
Chapter 1

Introduction

1.1 Biological Data in Digital Symbol Sequences

A fundamental feature of chain molecules, which are responsible for the func-
tion and evolution of living organisms, is that they can be cast in the form
of digital symbol sequences. The nucleotide and amino acid monomers in
DNA, RNA, and proteins are distinct, and although they are often chemically
modified in physiological environments, the chain constituents can without
infringement be represented by a set of symbols from a short alphabet. There-
fore experimentally determined biological sequences can in principle be ob-
tained with complete certainty. At a particular position in a given copy of
a sequence we will find a distinct monomer, or letter, and not a mixture of
several possibilities.

The digital nature of genetic data makes them quite different from many
other types of scientific data, where the fundamental laws of physics or the so-
phistication of experimental techniques set lower limits for the uncertainty. In
contrast, provided the economic and other resources are present, nucleotide
sequences in genomic DNA, and the associated amino acid sequences in pro-
teins, can be revealed completely. However, in genome projects carrying out
large-scale DNA sequencing or in direct protein sequencing, a balance among
purpose, relevance, location, ethics, and economy will set the standard for the
quality of the data.

The digital nature of biological sequence data has a profound impact on
the types of algorithms that have been developed and applied for computa-
tional analysis. While the goal often is to study a particular sequence and its
molecular structure and function, the analysis typically proceeds through the
study of an ensemble of sequences consisting of its different versions in dif-
ferent species, or even, in the case of polymorphisms, different versions in
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the same species. Competent comparison of sequence patterns across species
must take into account that biological sequences are inherently “noisy,” the
variability resulting in part from random events amplified by evolution. Be-
cause DNA or amino acid sequences with a given function or structure will
differ (and be uncertain), sequence models must be probabilistic.

1.1.1 Database Annotation Quality

It is somehow illogical that although sequence data can be determined exper-
imentally with high precision, they are generally not available to researchers
without additional noise stemming from the joint effects of incorrect interpre-
tation of experiments and incorrect handling and storage in public databases.
Given that biological sequences are stored electronically, that the public
databases are curated by a highly diverse group of people, and, moreover,
that the data are annotated and submitted by an even more diverse group of
biologists and bioinformaticians, it is perhaps understandable that in many
cases the error rate arising from the subsequent handling of information may
be much larger than the initial experimental error [100, 101, 327].

An important factor contributing to this situation is the way in which data
are stored in the large sequence databases. Features in biological sequences
are normally indicated by listing the relevant positions in numeric form, and
not by the “content” of the sequence. In the human brain, which is renowned
for its ability to handle vast amounts of information accumulated over the life-
time of the individual, information is recalled by content-addressable schemes
by which a small part of a memory item can be used to retrieve its complete
content. A song, for example, can often be recalled by its first two lines.

Present-day computers are designed to handle numbers—in many coun-
tries human “accession” numbers, in the form of Social Security numbers, for
one thing, did not exist before them [103]. Computers do not like content-
addressable procedures for annotating and retrieving information. In com-
puter search passport attributes of people—their names, professions, and hair
color—cannot always be used to single out a perfect match, and if at all most
often only when formulated using correct language and perfect spelling.

Biological sequence retrieval algorithms can been seen as attempts to con-
struct associative approaches for finding specific sequences according to an
often “fuzzy” representation of their content. This is very different from the
retrieval of sequences according to their functionality. When the experimen-
talist submits functionally relevant information, this information is typically
converted from what in the laboratory is kept as marks, coloring, or scribbles
on the sequence itself. This “semiotic” representation by content is then con-
verted into a representation where integers indicate individual positions. The
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numeric representation is subsequently impossible to review by human visual
inspection.

In sequence databases, the result is that numerical feature table errors,
instead of being acceptable noise on the retrieval key, normally will produce
garbage in the form of more or less random mappings between sequence posi-
tions and the annotated structural or functional features. Commonly encoun-
tered errors are wrong or meaningless annotation of coding and noncoding re-
gions in genomic DNA and, in the case of amino acid sequences, randomly dis-
placed functional sites and posttranslational modifications. It may not be easy
to invent the perfect annotation and data storage principle for this purpose.
In the present situation it is important that the bioinformatician carefully take
into account these potential sources of error when creating machine-learning
approaches for prediction and classification.

In many sequence-driven mechanisms, certain nucleotides or amino acids
are compulsory. Prior knowledge of this kind is an easy and very useful way
of catching typographical errors in the data. It is interesting that machine-
learning techniques provide an alternative and also very powerful way of de-
tecting erroneous information and annotation. In a body of data, if something
is notoriously hard to learn, it is likely that it represents either a highly atypical
case or simply a wrong assignment. In both cases, it is nice to be able to sift out
examples that deviate from the general picture. Machine-learning techniques
have been used in this way to detect wrong intron splice sites in eukaryotic
genes [100, 97, 101, 98, 327], wrong or missing assignments of O-linked glyco-
sylation sites in mammalian proteins [235], or wrongly assigned cleavage sites
in polyproteins from picornaviruses [75], to mention a few cases. Importantly,
not all of the errors stem from data handling, such as incorrect transfer of
information from published papers into database entries: significant number
of errors stems from incorrect assignments made by experimentalists [327].
Many of these errors could also be detected by simple consistency checks prior
to incorporation in a public database.

A general problem in the annotation of the public databases is the fuzzy
statements in the entries regarding who originally produced the feature an-
notation they contain. The evidence may be experimental, or assigned on the
basis of sequence similarity or by a prediction algorithm. Often ambiguities
are indicated in a hard-to-parse manner in free text, using question marks or
comments such as POTENTIAL or PROBABLE. In order not to produce circular
evaluation of the prediction performance of particular algorithms, it is neces-
sary to prepare the data carefully and to discard data from unclear sources.
Without proper treatment, this problem is likely to increase in the future, be-
cause more prediction schemes will be available. One of the reasons for the
success of machine-learning techniques within this imperfect data domain is
that the methods often—in analogy to their biological counterparts—are able
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to handle noise, provided large corpora of sequences are available. New dis-
coveries within the related area of natural language acquisition have proven
that even eight-month-old infants can detect linguistic regularities and learn
simple statistics for the recognition of word boundaries in continuous speech
[458]. Since the language the infant has to learn is as unknown and complex
as the DNA sequences seem to us, it is perhaps not surprising that learning
techniques can be useful for revealing similar regularities in genomic data.

1.1.2 Database Redundancy

Another recurrent problem haunting the analysis of protein and DNA se-
quences is the redundancy of the data. Many entries in protein or genomic
databases represent members of protein and gene families, or versions of
homologous genes found in different organisms. Several groups may have
submitted the same sequence, and entries can therefore be more or less
closely related, if not identical. In the best case, the annotation of these very
similar sequences will indeed be close to identical, but significant differences
may reflect genuine organism or tissue specific variation.

In sequencing projects redundancy is typically generated by the different
experimental approaches themselves. A particular piece of DNA may for ex-
ample be sequenced in genomic form as well as in the form of cDNA comple-
mentary to the transcribed RNA present in the cell. As the sequence being
deposited in the databases is determined by widely different approaches—
ranging from noisy single-pass sequence to finished sequence based on five-
to tenfold repetition—the same gene may be represented by many database
entries displaying some degree of variation.

In a large number of eukaryotes, the cDNA sequences (complete or incom-
plete) represent the spliced form of the pre-mRNA, and this means again, for
genes undergoing alternative splicing, that a given piece of genomic DNA in
general will be associated with several cDNA sequences being noncontinuous
with the chromosomal sequence [501]. Alternative splice forms can be gener-
ated in many different ways. Figure 1.1 illustrates some of the different ways
coding and noncoding segments may be joined, skipped, and replaced during
splicing. Organisms having a splice machinery at their disposal seem to use
alternative splicing quite differently. The alternative to alternative splicing is
obviously to include different versions of the same gene as individual genes in
the genome. This may be the strategy used by the nematode Caenorhabditis
elegans, which seems to contain a large number of genes that are very similar,
again giving rise to redundancy when converted into data sets [315]. In the
case of the human genome [234, 516, 142] it is not unlikely that at least 30-
80% of the genes are alternatively spliced, in fact it may be the rule rather than
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Figure 1.1: The Most Common Modes of Alternative Splicing in Eukaryotes. Left from top:
Cassette exon (exon skipping or inclusion), alternative 5’ splice site, alternative 3’ splice site.
Right from top: whole intron retention, pairwise spliced exons and mutually exclusive exons.
These different types of alternative pre-mRNA processing can be combined [332].

the exception.
Data redundancy may also play a nontrivial role in relation to massively

parallel gene expression experiments, a topic we return to in chapter 12. The
sequence of genes either being spotted onto glass plates, or synthesized on
DNA chips, is typically based on sequences, or clusters of sequences, deposited
in the databases. In this way microarrays or chips may end up containing more
sequences than there are genes in the genome of a particular organism, thus
giving rise to noise in the quantitative levels of hybridization recorded from
the experiments.

In protein databases a given gene may also be represented by amino acid
sequences that do not correspond to a direct translation of the genomic wild-
type sequence of nucleotides. It is not uncommon that protein sequences are
modified slightly in order to obtain sequence versions that for example form
better crystals for use in protein structure determination by X-ray crystallog-
raphy [99]. Deletions and amino acid substitutions may give rise to sequences
that generate database redundancy in a nontrivial manner.

The use of a redundant data set implies at least three potential sources
of error. First, if a data set of amino acid or nucleic acid sequences contains
large families of closely related sequences, statistical analysis will be biased
toward these families and will overrepresent features peculiar to them. Sec-
ond, apparent correlations between different positions in the sequences may
be an artifact of biased sampling of the data. Finally, if the data set is being
used for predicting a certain feature and the sequences used for making and
calibrating the prediction method—the training set—are too closely related to
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the sequences used for testing, the apparent predictive performance may be
overestimated, reflecting the method’s ability to reproduce its own particular
input rather than its generalization power.

At least some machine-learning approaches will run into trouble when cer-
tain sequences are heavily overrepresented in a training set. While algorithmic
solutions to this problem have been proposed, it may often be better to clean
up the data set first and thereby give the underrepresented sequences equal
opportunity. It is important to realize that underrepresentation can pose prob-
lems both at the primary structure level (sequence redundancy) and at the clas-
sification level. Categories of protein secondary structures, for example, are
typically skewed, with random coil being much more frequent than beta-sheet.

For these reasons, it can be necessary to avoid too closely related sequences
in a data set. On the other hand, a too rigorous definition of “too closely re-
lated” may lead to valuable information being discarded from the data set.
Thus, there is a trade-off between data set size and nonredundancy. The ap-
propriate definition of “too closely related” may depend strongly on the prob-
lem under consideration. In practice, this is rarely considered. Often the test
data are described as being selected “randomly” from the complete data set,
implying that great care was taken when preparing the data, even though re-
dundancy reduction was not applied at all. In many cases where redundancy
reduction is applied, either a more or less arbitrary similarity threshold is
used, or a “representative” data set is made, using a conventional list of pro-
tein or gene families and selecting one member from each family.

An alternative strategy is to keep all sequences in a data set and then assign
weights to them according to their novelty. A prediction on a closely related
sequence will then count very little, while the more distantly related sequences
may account for the main part of the evaluation of the predictive performance.
Amajor risk in this approach is that erroneous data almost always will be asso-
ciated with large weights. Sequences with erroneous annotation will typically
stand out, at least if they stem from typographical errors in the feature tables
of the databases. The prediction for the wrongly assigned features will then
have a major influence on the evaluation, and may even lead to a drastic un-
derestimation of the performance. Not only will false sites be very hard to
predict, but the true sites that would appear in a correct annotation will often
be counted as false positives.

A very productive way of exploiting database redundancy—both in relation
to sequence retrieval by alignment and when designing input representations
for machine learning algorithms—is the sequence profile [226]. A profile de-
scribes position by position the amino acid variation in a family of sequences
organized into a multiple alignment. While the profile no longer contains in-
formation about the sequential pattern in individual sequences, the degree of
sequence variation is extremely powerful in database search, in programs such
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as PSI-BLAST, where the profile is iteratively updated by the sequences picked
up by the current version of the profile [12]. In later chapters, we shall re-
turn to hidden Markov models, which also implement the profile concept in
a very flexible manner, as well as neural networks receiving profile informa-
tion as input—all different ways of taking advantage of the redundancy in the
information being deposited in the public databases.

1.2 Genomes—Diversity, Size, and Structure

Genomes of living organisms have a profound diversity. The diversity relates
not only to genome size but also to the storage principle as either single- or
double-stranded DNA or RNA. Moreover, some genomes are linear (e.g. mam-
mals), whereas others are closed and circular (e.g. most bacteria).

Cellular genomes are always made of DNA [389], while phage and viral
genomes may consist of either DNA or RNA. In single-stranded genomes, the
information is read in the positive sense, the negative sense, or in both di-
rections, in which case one speaks of an ambisense genome. The positive
direction is defined as going from the 5’ to the 3’ end of the molecule. In
double-stranded genomes the information is read only in the positive direc-
tion (5’ to 3’ on either strand). Genomes are not always replicated directly;
retroviruses, for example, have RNA genomes but use a DNA intermediate in
the replication.

The smallest genomes are found in nonself-replicating suborganisms like
bacteriophages and viruses, which sponge on the metabolism and replica-
tion machinery of free-living prokaryotic and eukaryotic cells, respectively. In
1977, the 5,386 bp in the genome of the bacteriophage φX174 was the first
to be sequenced [463]. Such very small genomes normally come in one con-
tinuous piece of sequence. But other quite small genomes, like the 1.74 Mbp
genome of the hyperthermophilic archaeon Methanococcus jannaschii, which
was completely sequenced in 1996, may have several chromosomal compo-
nents. In M. jannaschii there are three, one of them by far the largest. The
much larger 3,310 Mbp human genome is organized into 22 chromosomes
plus the two that determine sex. Even among the primates there is variation
in the number of chromosomes. Chimpanzees, for example, have 23 chromo-
somes in addition to the two sex chromosomes. The chimpanzee somatic cell
nucleus therefore contains a total number of 48 chromosomes in contrast to
the 46 chromosomes in man. Other mammals have completely different chro-
mosome numbers, the cat, for example, has 38, while the dog has as many as
78 chromosomes. As most higher organisms have two near-identical copies
of their DNA (the diploid genome), one also speaks about the haploid DNA
content, where only one of the two copies is included.
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Figure 1.2: Intervals of Genome Sizes for Various Classes of Organisms. Note that the plot
is logarithmic in the number of nucleotides on the first axis. Most commonly, the variation
within one group is one order of magnitude or more. The narrow interval of genome sizes
among mammals is an exception to the general picture. It is tempting to view the second axis
as “organism complexity” but it is most certainly not a direct indication of the size of the gene
pool. Many organisms in the upper part of the spectrum, e.g., mammals, fish, and plants, have
comparable numbers of genes (see table 1.1).

The chromosome in some organisms is not stable. For example, the Bacillus
cereus chromosome has been found to consist of a large stable component
(2.4 Mbp) and a smaller (1.2 Mbp) less stable component that is more easily
mobilized into extra-chromosomal elements of varying sizes up to the order of
megabases [114]. This has been a major obstacle in determining the genomic
sequence, or just a genetic map, of this organism. However, in almost any
genome transposable elements can also be responsible for rearrangements, or
insertion, of fairly large sequences, although they have been not been reported
to cause changes in chromosome number. Some theories claim that a high
number of chromosomal components is advantageous and increases the speed
of evolution, but currently there is no final answer to this question [438].
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It is interesting that the spectrum of genome sizes is to some extent seg-
regated into nonoverlapping intervals. Figure 1.2 shows that viral genomes
have sizes in the interval from 3.5 to 280 Kbp, bacteria range from 0.5 to 10
Mbp, fungi from around 10 to 50 Mbp, plants start at around 50 Mbp, and
mammals are found in a more narrow band (on the logarithmic scale) around
1 Gb. This staircase reflects the sizes of the gene pools that are necessary for
maintaining life in a noncellular form (viruses), a unicellular form (bacteria),
multicellular forms without sophisticated intercellular communication (fungi),
and highly differentiated multicellular forms with many intercellular signaling
systems (mammals and plants). In recent years it has been shown that even
bacteria are capable of chemical communication [300]. Molecular messengers
may travel between cells and provide populationwide control. One famous
example is the expression of the enzyme luciferase, which along with other
proteins is involved in light production by marine bacteria. Still, this type of
communication requires a very limited gene pool compared with signaling in
higher organisms.

The general rule is that within most classes of organisms we see a huge
relative variation in genome size. In eukaryotes, a few exceptional classes
(e.g., mammals, birds, and reptiles) have genome sizes confined to a narrow
interval [116]. As it is possible to estimate the size of the unsequenced gaps,
for example by optical mapping, the size of the human genome is now known
with a quite high precision. Table 1.2 shows an estimate of the size for each of
the 24 chromosomes. In total the reference human genome sequence seems to
contain roughly 3,310,004,815 base pairs—an estimate that presumably will
change slightly over time.

The cellular DNA content of different species varies by over a millionfold.
While the size of bacterial genomes presumably is directly related to the level
of genetic and organismic complexity, within the eukaryotes there might be as
much as a 50,000-fold excess compared with the basic protein-coding require-
ments [116]. Organisms that basically need the same molecular apparatus can
have a large variation in their genome sizes. Vertebrates share a lot of basic
machinery, yet they have very different genome sizes. As early as 1968, it was
demonstrated that some fish, in particular the family Tetraodontidae, which
contains the pufferfish, have very small genomes [254, 92, 163, 534, 526]. The
pufferfish have genomes with a haploid DNA content around 400–500 Mbp,
six–eight times smaller than the 3,310 Mbp human genome. The pufferfish
Fugu rubripes genome is only four times larger than that of the much simpler
nematode worm Caenorhabditis elegans (100 Mbp) and eight times smaller
than the human genome. The vertebrates with the largest amount of DNA per
cell are the amphibians. Their genomes cover an enormous range, from 700
Mbp to more than 80,000 Mbp. Nevertheless, they are surely less complex than
most humans in their structure and behavior [365].
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Group Species Genes Genome size
Phages Bacteriophage MS2 4 0.003569

Bacteriophage T4 270 0.168899
Viruses Cauliflower mosaic virus 8 0.008016

HIV type 2 9 0.009671
Vaccinia virus 260 0.191737

Bacteria Mycoplasma genitalium 473 0.58
Mycoplasma pneumoniae 716 0.82
Haemophilus influenzae 1,760 1.83
Bacillus subtilis 3,700 4.2
Escherichia coli 4,100 4.7
Myxococcus xanthus 8,000 9.45

Archaea Methanococcus jannaschii 1,735 1.74
Fungi Saccharomyces cerevisiae 5,800 12.1
Protoctista Cyanidioschyzon merolae 5,000 11.7

Oxytricha similis 12,000 600
Arthropoda Drosophila melanogaster 15,000 180
Nematoda Caenorhabditis elegans 19,000 100
Mollusca Loligo pealii 20-30,000 2,700
Plantae Nicotiana tabacum 20-30,000 4,500

Arabidopsis thaliana 25,500 125
Chordata Giona intestinalis N 165

Fugu rubripes 30-40,000 400
Danio rerio N 1,900
Mus musculus 30-40,000 3,300
Homo sapiens 30-40,000 3,310

Table 1.1: Approximate Gene Number and Genome Sizes in Organisms in Different Evolutionary
Lineages. Genome sizes are given in megabases. N = not available. Data were taken in part
from [390] and references therein (and scaled based on more current estimates); others were
compiled from a number of different Internet resources, papers, and books.

1.2.1 Gene Content in the Human Genome and other Genomes

A variable part of the complete genome sequence in an organism contains
genes, a term normally defined as one or several segments that constitute an
expressible unit. The word gene was coined in 1909 by the Danish geneticist
Wilhelm Johannsen (together with the words genetype and phenotype) long
before the physical basis of DNA was understood in any detail.

Genes may encode a protein product, or they may encode one of the many
RNA molecules that are necessary for the processing of genetic material and
for the proper functioning of the cell. mRNA sequences in the cytoplasm are
used as recipes for producing many copies of the same protein; genes encod-
ing other RNA molecules must be transcribed in the quantities needed. Se-
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Human chromosome Size
Chr. 1 282,193,664
Chr. 2 253,256,583
Chr. 3 227,524,578
Chr. 4 202,328,347
Chr. 5 203,085,532
Chr. 6 182,415,242
Chr. 7 166,623,906
Chr. 8 152,776,421
Chr. 9 142,271,444
Chr. 10 145,589,288
Chr. 11 150,783,553
Chr. 12 144,282,489
Chr. 13 119,744,898
Chr. 14 106,953,321
Chr. 15 101,380,521
Chr. 16 104,298,331
Chr. 17 89,504,553
Chr. 18 86,677,548
Chr. 19 74,962,845
Chr. 20 66,668,005
Chr. 21 44,907,570
Chr. 22 47,662,662
Chr. X 162,599,930
Chr. Y 51,513,584

Table 1.2: Approximate Sizes for the 24 Chromosomes in the Human Genome Reference Se-
quence. Note that the 22 chromosome sizes do not rank according to the original numbering
of the chromosomes. Data were taken from the Ensembl (www.ensembl.org) and Santa Cruz
(genome.ucsc.edu) web-sites. In total the reference human genome sequence seems to contain
roughly 3,310,004,815 base pairs—an estimate that presumably will change slightly over time.

quence segments that do not directly give rise to gene products are normally
called noncoding regions. Noncoding regions can be parts of genes, either as
regulatory elements or as intervening sequences interrupting the DNA that di-
rectly encode proteins or RNA. Machine-learning techniques are ideal for the
hard task of interpreting unannotated genomic DNA, and for distinguishing
between sequences with different functionality.

Table 1.1 shows the current predictions for the approximate number of
genes and the genome size in organisms in different evolutionary lineages. In
those organisms where the complete genome sequence has now been deter-
mined, the indications of these numbers are of course quite precise, while in
other organisms only a looser estimate of the gene density is available. In some
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Species Haploid genome size Bases Entries
Homo sapiens 3,310,000,000 7,387,490,518 4,544,962
Mus musculus 3,300,000,000 1,527,228,639 2,793,543
Drosophila melanogaster 180,000,000 502,655,942 167,687
Arabidopsis thaliana 125,000,000 249,689,164 183,987
Caenorhabditis elegans 100,000,000 204,396,881 114,744
Oryza sativa 400,000,000 171,870,798 161,411
Tetraodon nigroviridis 350,000,000 165,542,107 189,000
Rattus norvegicus 2,900,000,000 114,331,466 229,838
Bos taurus 3,600,000,000 76,700,774 168,469
Glycine max 1,115,000,000 73,450,470 167,090
Medicago truncatula 400,000,000 60,606,228 120,670
Lycopersicon esculentum 655,000,000 56,462,749 109,913
Trypanosoma brucei 35,000,000 50,723,464 91,360
Hordeum vulgare 5,000,000,000 49,770,458 70,317
Giardia intestinalis 12,000,000 49,431,105 56,451
Strongylocentrotus purpur 900,000,000 47,633,412 77,554
Danio rerio 1,900,000,000 47,584,911 93,141
Xenopus laevis 3,100,000,000 46,517,145 92,041
Zea mays 5,000,000,000 45,978,459 98,818
Entamoeba histolytica 20,000,000 44,552,032 49,969

Table 1.3: The Number of Bases in GenBank rel. 123, April 2001, for the 20 Most Sequenced
Organisms. For some organisms there is far more sequence than the size of the genome, due to
strain variation and pure redundancy.

organisms, such as bacteria, where the genome size is a strong growth-limiting
factor, almost the entire genome is covered with coding (protein and RNA) re-
gions; in other, more slowly growing organisms the coding part may be as little
as 1–2%. This means that the gene density in itself normally will influence the
precision with which computational approaches can perform gene finding. The
noncoding part of a genome will often contain many pseudo-genes and other
sequences that will show up as false positive predictions when scanned by an
algorithm.

The biggest surprise resulting from the analysis of the two versions of the
human genome data [134, 170] was that the gene content may be as low as
in the order of 30,000 genes. Only about 30,000-40,000 genes were estimated
from the initial analysis of the sequence. It was not totally unexpected as the
gene number in the fruit fly (14,000) also was unexpectedly low [132]. But
how can man realize its biological potential with less than twice the number
of genes found in the primitive worm C. elegans? Part of the answer lies in
alternative splicing of this limited number of genes as well as other modes
of multiplexing the function of genes. This area has to some degree been ne-
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glected in basic research and the publication of the human genome illustrated
our ignorance all too clearly: only a year before the publication it was expected
that around 100-120,000 genes would be present in the sequence [361]. For
a complex organism, gene multiplexing makes it possible to produce several
different transcripts from many of the genes in its genome, as well as many
diferent protein variants from each transcript. As the cellular processing of
genetic material is far more complex (in terms of regulation) than previously
believed the need for sophisticated bioinformatics approaches with ability to
model these processes is also strongly increased.

One of the big open questions is clearly how a quite substantial increase
in organism complexity can arise from a quite modest increase in the size of
the gene pool. The fact that worms have almost as many genes as humans is
somewhat irritating, and in the era of whole cell and whole organism oriented
research, we need to understand how the organism complexity scales with the
potential of a fixed number of genes in a genome.

The French biologist Jean-Michel Claverie has made [132] an interesting
“personal” estimate of the biological complexity K and its relation to the num-
ber of genes in a genome, N. The function f that converts N into K could in
principle be linear (K ∼ N), polynomial (K ∼ Na), exponential (K ∼ aN ), K ∼ N!
(factorial), and so on. Claverie suggests that the complexity should be related
to the organism’s ability to create diversity in its gene expression, that is to
the number of theoretical transcriptome states the organism can achieve. In
the simplest model, where genes are assumed to be either active or inactive
(ON or OFF), a genome with N genes can potentially encode 2N states. When
we then compare humans to worms, we appear to be

230,000/220,000 � 103,000 (1.1)

more complex than nematodes thus confirming (and perhaps reestablishing)
our subjective view of superiority of the human species. In this simple model
the exponents should clearly be decreased because genes are not indepen-
dently expressed (due to redundance and/or coregulation), and the fact that
many of the states will be lethal. On the other hand gene expression is not
ON/OFF, but regulated in a much more graded manner. A quite trivial math-
ematical model can thus illustrate how a small increase in gene number can
lead to a large increase in complexity and suggests a way to resolve the appar-
ent N value paradox which has been created by the whole genome sequencing
projects. This model based on patterns of gene expression may seem very
trivial, still it represents an attempt to quantify “systemic” aspects of organ-
isms, even if all their parts still may be understood using more conventional,
reductionistic approaches [132].

Another fundamental and largely unsolved problem is to understand why
the part of the genome that code for protein, in many higher organisms, is
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quite limited. In the human sequence the coding percentage is small no matter
whether one uses the more pessimistic gene number N of 26,000 or the more
optimistic figure of 40,000 [170]. For these two estimates in the order of 1.1%
(1.4%) of the human sequence seems to be coding, with introns covering 25%
(36%) and the remaining intergenic part covering 75% (64%), respectively. While
it is often stated that the genes only cover a few percent, this is obviously not
true due to the large average intron size in humans. With the estimate of
40,000 genes more than one third of the entire human genome is covered by
genes.

The mass of the nuclear DNA in an unreplicated haploid genome in a given
organism is known as its C-value, because it usually is a constant in any one
narrowly defined type of organism. The C-values of eukaryotic genomes vary
at least 80,000-fold across species, yet bear little or no relation to organismic
complexity or to the number of protein-coding genes [412, 545]. This phe-
nomenon is known as the C-value paradox [518].

It has been suggested that noncoding DNA just accumulates in the nuclear
genome until the costs of replicating it become too great, rather than having
a structural role in the nucleus [412]. It became clear many years ago that the
extra DNA does not in general contain an increased number of genes. If the
large genomes contained just a proportionally increased number of copies of
each gene, the kinetics of DNA renaturation experiments would be very fast.
In renaturation experiments a sample of heat-denatured strands is cooled, and
the strands reassociate provided they are sufficiently complementary. It has
been shown that the kinetics is reasonably slow, which indicates that the ex-
tra DNA in voluminous genomes most likely does not encode genes [116]. In
plants, where some of the most exorbitant genomes have been identified, clear
evidence for a correlation between genome size and climate has been estab-
lished [116]; the very large variation still needs to be accounted for in terms of
molecular and evolutionary mechanisms. In any case, the size of the complete
message in a genome is not a good indicator of the “quality” of the genome
and its efficiency.

This situation may not be as unnatural as it seems. In fact, it is somewhat
analogous to the case of communication between humans, where the message
length fails to be a good measure of the quality of the information exchanged.
Short communications can be very efficient, for example, in the scientific lit-
erature, as well as in correspondence between collaborators. In many E-mail
exchanges the “garbage” has often been reduced significantly, leaving the es-
sentials in a quite compact form. The shortest known correspondence between
humans was extremely efficient: Just after publishing Les Misérables in 1862,
Victor Hugo went on holiday, but was anxious to know how the sales were go-
ing. He wrote a letter to his publisher containing the single symbol “?”. The
publisher wrote back, using the single symbol “!”, and Hugo could continue his
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Figure 1.3: The Exponential Growth in the Size of the GenBank Database in the Period 1983-
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length 1076). Currently the database grows by more than 11,000,000 bases per day.

holiday without concern for this issue. The book became a best-seller, and is
still a success as a movie and a musical.

The exponential growth in the size of the GenBank database [62, 503] is
shown in figure 1.3. The 20 most sequenced organisms are listed in table 1.3.
Since the data have been growing exponentially at the same pace for many
years, the graph will be easy to extrapolate until new, faster, and even more
economical sequencing techniques appear. If completely new sequencing ap-
proaches are invented the growth rate will presumably increase even further.
Otherwise, it is likely that the rate will stagnate when several of the mammalian
genomes have been completed. If sequencing at that time is still costly, fund-
ing agencies may start to allocate resources to other scientific areas, resulting
in a lower production rate.

In addition to the publicly available data deposited in GenBank, proprietary
data in companies and elsewhere are also growing at a very fast rate. This
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means that the current total amount of sequence data known to man is un-
known. Today the raw sequencing of a complete prokaryotic genome may—in
the largest companies—take less than a day, when arrays of hundreds of se-
quencing machines are operating in parallel on different regions of the same
chromosome. Part of this kind of data will eventually be deposited in the
public databases, while the rest will remain in the private domain. For all or-
ganisms speed matters a lot, not the least due to the patenting that usually is
associated with the generation of sequence data.

1.3 Proteins and Proteomes

1.3.1 From Genome to Proteome

At the protein level, large-scale analysis of complete genomes has its counter-
part in what has become known as proteome analysis [299, 413]. Proteomes
contain the total protein expression of a set of chromosomes. In a multicellu-
lar organism this set of proteins will differ from cell type to cell type, and will
also change with time because gene regulation controls advances in develop-
ment from the embryonic stage and further on. Proteome research deals with
the proteins produced by genes from a given genome.

Unlike the word “genome” which was coined just after the First World War
by the German botanist Hans Winkler [561, 65], the word “proteome” entered
the scientific literature recently, in 1994 in papers by Marc Wilkins and Keith
Williams [559].

Proteome analysis not only deals with determining the sequence, location,
and function of protein-encoding genes, but also is strongly concerned with
the precise biochemical state of each protein in its posttranslational form.
These active and functional forms of proteins have in several cases been suc-
cessfully predicted using machine-learning techniques.

Proteins often undergo a large number of modifications that alter their ac-
tivities. For example, certain amino acids can be linked covalently (or nonco-
valently) to carbohydrates, and such amino acids represent so-called glycosy-
lation sites. Other amino acids are subjected to phosphorylation, where phos-
phate groups are added to the polypeptide chain. In both cases these changes,
which are performed by a class of specific enzymes, may be essential for the
functional role of the protein. Many other types of posttranslational modifica-
tions exist, such as addition of fatty acids and the cleavage of signal peptides
in the N-terminus of secretory proteins translocated across a membrane. To-
gether with all the other types, these modifications are very interesting in a
data-driven prediction context, because a relatively large body of experimen-
tally verified sites and sequences is deposited in the public databases.
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1.3.2 Protein Length Distributions

The evolution of living organisms selects polypeptide chains with the ability
to acquire stable conformations in the aqueous or lipid environments where
they perform their function. It is well known that interaction between residues
situated far from each other in the linear sequence of amino acids plays a cru-
cial role in the folding of proteins. These long-range effects also represent
the major obstacle to computational approaches to protein folding. Still, most
research on the topic concentrates on the local aspects of the structure eluci-
dation problem. This holds true for strategies involving prediction and clas-
sification as well as for computational approaches based on molecular forces
and the equations of motion.

Statistical analysis has played a major role in studies of protein sequences
and their evolution since the early studies of Ycas and Gamow [195, 575, 555].
Most work has focused on the statistics of local nonrandom patterns with a
specific structure or function, while reliable global statistics of entire genomes
have been made possible by the vast amounts of data now available.

The universe of protein sequences can be analyzed in its entirety across
species, but also in an organism-specific manner where, for example, the
length distribution of the polypeptide chains in the largest possible proteome
can be identified completely. A key question is whether the protein sequences
we see today represent “edited” versions of sequences that were of essentially
random composition when evolution started working on them [555]. Alterna-
tively, they could have been created early on with a considerable bias in their
composition.

Using the present composition of soluble proteins, one can form on the
order of 10112 “natural” sequences of length-100 amino acids. Only a very tiny
fraction of these potential sequences has been explored by Nature. A “random
origin hypothesis,” which asserts that proteins originated by stochastic pro-
cesses according to simple rules, has been put forward by White and Jacobs
[556, 555]. This theory can be taken formally as a null hypothesis when exam-
ining different aspects of the randomness of protein sequences, in particular
to what extent proteins can be distinguished from random sequences.

The evidence for long-range order and regularity in protein primary struc-
ture is accumulating. Surprisingly, species-specific regularity exists even at a
level below the compositional level: the typical length of prokaryotic proteins
is consistently different from the typical length in eukaryotes [64]. This may
be linked to the idea that the probability of folding into a compact structure in-
creases more rapidly with length for eukaryotic than for prokarytic sequences
[555]. It has been suggested that the observed differences in the sequence
lengths can be explained by differences in the concentration of disulfide bonds
between cysteine residues and its influence on the optimal domain sizes [304].
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Figure 1.4: Length Distributions for Predicted Protein Coding Regions in Entire Genomes. A. H.
influenzae, among the 1,743 regions, amino acid chains of lengths between 140 and 160 are the
most frequent. B. M. genitalium with 468 regions, and preferred amino acid chains of length
between 120 and 140 or 280 and 300. C. The archaeon M. jannaschii with 1,735 regions; amino
acid chains of length between 140 and 160 are the most frequent. D. S. cerevisiae, among the
6,200 putative protein coding regions, amino acid chains of length between 100 and 120 are
the most frequent; this interval is followed by the interval 120 to 140. As described in a 1997
correspondence in Nature, the S. cerevisiae set clearly contains an overrepresentation (of artifact
sequences) in the 100–120 length interval [144].

Several other types of long-range regularities have been investigated, for
example, the preference for identical or similar residue partners in beta-sheets
[543, 570, 268, 45] and in close contact pairs [273], the long- and short-distance
periodicity in packing density [175], and whether mutations in the amino acid
sequence are significantly correlated over long distances [515, 485, 214].

The advent of the complete genomes from both prokaryotic and eukaryotic
organisms has made it possible to check whether earlier observations based
on incomplete and redundant data hold true when single organisms are com-
pared. One quite surprising observation has been that proteins appear to be
made out of different sequence units with characteristic length of≈ 125 amino
acids in eukaryotes and ≈ 150 amino acids in prokaryotes [64]. This indicates a
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possible underlying order in protein sequence organization that is more funda-
mental than the sequence itself. If such a systematics has indeed been created
by evolution, the length distributions of the polypeptide chains may be more
fundamental than what conventionally is known as the “primary” structure of
proteins.

In 1995 the first complete genome of a free living organism, the prokary-
ote Haemophilus influenzae, was published and made available for analysis
[183]. This circular genome contains 1,830,137 bp with 1,743 predicted pro-
tein coding regions and 76 genes encoding RNA molecules. In figure 1.4 the
length distribution of all the putative proteins in this organism is shown. For
comparison, the figure also shows the length distributions of the ≈ 468 pro-
teins in the complete Mycoplasma genitalium genome [189], as well as the
≈ 1,735 predicted protein coding regions in the complete genome of the ar-
chaeon Methanococcus jannaschii [105].

By comparing Saccharomyces cerevisiae (figure 1.4) against the distribu-
tions for the prokaryotes, it is possible by mere inspection to observe that
the peaks for the prokaryote H. influenzae and the eukaryote S. cerevisiae are
positioned in what clearly are different intervals: at 140–160 and 100–120,
respectively.

Performing redundancy reduction together with spectral analysis has led
to the conclusion that a eukaryotic distribution from a wide range of species
peaks at 125 amino acids and that the distribution displays a periodicity based
on this size unit [64]. Figure 1.4D also clearly shows that weaker secondary and
tertiary peaks are present around 210 and 330 amino acids. This distribution
is based on the entire set of proteins in this organism, and not a redundancy
reduced version.

Interestingly, the distribution for the archaeon M. jannaschii lies in be-
tween the H. influenzae and the S. cerevisiae distributions. This is in accor-
dance with the emerging view that the archaeon kingdom shares many sim-
ilarities with eukaryotes rather than representing a special kind of bacteria
in the prokaryotic kingdom [564, 105, 197]. This indicates that the universal
ancestral progenote has induced conserved features in genomes of bacteria,
archaea, and eucaryota:

prokaryota(nonucleus) 
≡ bacteria. (1.2)

This classification issue for archaeon organisms has led to confusion in text-
books and in the rational basis for classifying organisms in sequence data-
bases [197].

Annotated protein primary structures also accumulate rapidly in the public
databases. Table 1.4 shows the number of protein sequences in the top-scoring
organisms in one of the protein sequence databases, SWISS-PROT [24]. Figure
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Species Sequences
Homo sapiens 6,742
Saccharomyces cerevisiae 4,845
Escherichia coli 4,661
Mus musculus 4,269
Rattus norvegicus 2,809
Bacillus subtilis 2,229
Caenorhabditis elegans 2,163
Haemophilus influenzae 1,746
Schizosaccharomyces pombe 1,654
Drosophila melanogaster 1,443
Methanococcus jannaschii 1,429
Arabidopsis thaliana 1,240
Mycobacterium tuberculosi 1,228
Bos bovis 1,202
Gallus gallus 948

Table 1.4: The Number of Sequences for the 15 Most Abundant Organisms in SWISS-PROT rel.
39.16, April 2001.

1.5 shows the development of the size of this database. Like GenBank, it grows
exponentially, although at a much slower pace. This illustrates how much
more slowly the biologically meaningful interpretation of the predicted genes
arises. New techniques are needed, especially for functional annotation of the
information stemming from the DNA sequencing projects [513].

Another database which grows even more slowly is the Protein Data Bank
(PDB). This reflects naturally the amount of experimental effort that normally
is associated with the determination of three dimensional protein structure,
whether performed by X-ray crystallography or NMR. Still, as can be seen in
Figure 1.6 this database also grows exponentially, and due to the initiation of
many structural genomics projects in the US, Japan and Europe it is very likely
that this pattern will continue for quite a while.

1.3.3 Protein Function

Many functional aspects of proteins are determined mainly by local sequence
characteristics, and do not depend critically on a full 3D structure maintained
in part by long-range interactions [149]. In the context of overall functional
prediction, these characteristics can provide essential hints toward the precise
function of a particular protein, but they can also be of significant value in
establishing negative conclusions regarding compartmentalization—for exam-
ple, that a given protein is nonsecretory or nonnuclear.
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Figure 1.5: The Exponential Growth of the SWISS-PROT Database in the Period 1987–2001. The
size of SWISS-PROT rel. 39.16 is in the order of 34,800,000 amino acids from 95,000 entries.

One of the major tasks within bioinformatics in the postgenome era will
be to find out what the genes really do in concerted action, either by simul-
taneous measurement of the activity of arrays of genes or by analyzing the
cell’s protein complement [408, 360, 413]. It is not unlikely that it will be hard
to determine the function of many proteins experimentally, because the func-
tion may be related specifically to the native environment in which a particular
organism lives. Bakers yeast, Saccharomyces cerevisiae, has not by evolution
been designed for the purpose of baking bread, but has been shaped to fit
as a habitant of plant crops like grapes and figs [215]. Many genes may be
included in the genome for the purpose of securing survival in a particular
environment, and may have no use in the artificial environment created in the
laboratory. It may even, in many cases, be almost impossible to imitate the
natural host, with its myriad other microorganisms, and thereby determine
the exact function of a gene or gene product by experiment.

The only effective route toward the elucidation of the function of some of
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Figure 1.6: The Exponential Growth of the PDB Database in the Period 1972–2001. The size
of PDB (April 19, 2001) is in the order of 6,033,000 amino acids from 14,910 entries (average
length 405 aa).

these so-called orphan proteins may be computational analysis and prediction,
which can produce valuable indirect evidence for their function. Many protein
characteristics can be inferred from the sequence. Some sequence features will
be related to cotranslational or postfolding modifications; others, to structural
regions providing evidence for a particular general three-dimensional topol-
ogy. Prediction along these lines will give a first hint toward functionality that
later can be subjected to experimental verification [288].

In the last couple of years a number of methods that do not rely on direct
sequence similarity have been published [380, 162, 271, 378]. One quite suc-
cessful method has been exploiting gene expression data obtained using DNA
array [425] and chip technology (see chapter 12). Genes of unknown function
that belong to a cluster of genes displaying similar expression over time, or tis-
sue types, may be assigned the function of the most prevalent gene function in
that cluster (provided the cluster has genes with known function as members).
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In this way functional information may be transferred between genes with lit-
tle or no sequence similarity. However, coregulated genes may also in many
cases have widely different functions, so often this approach cannot be used
alone. Another problem is that as the DNA arrays become larger and larger,
covering for example an entire mammalian genome, more and more clusters of
genes significantly down- or upregulated will appear, where not a single gene
has functional information assigned to it.

Another approach is the so-called “Rosetta stone” method, which is based
on patterns of domain fusions [379, 167]. The underlying idea is that if two
proteins in one organism exist as one fused multidomain protein in another
organism, this may indicate that the two proteins are involved in performing
the same function even though they are not directly related in sequence.

A third tool that can be used for linking together proteins of similar func-
tion is phylogenetic profiles [423]. In phylogenetic profiles each protein is
represented as the organisms in which homologs are observed. If two pro-
teins have identical (or very similar) phylogenetic profiles it indicates that they
normally are observed together—an organism encodes either both or neither
of the proteins in its genome. One possible explanation for this is that the
proteins together perform a similar function. Phylogenetic profiles should be
expected to become more powerful as more genomes become available. They
have been successfully applied to the yeast genome but until several multicel-
lular organisms have been sequenced they are of limited use for predicting the
function of human proteins.

1.3.4 Protein Function and Gene Ontologies

Genomewide assignment of function requires that the functional role of pro-
teins be described in a systematic manner using well defined categories, key-
words, and hierachies. A gene ontology is essentially a specification of relevant
concepts in molecular biology and the relationships among those concepts. If
information in the scientific literature and in databases is to be shared in the
most useful way, ontologies must be exchanged in a form that uses standard-
ized syntax and semantics. In practice this means for example that functional
categories and systematics must be designed to cover a wide range of organ-
isms, if not all, and that the system is able to incorporate new discoveries as
they appear over time.

One of the major developments [21, 22] in this area has been the creation of
the Gene Ontology Consortium, which has participation from different areas,
including fruitfly (FlyBase), budding yeast (Saccharomyces Genome Database),
mouse (Mouse Genome and Gene Expression Databases), brassica (The Ara-
bidopsis Information Resource), and nematode (WormBase). The goal of the
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Gene Ontology Consortium is to produce a dynamic controlled vocabulary that
is based on three organizing principles and functional aspects: (1) molecular
function, (2) biological process and (3) cellular component. A protein can rep-
resent one or more molecular functions, be used in one or more biological
processes, and be associated with one or more cellular components.

Molecular function describes the tasks performed by individual gene prod-
ucts; examples are transcription factor and DNA helicase. Biological process
describes broad biological goals, such as mitosis or purine metabolism, that
are accomplished by ordered assemblies of molecular functions. Cellular com-
ponent encompasses subcellular structures, locations, and macromolecular
complexes; examples include nucleus, telomere, and origin recognition com-
plex.

There are many ways to construct ontologies, including some with focus on
molecular complexes or the immune system; see for example the RiboWeb on-
tology [123] or the ImMunoGenetics ontology [213]. Another prominent exam-
ple is the EcoCyc ontology [307, 308], which is the ontology used in a database
describing the genome and the biochemical machinery of E. coli. The database
describes pathways, reactions, and enzymes of a variety of organisms, with
a microbial focus. EcoCyc describes for example each metabolic enzyme of E.
coli, including its cofactors, activators, inhibitors, and subunit structure. When
known, the genes encoding the subunits of an enzyme are also listed, as well
as the map position of a gene on the E. coli chromosome.

1.4 On the Information Content of Biological Sequences

The concept of information and its quantification is essential for understand-
ing the basic principles of machine-learning approaches in molecular biology
(for basic definitions see appendix B, for a review see [577]). Data-driven pre-
diction methods should be able to extract essential features from individual
examples and to discard unwanted information when present. These methods
should be able to distinguish positive cases from negative ones, also in the
common situation where a huge excess of negative, nonfunctional sites and
regions are present in a genome. This discrimination problem is of course in-
timately related to the molecular recognition problem [363, 544, 474] in the
cellular environment: How can macromolecules find the sites they are sup-
posed to interact with when similar sites are present in very large numbers?

Machine-learning techniques are excellent for the task of discarding and
compacting redundant sequence information. A neural network will, if not un-
reasonably oversized, use its adjustable parameters for storing common fea-
tures that apply to many data items, and not allocate individual parameters to
individual sequence patterns. The encoding principle behind neural network
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training procedures superimposes sequences upon one another in a way that
transforms a complex topology in the input sequence space into a simpler rep-
resentation. In this representation, related functional or structural categories
end up clustered rather than scattered, as they often are in sequence space.

For example, the set of all amino acid segments of length 13, where the
central residue is in a helical conformation, is scattered over a very large part
of the sequence space of segments of length 13. The same holds true for
other types of protein secondary structures like sheets and turns. In this se-
quence space, 2013 possible segments exist (when excluding the twenty-first
amino acid, selenocysteine). The different structural categories are typically
not found in nicely separated regions of sequence space [297, 244]; rather,
islands of sheets are found in sequence regions where segments preferably
adopt a helical conformation, and vice versa. Machine-learning techniques are
used because of their ability to cope with nonlinearities and to find more com-
plex correlations in sequence spaces that are not functionally segregated into
continuous domains.

Some sequence segments may even have ability to attain both the helix
and the sheet conformation, depending on the past history of interaction with
other macromolecules and the environment. Notably, this may be the case for
the prion proteins, which recently have been associated with mad cow disease,
and in humans with the Creutzfeldt–Jakob syndrome. In these proteins the
same sequence may adopt different very stable conformations: a normal con-
formation comprising a bundle of helices and a disease-inducing “bad” con-
formation with a mixture of helices and sheets. The bad-conformation prions
even have an autocatalytic effect, and can be responsible for the transforma-
tion of normal conformation prions into bad ones [266, 267, 444]. In effect,
the protein itself serves as carrier of structural information which can be in-
herited. To distinguish this pathogen from conventional genetic material, the
term “prion” was introduced to emphasize its proteinaceous and infectious
nature. The 1997 Nobel Prize for Physiology or Medicine was given to Stanley
B. Prusiner for his work on prions. The proposal that proteins alone can trans-
mit an infectious disease has come as a considerable surprise to the scientific
community, and the mechanisms underlying their function remain a matter of
hot debate.

Based on local sequence information, such conformational conflicts as
those in the prion proteins will of course be impossible to settle by any
prediction method. However, a local method may be able to report that a
piece of sequence may have a higher potential for, say, both helix and sheet
as opposed to coil. This has actually been the case for the prion sequences
[266, 267] when they are analyzed by one of the very successful machine-
learning methods in sequence analysis, the PHD method of Rost and Sander.
We return to this and other methods for the prediction of protein secondary
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structure in chapter 6.
Another issue related to redundancy is the relative importance of individual

amino acids in specifying the tertiary structure of a protein [347]. To put it
differently: What fraction of a protein’s amino acid sequence is sufficient to
specify its structure? A prize—the Paracelsus Challenge—has even been put
forth to stimulate research into the role of sequence specificity in contrast to
protein stability [450, 291, 449]. The task is to convert one protein fold into
another, while retaining 50% of the original sequence. Recently, a protein that
is predominantly beta-sheet has in this way been transmuted into a native-like,
stable, four-helix bundle [143]. These studies clearly show that the residues
determine the fold in a highly nonlinear manner. The identification of the
minimal requirements to specify a given fold will not only be important for
the design of prediction approaches, but also a significant step towards solving
the protein folding problem [143].

The analysis of the redundancy and information content of biological
sequences has been strongly influenced by linguistics since the late 1950s.
Molecular biology came to life at a time when scientific methodology in general
was affected by linguistic philosophy [326]. Many influential ideas stemming
from the philosophical and mathematical treatment of natural languages
were for that reason partly “recycled” for the analysis of “natural” biological
sequences—and still are for that matter (see chapter 11). The digital nature
of genetic information and the fact that biological sequences are translated
from one representation to another in several consecutive steps have also
contributed strongly to the links and analogies between the two subjects.

The study of the translation genetic code itself was similarly influenced by
the time at which the code was cracked. The assignment of the 20 amino acids
and the translation stop signal to the 64 codon triplets took place in the 1960s,
when the most essential feature a code could have was its ability to perform
error correction. At that time the recovery of messages from spacecraft was a
key topic in coding and information theory. Shannon’s information-theoretical
procedures for the use of redundancy in encoding to transmit data over noisy
channels without loss were in focus. In the case of the genetic code, its block
structure ensures that the most frequent errors in the codon–anticodon recog-
nition will produce either the same amino acid, as intended, or insert an amino
acid with at least some similar physicochemical properties, most notably its
hydrophobicity. The importance of other nonerror-correcting properties of
the genetic code may have been underestimated, and we shall see in chapter 6
that a neural network trained on the mapping between nucleotide triplets and
amino acids is simpler for the standard code, and much more complex when
trained on more error-correcting genetic codes that have been suggested as
potential alternatives to the code found by evolution [524].

The amount of information in biological sequences is related to their com-
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pressibility. Intuitively, simple sequences with many repeats can be repre-
sented using a shorter description than complex and random sequences that
never repeat themselves. Data-compression algorithms are commonly used in
computers for increasing the capacity of disks, CD-ROMs, and magnetic tapes.
Conventional text-compression schemes are so constructed that they can re-
cover the original data perfectly without losing a single bit. Text-compression
algorithms are designed to provide a shorter description in the form of a less
redundant representation—normally called a code—that may be interpreted
and converted back into the uncompressed message in a reversible manner
[447]. The literature on molecular biology itself is full of such code words,
which shortens this particular type of text. The abbreviation DNA, for deoxyri-
bonucleic acid, is one example that contributes to the compression of this book
[577].

In some text sequences—for example, the source code of a computer
program—losing a symbol may change its meaning drastically, while com-
pressed representations of other types of data may be useful even if the
original message cannot be recovered completely. One common example is
sound data. When sound data is transmitted over telephone lines, it is less
critical to reproduce everything, so “lossy” decompression in this case can be
acceptable. In lossless compression, the encoded version is a kind of program
for computing the original data. In later chapters both implicit and explicit
use of compression in connection with machine learning will be described.

In section 1.2 an experimental approach to the analysis of the redundancy
of large genomes was described. If large genomes contained just a proportion-
ally increased number of copies of each gene, the kinetics of DNA renaturation
experiments would be much faster than observed. Therefore, the extra DNA in
voluminous genomes most likely does not code for proteins [116], and conse-
quently algorithmic compression of sequence data becomes a less trivial task.

The study of the statistical properties of repeated segments in biologi-
cal sequences, and especially their relation to the evolution of genomes, is
highly informative. Such analysis provides much evidence for events more
complex than the fixation and incorporation of single stochastically generated
mutations. Combination of interacting genomes, both between individuals in
the same species and by horizontal transfer of genetic information between
species, represents intergenome communication, which makes the analysis of
evolutionary pathways difficult.

Nature makes seemingly wasteful and extravagant combinations of gen-
omes that become sterile organisms unable to contribute further to the evo-
lution of the gene pool. Mules are well-known sterile crosses of horses and
donkeys. Less well known are ligers, the offspring of mating male LIons and
female tiGERS. Tigrons also exist. In contrast to their parents, they are very
nervous and uneasy animals; visually they are true blends of the most char-
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Figure 1.7: A Photograph of a Liger, the Cross between a Lion and a Tiger. Courtesy of the Los
Angeles Wild Animal Way Station (Beverly Setlowe).

acteristic features of lions and tigers. It is unclear whether free-living ligers
can be found in the wild; most of their potential parents inhabit different
continents1, but at the Los Angeles Wild Animal Way Station several ligers
have been placed by private owners who could no longer keep them on their
premises. Figure 1.7 shows this fascinating and intriguing animal.

In biological sequences repeats are clearly—from a description length
viewpoint—good targets for compaction. Even in naturally occurring se-
quence without repeats, the statistical biases—for example, skew dipeptide,
and skew di- and trinucleotide, distributions—will make it possible to find
shorter symbol sequences where the original message can be rewritten using
representative words and extended alphabets.

The ratio between the size of an encoded corpus of sequences and the
original corpus of sequences yields the compression rate, which quantifies

1In a few Asian regions, lions and tigers live close to one another, for example, in Gujarat in
the northwestern part of India.
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globally the degree of regularity in the data:

RC = SE
SO
. (1.3)

One important difference between natural text and DNA is that repeats oc-
cur differently. In long natural texts, repeats are often quite small and close to
each other, while in DNA, long repeats can be found far from each other [447].
This makes conventional sequential compression schemes [56] less effective
on DNA and protein data. Still, significant compression can be obtained even
by algorithms designed for other types of data, for example, the compress rou-
tine from the UNIX environment, which is based on the Lempel–Ziv algorithm
[551]. Not surprisingly, coding regions, with their reading frame and triplet
regularity, will normally be more compressible than more random noncoding
regions like introns [279]. Functional RNAs are in general considered to be less
repetitive than most other sequences [326], but their high potential for fold-
ing into secondary structures gives them another kind of inherent structure,
reducing their randomness or information content.

Hidden Markov models are powerful means for analyzing the sequential
pattern of monomers in sequences [154]. They are generative models that can
produce any possible sequence in a given language, each message with its own
probability. Since the models normally are trained to embody the regularity
in a sequence set, the vast majority of possible sequences end up having a
probability very close to 0. If the training is successful, the sequences in the
training set (and, hopefully, their homologues) end up having a higher proba-
bility. One may think of a hidden Markov model as a tool for parameterizing
a distribution over the space of all possible sequences on a given alphabet. A
particular family of proteins—globins, for example—will be a cloud of points
in sequence space. Training a model on some of these sequences is an attempt
to create a distribution on sequence space that is peaked over that cloud.

1.4.1 Information and Information Reduction

Classification and prediction algorithms are in general computational means
for reducing the amount of information. The input is information-rich se-
quence data, and the output may be a single number or, in the simplest case,
a yes or no representing a choice between two categories. In the latter case the
output holds a maximum of one bit if the two possibilities are equally likely.
A segregation of amino acid residues, depending on whether they are in an
alpha-helical conformation or not, will be such a dichotomy, where the aver-
age output information will be significantly under one bit per residue, because
in natural proteins roughly only 30% of the amino acids are found in the heli-
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cal category. On average less than one yes/no question will then be required
to “guess” the conformational categories along the sequences.

The contractive character of these algorithms means that they cannot be
inverted; prediction programs cannot be executed backward and thus return
the input information. From the output of a neural network that predicts the
structural class of an amino acid residue, one cannot tell what particular input
amino acid it was, and even less its context of other residues. Similarly, the log-
likelihood from a hidden Markov model will not make it possible to reproduce
the original sequence to any degree.

In general, computation discards information and proceeds in a logically
irreversible fashion. This is true even for simple addition of numbers; the sum
does not hold information of the values of the addends. This is also true for
much of the sequence-related information processing that takes place in the
cell. The genetic code itself provides a most prominent example: the degen-
erate mapping between the 64 triplets and the 20 amino acids plus the trans-
lation stop signal. For all but two amino acids, methionine and tryptophan,
the choice between several triplets will make it impossible to retrieve the en-
coding mRNA sequence from the amino acids in the protein or which of the
three possible stop codons actually terminated the translation. The individ-
ual probability distribution over the triplets in a given organism—known as its
codon usage—determines how much information the translation will discard
in practice.

Another very important example is the preceding process, which in eukary-
otes produces the mature mRNA from the pre-mRNA transcript of the genomic
DNA. The noncoding regions, introns, which interrupt the protein coding part,
are removed and spliced out in the cell nucleus (see also sections 1.1.2 and
6.5.4) But from the mature mRNA it seems difficult or impossible to locate
with high precision the junctions where the intervening sequences belonged
[495, 496], and it will surely be impossible to reproduce the intron sequence
from the spliced transcript. Most of the conserved local information at the
splice junctions is in the introns. This makes sense because the exons, making
up the mature mRNA sequence, then are unconstrained in terms of their pro-
tein encoding potential. Interestingly, specific proteins seem to associate with
the exon-exon junctions in the mature mRNA only as a consequence of splicing
[256], thus making the spliced messenger “remember” where the introns were.
The splicing machinery leaves behind such signature proteins at the junctions,
perhaps with the purpose of influencing downstream metabolic events in vivo
such as mRNA transport, decay and translation.

Among the more exotic examples of clear-cut information reduction are
phenomena like RNA editing [59] and the removal of “inteins” from proteins
[301, 257]. In RNA editing the original transcript is postprocessed using guide
RNA sequences found elsewhere in the genome. Either single nucleotides or
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longer pieces are changed or skipped. It is clear that the original RNA copy of
the gene cannot in any way be recovered from the edited mRNA.

It has also been discovered that polypeptide chains in some cases are
spliced, sequence fragments known as inteins are removed, and the chain
ends are subsequently ligated together. In the complete genome of the ar-
chaeon Methanococcus jannaschii, a surprisingly large number of inteins were
discovered in the predicted open reading frames. Many other examples of
logically and physically irreversible processes exist. This fact is of course
related to the irreversible thermodynamic nature of most life processes.

The information reduction inherent in computational classification and
prediction makes it easier to see why in general it does not help to add extra
input data to a method processing a single data item. If strong and valuable
correlations are not present in the extra data added, the method is given the
increased burden of discarding even more information on the route toward
the output of a single bit or two. Despite the fact that the extra data contain
some exploitable features, the result will often be a lower signal-to-noise level
and a decreased prediction performance (see chapter 6).

Protein secondary structure prediction normally works better when based
on 13 amino acid segments instead of segments of size 23 or higher. This is
not due solely to the curse of dimensionality of the input space, with a more
sparse coverage of the space by a fixed number of examples [70]. Given the
amount of three-dimensional protein structure data that we have, the amount
of noise in the context of 10 extra residues exceeds the positive effect of the
long-range correlations that are in fact present in the additional sequence data.

Machine-learning approaches may have some advantages over other meth-
ods in having a built-in robustness when presented with uncorrelated data
features. Weights in neural networks vanish during training unless positive or
negative correlations keep them alive and put them into use. This means that
the 23-amino-acid context not will be a catastrophe; but it still cannot outper-
form a method designed to handle an input space where the relation between
signal and noise is more balanced.

Information reduction is a key feature in the understanding of almost any
kind of system. As described above, a machine-learning algorithm will create
a simpler representation of a sequence space that can be much more powerful
and useful than the original data containing all details.

The author of Alice in Wonderland, the mathematician Charles Dodgson
(Lewis Carroll), more than 100 years ago wrote about practical issues in re-
lation to maps and mapping. In the story “Sylvie and Bruno Concluded” the
character Mein Herr tells about the most profound map one can think of, a
map with the scale one kilometer per kilometer. He is asked, “Have you used it
much?” He answers, “It has not been unfolded yet. The farmers were against
it. They said that it would cover all the soil and keep the sunlight out! Now we
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use the country itself, as its own map. And I can assure you that it is almost
as good.”

In the perspective of Mein Herr, we should stay with the unstructured, flat-
file public databases as they are, and not try to enhance the principal features
by using neural networks or hidden Markov models.

1.4.2 Alignment Versus Prediction: When Are Alignments Reliable?

In order to obtain additional functional insights as well as additional hints
toward structural and functional relationships, new sequences are normally
aligned against all sequences in a number of large databases [79]. The fun-
damental question is: When is the sequence similarity high enough that one
may safely infer either a structural or a functional similarity from the pairwise
alignment of two sequences? In other words, given that the alignment method
has detected an overlap in a sequence segment, can a similarity threshold
be defined that sifts out cases where the inference will be reliable? Below
the threshold some pairs will be related and some will not, so subthreshold
matches cannot be used to obtain negative conclusions. It is well known that
proteins can be structurally very similar even if the sequence similarity is very
low. At such low similarity levels, pure chance will produce other pairwise
alignments that will mix with those produced by genuinely related pairs.

The nontrivial answer to this question is that it depends entirely on the par-
ticular structural or functional aspect one wants to investigate. The necessary
and sufficient similarity threshold will be different for each task. Safe struc-
tural inference will demand a similarity at one level, and functional inference
will in general require a new threshold for each functional aspect. Functional
aspects may be related to a sequence as a whole—for example, whether or not
a sequence belongs to a given class of enzymes. Many other functional aspects
depend entirely on the local sequence composition. For example, does the N-
terminal of a protein sequence have a signal peptide cleavage site at a given
position or not?

In general, one may say that in the zone of safe inference, alignment should
be preferred to prediction. In the best situations, prediction methods should
enlarge the regions of safe inference. This can be done by evaluation of the
confidence levels that are produced along with the predictions from many
methods, a theme treated in more detail in chapter 5.

Sander and Schneider pioneered the algorithmic investigation of the rela-
tionship between protein sequence similarity and structural similarity [462]. In
a plot of the alignment length against the percentage of identical residues in
the overlap, two domains could be discerned: one of exclusively structurally
similar pairs, and one containing a mixture of similar and nonsimilar pairs.
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Structural similarity was defined by more than 70% secondary structure assign-
ment identity in the overlap. It was observed that this criterion corresponds
to a maximum root-mean-square deviation of 2.5Å for a structural alignment
of the two fragments in three dimensions. The mixed region reflects the fact
that the secondary structure identity may exceed 70% by chance, especially for
very short overlaps, even in pairs of completely unrelated sequences.

The border between the two domains, and thereby the threshold for se-
quence similarity, measured in percentage identity, depends on the length
of the aligned region (the overlap). Sander and Schneider defined a length-
dependent threshold function: for overlap length l < 10, no pairs are above
the threshold; for 10 < l < 80, the threshold is 290.15l −0.562%; and for l > 80,
the threshold is 24.8%.

This threshold can be used to answer the question whether alignment is
likely to lead to a reliable inference, or whether one is forced to look for pre-
diction methods that may be available for the particular task. If the new
sequence is superthreshold, alignment or homology building should be the
preferred approach; if it is subthreshold, prediction approaches by more ad-
vanced pattern-recognition schemes should be employed, possibly in concert
with the alignment methods.

In this type of analysis the “safe zone of inference” is of course not 100%
safe and should be used as a guideline only, for example when constructing
test sets for validation of high-throughput prediction algorithms. In many
cases the change of a single amino acid is known to lead to a completely dif-
ferent, possibly unfolded and unfunctional protein. Part of the goal in the
so-called single-nucleotide polymorphism projects is to identify coding SNPs,
which may affect protein conformation and thereby for example influence dis-
ease susceptibility and/or alter the effect of drugs interacting with a particular
protein [394].

1.4.3 Prediction of Functional Features

The sequence identity threshold for structural problems cannot be used di-
rectly in sequence prediction problems involving functionality. If the aim is
safe inference of the exact position of a signal peptide cleavage site in a new
sequence from experimentally verified sites in sequences from a database, it
is a priori completely unknown what the required degree of similarity should
be.

Above, “structurally similar” was defined by quantification of the mean
distance in space. In an alignment, functional similarity means that any two
residues with similar function should match without any shift. Two cleavage
sites should line up exactly residue by residue, if a site in one sequence should
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be positioned unambiguously by the site in the other. In practice, whether
a perfect separation between a completely safe zone and a mixed zone can
be obtained by alignment alone will depend on the degree of conservation of
different types of functional sites.

This binary criterion for successful alignment can, together with a defini-
tion of the zone-separating principle, be used to determine a threshold func-
tion that gives the best discrimination of functional similarity [405]. The prin-
ciple for establishing a nonarbitrary threshold is general; the approach may
easily be generalized to other types of sequence analysis problems involving,
for instance, glycosylation sites, phosphorylation sites, transit peptides for
chloroplasts and mitochondria, or cleavage sites of polyproteins, and to nu-
cleotide sequence analysis problems such as intron splice sites in pre-mRNA,
ribosome binding sites, and promoters. But for each case a specific threshold
must be determined.

For problems such as those involving splice sites in pre-mRNA or glycosyla-
tion sites of proteins, there are several sites per sequence. One way of address-
ing this problem is to split each sequence into a number of subsequences, one
for each potential site, and then use the approach on the collection of sub-
sequences. Alternatively, the fraction of aligned sites per alignment may be
used as a functional similarity measure, in analogy with the structural similar-
ity used by Sander and Schneider (the percentage of identical secondary struc-
ture assignments in the alignment). In this case, a threshold value for func-
tional similarity—analogous to the 70% structural similarity threshold used by
Sander and Schneider—must be defined before the similarity threshold can be
calculated.

1.4.4 Global and Local Alignments and Substitution Matrix Entropies

The optimality of pairwise alignments between two sequences is not given by
some canonical or unique criterion with universal applicability throughout the
entire domain of sequences. The matches produced by alignment algorithms
depend entirely on the parameters quantitatively defining the similarity of
corresponding monomers, the cost of gaps and deletions, and most notably
whether the algorithms are designed to optimize a score globally or locally.

Some problems of biological relevance concern an overall, or global, com-
parison between two sequences, possibly with the exception of the sequence
ends, while others would be meaningless unless attacked by a subsequence an-
gle for the localization of segments or sites with similar sequential structure.

Classical alignment algorithms are based on dynamic programming—for
optimal global alignments, the Needleman–Wunsch algorithm [401, 481], and
for optimal local alignments, the Smith–Waterman algorithm [492] (see chapter
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4). Dynamic programming is a computing procedure to manage the combina-
torial explosion that would result from an exhaustive evaluation of the scores
associated with any conceivable alignment of two sequences. Still, dynamic
programming is computationally demanding, and a number of heuristics for
further reduction of the resources needed for finding significant alignments
have been developed [417, 419]. Other very fast and reliable heuristic schemes
do not build on dynamic programming, but interactively extend small subse-
quences into longer matches [13, 14]. The conventional alignment schemes
have been described in detail elsewhere [550, 428]; here we will focus on some
of the important aspects related to the preparation of dedicated data sets.

How “local” a local alignment scheme will be in practice is strongly influ-
enced by the choice of substitution matrix. If the score level for matches is
much higher than the penalty for mismatches, even local alignment schemes
will tend to produce relatively long alignments. If the mismatch score will
quickly eat up the match score, short, compact overlaps will result.

A substitution matrix specifies a set of scores sij for replacing amino acid i
by amino acid j. Some matrices are generated from a simplified protein evolu-
tion model involving amino acid frequencies, pi, and pairwise substitution fre-
quencies, qij , observed in existing alignments of naturally occurring proteins.
A match involving a rare amino acid may count more than a match involving
a common amino acid, while a mismatch between two interchangeable amino
acids contributes a higher score than a mismatch between two functionally
unrelated amino acids. A mismatch with a nonnegative score is known as a
similarity or a conservative replacement. Other types of substitution matrices
are based on the relationships between the amino acids according to the ge-
netic code, or physicochemical properties of amino acids, or simply whether
amino acids in alignments are identical or not.

All these different substitution matrices can be compared and brought on
an equal footing by the concept of substitution matrix entropy. As shown
by Altschul [8], any amino acid substitution matrix is, either implicitly or ex-
plicitly, a matrix of logarithms of normalized target frequencies, since the
substitution scores may be written as

sij = 1
λ

(
ln
qij
pipj

)
(1.4)

where λ is a scaling factor. Changing λ will change the absolute value of the
scores, but not the relative scores of different local alignments, so it will not
affect the alignments [405].

The simplest possible scoring matrices are identity matrices, where all the
diagonal elements have the same positive value (the match score, s), and all
the off-diagonal elements have the same negative value (the mismatch score,
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s̄). This special case has been treated by Nielsen [405]. An identity matrix may
be derived from the simplest possible model for amino acid substitutions,
where all 20 amino acids appear with equal probability and the off-diagonal
substitution frequencies are equal:

pi = 1
20 for all i,

qij =
{
q
q̄

for i = j
for i ≠ j.

(1.5)

In other words, when an amino acid mutates, it has equal probabilities q̄ of
changing into any of the 19 other amino acids.

There is a range of different identity matrices, depending on the ratio be-
tween the positive and negative scores, s/s̄. If s = −s̄, a local alignment must
necessarily contain more matches than mismatches in order to yield a positive
score, resulting in short and strong alignments, while if s  −s̄, one match
can compensate for many mismatches, resulting in long and weak alignments.
The percentage identity p in gapfree local identity matrix alignment has a min-
imum value

p >
−s̄
s − s̄ . (1.6)

We define r = q̄/q, the mutability or the probability that a given position in
the sequence has changed into a random amino acid (including the original
one). r = 0 corresponds to no changes, while r = 1 corresponds to an infinite
evolutionary distance.

Since the sum of all qij must be 1, we use the relation 20q + 380q̄ = 1 to
calculate the target frequencies

q = 1
20+ 380r and q̄ = r

20+ 380r
(1.7)

and the sij values may be calculated using (1.4). Since the score ratio, s/s̄ , is
independent of λ and therefore a function of r , we can calculate r numerically
from the score ratio.

The relative entropy of an amino acid substitution matrix was defined thus
by Altschul:

H =
∑
i,j
qijsijbits (1.8)

where the sijs are normalized so that λ = ln 2 (corresponding to using the
base-2 logarithm in (1.4)). The relative entropy of a matrix can be interpreted
as the amount of information carried by each position in the alignment (see
also appendix B for all information-theoretic notions such as entropy and rel-
ative entropy).
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The shorter the evolutionary distance assumed in the calculation of the
matrix, the larger H is. At zero evolutionary distance (r = 0), the mismatch
penalty s̄ is infinite, that is, gaps are completely disallowed, and the rela-
tive entropy is equal to the entropy of the amino acid distribution: H =
−∑i pi log2pi. In the identity model case, H = log2 20 ≈ 4.32 bits, and
the local alignment problem is reduced to the problem of finding the longest
common substring between two sequences. Conversely, as the evolutionary
distance approaches infinity (r � 1), all differences between the qij values
disappear andH approaches 0.

1.4.5 Consensus Sequences and Sequence Logos

When studying the specificity of molecular binding sites, it has been common
practice to create consensus sequences from alignments and then to choose
the most common nucleotide or amino acid as representative at a given po-
sition [474]. Such a procedure throws a lot of information away, and it may
be highly misleading when interpreted as a reliable assessment of the molecu-
lar specificity of the recognizing protein factors or nucleic acids. A somewhat
better alternative is to observe all frequencies at all positions simultaneously.

A graphical visualization technique based on the Shannon information con-
tent at each position is the sequence logo approach developed by Schneider
and coworkers [473]. The idea is to emphasize the deviation from the uniform,
or flat, distribution, where all monomers occur with the same probability, p. In
that case, p = 0.25 for nucleotide sequence alignments and p = 0.05 in amino
acid sequence alignments.

Most functional sites display a significant degree of deviation from the flat
distribution. From the observed frequencies of monomers at a given position,
i, the deviation from the random case is computed by

D(i) = log2 |A| +
|A|∑
k=1
pk(i) log2 pk(i), (1.9)

where |A| is the length of the alphabet, normally 4 or 20. Since the logarithm
used is base 2, D(i) will be measured in bits per monomer. In an amino acid
alignment D(i) will be maximal and equal log2 20 ≈ 4.32 when only one fully
conserved amino acid is found at a given position. Similarly, the deviation will
be two bits maximally in alignments of nucleotide sequences.

With the logo visualization technique a column of symbols is used to dis-
play the details of a consensus sequence. The total height of the column is
equal to the value of D(i), and the height of each monomer symbol, k, is
proportional to its probability at that position, pk(i). Monomers drawn with
different colors can be used to indicate physicochemical properties, such as
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charge and hydrophobicity, or nucleotide interaction characteristics, such as
weak or strong hydrogen bonding potential. Compared with the array of num-
bers in a weight matrix covering the alignment region, the logo technique is
quite powerful and fairly easy to use. When D is summed over the region of
the site, one gets a measure of the accumulated information in a given type of
site, for example, a binding site. D may indicate the strength of a binding site,
and can be compared against the information needed to find true sites in a
complete genome or protein sequence [474]. With this information-theoretical
formulation of the degree of sequence conservation, the problem of how pro-
teins can find their required binding sites among a huge excess of nonsites can
be addressed in a quantitative manner [474, 472].

Figures 1.8 and 1.9 show two examples of alignment frequencies visualized
by the logo technique. The first is from an alignment of translation initia-
tion sites in E. coli. In the nuclear part of eukaryotic genomes, the initiation
triplet—the start codon—is very well conserved and is almost always AUG, rep-
resenting the amino acid methionine. In prokaryotes several other initiation
triplets occur with significant frequencies, and the logo shows to what extent
the nucleotides at the three codon positions are conserved [422]. Since the
same E. coli ribosome complex will recognize all translation initiation sites,
the logo indicates the specificity of the interaction between ribosomal com-
ponents and the triplet sequence. The conserved Shine–Dalgarno sequence
immediately 5’ to the initiation codon is used to position the mRNA on the
ribosome by base pairing.

A logo is clearly most informative if only sequences that share a similar sig-
nal are included, but it can also be used in the process of identifying different
patterns belonging to different parts of the data. In the extremely thermophilic
archaeon Sulfolobus solfataricus, translation initiation patterns may depend on
whether genes lie inside operons or at the start of an operon or single genes.
In a recent study [523], a Shine-Dalgarno sequence was found upstream of
the genes inside operons, but not for the first gene in an operon or isolated
genes. This indicates that two different mechanisms are used for translation
initiation in this organism.

Figure 1.9 displays a logo of mammalian amino acid sequence segments
aligned at the start of alpha-helices [99]. The logo covers the transition region:
to the left, the conformational categories of coil and turn appear most often,
and to the right, amino acids frequent in alpha-helices are found at the tops
of the columns. Interestingly, at the N-terminus, or the cap of the helix, the
distribution of amino acids is more biased than within the helix itself [435].
A logo of the C-terminus helix shows the capping in the other end. Capping
residues are presumably an integral part of this type of secondary structure,
because their side chain hydrogen bonds stabilize the dipole of the helix [435].
An analogous delimitation of beta-sheets—so-called beta breakers—marks the
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Figure 1.8: Logo Showing an Alignment of Translation Start Triplets That Are Active in E. coli.
Translation starts at position 21 in the logo. The conventional initiation triplet ATG encoding
methionine is by far the most abundant and dominates the logo. The data were obtained from
[422].

termini of this chain topology [133].
Sequence logos are useful for a quick examination of the statistics in

the context of functional sites or regions, but they can also show the range
in which a sequence signal is present. If one aligns a large number of O-
glycosylation sites and inspects the logo, the interval where the compositional
bias extends will immediately be revealed. Such an analysis can be used not
only to shape the architecture of a prediction method but also to consider
what should actually be predicted. One may consider lumping O-glycosylated
serines and threonines together if their context shares similar properties [235].
If they differ strongly, individual methods handling the two residue types sep-
arately should be considered instead. In the cellular environment, such a
difference may also indicate that the enzymes that transfer the carbohydrates
to the two residues are nonidentical.

Sequence logos using monomers will treat the positions in the context of
a site independently. The logo will tell nothing about the correlation between
the different positions, or whether the individual monomers appear simulta-
neously at a level beyond what would be expected from the single-position
statistics. However, the visualization technique can easily handle the occur-
rence of, say, dinucleotides or dipeptides, and show pair correlations in the
form of stacks of combined symbols. The size of the alphabets, |A|, in (1.9)
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Figure 1.9: Logo Showing an Alignment of Alpha-Helix N-termini. The data comprised a nonre-
dundant set of mammalian proteins with known three-dimensional structure [99]. The helix
starts at position 7 in the logo. The secondary structure assignment was performed by the Kab-
sch and Sander algorithm [297]. The largest compositional bias in this region is observed at the
position just before the helix start.

will change accordingly; otherwise, the same formula applies.
Figure 1.10 shows an example of a dinucleotide-based logo of donor splice

sites in introns from the plant Arabidopsis thaliana. In addition to the well-
known consensus dinucleotides GT and GC (almost invisible) at the splice junc-
tion in the center of the logo, the logo shows that the GT dinucleotide, which
appears inside the intron at the third dinucleotide position, occurs more fre-
quently than expected.

A slight variation of the logo formula (1.9), based on relative entropy (or
Kullback–Leibler asymmetric divergence measure [342, 341]), is the following:

H (i) = H (P(i),Q(i)) =
|A|∑
k=1
pk(i) log

pk(i)
qk(i)

. (1.10)

This quantifies the contrast between the observed probabilities P(i) and a ref-
erence probability distribution Q(i). Q may, or may not, depend on the po-
sition i in the alignment. When displaying the relative entropy, the height of
each letter can also, as an alternative to the frequency itself, be computed from
the background scaled frequency at that position [219].

In order for the logo to be a reliable description of the specificity, it is
essential that the data entering the alignment be nonredundant. If a given
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site is included in multiple copies, the probability distribution will be biased
artificially.

In chapter 6 we will see how neural networks go beyond the positionwise
uncorrelated analysis of the sequence, as is the case for the simple logo visual-
ization technique and also for its weight matrix counterpart, where each posi-
tion in the matrix is treated independently. A weight matrix assigns weights to
the positions that are computed from the ratio of the frequencies of monomers
in an alignment of some “positive” sites and the frequencies in a reference dis-
tribution. A sum of the logarithms of the weights assigned to given monomers
in a particular sequence will give a score, and a threshold may be adjusted so
that it will give the best recognition of true sites, in terms of either sensitivity
or specificity.

Neural networks have the ability to process the sequence data nonlinearly
where correlations between different positions can be taken into account.
“Nonlinear” means essentially that the network will be able to produce correct
predictions in cases where one category is correlated with one of two features,
but not both of them simultaneously. A linear method would not be able to
handle such a two-feature case correctly.

In more complex situations, many features may be present in a given type
of site, with more complex patterns of correlation between them. The ability to
handle such cases correctly by definition gives the neural network algorithms
great power in the sequence data domain.

An O-glycosylation site may be one case where amino acids of both pos-
itive and negative charges may be acceptable and functional, but not both
types at the same time. A conventional monomer weight matrix cannot han-
dle this common situation. However, for some prediction problems one can
get around the problem by developing weight matrices based on dipeptides
or more complex input features. Another strategy may be to divide all the
positive cases into two or more classes, each characterized by its own weight
matrix. Such changes in the approach can in some cases effectively convert a
nonlinear problem into a linear one.

In general, the drawback of linear techniques is that it becomes impossible
to subtract evidence. In linear methods two types of evidence will combine and
add up to produce a high score, even if the biological mechanism can accept
only one of them at a time. A nonlinear method can avoid this situation simply
by decreasing the score if the combined evidence from many features exceeds
a certain level.

A clever change in the input representation will in many cases do part of the
job of transforming the topology of the sequence space into a better-connected
space in which isolated islands have been merged according to the functional
class they belong to. Since the correlations and features in sequences often are
largely unknown, at least when one starts the prediction analysis, the nonlinear
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Figure 1.10: A Logo of Donor Splice Sites from the Dicot Plant A. thaliana (cress). The logo
is based on frequencies of nonoverlapping dinucleotides in the exon/intron transition region,
using the standard Shannon information measure entering equation (1.9) with the alphabet size
|A| = 16. The logo was prepared on a nonredundant data set of sequences extracted from
GenBank [327].

potential of neural networks gives them a big advantage in the development
phase for many types of tasks.

The issue of which method to use has for many years been a highly dog-
matic matter in artificial intelligence. In the data domain of biological se-
quences, it is clear that many different methods will be able to perform at the
same level if one knows in advance which features to look for. If an analysis of
the weights in a neural network trained on a given task (see chapter 6) shows
that the network is being excited (or inhibited) toward a positive (or negative)
prediction by specific sequence features, rules can often be constructed that
also will have a high discriminatory power. It is the experience of many people
that machine-learning methods are productive in the sense that near-optimal
methods can be developed quite fast, given that the data are relatively clean;
it often can be much harder to try to design powerful rules from scratch.
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1.5 Prediction of Molecular Function and Structure

The methods and applications described in this book will be targeted toward
the agenda formulated by von Heijne in his early book on sequence analysis:
“What can you do with your sequence once you have it?” [540]. Applications
well suited for treatment by machine-learning approaches will be described
in detail in later chapters; here we give an annotated list of some important
computational problems that have been tackled within this framework in the
analysis of data from DNA, RNA, and protein sequences. In some cases se-
quences are represented by experimentally determined biochemical character-
istics rather than symbols from a finite alphabet of monomers.

1.5.1 Sequence-based Analysis

In most cases, single-stranded sequences are used, no matter whether the
object in the cellular environment is DNA or RNA. One exception is the anal-
ysis of structural elements of DNA, such as bendability or intrinsic bending
potential, which must be based on a true double-stranded interpretation of
the double helix.

Intron splice sites and branch points in eukaryotic pre-mRNA. Intervening
sequences that interrupt the genes of RNA and proteins are characterized, but
not unambiguously defined, by local features at the splice junctions. Introns
in protein-encoding genes present the most significant computational chal-
lenge. In some organisms, nuclear introns are few and their splice sites are
well conserved (as in S. cerevisiae), but in many other eukaryotes, including
man, it is a major problem to locate the correct transition between coding
and noncoding regions, and thus to determine the mature mRNA sequence
from the genomic DNA. In yeast, introns occur mainly in genes encoding
ribosomal proteins. The fact that genes in many organisms are being spliced
differently, depending on tissue type or stage of development, complicates
the task considerably. Weight matrices, neural networks, and hidden Markov
models have been applied to this problem in a multitude of different versions.

Gene finding in prokaryotes and eukaryotes. Machine-learning techniques
have been applied to almost all steps in computational gene finding, including
the assignment of translation start and stop, quantification of reading frame
potential, frame interruption of splice sites, exon assignment, gene modeling,
and assembly. Usually, highly diverse combinations of machine-learning
approaches have been incorporated in individual methods.
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Recognition of promoters—transcription initiation and termination. Initi-
ation of transcription is the first step in gene expression and constitutes an
important point of control in the organism. The initiation event takes place
when RNA polymerase—the enzyme that catalyzes production of RNA from
the DNA template—recognizes and binds to certain DNA sequences called
promoters. This prediction problem is hard due to both the large variable dis-
tance between various DNA signals that are the substrate for the recognition
by the polymerase, and the many other factors involved in regulation of the
expression level. The elastic matching abilities of hidden Markov models have
made them ideal for this task, especially in eukaryotes, but neural networks
with carefully designed input architecture have also been used.

Gene expression levels. This problem may be addressed by predicting
the strength of known promoter signals if the expression levels associated
with their genes have been determined experimentally. Alternatively, the
expression level of genes may be predicted from the sequence of the coding
sequence, where the codon usage and/or in some cases, the corresponding
codon adaption indices, have been used to encode the sequence statistics.

Prediction of DNA bending and bendability. Many transactions are influ-
enced and determined by the flexibility of the double helix. Transcription
initiation is one of them, and prediction of transcription initiation or curva-
ture/bendability from the sequence would therefore be valuable in the context
of understanding a large range of DNA-related phenomena.

Nucleosome positioning signals. Intimately related to the DNA flexibility is
the positioning of eukaryotic DNA when wrapped around the histone octamers
in chromatin. Detection of the periodicity requires non-integer sensitivity—or
an elastic matching ability as in hidden Markov models—because the signals
occur every 10.1–10.6 bp, or every full turn of the double-stranded helix.

Sequence clustering and cluster topology. Because sequence data are noto-
riously redundant, it is important to have clustering techniques that will put
sequences into groups, and also to estimate the intergroup distances at the
same time. Both neural networks, in the form of self-organizing maps, and
hidden Markov models have been very useful for doing this. One advantage
over other clustering techniques has been the unproblematic treatment of
large data sets comprising thousands of sequences.

Prediction of RNA secondary structure. The most powerful methods for
computing and ranking potential secondary structures of mRNA, tRNA, and
rRNA are based on the minimization of the free energy in the interaction be-
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tween base pairs and between pairs of base pairs and their stacking energies
[586, 260]. This is nontrivial for many reasons, one being that loop-to-loop
interactions are hard to assess without a combinatorial explosion in the num-
ber of structures to be evaluated. Neural networks and grammar methods
have had some success in handling features at which the more traditional
minimization procedures for obtaining the energetically most favored confor-
mation are less successful.

Other functional sites and classes of DNA and RNA. Many different types of
sites have been considered for separate prediction, including branch points
in introns, ribosome binding sites, motifs in protein–DNA interactions, other
regulatory signals, DNA helix categories, restriction sites, DNA melting points,
reading frame-interrupting deletions in EST sequences, classification of ri-
bosomal RNAs according to phylogenetic classes, and classification of tRNA
sequences according to species.

Protein structure prediction. This area has boosted the application of
machine-learning techniques within sequence analysis, most notably through
the work on prediction of protein secondary structure of Qian and Sejnowski
[437]. Virtually all aspects of protein structure have been tackled by machine
learning. Among the specific elements that have been predicted are categories
of secondary structure, distance constraints between residues (contacts), fold
class, secondary structure class or content, disulfide bridges between cysteine
residues, family membership, helical transmembrane regions and topology of
the membrane crossing, membrane protein class (number of transmembrane
segments), MHC motifs, and solvent accessibility.

Protein function prediction. Functionally related features that have been
considered for prediction are intracellular localization, signal peptide cleav-
age sites (secreted proteins), de novo design of signal peptide cleavage sites
(optimized for cleavage efficiency), signal anchors (N-terminal parts of type-II
membrane proteins), glycosylation signals for attachment of carbohydrates
(the state and type of glycosylation determines the lifetime in circulation;
this is strongly involved in recognition phenomena and sorting), phosphory-
lation and other modifications related to posttranslational modification (the
presence of phosphorylation sites indicates that the protein is involved in
intracellular signal transduction, cell cycle control, or mediating nutritional
and environmental stress signals), various binding sites and active sites in
proteins (enzymatic activity).

Protein family classification. The family association has been predicted from
a global encoding of the dipeptide frequencies into self-organizing maps
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and feed-forward neural networks, or local motif-based prediction that may
enhance the detection of more distant family relationships.

Protein degradation. In all organisms proteins are degraded and recycled. In
organisms with an immune system the specificity of the degradation is es-
sential for its function and the successful discrimination between self and
nonself. Different degradation pathways are active; in several of them pro-
teins are unfolded prior to proteolytic cleavage, and therefore the specificity
is presuambly strongly related to the pattern in the sequence and not to its 3D
structure. This general problem has therefore quite naturally been attacked by
machine-learning techniques, the main problem being the limited amount of
experimentally characterized data.


