is usually an implied regularity of durations

(this will be represented by the metrical structure), but within that there

are many small imperfections as well as deliberate fluctuations in timing.

In the tests presented below, I often use piano-roll representations that

were generated from performances on a MIDI keyboard, so that such

fluctuations are preserved. (The piano-roll in figure 1.1 is an example.

The imperfections in timing here can easily be seen—for example, the

notes of each chord generally do not begin and end at exactly the same

time.) However, one can also generate piano-roll representations from a

score; if one knows the tempo of the piece, the onset and duration of

each note can be precisely determined. Since pieces are never played with

perfectly strict timing, using ‘‘quantized’’ piano-roll representations of

this kind is somewhat artificial, but I will sometimes do so in the interest

of simplicity and convenience.

Another aspect of the piano-roll representation which requires discus-

sion is the exclusion of timbre and dynamics.8 As well as being important

in their own right, these musical parameters may also affect the levels of

the infrastructure in certain ways. For example, dynamics affects metrical

structure, in that loud notes are more likely to be heard as metrically

strong; timbre affects contrapuntal structure, in that timbrally similar

notes tend to stream together. Dynamics could quite easily be encoded

computationally (the dynamic level of a note can be encoded as a single

numerical value or series of values), and incorporating dynamics into

the current models would be a logical further step. With timbre, the prob-

lem is much harder. As Bregman (1990, 92) has observed, we do not yet

have a satisfactory way of representing timbre. Several multidimensional

representations have been proposed, but none seem adequate to cap-

turing the great variety and richness of timbre. Studying the effect of tim-

bre on infrastructural levels will require a better understanding of timbre

itself.
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1.5

The Preference

Rule Approach

The approach of the current study is based on preference rules. Prefer-

ence rules are criteria for forming some kind of analysis of input. Many

possible interpretations are considered; each rule expresses an opinion as

to how well it is satis®ed by a given interpretation, and these opinions are

combined together to yield the preferred analysis. Perhaps the clearest

antecedent for preference rules is found in the Gestalt rules of percep-

tion, proposed in the 1920s; this connection will be discussed further in

chapter 3.

Preference rules per se were ®rst proposed by Lerdahl and Jackendoff

in their Generative Theory of Tonal Music (1983) (hereafter GTTM).

Lerdahl and Jackendoff present a framework consisting of four kinds of

hierarchical structure: grouping, meter, time-span reduction, and pro-

longational reduction. For each kind of structure, they propose a set of

``well-formedness rules'' which de®ne the structures that are considered

legal; they then propose preference rules for choosing the optimal analy-

sis out of the possible ones. The model of meter I present in chapter 2 is

closely related to Lerdahl and Jackendoff's model; my model of phrase

structure, presented in chapter 3, has some connection to Lerdahl and

Jackendoff's model of grouping. Lerdahl and Jackendoff did not propose

any way of quantifying their preference rule systems, nor did they develop

any implementation. The current study can be seen as an attempt to

quantify and implement Lerdahl and Jackendoff's initial conception, and

to expand it to other musical domains. (I will have little to say here

about the third and fourth components of GTTM, time-span reduction

and prolongational reduction. These kinds of structure are less psycho-

logically well-established and more controversial than meter and group-

ing; they also relate largely to large-scale structure and relationships,

which sets them apart from the aspects of music considered here.)

The preference rule approach has been subject to some criticism,

largely in the context of critiques of GTTM. The problem most often

cited is that preference rules are too vague: depending on how the rules

are quanti®ed, and the relative weights of one rule to another, a prefer-

ence rule system can produce a wide range of analyses (Peel & Slawson

1984, 282, 288; Clarke 1989, 11). It is true that the preference rules of

GTTM are somewhat vague. This does not mean that they are empty;

even an informal preference rule system makes empirical claims that

are subject to falsi®cation. If a preference rule system is proposed for an

aspect of structure, and one ®nds a situation in which the preferred

analysis cannot be explained in terms of the proposed rules, then the
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theory is falsi®ed, or at least incomplete. It must be said that very few

music theories offer even this degree of testability. The more important

point, however, is that preference rule systems also lend themselves well

to rigorous formalization. If the parameters of the rules can be speci®ed,

the output of the rule system for a given input can be determined in an

objective way, making the theory truly testable. This is what I attempt to

do here.9

Another criticism that has been made of preference rule systems con-

cerns the processing of music over time. Lerdahl and Jackendoff's stated

aim in GTTM (1983, 3±4) is to model what they call ``the ®nal state of [a

listener's] understanding'' of a piece. Under their conception, preference

rules serve to select the optimal analysis for a complete piece, once it has

been heard in its entirety. In my initial presentation of the current model

(in chapters 2 through 7), I will adopt this approach as well. This ``®nal

understanding'' approach may seem problematic from a cognitive view-

point; in reality, of course, the listening process does not work this way.

However, preference rule systems also provide a natural and powerful

way of modeling the moment-to-moment course of processing as it

unfolds during listening. I will return to this in the next section (and at

greater length in chapter 8).

One notable virtue of preference rule systems is their conceptual sim-

plicity. With a preference rule system, the rules themselves offer a high-

level description of what the system is doing: it is ®nding the analysis that

best satis®es the rules. This is an important advantage of preference rule

systems over some other models that are highly complex and do not

submit easily to a concise, high-level description. (Some examples of this

will be discussed in the chapters that follow.) Of course, preference rule

systems require some kind of implementation, and this implementation

may be highly complex. But the implementation need not be of great

concern, nor does it have to be psychologically plausible; it is simply a

means to the end of testing whether or not the preference rule system can

work. If a preference rule system can be made to produce good compu-

tational results, it provides an elegant, substantive, high-level hypothesis

about the workings of a cognitive system.

1.6

The

Implementation

Strategy

While I have said that details of implementation are not essential to an

understanding of preference rule systems, a considerable portion of this

book is in fact devoted to issues of implementation. (This includes the
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present section, as well as the sections of following chapters entitled

``Implementation.'') While these sections will, I hope, be of interest to

some readers, they may be skipped without detriment to one's under-

standing of the rest of the book. In this section I describe a general

implementation strategy which is used, in various ways, in all the pref-

erence rule models in this study.

At the broadest level, the implementation strategy used here is simple.

In a given preference rule system, all possible analyses of a piece are

considered. Following Lerdahl and Jackendoff, the set of ``possible''

analyses is de®ned by basic ``well-formedness rules.'' Each preference rule

then assigns a numerical score to each analysis. Normally, the analytical

process involves some kind of arbitrary segmentation of the piece. Many

analytical choices are possible for each segment; an analysis of the piece

consists of some combination of these segment analyses. For each possi-

ble analysis of a segment, each rule assigns a score; the total score for a

segment analysis sums these rule scores; the total score for the complete

analysis sums the segment scores. The preferred analysis is the one that

receives the highest total score.

As noted above, many of the preference rules used in these models

involve numerical parameters (and there are always numerical values

that must be set for determining the weight of each rule relative to the

others). These parameters were mostly set by trial and error, using values

that seemed to produce good results in a variety of cases. It might be

possible to derive optimal values for the rules in a more systematic way,

but this will not be attempted here.

One might ask why it is necessary to evaluate complete analyses of a

piece; would it not be simpler to evaluate short segments in isolation? As

we will see, this is not possible, because some of the preference rules

require consideration of how one part of an analysis relates to another.

Whether an analysis is the best one for a segment depends not just on the

notes in that segment, but also on the analysis of nearby segments, which

depends on the notes of those segments as well as the analysis of other

segments, and so on. However, the number of possible analyses of a

piece is generally huge, and grows exponentially with the length of the

piece. Thus it is not actually possible to generate all well-formed analyses;

a more intelligent search procedure has to be used for ®nding the highest-

scoring one without generating them all. Various procedures are used for

this purpose; these will be described in individual cases. However, one

technique is of central importance in all six preference rule systems, and

warrants some discussion here. This is a procedure from computer science
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known as ``dynamic programming.'' (The idea of using dynamic pro-

gramming to implement preference rule systems is due to Daniel Sleator.)

Imagine that you are driving through a large city (see ®gure 1.2). You

want to go from home (at the left end of the ®gure) to work (at the right

end). There are two routes for going where you want to go; you can

either drive on High Street or Main Street. The two routes are the same

in total distance. However, certain stretches of each street are bad

(because they have terrible potholes, or construction, or a lot of traf®c).

You could also switch back and forth between one street and the other at

different points, but this carries a cost in terms of time. Suppose that it is

worthwhile for you to really sit down and ®gure out the best route (per-

haps because you make this trip every day). You assign each stretch of

street a ``cost,'' which is simply the number of minutes it would take you

to traverse that stretch. These ``local'' costs are shown on each stretch of

street in ®gure 1.2. You also assign a cost to any switch between one

street and the other; say each such switch costs you 2 minutes. Now, how

do you determine the best overall route? It can be seen that there are a

large number of different possible routes you could takeÐ2n, where n is

the number of blocks in the east-west direction. You could calculate the

cost for every possible route; however, there is a better way. Supposing

you compute the cost of all possible routes for the ®rst two stretches that

end up on High Street in stretch 2. There are only two, H-H and M-H;

the best (i.e. lowest-cost) one is H-H, with a total time of 2 minutes. Then

you ®nd the best route ending up on Main Street in stretch 2; it is H-M,

with a total time of 5 minutes (local costs of 1 and 2, plus a cost of 2 for

switching between streets.) At this point, you do not know whether it is

Figure 1.2
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better to end up on High St. or Main St. in stretch 2; that depends on

what happens further on. But you do know that no matter what happens

later, there will never be any reason to use any route for the ®rst two

stretches other than one of the two ``best-so-far'' routes already identi-

®ed. Now suppose we want to compute the best way of getting to Main

Street in stretch 3. We can use our ``best-so-far'' routes to stretch 2,

continuing each one in stretch 3 and calculating the new total cost; the

best choice is H-H-M, with a cost of 6 minutes. Repeating the process

with High Street at stretch 3, we now have two new ``best-so-far'' routes

for stretch 3. We can continue this process all the way through to the end

of the trip. At each stretch, we only need to record the best-so-far route

to each ending point at that stretch, along with its score. In fact, it is not

even necessary to record the entire best-so-far route; we only need to

record the street that we should be on in the previous stretch. At Main

Street in stretch 3, we record that it is best to be on High Street in stretch

2. In this way, each street at each stretch points back to some street at the

previous stretch, allowing us to recreate the entire best-so-far route if we

want to. (In ®gure 1.2, the score for the best-so-far route at each segment

of street is shown along the top and bottom, along with the street that it

points back to at the previous stretchÐ``H'' or ``M''Ðin parentheses.)

When we get to the ®nal stretch, either High Street or Main Street has

the best (lowest) ``best-so-far'' score, and we can trace that back to get

the best possible route for the entire trip. In this case, Main Street has the

best score at the ®nal stretch; tracing this back produces an optimal route

of H-H-H-M-M-M-M-M-M.

What I have just described is a simple example of the search procedure

used for the preference rule models described below. Instead of searching

for the optimal path through a city, the goal is to ®nd the optimal anal-

ysis of a piece. We can imagine a two-dimensional table, analogous to the

street map in ®gure 1.2. Columns represent temporal segments; cells of

each column represent possible analytical choices for a given segment. An

analysis is a path through this table, with one step in each segment. Per-

haps the simplest example is the key-®nding system (described in chapter

7). Rows of the table correspond to keys, while columns correspond to

measures (or some other temporal segments). At each segment, each key

receives a local score indicating how compatible that key is with the

pitches of the segment; there is also a ``change'' penalty for switching

from one key to another. At each segment, for each key, we compute the

best-so-far analysis ending at that key; the best-scoring analysis at the ®nal

segment can be traced back to yield the preferred analysis for the entire
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piece. A similar procedure is used for the harmonic analysis system

(where the rows represent roots of chords, instead of keys), the pitch

spelling system (where cells of a column represent possible spellings of

the pitches in the segment), and the contrapuntal analysis system (where

cells represent possible analyses of a segmentÐcontrapuntal voices at dif-

ferent pitch levels), though there are complications in each of these cases

which will be explained in due course.

The meter and phrase programs use a technique which is fundamen-

tally similar, but also different. In the case of the phrase program, the

table is simply a one-dimensional table of segments representing notes;

an analysis is a subset of these notes which are chosen as phrase bound-

aries. (Choosing a note as a phrase boundary means that a boundary

occurs immediately before that note.) Again, each note has a local score,

indicating how good it is as a phrase boundary; this depends largely on

the size of the temporal gap between it and the previous note. At the

same time, however, it is advantageous to keep all the phrases close to a

certain optimal size; a penalty is imposed for deviations from this size. At

each note, we calculate the best-so-far analysis ending with a phrase

boundary at that note. We can do this by continuing all the previous

best-so-far analysesÐthe best-so-far analyses with phrase boundaries at

each previous noteÐadding on a phrase ending at the current note, cal-

culating the new score, and choosing the highest-scoring one to ®nd

the new best-so-far analysis. Again, we record the previous note that

the best-so-far analysis points back to as well as the total score. After the

®nal note, we compute a ®nal ``best-so-far'' analysis (since there has to be

a phrase boundary at the end of the piece) which yields the best analysis

overall. The meter program uses a somewhat more complex version of

this approach. The essential difference between this procedure and the

one described earlier is that, in this case, an analysis only steps in certain

segments, whereas in the previous case each analysis stepped in every

segment.

Return to the city example again. Supposing the map in ®gure 1.2,

with the costs for each stretch, was being revealed to us one stretch at a

time; at each stretch we had to calculate the costs and best-so-far routes.

Consider stretch 7; at this stretch, it seems advantageous to be on High

Street, since High Street has the lowest best-so-far score. However, once

the next stretch is revealed to us, and we calculate the new best-so-far

routes, we see that Main Street has the best score in stretch 8; moreover,

Main Street in stretch 8 points back to Main Street in stretch 7. Thus

what seems like the best choice for stretch 7 at the time turns out not to
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be the best choice for stretch 7, given what happens subsequently. In this

way the dynamic programming model gives a nice account of an impor-

tant phenomenon in music perception: the fact that we sometimes revise

our initial analysis of a segment based on what happens later. We will

return to this phenomenonÐwhich I call ``revision''Ðin chapter 8.

In a recent article, Desain, Honing, vanThienen, and Windsor (1998)

argue that, whenever a computational system is proposed in cognitive

science, it is important to be clear about which aspects of the system

purport to describe cognition, and which aspects are simply details of

implementation. As explained earlier, the ``model'' in the current case is

really the preference rule systems themselves. There are probably many

ways that a preference rule system could be implemented; the dynamic

programming approach proposed here is just one possibility. However,

the dynamic programming scheme is not without psychological interest.

It provides a computationally ef®cient way of implementing preference

rule systemsÐto my knowledge, the only one that has been proposed. If

humans really do use preference rule systems, any ef®cient computational

strategy for realizing them deserves serious consideration as a possible

hypothesis about cognition. The dynamic programming approach also

provides an ef®cient way of realizing a preference rule system in a ``left-

to-right'' fashion, so that at each point, the system has a preferred anal-

ysis of everything heard so farÐanalogous to the process of real-time

listening to music. And, ®nally, dynamic programming provides an ele-

gant way of describing the ``revision'' phenomenon, where an initial

analysis is revised based on what happens afterwards. I know of no

experimental evidence pertaining to the psychological reality of the

dynamic programming technique; but for all these reasons, the possibility

that it plays a role in cognition seems well worth exploring.10

19 1. Introduction


