
Vision is the construction of efficient symbolic

descriptions from images of the world . An

important aspect of vision is the choice of

representations for the different kinds of

information in a visual scene . In the early

stages of the analysis of an image , the

representations used depend more on what it is

possible to compute from an image than on

what is ultimately desirable , but later

representations can be more sensitive to the

specific needs of recognition . David Marr

surveys work in vision & 1 MIT from a

perspective in which the representational

problems assume a primary importance . An

overall framework is suggested for visual

information processing which consists of three

major levels of representations ; the primal

sketch , which makes explicit the intensity

changes and local two - dimensional geometry of

an image ; the 21 / 2 - D sketch , which is a

viewer - centered representation of the depth ,

orientation and discontinuities of the visible

surfaces ; and the 3 - D model representation ,

which allows an object - centered description of

the three - dimensional structure and organization

of a viewed shape .
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Understanding information processing tasks and vision

Vision is an information processing task, and like any other , it
needs understanding at two levels. The first , which I call the
computational theory of an information processing task , is
concerned with what is being computed and why ; and the
second level , that at which particular algorithms are designed ,
with how the computation is to be carried out [Marr and Poggio
1977a]. For example, the theory of the Fourier transform is a
level 1 theory , and is expressed independently of ways of
obtaining it (algorithms like the Fast Fourier Transform , or the
parallel algorithms of coherent optics ) that lie at level 2 .
Chomsky calls level 1 theories competence theories, and level 2
theories performance theories . The theory of a computation
must precede the design of algorithms for carrying it out , because
one cannot seriously contemplate designing an algorithm or a
program until one knows precisely what it is meant to be doing .

I believe this point is worth emphasizing , because it is
important to be clear about the level at which one is pursuing
one's studies. For example, there has recently been much interest
in so-called cooperative algorithms [Marr and Poggio 1976] or
relaxation labelling [Rosenfeld, Hummel and Zucker 1976]. The
attraction of this technique is that it allows one to write
plausible constraints directly into an algorithm , but one must
remember that such techniques amount to no more than a style
of programming , and they lie at the second of the two levels .
They have nothing to do with the theory of vision , whose
business it is to derive the constraints and characterize the
solutions that are consistent with them.

If one accepts in broad terms this statement of what it
means to understand an information processing task, one can go
on to ask about the particular theories that one needs to
understand vision . Vision can be thought of as a process, that
produces from images of the external world a description that is
useful to the viewer and not cluttered by irrelevant information .
These descriptions , in turn , are built or assembled from many



different but fixed representations, each capturing some aspect of
the visual scene. In this article , I shall try to present a summary
of our work on vision at MIT seen from a perspective in which
the representational problems assume a primary importance . I
shall include summaries of our present ideas as well as of
completed work .

The important point about a representation is that it
makes certain information explicit (cf . the principle of explicit
naming , [Marr 1976]) . For example , at some point in the
analysis of an image, the intensity changes present there need to
be made explicit , so does the geometry - of the image and of the
viewed shape -- and so do other parameters like color , motion ,
position and binocular disparity . To understand vision thus
requires that we first have some idea of which representations to
use, and then we can proceed to analyze the computational
problems that arise in obtaining and manipulating each
representation . Clearly the choice of representation is crucial in
any given instance , for an inappropriate choice can lead to
unwieldy and inefficient computations . Fortunately , the human
visual system offers a good example of an efficient vision
processor , and therefore provides important clues to the
representations that are most appropriate and likely to yield
successful solutions .

This point of view places the nature of the
representations at the center of attention , but it is important to
remember that the limitations on the processes that create and
use these representations are an important factor in determining
their structure , because one of the constraints on vision is that

the description ultimately produced be derivable from images. In
general , the structure of a representation is determined at the
lower levels mostly by what it is possible to compute , whereas
later on they can afford to be influenced by what it is desirable
to compute for the purposes of recognition .
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Early processing probl

There are two important . kinds of information contained in an
intensity array , the intensity changes present there, and the local
geometry of the image. The primal sketch [Marr 1976] is a
primitive representation that allows this information to be made
explicit . Following the clues available from neurophysiology
[Hubel and Wiesel 1962], intensity changes are represented by
blobs and by oriented elements that specify a position , a contrast ,
a spatial extent associated with the intensity change, a weak
characterization of the type of intensity change involved , and a
specification of points at which intensity changes cease (so-called
termination points ) . The representation of local geometry makes
explicit two -dimensional geometrical relations between significant
items in an image. These include parallel relationships between
nearby edges, and the relative positions and orientations of
significant places in the image. These significant places are
marked by "place-tokens ," and they are defined in a variety of
ways , by blobs or local patches of different irl.tensity , by small
lines , and by the ends of lines or bars. The local geometrical
relations between place-tokens are represented by inserting virtual
lines that join nearby place-tokens, thus making explicit the
existence of a relation between the two tokens , their relative

orientation , and the distance between them (figure 1) .
The idea of place-tokens and of this way of representing

geometrical relations arose from considering the computational
problems that are posed by early visual processing , and one of
the questions we have been asking is , can one find any
psychophysical evidence that the human visual system makes use
of a similar representation ? We have recently obtained two
results related to this point . Stevens [ 1978] has examined the
perception of random -dot interference patterns ( figure 2) ,
constructed by superimposing two copies of a random dot pattern
where one copy has undergone some composition of expansion ,
translation , or rotation transformations [Glass 1969]. He found
that a simple algorithm suffices to account quantitatively for
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Figure 1. Primal Sketch. The primal sketch makes explicit

information held in an intensity array. Changes in intensity are

represented by oriented edge, line and bar elements, associated

with which is a measure of the contrast and spatial extent of the

intensity change. Local two-dimensional geometry of significant

places in the image are marked by �place-tokens�, which can be

defined in a variety of ways, and the geometric relations between

them are represented by inserting �virtual lines� between nearby

tokens.




Marr

Figure 2. A and Care random-dot interference patterns of the
kind described by Glass [1969]. B and D exhibit the results of
running the algorithm described in the text and in Figure 3. The
neighborhood radius was such that roughly 8 neighborhoods were
included [Stevens 1977].
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human perfo.rmance on these patterns. The algorithm consists of
three steps:

( 1) Each dot defines a place-token. For example, some dots can
be replaced by small lines or larger blobs without disrupting the
subjective impression of flow.
(2) Virtual lines are inserted between nearby place-tokens, and

the neighborho.od in which the virtual lines are inserted depends
in a predictable way on the density of the dots.
(3) The orientations of the virtual lines attached to all the

points in each neighborhood are histogrammed, and locally
parallel organization is found by searching for a peak in this
histogram . The bucket width that best matches human
performance is about 10 degrees.

The details of these steps are set out in figure 3. The
interesting features of the algorithm are; (a) It is not iterative.
Stevens could find no evidence that human performance rests on
a cooperative algorithm, although this type of problem is ideal
for that approach . (b) The algorithm is purely local . No
global-to-local or top-down intera: tions are necessary to explain
human performance. (c) What the algorithm finds is locally
parallel organization. In this case, the organization lies in the
virtual lines constructed between nearby dots, but locally parallel
organization among the real edges and lines in an image also
forms an important part of the structure of an image [Marr
1976].

The second study is one by Schatz [1977] on texture
vision discrimination . Marr [ 1976] suggested that such
discriminations could be carried out by first - order
discriminations acting on the description in the primal sketch.
Marr supposed that certain grouping processes were needed
before the discriminations are made in order to account for the
full range of human texture discrimination , but in a careful
examination of the problem, Schatz found that many of the
examples he constructed could be explained by assuming that the
discriminations are made only on real edges or on virtual lines
inserted between neighboring place-tokens. If this were generally

Visual Information 24 Marr
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true , it would stand in elegant relation to Julesz 's [ 1975 ]
conjecture , that a necessary condition for the discriminability of
two textures is that their dipole statistics differ . This condition
is known not to be sufficient , a state of affairs that one can view

as implying that we have access to only a proper subset of all
dipole statistics . It is possible that this proper subset consists
only of real edges and of the virtual lines that join nearby
place-tokens .

If one accepts that texture discrimination relies upon

first -order discriminations of this type , it is natural to ask how

sensitive are the particular discrimination functions that we can
bring to bear on an image. Riley [1977] has found evidence that
t.he available functions are extremely coarse. For example, figure
4 consists of a background in which the line segments have a
random orientation , surrounding a square containing lines of
only three orientations . Surprisingly , the square cannot be
discerned without scrutiny . One interpretation of this and
related findings is, that discriminations on orientations other than
horizontal and . vertical are made on the output of 5 channels ,

each nearly binary , and with an angular width of about 35
degrees -- in other words, only very little information is available
about the distribution of orientations in an image . It appears
that our discrimination ability is as poor or poorer for the other
stimulus dimensions , for example intensity distribution [Riley
1977 ] .

In another study concerned with what can be extracted
from an image , Ullman [ 1976a] enquired about the possible
physical basis for the subjective quality of fluorescence, which is
normally associated with the presence of a light source . He
noted that at a light source boundary, the ratio of intensity to
intensity gradient changes sharply , whereas this is not true at
reflectance boundaries unless the surface orientation changes
sharply . He showed that , in the mini -world of Mondrians , the
discriminant to which this leads predicts human performance
satisfactorily .

Ken Forbus ( 1978 ] has extended this work to the
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Figure 3. The algorithm for computing locally parallel structure
has three fundamental steps . In the case of the Moire dot

patterns , each dot contributes a place token . A virtual line

represents the position , separation, and orientation between a pair
of neighboring dots. To favor relatively nearer neighbors,
relatively short virtual lines are emphasized. The second step is
to histogram the orientations of the virtual lines that were
constructed . For example, the neighbor D would contribute

orientations AD , DF , DO , and DH to the histogram . The final
step ( after smoothing the histogram ) is to determine the
orientation at which the histogram peaks, and to select that
virtual line (AB ) closest to that orientation as the solution .
[Stevens 1977]

-
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Figure 4. The pattern A contains two regions, one of whose line
segments has the orientation distribution shown in B, and the
other has the distribution C. Surprisingly , three orientations
cannot be distinguished from a random orientation distribution .
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detection of surface luster . Since glossiness is due to the
specular component of a surface reflectivity function , one can
treat the detection of gloss as essentially the detection of light
sources that appear reflected in a surface (see [Beck 1974]), and
this depends ultimately on the ability to detect light sources .
Forbus divided the problem into three categories; (a) in which
the specularity is too small to allow gradient measurements, (b)
in which both intensity and gradient measurements are available ,
but the specularity is . local (as it is for a curved surface or a
point source ) , and (c) in which the surface is planar and the
source is extended. He derived diagnostic criteria for each case.
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Delimiting regions from a discriminant

Whenever a region is defined in an image by a predicate ,. for
example by a difference in texture or brightness , one faces the
probleim of delimiting the region accurately. There are two
approaches to designing algorithms for this problem ; one is to
use the predicate directly , deciding whether a given location lies
within or without the region by testing ' some function of the
predicate there . The second approach is to differentiate the
predicate , defining the region by its boundaries rather than by
properties of its interior .

The difficulties with the problem arise because one is
usually ignorant beforehand of the scale at which significant
predicate signals may be gathered. For example , suppose one
wished to find the boundary between two regions that are
distinguished by different densities of dots. Dot density has to
be measured by selecting a neighborhood size and counting the
number of dots that lie within it . If the neighborhood size is
too large, one may not be able to resolve the regions. If it is so
small as to contain zero , one or two dots , natural fluctuations

may obscure any changes in density.
One solution to this problem is to make the

measurements simultaneously at several neighborhood sizes ,
looking for agreement between the results obtained in those
neighborhood sizes that lie just above the size at which random
fluctuations appear . This technique can be applied to region
finding or to boundary finding , and an example of the results is
given in figure 5. The dot density here is not known a priori .

This issue is of considerable techical interest , but it is

important not to lose sight of the underlying computational
\

problem , which is what kind of boundary is to be found , and
why ? The techniques of O'Callaghan [1974] for example are
designed to find boundaries in dot patterns so accurately that
their positions are determined up to the decision about which
dots it passes through . The justification for this type of study is
that humans can assign boundaries this accurately , but the



Figure 5. Finding a boundary from dot (or place-token ) density
changes. Once a rough assignment of boundary points has been

made (a) local line -fitting ( b) and grouping (c and d) techniques
can recover a rough specification of the boundary quite easily .
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difficulty lies in formulating a reasonable definition of what the
boundary is.

This problem is a deep one, touching the heart of the
question of what early vision is for . I shall return to it later in
this essay, but it is perhaps worth remarking here that there
seems to be a clear need for being able to do early visual
processing roughly and fast as well as more slowly and
accurately , which means having ways of handling rough
descriptions of regions -- ways of characterizing their
approximate extent and shape -- before characterizing their
precise boundaries . Figure 6 contains one example of a region
whose rough extent is clear, but whose exact boundary is not .

The motivation for wanting this is that rough
descriptions are very useful during the early stages of building a
shape description for recognition [Marr and Nishihara 1977].
For example a man often appears as a roughly vertical rectangle
in an image, and this information is useful because it eliminates
many other shapes from consideration quite early . Campbell
[ 1977) has suggested that the extraction of rough descriptions
from an image may depend on the ability to examine its lower
spatial frequencies . Even if this is one of the available
mechanisms it is unlikely to be the only one, because sparse line
drawings can raise the same problems while having almost no
power in their low frequencies. It may be that some notion of
rough grouping applied to low resolution place-tokens set up by
pieces of contour in the image provides a useful approach to this
problem .

Visual Informat,tion Marr31

Lightness

Ever since Ernst Mach noticed the bands named after him , there

has been considerable interest in the problem of computing
perceived brightness. Of especial interest is the recent work of
Land and McCann [1971] on the retinex theory (see also [Horn
1974]) , which is concerned with the quantity they call lightness ;
and that of Colas -Baudelaire [ 1973] on the computation of
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Figure 6. An example of a region whose rough boundary is clear,

but whose exact boundary is not. (Drawing (c) K. Prendergast,

1977).
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perceived brightness . Lightness is an approximation to

reflectance that is obtained by filtering out slow intensity

changes , the underlying idea being that these are usually due to

the illuminant , not to changes in reflectance . The problem with

this idea is of course that some slow changes in intensity are

perceptually important ( see [ Horn 1977 ] for an analysis of shape

from shading ) . The linear filter model of Colas - Baudelaire

performs well on images in which there are no sharp changes in

intensity , but the author found it difficult to extend his model to

the more general case . The recent finding ,of Gilchrist [ 1977 ] ,

that perceived depth influences perceived brightness , suggests that

some aspects of the problem occur quite late - - in our terms , at

the level of the 21 / 2 - D sketch ( see below ) .

Our own work on the brightness problem is probably not

relevant to the perception of brightness , but it is interesting as a

demonstration that the primal sketch loses very little information .

Woodham and Marr ( unpublished program ) have written a

program that inverts the primal sketch , so that its output is an

intensity array . The basic idea is to scan outwards from edges ,

assigning a constant brightness to points along the scan lines , and

arresting the scan when it encounters another edge . Figure 7

exhibits the results of running this program , showing the original

image ( 7a ) , the primal sketch ( 7b ) , and the reconstructed

intensity array ( 7c ) .

Structure from motion

I said earlier that , especially at the earlier stages of visual

information processing , the representations and processes are

determined more by what it is possible to compute from an

image . than by what is desirable . Examples are the problems

associated with structure from motion , stereopsis , texture

gradients , and shading .

Given a sequence of views of objects in motion , the

human visual system is capable of interpreting the changing views

in terms of the shapes of the viewed objects , and their motion in
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Figure 7. An image (a), the spatial components of its primal

sketch (b), and a reconstruction of the image from the primal

sketch (c). This shows that our current primal sketch programs

lose little of the information in an image.


three-dimensional space. Even if each successive view is

unrecognizable, the human observer easily perceives these views in

terms of moving objects [ Wallach and O�Connell 1953]. To

answer the question of how a succession of images yields an

interpretation in terms of three-dimensional structure in motion,

Ullman [ 1977] divided the problem into two parts: (1) finding a

correspondence between elements in successive views; and (2)

determining the three-dimensional structures and their motion

from the way corresponding elements move between views.


An important preliminary question about the

correspondence problem concerns the level at which it takes

place. Is it primarily a low-level relation, established between

small and simple parts of the scenes and largely independent of
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higher -level knowledge and three-dimensional interpretation ? Or
do higher level influences, like the interpretation of the whole of
a shape from one frame, play an important part in determining
the correspondence ?

Ullman has assembled a considerable amount of evidence

that the former view is correct . For example, figure 8 shows two
successive frames , one denoted with full lines and the other with

dotted lines . If the whole pattern were being analyzed from one
frame , the shape of the wheel extracted, and used to match the
elements in the next frame , the observer presented with these
frames in rapid succession should perceive them as a whole wheel
rotating . Notice however that the inner and outer parts of the
wheel have their closest neighbors in one direction , whereas the
center parts have theirs in the other ; because of this , if the

matching were done early and locally , the observer should see the
center part rotating one way, and the inner and outer rings
rotating the other (as shown with arrows in figure 8) . When
appropriately timed , this is in fact what happens.

Another line of evidence is the following . The most
important factor in finding a correspondence between elements is
the distance the element moves from one view to the next . But

is this distance an objective two-dimensional measurement or an
interpreted movement in three-dimensional space? There is some
confusion in the literature about this point , since many studies
have assumed that correspondence strength is linked to the
smoothness of apparent motion [Kolers 1972], and this is
apparently more closely related to three- than to two-dimensional
distances . Ullman [1977] has however shown that this assumption
is false , and that it is the two -dimensional distance alone that

determines the correspondence.
The second part of the problem is to determine the

three -dimensional structure once the correspondence between
successive views has been established. Unless this problem is
constrained in some way , it cannot be solved , so one has to

search for reasonable assumptions on which to base the design of
one's algorithms . (This state of affairs is a common one in the
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Figure 8 . Evidence that the correspondence problem for apparent

motion involves matching operations that act at a low level

[ Ullman 1977 ] .
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theory of visual processes, as we shall see when we discuss the
problems of stereopsis , and shape from contour ) . Ullman
suggested basing the interpretation on the following assumptions ;
( 1) any two -dimensional transformation that has a unique
interpretation as a rigid body moving in space should be
interpreted as such an object in motion , and (2) that the imaging
process is locally an orthogonal projection . He then showed that
under orthogonal projection , three-dimensional shape and motion
may be recovered from as little as three views each showing the
image of the same five points , no four of which are coplanar .
This result leads to algorithms capable of recovering shape and
motion from scenes containing arbitrary objects in motion . The
final question is whether the algorithms that humans employ to
recover shape and motion rely on these same two assumptions ,
and this question is currently under investigation . The important
point here is that for more human-like algorithms , the number of
views can be traded off against the accuracy of the computation ,
decreasing the emphasis on the particular number "three."

Stereopsis

Ever since Julesz [ 1971 ] made the first random - dot stereogram , it

has been clear that at least to a first approximation stereo vision

can be regarded as a modular component of the human visual

system . Marr [ 1974 ] and Marr and Poggio [ 1976 ] formulated the

comput . ational theory of the stereo matching problem in the

following way :

( RI ) Uniqueness . Each item from each image may be assigned at

most one disparity value . This condition rests on the premise

that the items to be matched correspond to physical marks on a

surface , and so can be in only one place at a time .

( R2 ) Continuity . Disparity varies smoothly almost everywhere .

This condition is a consequence of the cohesiveness of matter ,

and it states that only a relatively small fraction of the area of

an image is composed of boundaries .

By representing these constraints geometrically , Marc and
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Figure 9. The structure of a network for implementing the
algorithm described by equation 1. Such a network was used to
solve the stereograms exhibited in figures 10 and 11. [Marr &
Poggio 1976]
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Poggio [ 1976 ] embodied them in a cooperative algorithm . In

figure 9 , Lx and Rx represent the positions of descriptive

elements from the left and right views , and the horizontal and

vertical lines indicate the range of disparity values that can be

assigned to left - eye and right - eye elements . The uniqueness

condition then corresponds to the assertion that only one

disparity value may be " on " along each horizontal or vertical

line . The continuity condition states that we seek solutions that

tend to spread along the dotted diagonals , which are lines of

constant disparity , and between adjacent diagonals . Figure 9b

shows how this geometry appears at each intersection point .

Figure 9c gives the corresponding local geometry when the

images are two - dimensional rather than one . Figure 9a shows the

explicit structure of the two rules RI and R2 for the case of a

one - dimensional image , and it also represents the structure of a

network for implementing the algorithm described by equation 1

Solid lines represent " inhibitory " interactions , and dotted lines

represent " excitatory . t ones . 9b gives the local structure at each

node of the network 9a . This algorithm may be extended to

two - dimensional images , in which case each node in the

corresponding network has the local structure shown in 9c . Such

a network was used to solve the stereograms exhibited in figures

10 and figure II .

It can be shown [ Marr , Poggio and Palm 1977 ] that , if a

network is created with the positive and negative connections

shown in figure 9c , states of such a network that satisfy the

constraints on the computation are stable , and that given suitable

inputs , the network will converge to these stable states for a wide

variety of the control parameters . Thus one can think of the

network as defining an algorithm that operates on many input

elements to produce a global organization via local but highly

interactive constraints . Formally , the algorithm reads :
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(n-1) { ,,' (n) )' (n) (0) }Cxyd = U  ...; Cxyd -( J;...J Cx'y'd'+ Cxydx'y'd'( S(xyd) x'y'd'(()(xyd)
where u(z) = 0 if z < 0, and u(~) :; 1 Qth

transitions . Figures 10 and 11 illustrate two applications of the
algorithm to random -dot stereograms.

Sand 0 are the

circular and thick line neighborhoods of the cell C din figurexy:
9c. This is an example of a "cooperati~ " algorithm [Marr and
Poggio 1977a], and it exhibits typical non-linear cooperative
phenomena like hysteresis , fillin ~-in . and disorder -order

seven layers in the network has been assigned a different gray
level , so that a node that is switched on in the top layer
(corresponding to a disparity of +3 pixels) contributes a dark
point to the image, and one that is switched on in the lowest

layer (disparity = -3) contributes a lighter point . Initially
(iteration 0) the network is disorganized, but in the final state,
stable order has been achieved (iteration 14), and the inverted
wedding-cake structure has been found. The density of this
stereogram is 50%.

The algorithm of equation 1 is capable of solving

In figure 10 the initial state of the network C d isxy
defined by the input such that a node takes the value 1 if it
occurs at the intersection of a 1 in the left and right eyes (see
figure -9), and it has value 0 otherwise. The network iterates

on this initial state, and the parameters used here, as suggested by
the combinatorial analysis, were 8 = 3.0, E = 2.0 and M = 5,
where 8 is the threshold and M is the diameter of the
"~xcitatory " neighborhood illustrated in figure 9c. The
stereograms themselves are labelled LEFT and RIGHT , the initial
state of the network as 0, and the state after n iterations is
marked as such. To understand how the figures represent states
of the network, imagine looking at it from above. The different
disparity layers in the network lie in parallel planes spread out
horizontally , so that the viewer is looking down through them.
In each plane, some nodes are on and some are off . Each of the
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Figure 10. This shows the results of applying the algorithm

defined by equation 1 to a random-dot stereograms. The density

is 50%. [ Marr & Poggio 1976].
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Figure 11. The algorithm of equation 1, with the parameter

values used in Figure 10, but with less density. [ Marr and

Poggio 1976].




random -dot stereograms with densities from 50% down to less
than 10%, as shown in figure 11. For this and smaller densities ,
the algorithm converges increasingly slowly . If a simple
homeostatic mechanism is allowed to control the threshold 8 as a

function of the average activity (number of "on" cells) at each
iteration , the algorithm can solve stereograms whose density is
very low . In this example, the density is 5% and the central
square has a disparity of +2 relative to the background . The
algorithm "fills in " those areas where no dots are present, but it
takes several more iterations to arrive near the solution than in

cases where the density is 50%. When we look at a sparse
stereogram , we perceive the shapes in it as cleaner than those
found by the algorithm . This seems to be due to subjective
contours that arise between dots that lie on shape boundaries .

There are a number of findings that cast doubt on the
relevance of this algorithm to the question of how human stereo
vision works . The most important of these findings are (a) the
apparently crucial role played by eye-movements in human stereo
vision ( see especially [Richards 1977) ; (b) our ability to
tolerate up to 15% expansion of one image [Julesz 1971); (c )
our ability to tolerate the severe defocussing of one image [Julesz
1971]; (d) evidence that stereo detectors are organized into three
"pools " (convergent , zero disparity , and divergent ) and that this
organization is important for stereo vision [Richards 1971]; and
(e) our ability to perceive depth in rivalrous stereograms
[Mayhew and Frisby 1976]. These difficulties led Marr and
Poggio [ 1977b] to formulate a second stereo algorithm , designed
specifically as a model for human stereopsis.

Our first stereo theory was inspired by Julesz's belief that
stereoscopic fusion is a cooperative process -- a belief based
primarily on the observation that it exhibits hysteresis. The main
problem with the cooperative algorithm is that it apparently
works too well in some ways (it performs better that humans do
when eye-movements are eliminated ) , and not well enough in
others (humans see depth in rivalrous stereograms) . Our ability
to fuse two images when one is blurred , the rivalrous stereogram
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results of Mayhew and Frisby [1976], and the recent results of
Julesz and Miller [ 1976] on the existence of independent
spatial -frequency -tuned channels in binocular fusion , suggest that
several copies of the image, obtained by successively coarser
filtering , are used during fusion , perhaps helping one another in
a way similar to that in which local regions help each other in
our cooperative algorithm .

The second idea was a notion that originated with Marr
and Nishihara [ 1977] and about which I shall have more to say

later , which is that one of the things early visual processing does
is to construct a "depth map" of the surfaces round a viewer . In
this map , each direction away from the viewer is associated with

a distance ( or some function of distance ) and a surface
orientation . We have christened the resulting data structure the
21/2-D sketch.

The important point here is that the 21/2-D sketch is in
some sense a memory. This provided the key idea: Suppose that
the hysteresis Julesz observed is not due to a cooperative process
at all , but is in fact the result of using a memory buffer in
which to store the depth map of the image as it is discovered .
Then , the fusion process itself need not be cooperative , and in
fact it would not even be necessary for the whole image ever to
be fused everywhere provided that a depth map of the viewed
surface were built and maintained in this intermediate memory .

This idea leads to the following theory . ( I ) Each image is
convolved with bar-shaped masks of various sizes, and matching
takes place between peak mask values for disparities up to about

twice the panel-width or the mask (see [Felton, Richards and
Smitll 1972]) , for pairs of masks of the same size and polarity .
( 2) Wide masks can control vergence movements , thus causing
small masks to come into correspondence . ( 3) When a
correspondence is achieved , it is held and written down

somewhere (e.g. in the 21/2-D sketch). (4) There is a backwards
relation between the memory and the masks, perhaps simply
through the control of eye-movements, that allows one to fuse
any piece of a surface easily once its depth map has been



We have discussed the types of information that need to be
represented early in the processing of visual information , and we
have examined the computational structure of some of the
processes that can derive and maintain this information . We
turn now to the question of what all this information is to be
used for .

The current approach to machine vision assumes that the
next step in visual processing consists of a process called
segmelttation. whose purpose" is to divide the image into regions
that are meaningful either in terms of physical objects or for the
purpose at hand. Despite considerable efforts over a long period ,
the theory and practice of segmentation remain primitive , and
once again I believe that the main reason lies in the failure to

formulate precisely the goals of this stage of the processing .
What for example is an object? Is a head one? Is it still one if
it is attached to a body? What about a man on horseback?

These questions point to some of the difficulties one has
when trying to formulate what should be recovered as a region
from early visual processing. Furthermore , however one chooses
to answer them , it is usually still impossible to recover the
desired regions using only local grouping techniques acting on a
representation like the primal sketch . Most images are too
complex , and even the simplest images cannot often be segmented
entirely at that level [Marr 1976).

Something additional is clearly needed, and one approach
to the dilemma has been to invoke specialized knowledge about
the nature of the scenes being viewed to aid segmentation of the
image into regions that correspond roughly to the objects
expected in the scene. Tenenbaum and Barrow [ 1976 ], for
example , applied knowledge about several different types of scene
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established in the memory .
This theory leads to many experimental predictions ,

which are currently being tested.

Intermediate processing problems
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Reformulating the problem

to the segmentation of images of landscapes, an office , a room ,
and a compressor . Freuder [ 1976] used a similar approach to
identify a hammer in a simple scene. If this approach were
correct , it would mean that a central problem for vision is
arranging for the right piece of specialized knowledge to be made
available at the appropriate time during segmentation. Freuder 's
work , for example, was almost entirely devoted to the design of a
heterarchical control system that made this possible . More
recently , the constraint relaxation technique of Rosenfeld ,
Hummel and Zucker [1976] has attracted considerable attention

for just this reason, that it appears to offer a technique wherebyI,
constraints drawn from disparate sources may be applied to the
segmentation problem whilst incurring only minimal penalties in
control . It is however difficult to analyze such algorithms
rigorously even in very clearly defined situations [Marc , Poggio
and Palm 1977], and in the naturally more diffuse circumstances
that surround the segmentation problem , it may often be
impossible .

The basic problem seems to be how to formulate precisely the
next stage of visual processing. Given a representation like the
primal sketch, and the many possible boundary-defining processes
t,hat are naturally associated with it , which boundaries should one
attend to and why ? The segmentation approach fails because
objects and desirable regions are not visually primitive
constructions , and hence cannot be recovered reliably from the
primal sketch or similar representation without additional
specialized knowledge . If we are to succeed, we must discover
precisely what information it is that needs to be made explicit at
this stage, what , if any, additional knowledge it is appropriate to
apply , and we must design a representation that matches these
requirements .

In order to search for clues to a suitable representation ,
let us return to the physics of the situation . The primal sketch



represents intensity changes and the local two -dimensional
geometry of an image. The principle factors that determine these
are ( 1) the illuminant , (2) surface reflectance, (3) the shape of
the visible surface , and (4) the vantage point . The first two
factors raise the difficult problems of color and brightness , and I
shall not discuss them further . The third and fourth factors are

independent of the first two (whether two shapes are the same
does not depend upon their colors or on the lighting ) , and so
may be treated separately.

I shall argue that , since most early visual processes
extract information about the visible surface , it is these surfaces ,

their shape and disposition relative to the viewer, that need to be
made explicit at this point in the processing .' Furthermore ,
because surfaces exist in three-dimensional space, this imposes
constraints on them that are general , and not confined to

particular objects . It is these constraints that constitu ,te the a
priori knowledge that it is appropriate to bring to bear next .

One example of the exploitation of fairly general
constraints was the work of Waltz [ 1975], who formulated the
constraints that apply to images of polyhedra . The
representation on which that work was based was line drawings ,
but these are not s\litable for our needs here because part of the

task we wish to carry out is the discovery of physical edges that
are only weakly present or even absent in the primal sketch. The
approach of Mackworth [1973] was closer to what we want , since
it involved a primitive way of representing surfaces.

Part of our task in formulating the problem of
intermediate vision is therefore the examination of ways of

representing and reasoning about surfaces. We therefore start
our enquiry by discussing the general nature of shape
representations . What kinds' are there, and how may one decide
among them? Although it is difficult to formulate a completely
general classification of shape representations , Marr and
Nishihara [ 1977] attempt ,ed to set out the basic design choices
that have to be made when a representation is formulated . They
concluded that there are three characteristics of a shape
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representation that are largely responsible for determining the
information that it makes explicit . The first is the type of
coordinate system it uses, whether it is defined relative to the
viewer or to the object being viewed; the second characteristic
concerns the nature of the shape primitives used by the
representation , that is , the elements whose positions the
coordinate system is used to define . Are they two - or
three -dimensional , in what sizes do they come, and how detailed
are they ? And the third characteristic is concerned with the

organization a representation imposes on the information in a
description ; for example is the description modular or does it
have little internal structure ? We have two sources of

information that can help us to formulate the important issues in
intermediate visual information processing , firstly the
computational problems that arise, and secondly, psychophysics .

Vision provides several sources of information about
shape . The most direct are stereo and motion , but texture
gradients in a single image are nearly as effective , and the
theatrical techniques of facial make-up rely on the sensitivity of
perceived shape to shading. It often happens that some parts of
a scene are open to inspection by some of these techniques , and
other parts by others. Yet different as the techniques are, they
have two important characteristics in common . They rely on
information from the image rather than on a priori knowledge
about the shapes of the viewed objects; and the information they
specify concerns the depth or surface orientation at arbitrary
points in an image , rather than the depth or orientation
associated with particular objects.

If one views a stereo pair of a complex surface , like a
crumpled newspaper or the "leaves" cube of Ittelson ( 1960) , one
can easily state the surface orientation of any piece of the
surface , and whether one piece is nearer to or further from the
viewer than its neighbors . Nevertheless one's memory for the
shape of the surface is poor , despite the vividness of its surface
orientation during perception . Furthermore , if the surface
contains elements nearly parallel to the line of sight , their
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apparent surface orientation when viewed

from the apparent surface orientation when

From these observations , one can

monocularly can differ
viewed binocularly .

perhaps draw some
simple inferences .

.

.

processing .)

. Because ) he apparent orientation of a surface element can
change, depending on whether it is viewed binocularly or
monocularly , the representation of surface orientation is
probably driven almost entirely by perceptual processes,
and is influenced only slightly by specific knowledge of
what the surface orientation actually is. Our ability to
"perceive " the surface much better than we can

"memorize " it may also be connected with this point .

In addition , it seems likely that the different sources of
information can influence the same representation of surface
orientation .

The computational problem

visual information

Because surface orientation can be associated with

unfamiliar shapes, its representation probably precedes the

decomposition of the scene into objects . ( This point is
particularly relevant to our discussion of intermediate

There is at least one internal representation of the depth ,
or surface orientation , or both , associated with each

surface point in a scene.

In order to make the most efficient use of these different and

often complementary sources of information , they need to be
combined in some way. The computational question is, how best
to do this ? The natural answer is to seek some representation of
the visual scene that makes explicit just the information these
processes can deliver .



A possible form for the 21/ 2-D sketch
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primitives of one
contours of

computational
surface

a viewer - centered

(small ) size.

surface discontinuity ,
structure to maintain

and surfaceorientation

Fortunately , the physical interpretation of the
representation we seek is clear . All these processes deliver
information about the depth or surface orientation associated
with surfaces in an image, and these are well -defined physical
quantities . We therefore seek a way of making this information
explicit , of maintaining it in a consistent state, and perhaps also
of incorporating into the representation any physical constraints
that hold for the values that depth and surface orientation take
over the kinds of surface that occur in the real world . Table 1

lists the type of information that the different early processes can
extract from images. The interesting point here is that although
processes like stereo and motion are in principle capable of
delivering depth information directly , they are in practice more
likely to deliver information about local changes in depth , for
example by measuring local changes in disparity . Texture
gradients and shading provide more direct information about
surface orientation . In addition , occlusion, brightness, and size
clues can deliver information about discontinuities in depth . It
is for example amazing how clear an impression of depth can be
obtained from a monocular image containing bright or dim
rectangles of different sizes against a dark background . The
main function of the representation we seek is therefore not only
to make explicit information about depth , local surface
orientation , and discontinuities in these quantities , but also to
create and maintain a global representation of depth that is
consistent with the local cues that these sources provide . We call

such a representation the Zl / Z-D sketch, and the next section
describes a particular candidate for it .

I give for the 21/2-D sketch is
surface
of

The example
representation , which uses
It includes a representation
and it has enough internal
its descriptions of depth ,



Table 1
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The form in which various early visual processes de -

I iver information about the changes in a scene .

r = depth

hr = smal " local changes in

L1r = large changes in depth

~ = local surface orientation

depth

Natural parameter
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L1r

Information source

Stereo

Motion

Shading

Texture gradients

Perspective cues

Occlusion
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discontinuity in a consistent state .
no additional internal structure .

The representation itself has

be represented by covering an image with needles.
each needle defines the dip of the surface at that point , so that
zero length corresponds to a surface that is perpendicular to the
vector from the viewer to that point , and the length increases as
the surface tilts away from the viewer . The orientation of the
needle defines the direction of the surface 's dip . Figure 12
illustrates this representation .

In principle , the relation between depth and surface
orientation is straightforward -- one is simply the integral of the
other , taken over regions bounded by surface discontinuities . It
is therefore possible to devise a representation with intrinsic
computational facilities that can maintain the two variables , of
depth and surface orientation , in a consistent state. But note

that , in any such scheme, surface discontinuities acquire a special
status (as curves across which integration stops) . Furthermore , if
the representation is an active one, maintaining consistency
through largely local operations , curves that mark surface
discontinuities (e.g. contours that arise from occluding contours
in the image) must be "filled in " completely , so that at no point
along an object boundary can the integration leak across it . It is
interesting that subjective contours have this property , and that
they are closely related to subjective changes in brightness that
are often associated with changes in perceived depth . If the
human visual processor contains a representation that resembles
the 21 / 2-D sketch , it would therefore be interesting to ask
whether subjective contours occur within it . (See [Ullman 1976b]

Depth may be represented by a scalar quantity r, the
distance from the viewer of a point on a surface . Surface
discontinuities may be represented by oriented line elements .
Surface orientation may be represented by a unit vector (x , y, z)

in three -dimensi <?nal space. Following those who have used
gradient space ( [Huffman 1971) [Horn 1977) we can rewrite this

as (p , q, J) , which can be represented as a vector (p , q) in
two - dimensional space . In other words , surface orientation may

The length of
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21 / Z-D sketch in order to bring it into a state that is consistent

with the structure of three -dimensional space. This formulation

avoids the difficulties associated with the terms " region " and

"object ," and allows one to ask precise questions about the

computational structure of the 21/ 2-D sketch and of processes to

create and maintain it . We are currently much occupied with
these problems .

Later processing problems

The 21/ 2-D sketch is a poor representation for the purposes of
recognition because it is unstable ( in the sense of [Marr and
Nishihara 1977]) , it depends on the vantage point , and it fails to
make explicit pieces of a shape (like an arm) that are larger that
the primitive size. Except for the simplest of purposes, it is an
inadequate vehicle for a visual system to convey information
about shape to other processes , and so I turn now to
representations that are more suitable for recognition tasks.

If one were to design a shape representation to suit the
problems of recognition , one would naturally base it on an
object -centered coordinate system. In addition , one would have
to include shape primitives of many different sizes, so as to be
able to make explicit shape characteristics that can range from a
wart to an elephant . Marr and Nishihara [1977] discuss these
questions in detail , and I shall not repeat their observations here .
The deepest issues are those raised by having to define an
object -based coordinate system. Since they are central to the
problem of defining representations for use in later processing of
visual information , I shall spend the remainder of the essay
discussing this topic .

Marr and Nishihara [1977] pointed out that there are two
types of object -centered coordinate system that one might attempt
to define precisely . One refers all locations on an object to a
single coordinate frame that embraces the entire object , and the
other distributes the coordinate system, making it local to each
articulated component or individual shape characteristic . Marr



and Nishihara concluded that the second of these schemes is the

more desirable , and they gave as an example the representation
illustrated in figure 13. But with a representation of this kind ,
the most difficult questions begin after its internal structure has
been defined . How can one define canonically the coordinate
scheme for an arbitrary shape, and even more difficult , how can
such a thing be found from an image before a description of the
viewed shape has been computed? Some kind of answers to these
questions must be found if the representation is to be used for
recognition .
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If the coordinate system used for a given shape is to be
canonical , its definition must take advantage of any salient
geometrical characteristics that the shape possesses. For example ,

Figure 13. Organization of shape information in a 3-D model
description . Each box corresponds to a 3-D model . Its model
axis is on the left side, and the arrangement of its component
axes are shown on the right side.
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if a shape has natural axes, distinguished by length or by
symmetry , then they should be used. The coordinate system for
a sausage should take advantage of its major axis, and for a face,
of its axis of symmetry .

Highly symmetrical objects , like a sphere , square , or
circular disc, will inevitably lead to ambiguities in the choice of
coordinate systems. For a shape as regular as a sphere this poses
no great problem , because its description in all reasonable
systems is the same . One can even allow other factors , like the

direction of motion or of spin , to influence the choice of
coordinate frame . For other shapes, the existence of more than

one possible choice probably means that one has to represent the
object in several ways. This is acceptable provided that the
number of ways is small . For example, there are four possible
axes on which one might wish to base the coordinate system for
representing a door , the midlines along its length , its width , its
thickness , and to represent how the door opens , the axis of its

hinges . For a typewriter , there are two choices at the top level ;
an axis parallel to its width , because that is usually its largest
dimension , and the axis about which a typewriter is roughly
symmetrical .

In general, if an axis can be distinguished in a shape, it
can be used as the basis for a local coordinate system . One

approach to the problem of defining object-centered coordinate
systems is therefore to examine the class of shapes having an axis
as an integral part of their structure . One such is the class of

generalized cones. (A generalized cone is the surface swept out
by moving a cross section of constant shape but smoothly
varying size along an axis, as in figure 14) .

Binford [ 1971 ] dre ,v attention to this class of surfaces ,

suggesting that it might provide a convenient way of describing
three -dimensional surfaces for the purposes of computer vision . I

regard it as an important class not because the shapes themselves
are easily decribable , but because the presence of an axis allows
one to define a canonical local coordinate system. Fortunately
many objects , especially those whose shape was achieved by
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14. The of a generalized cone. A generalized
cone is the surface generated by moving a smooth cross~ ection p

along a straight axis A. The cross-section may vary smoothly in
size (as prescribed by the function h(z , but its shape remains
constant . The eccentricity of the cone is the angle '11 between its
axis and a plane containing a cross-section.
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Then

simplicity of these descriptions is due to the correspondence

�

:ment and relative sizes of a of sticks .

images of it . [Marr & Nishihara 1977]

between the sticks shown here and natural or canonical axes of

the shapes described . To be useful fot recognition , a shape

Figure 15. These pipecleaner figures illustrate the point that a
shape representation does not have to reproduce a shape's surface
in order to describe it adequately for recognition ; as we see
here . animal shapes can be portrayed quite effectively by the

representation must be based on characteristics that are uniquely

defined by the shape and which can be derived reliably from
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growth , are described quite naturally in terms of one or more
generalized cones. The animal shapes in figure 15 provide some
examples -- the individual sticks are simply axes of generalized
cones that approximate the shapes of parts of these animals .
Many artifacts can also be described in this way, like a car (a
small box sitting atop and in the middle of a longer one) , and a
building (a box with a vertical axis) .

It is important to remember that there exist surfaces that
cannot conveniently be approximated by generalized cones, for
example a cake that has been cut at its intersection with some
arbitrary plane, or the surface formed by a crumpled newspaper .
Cases like the cake can be dealt with by introducing suitable
surface primitives that describe the plane of the cut , but the
crumpled newspaper poses apparently intractable problems .

Even if a shape possesses a canonical coordinate system,
one is still faced with the problem of finding it from an image .
Blum [ 1973], Agin [ 1972] and Nevatia [ 1974] have addressed
problems that are related to this question : Blum 's sym -axis
theory is an interesting one, because he specifies precisely what it
is that is computed from a two -dimensional outline .
Unfortunately , it is not clear that what this theory computes is in
fact useful for shape recognition (see e.g. figure 16) , and when
applied to a three-dimensional shape, the sym-axis is in general a
two -dimensional sheet, so it cannot easily be used to define an
object -centered coordinate system. Agin 's and Nevatia 's work , on
the other hand, concerns the analysis of a depth map. This is an
important problem , and it would be interesting to see a careful
analysis of the conditions under which their techniques will
succeed .

Finding the natural coordinate system from an image

My own interest in the problem grew from the 3 - D
representation theory of Marr and Nishihara [1977). in particular
from the question of how to interpret the outlines of objects as
seen in a two -dimensional image . The rest of this essay



( a )

Figure 16. Blum's [1973] grassfire technique for recovering an
axis from a silhouette is undesirably sensitive to small
perturbations in the contour. a shows the Blum transfonn of a
rectangle, and b, of a rectangle with a notch [Agin 1972].
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Figure 17. "Rites of spring " by P. Picasso. We immediately
interpret the silhouettes in terms of particular 3-D surfaces ,
despite the paucity of information in the image.

-
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summarizes a recent article by Marr [1977a]. The starting point
for this work was the observation that when one looks at the

silhouettes in Picasso's work "Rites of Spring" (figure 17) , one
perceives them in terms of very particular three -dimensional
shapes, some familiar , some less so. This is quite remarkable ,
because the silhouettes could in theory have been generated by an
infinite variety of shapes which , from other viewpoints , have no
discernable similarities to the shapes we perceive . One can
perhaps attribute part of the phenomenon to a familiarity with
the depicted shapes; but not all of it , because one can us.e the
medium of a silhouette to convey a new shape, and because even
with considerable effort it is difficult to imagine the more
bizarre three-dimensional surfaces that could have given rise to
the same silhouettes . The paradox is, that the bounding contours
in figure 17 apparently tell us more than they should about the
shape of the dark figures. For example, neighboring points on
such a contour could in general arise from widely separated
points on the original surface, but our perceptual interpretation
usually ignores this possibility .

The first observation to be made here is that the

occluding contours that bound these silhouettes are contours of
surface discontinuity , that is precisely the contours with which

the ZI / Z-D sketch is concerned. Second, because we can interpret
the contours as three-dimensional shapes, implicit in the way we
interpret them must lie some apriori assumptions that allow us to
infer a shape from an outline . If a surface violates these
assumptions , our analysis will be wrong , in the sense that the
shape we assign to the contours will differ from the shape that
actually caused them. An everyday example of this phenomenon
is the shadowgraph, where the appropriate arrangement of one's
hands can, to the surprise and delight of a child , produce the
shadow of an apparently quite different shape, like a duck or a
rabbit .

What assumptions is it reasonable to suppose that we
make ? In order to explain them , I need to define the four
structures that appear in figure 18. These are ( 1) some three
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Figure 18. From viewpoint Jt: the three-dimensional surface 1:

forms the , silhouette S V in the image via the imaging process L.

The boundary of S 11' obtained by the boundary operator cJ is

denoted by C V and we call it the contour of E. The set of

points on E that L maps onto C V we call the contour generator

of C 11' and it is denoted by r V The map from 1: to r V induced
by cJ is denoted by o. [Marr 1977].

--
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Rl : The surface I: is smooth.

R2 : Each point on the contour generator r V projects to a different point

on the contour C~

R3.' Nearby points on the contour Cvarisefrom nearby points on the
contour generator r ~

R4: The contour generator r vol CVisplanar .

The first restriction is only a technical one . The second

and third say that each point on the contour in the image comes

from one point on the surface (which is an assumption that

facilitates the analysis but is not of fundamental importance ) ,

and that where the surface looks continuous in the image , it

really is continuous in three dimensions . The fourth condition ,

together with the constraint that the imaging process be an

orthogonal projection , is simply a necessar .y and sufficient
condition that the difference between convex and concave contour

segments reflects properties of the surface , rather than

characteristics of the imaging process .

It turns out that the following theorem is true , and it is

dimensional surface E; (2) its image or silhouette SVas seen
from a viewpoint V; (3) the bounding contour CVof SJ/t and
(4) the set of points on the surface 1: that project onto the

contour Cr;; We shall call this last set the contour generator of
C JI; and we shall denote it by r V;

If one is presented with a contour in an image, without
any knowledge of the surface or perspective that caused it , there
is very little information on which one can base one's analysis .
The only obvious feature available is the distinction between
convex and concave pieces of contour -- that is, the presence of
inflection points . In order that inflection points be "reliable ,"
one needs to make some assumptions about the way the contour
was generated, and I chose the following restrictions :
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a result that . I found very surprising .

If we take this result at face value , we can now ask an obvious

question . Let us assume that our data consist of contours of

surface discontinuity in the image of a generalized cone , since

without this assumption we can deduce nothing . How may such

contours be interpreted ? To specify a generalized cone , we have

to specify its axis A, cross -section pre) , and axial scaling function

h (z) ( figure 14) ; how can we discover these from an image ?

The answer to this question is based on the notion of the

skeleton of a generalized cone . The skeleton is not a difficult

idea , since it is very like the set of lines a cartoonist draws to

convey the shape of a curved object . It consists of three classes

of contour : (a) the contours that occur in a generalized cone 's

Theorem. If RI is true, and R2 - R4 hold for all distant

viewing directions that lie in some plane , then the
viewed surface is a generalized cone.

This means that if , for distant viewpoints whose viewing
directions lie parallel to some plane , a surface 's shape can
successfully be inferred using only the convexities and concavities
of its bounding contours in an image, then that surface is a
generalized cone or is composed of several such cones . The
interesting thing about this result is that it implicates generalized
cones . We have already seen that the important thing about
these cones is that an axis forms an integral part of their
struct .ure . But this is a feature of their three -dimensional

organization , and ought in some sense to be independent of the
issues raised by vision . What the theorem says is that there is a
natural link between generalized cones and the imaging process
itself . The combination of these two must mean, I think , that
generalized cones will play an intimate role in the development
of vision theory .

Interpreting the image of a single generalized cone



Visual Information 67 Marr

�

Figure 19. A sketch of a generalized cone showing its silhouette
( the circumscribing contour ) , and its fluting ( the contours
spanning its length ) . The radial extremities of a generalized
cone are illustrated in Figure 20.

�

silhouette ; (b) the contours that arise from maxima and minima

in a cone 's axial scaling function (called the cone 's radial
extremities ) ; and ( c) contours that arise from maxima and

minima in the cone's cross-section (its fluting ) . These categories
are illustrated in figure 19.

The reason why the skeleton is a useful construct for
recognition is tJlat one can detect its presence in an image by the
many relationships that exist among its parts . For example ,
radial extremities are all parallel to each other , and the silhouette
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(b)


Figure 20. Methods based on the theory described here suffice to

solve this image of a bucket. An axial symetry is established by

its sides about the bucket�s axis (shown thickened), and a parallel

relationship holds between components of its radial extremity.


and fluting have a kind of symmetry about the image of the

cone�s axis. It turns out that one can use these relationships to

set up constraints on a set of contours such that, if those

constraints are all satisfied by a unique interpretation of the

contours in the image, one can be reasonably certain that a

skeleton has been found, and hence that the contours can be


interpreted as arising from a generalized cone whose axis is then

determined. The practical importance of this result is illustrated

in figure 20, where one can see that the image of the �sides� is




�
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Figure 21. The two main types of joins between two generalized
cones. a shows a side-to-end join , and b shows an end-to-end
join .

�

symmetrical about the bucket's axis, and there is a clear parallel
relationship between the image of the bucket ' s top , the
corrugations in its side, and the visible part of its base { the
bucket 's radial extremities } . These relations , of symmetries and
parallelism , are preserved by an orthogonal projection . Hence
provided that the contours are formed along a viewing direction
that is not too close to the axis of the cone , these relations will

still be present in the image. If the viewing direction lies so
close to the cone 's axis that its image is substantially
foreshortened , these relationships will no longer be present, but it
is part of the overall theory that such views have to be handled
differently [Marr and Nishihara 1977].

Real -life objects are often approximately composed of
several different cones, joined together in various ways (see
figure 13) , and we therefore have to study ways of decomposing
a multiple cone into its components -- for example , a human
body into arms, legs, torso and head. Marr [1977a] analyzed the
two types of join shown in figure 21, giving criteria that define
segmentation points on the contour produced by two joined



cones. Figure 22 exhibits the segmentation points P and Q for
the case in which two short cones are joined side -to -end .
P. Vatan has written a computer program that can carry out this
segmentation , and an example of its operation is illustrated in
figure 23. The initial outline in (a) was obtained by applying
local grouping processes to the primal sketch of the image of a
toy donkey [Marr 1976]. This outline was then smoothed and
divided into convex and concave sections to get (b) . Next .
strong segmentation points , like the deep concavity circled in (c) ,
are identified and a set of heuristic rules are used to connect

them with other points on the contour to get the segmentation
shown in ( d ) . The component axes shown in ( e) are then
derived from these. The resulting segments are checked to see
that they obey the rules for images of generalized cones . The
boundaries must for example be symmetric about the axes, and in
the case of side-to-end joins , the axis of the cone that is attached
by its end must intersect the segmentation points that separate
the two cones' contours . In this example, most of the symmetry
relations have degenerated into parallelism . The thin lines in ( f )
indicate the position of the head, leg, and tail components along
the torso axis, and the snout and ear components along the head
axis . (This algorithm is due to P. Vatan) .

omments
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Some c : on the limitations of this theory

The results of this theory are limited in their scope to a
particular class of views and surfaces, but on the other hand , they
use only a limited kind of visual information , little more than
occluding contours that are formed in an image by rays that
graze a smooth surface. Interestingly , these particular contours
are unsuitable for use in stereopsis or structure -from -motion
computations , because they are not formed from markings that
define precise locations on the viewed surface. Creases and folds
on a surface also give rise to contours in an image , and these
have yet to be studied in detail . Information about shape from
shading , texture , stereo or motion information has not yet been



column , the left -hand cone is convex; in the center it is concave,

and in the right it is convex on one side of the join and concave
on the other . The other cone is convex in the top row , and
concave in the other two . Segmentation depends upon finding
the points P and Q. which are defined by theorem 7 of Marr
[1977] and illustrated here for each case.
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Figure 22 . This figure illustrates the types of side - to - end join

that can occur between two short generalized cones . In the first
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Figure 23. The occluding contours in an image can be used to
locate the images of the natural axes of a shape composed of
generalized cones [Marr 1977].
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considered . By adding these other sources of information , I hope
that a set of methods can eventually be assembled that together
approach a comprehensive treatment of possible image
configurations .

Conclusion

I have tried to make three main points . The first is
methodological , namely that it is important to be very clear
about the nature of the understanding we seek [Marr and Poggio
1977a] [Marr 1977b]. The results we try to achieve should be

precise , at the level of what I called a computational theory , and
should deal with problems that can confidently be attributed to a
real aspect of vision , and not (for example) to an artifact of the
limitations of one 's current vision program .

The second main point is that the critical issues for
vision seem to me to revolve around the nature of the

representations used - that is, the particular characteristics of the

world that are made explicit - and the nature of the processes
that recover these characteristics , create and maintain the

represt :ntations , and eventually read them. By analyzing the
spatial aspects of the problem of vision [Marr and Nishihara

1977], an overall framework for visual information processing is
suggested , that consists of three principal representations : ( 1)
the primal sketch, which makes explicit the intensity changes and

local two-dimensional geometry of an image; (2) the 21/ 2-D
sketch , which is a viewer-centered representation of the depth and
orientation of the visible surfaces and includes contours of

discontinuities in these quantities ; and ( 3) the 3-D model
representation , whose important features are ( a) that its
coordinate system is object -centered , ( b) that it includes

volumetric primitives , that make explicit the space occupied by an
object and not just its visible surfaces, and (c) that primitives of
various sizes are included , arranged in a modular , hierarchical
organization .

The third main point concerns the study of processes for
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the world behaves that provide
sufficient additional to allow recovery of the desired
characteristic . Several examples are already available, including
Land and McCann [1971], which rests on the distinction between

sharp and shallow intensity changes; stereopsis [Marr 1974]
[Marr and Poggio 1976] [Marr and Poggio 1977b] which uses
continuity and uniqueness; structure from visual motion [Ullman
1977], which uses rigidity ; fluorescence [Ullman 1976a]; and
shape from contour [Marr 1977a]. The discovery of constraints
that are valid and sufficiently universal leads to results about
vision that have the same quality of permanence as results in
other branches of science [Marc 1977b].

Finally , once a computational theory for a process has
been formulated , algorithms for implementing it may be designed,
and their performance compared with that of the human visual

processor . This allows two kinds of result . Firstly , if
performance is essentially identical , one has good evidence that
the constraints of the underlying computational theory are valid
and may be implicit in the human processor; and secondly , if a
process matches human performance, it is probably sufficiently
powerful to form part of a general purpose vision machine .

Science, (part 1) ," J.

recovering the various aspects of the physical characteristics of a
scene from images of it . The critical act in formulating
computational theories for such processes is the discovery of
valid constraints on the way

information
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