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A Probability Primer

Kenji Doya and Shin Ishii

What Is Probability?

The subtitle of this book is “Probabilistic Approaches to Neural Coding,” so, to
start with, we have to be clear about what is probability [1].

A classical notion of probability is the so-called frequentist view. If you toss a
coin or roll a die infinitely many times, the ratio of having a particular outcome
among all possible outcomes would converge to a certain number between
zero and one, and that is the probability. An alternative idea of probability is
the “Bayesian” view [2], which regards probability as a measure of belief about
the predicted outcome of an event.

There has been a long debate between the two camps; the frequentists refuse
to include a subjective notion like “belief” into mathematical theory. Bayesians
say it is OK, as long as the way a belief should be updated is given objectively
[3]. The Bayesian notion of probability fits well with applied scientists” and
engineers’ needs of mathematical underpinnings for measurements and deci-
sions. As we will see in this book, the Bayesian notion turns out to be quite
useful also in understanding how the brain processes sensory inputs and takes
actions.

Despite the differences in the interpretation of probability, most of the math-
ematical derivation goes without any disputes. For example, the Bayes theo-
rem, at the core of the Bayesian theory of inference, is just a straightforward
fact derived from the relationship between joint probability and conditional
probability, as you will see below.

Probability Distribution and Density

We consider a random variable X, which can take either one of discrete values
x1,...,xy or continuous values, for example, 2 € R". We denote by P(X =
x), or just P(z) for short, the probability of the random variable X taking a
particular value .
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For discrete random variables, P(X) is called the probability distribution func-
tion. The basic constraint for probability distribution function is non-negativity
and unity, i.e.,

N

P(z;) >0, Y P(z;)=1. (1.1)

i=1

If X takes a continuous value, its probability of taking a particular value
is usually zero, so we should consider a probability of X falling in a finite
interval P(X € [z1,22]). Here P(X) gives a probability density function, whose
constraint is given by

P(2) >0, /X Pla)dz = 1. (12)

Here the integral is taken over the whole range of the random variable X.

Despite these differences, we often use the same notation P(X) for both
probability distribution and density functions, and call them just probability for
convenience. This is because many of the mathematical formulas and deriva-
tions are valid for both discrete and continuous cases.

Expectation and Statistics

There are a number of useful quantities, called statistics, that characterize a
random variable. The most basic operation is to take an expectation of a function
f(X) of arandom variable X following a distribution P(X)

N

Epoolf(X)] =Y P(xi) f(x), (1.3)

i=1

or a density P(X) as

Epon f(X)] = [ Pla)f(@)de 19
X
We often use shorthand notations Ex|[ ] or even E[ | when the distribution
or density that we are considering is apparent. Table 1.1 is a list of the most
popular statistics.

Joint and Conditional Probability

If there are two or more random variables, say X and Y, we can consider their
joint probability of taking a particular pair of values, P(X = z,Y = y). We can
also consider a conditional probability of X under the condition that Y takes a
particular value y, P(X = z|Y =vy).
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Table 1.1 Most popular statistics

name notation definition

mean <X > px | E[X]

variance Var[X], 0% | E[(X — E[X])?] = E[X? - E[X)?

covariance | Cov[X,Y] | E[(X — E[X]))(Y — E[Y])] = E[XY] — E[X]E[Y]
correlation | Cor[X,Y] gf;ég)é[g]]

The joint and conditional probabilities have a natural relationship
P(X,Y)=P(X|Y)PY)=P(Y|X)P(X). (1.5)

When we start from the joint probability P(X,Y"), P(X) and P(Y) are derived
by summing or integrating the two-dimensional function toward the margin
of the X or Y axis, i.e.

N
P(X)=> P(X,Y =y, (1.6)
=1
or
P(X) = /Y P(X.Y = y)dy, 7

so they are often called marginal probablity.

Independence and Correlation
When the joint probability is just a product of two probabilities, i.e.,
P(X,Y) = P(X)P(Y), (1.8)
the variables X and Y are said to be independent. In this case we have
P(X|Y)=P(X), P(Y|X)=P().

Otherwise we say X and Y are dependent.
A related but different concept is correlation. We say two variables are uncor-
related if

E[XY] = E[X]E[Y]. (1.9)

In this case the covariance and correlation are zero.

If two variables are independent, they are uncorrelated, but the reverse is
not true. Why? Let’s imagine a uniform probability P(X,Y") over a rhombus
around the origin of X — Y space. From symmetry, X and Y are obviously
uncorrelated, but the marginal probabilities P(X) and P(Y') are triangular, so
their product will make a pyramid rather than a flat rhombus, so X and Y are
dependent.
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Bayes Theorem

From the two ways of representing the joint probability (1.5), we can relate the
two conditional probabilities by the following equation:

Y|X)P(X)

P(X\Y):P( POy (1.10)

as long as P(Y') never becomes exactly zero. This simple formula is famous as
the Bayes theorem [2]. The Bayes theorem is just a way of converting one condi-
tional probability to the other, by reweighting it with the relative probability of
the two variables. How can we be so excited about this?

This is quite insightful when we use this theorem for interpretation of sen-
sory data, for example,

P(data|hypothesis) P(hypothesis)

P(hypothesis|data) = P(data)
ata

Here, the Bayes theorem dictates how we should update our belief of a certain
hypothesis, P(hypothesis) based on how well the acquired data were predicted
from the hypothesis, P(data|hypothesis). In this context, the terms in the Bayes
theorem (1.10) have conventional names: P(X) is called the prior probability and
P(X]Y) is called the posterior probability of X given Y. P(Y|X) is a generative
model of observing Y under hypothesis X, but after a particular observation is
made it is called the likelihood of hypothesis X given data y.

The marginal probability P(Y") serves as a normalizing denominator so that
the sum of P(X|Y") for all possible hypotheses becomes unity. It appears as if
the marginal distribution is there just for the sake of bookkeeping, but as we
will see later, it sometimes give us insightful information about the quality of
our inference.

Measuring Information

Neuroscience is about how the brain processes information. But how can we
define "information" in a quantitative manner [4]? Let us consider how infor-
mative is an observation of a particular value x for a random variable X with
probability P(X). If P(X = z) is high, it is not so surprising, but if P(X = x)
is close to zero, it is quite informative. The best way to quantify the information
or "surprise" of an event X = z is to take the logarithm of the inverse of the
probability

1

Information is zero for a fully predicted outcome = with P(X = z) = 1, and
increases as P(X = z) becomes smaller. The reason we take the logarithm is
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that we can measure the information of two independent events = and y, with
joint probability P(x,y) = P(y)P(y), by the sum of each event, i.e.

1 1 1 1
P(z,y) P(z)P(y) P(z) P(y)
It is often convenient to use a binary logarithm, and in this case the unit of
information is called a bit.

log = log = log + log

Entropy

By observing repeatedly, = should follow P(X), so the average information we
have from observing this variable is

H(X)=E[-log P(X Z —P(X)log P(X), (1.12)

which is called the entropy of X. Entropy is a measure of randomness or uncer-
tainty of the distribution P(X), since the more random the distribution, the
more information we gather by observing its value. For instance, entropy
takes zero for a deterministic variable (as H(X) = 0 for P(X = z) = 1 and
P(X # x) = 0), and takes the largest positive value log N for a uniform distri-
bution over N values.

Mutual Information

In sensory processing, it is important to quantify how much information the
sensory input Y has about the world state X. A reasonable way is to ask how
much uncertainty about the world X decreases by observing Y, so we take the
difference in the entropy of P(X) and P(X|Y),

I(X;Y) = H(X) — HX|Y), (1.13)
where H(X|Y) is the conditional entropy, given by the entropy of conditional
distribution P(X|Y = y) averaged over the probability of observation P(Y =
y),

H(X|Y) = Epxy)[Epx|v)|—log P(X]Y)]] Z P(Y))  —P(X[Y)log P(X[|Y).
X
(1.14)

I(X;Y) is called the mutual information of X and Y. It is symmetric with respect
to X and Y. This can be confirmed by checking that the entropy of the joint
probability P(X,Y) = P(Y|X)P(X) = P(X|Y)P(Y) is given by

HX)Y)=HX)+HY|X)=H({Y)+ HXIY), (1.15)

and hence the mutual information can be presented in three ways:
IX;Y)=HX)-HX|Y)=H(Y)-HY|X)=HX)+HY)-H(X,Y).
(1.16)
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Kullback-Leibler Divergence

We often would like to measure the difference in two probability distributions,
and the right way to do it is by information. When we observe an event z,
its information depends on what probability distribution we assume for the
variable. The difference in information with distributions P(X) and Q(X) is

log ! — log = log P(z)
Q(x) P(z) Qx)
If  turns out to follow distribution P(X), then the average difference is
r (1‘)} P(z)
D(P;Q)=F log —=| = P(z)log —, 117
(P;Q) pm{ ) ; (x)log 752 (117)

which is called the Kullback-Leibler (KL) divergence. This is a good measure of
the difference of two distributions, but we cannot call it "distance" because it
does not usually satisfy the symmetry condition, i.e., D(P, Q) # D(Q, P).

Making an Inference

Let us now consider the process of perception in a Bayesian way. The brain
observes sensory input Y and makes an estimate of the state of the world X.

Maximum Likelihood Estimate

The mechanics of the sensory apparatus determines the conditional probability
P(Y|X). One way of making an inference about the world is to find the state
X that maximizes the likelihood P(Y = y|X) of the sensory input y. This
is called the maximum likelihood (ML) estimate. Although the ML estimate is
quite reasonable and convenient, there are two possible drawbacks. First, in
the world, there are more probable and less probable states, so inference just
by the present sensory input may not be the best thing we can do. Second,
using just a single point estimate of X can be dangerous because it neglects
many other states that are nearly likely.

Maximum a Posteriori Estimate

This is why the Bayes theorem can be useful in perceptual inference. If we
express the probability of different world states as a prior probability P(X),
we can combine the sensory information and this prior information according
to the Bayes therorem:

Y|X)P(X)

P(x[y) = L ) (1.18)
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If we put aside the normalizing denominator P(Y’), the posterior probability
P(X|Y) of the world state X given sensory input Y is proportional to the prod-
uct of the likelihood P(Y|X) and the prior probability P(X). The state X that
maximizes the posterior probability is called the maximum a posterioir (MAP)
estimate.

Bayesian Estimate

The MAP estimate can incorporate our prior knowledge about the world, but
it still is a point estimate. We can instead use the full probability distribution
or density of the posterior P(X|Y") as our estimate. For example, if we make a
decision or motor action based on the estimated world state X, how sharp or
flat is the posterior distribution gives us the confidence of our estimate. When
the distribution is wide or even has multiple peaks, we can average the corre-
sponding outputs to make a more conservative decision rather than just using
a single point estimate.

Bayes Filtering

A practically important way of using the posterior probability is to use it as the
prior probability in the next step. For example, if we make multiple indepen-
dent sensory observations

Y= (1,42 4t),

the likelihood of a state given the sequence of observations is the product
PylX) = P(yi | X)P(y2| X)... P(y:] X).

The posterior is given by

Py |X) P(y2] X)...P(y| X) P(X)

P(Xly) = , 1.19
(Xly) 0 (119)
but this can be recursively computed by

P(X|yy, - ) o< Py X)P(Xy1, ooy yr-1)- (1.20)

Here, P(X|y1, ..., Y1—1) is the posterior of X given the sensory inputs till time
t — 1 and serves as the prior for further estimation at time ¢.

So far we assumed that the world state X stays the same, but what occurs
if the state changes while we make sequential observations? If we have the
knowledge about how the world state would change, for example, by a state
transition probability P(X,;|X;_1), then we can use the posterior at time ¢ — 1
multiplied by this transition probability as the new prior at ¢:

P(thyh---,yt—l) x P(thXt—1)P(Xt—1|y1, ---7yt—1)- (1.21)
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Table 1.2 Popular probability distribution and density functions

name ‘ definition ‘ range | mean [ variance
Binomial (Ma*(1 —a)N—= z=0,1,...N | Na | Na(l-a)

N _ N

(z) — (N—2z)lz!
Poisson %awe*a z=0,1,2,... « «
Gaussian —e 207 rER U o2
or normal

T .a—1_,—Db a a
Gamma (a) b“oi“ e vt x>0 % 2
D(a) = [z e "dx
(I'(a) = a! if a is an integer)

Thus the sequence of the Bayesian estimation of the state is given by the fol-
lowing iteration:

P(Xtly1, -, yr) o Pye| Xe) P(X¢| X 1) P(Xe—1|y1s s Ye—1)- (1.22)

This iterative estimation is practically very useful and is in general called the
Bayes filter. The best known classical example of the Bayes filter is the Kalman
filter, which assumes linear dynamics and Gaussian noise. More recently, a
method called particle filter has been commonly used for tasks like visual track-
ing and mobile robot localization [5].

Learning from Data

So far we talked about how to use our knowledge about the sensory transfor-
mation P(Y|X) or state transition P(X;|X;_1) for estimation of the state from
observation. But how can we know these transformation and transition prob-
abilities? The brain should learn these probabilistic models from experience.

In estimating a probablistic model, it is convenient to use a parameterized
family of distributions or densities. In this case, the process of learning, or
system identification, is regarded as the process of parameter estimation. Table
1.2 is a list of popular parameterized distribution and density functions.

When we make an estimate of the parameter, we can use the same principle
as we did in the world state estimation above. For example, when the obser-
vation Y is a linear function of the state X with Gaussian noise, we have a
parameterized model

1 _ (y—wa)?
e 202 ,

P(ylz,w,0) =
2ro

where 6 = (w, 0) is a parameter vector. From the set of input-output observa-
tions {(z1,v1), ..., (7, yr)}, we can derive a maximum likelihood estimation
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by searching for the parameter that maximizes

o=

Py, .., yr|21, oy 27, 6) = P(yt|z+,0).

t=1

A convenient way of doing ML estimation is to maximize the log-likelihood:

T T
—wx
log P(y1,...,yr|z1, ..., x1,0) = ZlogP(ytkvt, Z t —TlogV2no.

t=1

From this, we can see that finding the ML estimate of the linear weight w is the
same as finding the least mean-squared error (LMSE) estimate that minimizes the
mean-squared error

1 T
Z ’th

t=1

Fisher Information

After doing estimation, how can we be certain about an estimated parameter
0? If the likelihood P(Y'|6) is flat with respect to the parameter 6, it would be
difficult to make a precise estimate. The Fisher information is a measure of the
steepness or curvature of the likelihood:

Ip(0) = By <‘W(Y|@)2} = Ey {—MF(YW] . (1.23)

00 06?

A theorem called Cramér-Rao inequality gives a limit of how small the variance
of an unbiased estimate 6 can be, namely,

Var(0) > Irp(0)". (1.24)

For example, after some calculation we can see that the Fisher information
matrix for a Gaussian distribution with parameters 0 = (u, 0?) is

! >
1 .
204

IfdataY = (y1, ..., yr) are given by repeated measures of the same distribution,
from log P(Y'|0) = Zthl log P(y¢|0), the Fisher information is 7" times that of a
single observation. Thus Cramér-Rao inequality tells us how good estimate of
the mean : we can get from the observed data Y depends on the variance and

oY=

Ip(0) = (

. 2
number of observations, % .
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Bayesian Learning

We can of course use not only ML, but MAP or Bayesian estimation for learning
parameter §, for example, for the sensory mapping model P(Y'|X, §) by

P(Y|X,0)P(6)

POIX.Y) = =535

(1.25)

In the above linear example, if we have a prior knowledge that the slope is
not so steep, we can assume a Gaussian prior of w,

1 Hu|2|2
P(w) = me 203,

Then the log posterior probability is

th )? _lwl”

552 —T'log V2ro—log vV2mo,—log P(Y|X),
J'w

T
log P(w|Y, X) = Z
t=1

so maximizing it with respect to w is the same as minimizing the least mean-
squared error with a penalty term

T

_ 1 Z (ye — th ||w||2

2"

t:1 2TUw

Such estimation with additional regularization terms is used to avoid extreme

solutions, often in an adhoc manner, but the Bayesian framework provides a
principled way of how to design them [6].

Marginal Likelihood

The normalizing denominator P(Y|X) of the posterior distribution (1.25) is
given by integrating the numerator over the entire range of the paremeter

P(Y|X) = / P(Y|X,0)P(6)d6, (126)

which is often called marginalization. This is a hard job in a high-dimensional
parameter space, so if we are just interested in finding a MAP estimate, it is
neglected.

However, this marginal probability of observation Y given X, or marginal
likelihood, conveys an important message about the choice of our prior P(6).
If the prior distribution is narrowly peaked, it would have little overlap with
the likelihood P(Y'| X, 0), so the expectation of the product will be small. On
the other hand, if the prior distribution is very flat and wide, its value is in-
versely proportional to the width, so the marginal will again be small. Thus
the marginal probability P(Y'|X) is a good criterion to see whether the prior is
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consistent with the observed data, so it is also called evidence. A parameter like
0. of the prior probability for a parameter w is called a hyperparameter, and the
evidence is used for selection of prior probability, or hyperparameter tuning.

The same mechanism can also be used for selecting one of discrete candi-
dates of probabilistic models M;, My, .... In this case the marginal probability
for a model P(M;) can be used for model selection, then called Bayesian criterion
for model selection.

Graphical Models and Other Bayesian Algorithms

So far we dealt with just two or three random variables, but in real life there
are many states, observations, and parameters, some of which are directly or
indirectly related. To make such dependency clear, graphical representations
of random variables are useful. They are called graphical models, and the Bayes
rule is used for estimation of the latent variables and parameters. Especially
when a graphical model is represented by a directed acyclic graph (DAG), or
equivalently, for an n-dim. variable vector X,

P(X) = ﬁP(Xi‘Pai)7 (1.27)

=1

where Pa; denotes the parent variables of the variable X; in the DAG, such
a model is called a Bayesian network. For estimation of any missing variable
in a Bayesian network, various belief propagation algorithms, the most famous
one being the message passing algorithm, have been devised in recent years, and
there are excellent textbooks to refer to when it becomes necessary for us to use
one.
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