
1From Real to Artificial Ants

I am lost! Where is the line?!

—A Bug’s Life, Walt Disney, 1998

Ant colonies, and more generally social insect societies, are distributed systems that,

in spite of the simplicity of their individuals, present a highly structured social orga-

nization. As a result of this organization, ant colonies can accomplish complex tasks

that in some cases far exceed the individual capabilities of a single ant.

The field of ‘‘ant algorithms’’ studies models derived from the observation of real

ants’ behavior, and uses these models as a source of inspiration for the design of

novel algorithms for the solution of optimization and distributed control problems.

The main idea is that the self-organizing principles which allow the highly coordi-

nated behavior of real ants can be exploited to coordinate populations of artificial

agents that collaborate to solve computational problems. Several di¤erent aspects of

the behavior of ant colonies have inspired di¤erent kinds of ant algorithms. Ex-

amples are foraging, division of labor, brood sorting, and cooperative transport. In

all these examples, ants coordinate their activities via stigmergy, a form of indirect

communication mediated by modifications of the environment. For example, a for-

aging ant deposits a chemical on the ground which increases the probability that

other ants will follow the same path. Biologists have shown that many colony-level

behaviors observed in social insects can be explained via rather simple models in

which only stigmergic communication is present. In other words, biologists have

shown that it is often su‰cient to consider stigmergic, indirect communication to

explain how social insects can achieve self-organization. The idea behind ant algo-

rithms is then to use a form of artificial stigmergy to coordinate societies of artificial

agents.

One of the most successful examples of ant algorithms is known as ‘‘ant colony

optimization,’’ or ACO, and is the subject of this book. ACO is inspired by the for-

aging behavior of ant colonies, and targets discrete optimization problems. This in-

troductory chapter describes how real ants have inspired the definition of artificial

ants that can solve discrete optimization problems.

1.1 Ants’ Foraging Behavior and Optimization

The visual perceptive faculty of many ant species is only rudimentarily developed

and there are ant species that are completely blind. In fact, an important insight of

early research on ants’ behavior was that most of the communication among indi-

viduals, or between individuals and the environment, is based on the use of chemicals

produced by the ants. These chemicals are called pheromones. This is di¤erent from,



for example, what happens in humans and in other higher species, whose most im-

portant senses are visual or acoustic. Particularly important for the social life of some

ant species is the trail pheromone. Trail pheromone is a specific type of pheromone

that some ant species, such as Lasius niger or the Argentine ant Iridomyrmex humilis

(Goss, Aron, Deneubourg, & Pasteels, 1989), use for marking paths on the ground,

for example, paths from food sources to the nest. By sensing pheromone trails for-

agers can follow the path to food discovered by other ants. This collective trail-laying

and trail-following behavior whereby an ant is influenced by a chemical trail left by

other ants is the inspiring source of ACO.

1.1.1 Double Bridge Experiments

The foraging behavior of many ant species, as, for example, I. humilis (Goss et al.,

1989), Linepithema humile, and Lasius niger (Bonabeau et al., 1997), is based on in-

direct communication mediated by pheromones. While walking from food sources to

the nest and vice versa, ants deposit pheromones on the ground, forming in this way

a pheromone trail. Ants can smell the pheromone and they tend to choose, proba-

bilistically, paths marked by strong pheromone concentrations.

The pheromone trail-laying and -following behavior of some ant species has been

investigated in controlled experiments by several researchers. One particularly bril-

liant experiment was designed and run by Deneubourg and colleagues (Deneubourg,

Aron, Goss, & Pasteels, 1990; Goss et al., 1989), who used a double bridge connect-

ing a nest of ants of the Argentine ant species I. humilis and a food source. They ran

experiments varying the ratio r ¼ ll=ls between the length of the two branches of the

double bridge, where ll was the length of the longer branch and ls the length of the

shorter one.

In the first experiment the bridge had two branches of equal length (r ¼ 1; see

figure 1.1a). At the start, ants were left free to move between the nest and the food

source and the percentage of ants that chose one or the other of the two branches

were observed over time. The outcome was that (see also figure 1.2a), although in the

initial phase random choices occurred, eventually all the ants used the same branch.

This result can be explained as follows. When a trial starts there is no pheromone on

the two branches. Hence, the ants do not have a preference and they select with the

same probability any of the branches. Yet, because of random fluctuations, a few

more ants will select one branch over the other. Because ants deposit pheromone

while walking, a larger number of ants on a branch results in a larger amount of

pheromone on that branch; this larger amount of pheromone in turn stimulates more

ants to choose that branch again, and so on until finally the ants converge to one
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Figure 1.1
Experimental setup for the double bridge experiment. (a) Branches have equal length. (b) Branches have
di¤erent length. Modified from Goss et al. (1989).
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Figure 1.2
Results obtained with Iridomyrmex humilis ants in the double bridge experiment. (a) Results for the case in
which the two branches have the same length (r ¼ 1); in this case the ants use one branch or the other in
approximately the same number of trials. (b) Results for the case in which one branch is twice as long as
the other (r ¼ 2); here in all the trials the great majority of ants chose the short branch. Modified from
Goss et al. (1989).
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single path. This autocatalytic or positive feedback process is, in fact, an example of

a self-organizing behavior of the ants: a macroscopic pattern (corresponding to the

convergence toward one branch) emerges out of processes and interactions taking

place at a ‘‘microscopic’’ level (Camazine, Deneubourg, Franks, Sneyd, Theraulaz,

& Bonabeau, 2001; Haken, 1983; Nicolis & Prigogine, 1977). In our case the con-

vergence of the ants’ paths to one branch represents the macroscopic collective be-

havior, which can be explained by the microscopic activity of the ants, that is, by the

local interactions among the individuals of the colony. It is also an example of stig-

mergic communication (for a definition of stigmergy, see section 1.4): ants coordinate

their activities, exploiting indirect communication mediated by modifications of the

environment in which they move.

In the second experiment, the length ratio between the two branches was set to

r ¼ 2 (Goss et al., 1989), so that the long branch was twice as long as the short one

(figure 1.1b shows the experimental setup). In this case, in most of the trials, after

some time all the ants chose to use only the short branch (see figure 1.2b). As in the

first experiment, ants leave the nest to explore the environment and arrive at a deci-

sion point where they have to choose one of the two branches. Because the two

branches initially appear identical to the ants, they choose randomly. Therefore, it

can be expected that, on average, half of the ants choose the short branch and the

other half the long branch, although stochastic oscillations may occasionally favor

one branch over the other. However, this experimental setup presents a remarkable

di¤erence with respect to the previous one: because one branch is shorter than the

other (see figure 1.1b), the ants choosing the short branch are the first to reach the

food and to start their return to the nest. But then, when they must make a decision

between the short and the long branch, the higher level of pheromone on the short

branch will bias their decision in its favor. Therefore, pheromone starts to accumu-

late faster on the short branch, which will eventually be used by all the ants because

of the autocatalytic process described previously. When compared to the experiment

with the two branches of equal length, the influence of initial random fluctuations

is much reduced, and stigmergy, autocatalysis, and di¤erential path length are the

main mechanisms at work. Interestingly, it can be observed that, even when the long

branch is twice as long as the short one, not all the ants use the short branch, but a

small percentage may take the longer one. This may be interpreted as a type of ‘‘path

exploration.’’

It is also interesting to see what happens when the ant colony is o¤ered, after

convergence, a new shorter connection between the nest and the food. This situation

was studied in an additional experiment in which initially only the long branch was
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o¤ered to the colony and after 30 minutes the short branch was added (see figure

1.3). In this case, the short branch was only selected sporadically and the colony was

trapped on the long branch. This can be explained by the high pheromone concen-

tration on the long branch and by the slow evaporation of pheromone. In fact, the

great majority of ants choose the long branch because of its high pheromone con-

centration, and this autocatalytic behavior continues to reinforce the long branch,

even if a shorter one appears. Pheromone evaporation, which could favor explora-

tion of new paths, is too slow: the lifetime of the pheromone is comparable to the

duration of a trial (Goss et al., 1989), which means that the pheromone evaporates

too slowly to allow the ant colony to ‘‘forget’’ the suboptimal path to which they

converged so that the new and shorter one can be discovered and ‘‘learned.’’

1.1.2 A Stochastic Model

Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) proposed a

simple stochastic model that adequately describes the dynamics of the ant colony as

observed in the double bridge experiment. In this model, c ants per second cross the

bridge in each direction at a constant speed of v cm/s, depositing one unit of phero-

mone on the branch. Given the lengths ls and ll (in cm) of the short and of the long

branch, an ant choosing the short branch will traverse it in ts ¼ ls=v seconds, while

an ant choosing the long branch will use r � ts seconds, where r ¼ ll=ls.

The probability piaðtÞ that an ant arriving at decision point i A f1; 2g (see figure

1.1b) selects branch a A fs; lg, where s and l denote the short and long branch re-

spectively, at instant t is set to be a function of the total amount of pheromone jiaðtÞ
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Figure 1.3
In this experiment initially only the long branch was o¤ered to the colony. After 30 minutes, when a stable
pheromone trail has formed on the only available branch, a new shorter branch is added. (a) The initial
experimental setup and the new situation after 30 minutes, when the short branch was added. (b) In the
great majority of the experiments, once the short branch is added the ants continue to use the long branch.

1.1 Ants’ Foraging Behavior and Optimization 5



on the branch, which is proportional to the number of ants that used the branch until

time t. For example, the probability pisðtÞ of choosing the short branch is given by

pisðtÞ ¼
ðts þ jisðtÞÞ

a

ðts þ jisðtÞÞ
a þ ðts þ jilðtÞÞ

a ; ð1:1Þ

where the functional form of equation (1.1), as well as the value a ¼ 2, was derived

from experiments on trail-following (Deneubourg et al., 1990); pilðtÞ is computed

similarly, with pisðtÞ þ pilðtÞ ¼ 1.

This model assumes that the amount of pheromone on a branch is proportional to

the number of ants that used the branch in the past. In other words, no pheromone

evaporation is considered by the model (this is in accordance with the experimental

observation that the time necessary for the ants to converge to the shortest path has

the same order of magnitude as the mean lifetime of the pheromone (Goss et al.,

1989; Beckers, Deneubourg, & Goss, 1993)). The di¤erential equations that describe

the evolution of the stochastic system are

djis=dt ¼ cpjsðt� tsÞ þ cpisðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:2Þ

djil=dt ¼ cpjlðt� r � tsÞ þ cpilðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:3Þ

Equation (1.2) can be read as follows: the instantaneous variation, at time t, of

pheromone on branch s and at decision point i is given by the ants’ flow c, assumed

constant, multiplied by the probability of choosing the short branch at decision point

j at time t� ts plus the ants’ flow multiplied by the probability of choosing the short

branch at decision point i at time t. The constant ts represents a time delay, that is,

the time necessary for the ants to traverse the short branch. Equation (1.3) expresses

the same for the long branch, except that in this case the time delay is given by r � ts.
The dynamic system defined by these equations was simulated using the Monte

Carlo method (Liu, 2001). In figure 1.4, we show the results of two experiments

consisting of 1000 simulations each and in which the branch length ratio was set to

r ¼ 1 and to r ¼ 2. It can be observed that when the two branches have the same

length (r ¼ 1) the ants converge toward the use of one or the other of the branches

with equal probability over the 1000 simulations. Conversely, when one branch is

twice as long as the other (r ¼ 2), then in the great majority of experiments most of

the ants choose the short branch (Goss et al., 1989).

In this model the ants deposit pheromone both on their forward and their back-

ward paths. It turns out that this is a necessary behavior to obtain convergence of the

ant colony toward the shortest branch. In fact, if we consider a model in which ants

deposit pheromone only during the forward or only during the backward trip, then
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the result is that the ant colony is unable to choose the shortest branch. The obser-

vation of real ant colonies has confirmed that ants that deposit pheromone only

when returning to the nest are unable to find the shortest path between their nest and

the food source (Deneubourg, 2002).

1.2 Toward Artificial Ants

The double bridge experiments show clearly that ant colonies have a built-in opti-

mization capability: by the use of probabilistic rules based on local information they

can find the shortest path between two points in their environment. Interestingly, by

taking inspiration from the double bridge experiments, it is possible to design artifi-

cial ants that, by moving on a graph modeling the double bridge, find the shortest

path between the two nodes corresponding to the nest and to the food source.

As a first step toward the definition of artificial ants, consider the graph of figure

1.5a, which is a model of the experimental setup shown in figure 1.1b. The graph

consists of two nodes (1 and 2, representing the nest and the food respectively) that

are connected by a short and a long arc (in the example the long arc is r times longer

than the short arc, where r is an integer number). Additionally, we assume the time

to be discrete ðt ¼ 1; 2; . . .Þ and that at each time step each ant moves toward a

neighbor node at constant speed of one unit of length per time unit. By doing so, ants

add one unit of pheromone to the arcs they use. Ants move on the graph by choosing

the path probabilistically: pisðtÞ is the probability for an ant located in node i at time

t to choose the short path, and pilðtÞ the probability to choose the long path. These

probabilities are a function of the pheromone trails jia that ants in node i ði A f1; 2gÞ
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Figure 1.4
Results of 1000 Monte Carlo simulations of the model given by equations (1.1), (1.2), and (1.3), with
c ¼ 0:5 ant per second. Ants were counted between the 501st and 1000th ant crossing the bridge. (a) The
ratio between the long and the short branch was set to r ¼ 1. (b) The ratio between the long and the short
branch was set to r ¼ 2. Modified from Goss et al. (1989).
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encounter on the branch a, ða A fs; lgÞ:

pisðtÞ ¼
½jisðtÞ�

a

½jisðtÞ�
a þ ½jilðtÞ�

a ; pilðtÞ ¼
½jilðtÞ�

a

½jisðtÞ�
a þ ½jilðtÞ�

a : ð1:4Þ

Trail update on the two branches is performed as follows:

jisðtÞ ¼ jisðt� 1Þ þ pisðt� 1Þmiðt� 1Þ þ pjsðt� 1Þmjðt� 1Þ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:5Þ

jilðtÞ ¼ jilðt� 1Þ þ pilðt� 1Þmiðt� 1Þ þ pjlðt� rÞmjðt� rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:6Þ

where miðtÞ, the number of ants on node i at time t, is given by

miðtÞ ¼ pjsðt� 1Þmjðt� 1Þ þ pjlðt� rÞmjðt� rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:7Þ

This model di¤ers from the one presented in section 1.1.2 in two important

aspects:

9 It considers the average behavior of the system, and not the stochastic behavior of

the single ants.

9 It is a discrete time model, whereas the previous one was a continuous time model;

accordingly, it uses di¤erence instead of di¤erential equations.

1

2

1

2

3

(a) (b)

Figure 1.5
The graphs are two equivalent models of the experimental setup shown in figure 1.1b. In both cases, ants
move from the nest to the food and back either via a short or via a long branch. (a) In this model the long
branch is r times longer than the shorter one. An ant entering the long branch updates the pheromone on it
r time units later. (b) In this model, each arc of the graph has the same length, and a longer branch is
represented by a sequence of arcs. Here, for example, the long branch is twice as long as the short branch.
Pheromone updates are done with one time unit delay on each arc.
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Another way of modeling the experimental apparatus of figure 1.1b with a graph

is shown in figure 1.5b. In this model each arc of the graph has the same length, and

a longer branch is represented by a sequence of arcs. In the figure, for example, the

long branch is twice as long as the short branch. Pheromone updates are done with

one time unit delay on each arc. The two models are equivalent from a computa-

tional point of view, yet the second model permits an easier algorithmic implemen-

tation when considering graphs with many nodes.

Simulations run with this discrete time model give results very similar to those

obtained with the continuous time model of equations (1.1) to (1.3). For example, by

setting the number of ants to twenty, the branch length ratio to r ¼ 2, and the pa-

rameter a to 2, the system converges rather rapidly toward the use of the short

branch (see figure 1.6).

1.3 Artificial Ants and Minimum Cost Paths

In the previous section we have shown that a set of di¤erence equations can repro-

duce rather accurately the mean behavior of the continuous model of Deneubourg

et al. Yet, our goal is to define algorithms that can be used to solve minimum cost

problems on more complicated graphs than those representing the double bridge ex-

periment (see, e.g., the graph in figure 1.7).
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Figure 1.6
Result of the simulation of the model described by equations (1.4) through (1.7). The figure shows the
probability of choosing the three branches of the graph in figure 1.5b. After a short transitory period the
probabilities of choosing the long branch (ðpð1; 3Þ1 p1l and (pð2; 3Þ1 p2l ) become vanishingly small (in
the graph they are superimposed after a few iterations from the start), while the probability of choosing
the short branch (pð1; 2Þ1 p1s 1 p2s) tends to 1. Note that probabilities are symmetric: pði; jÞ ¼ pð j; iÞ.
Parameter settings: a ¼ 2, r ¼ 2, t ¼ 100.
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With this goal in mind, let us consider a static, connected graph G ¼ ðN;AÞ, where
N is the set of n ¼ jNj nodes and A is the set of undirected arcs connecting them. The

two points between which we want to establish a minimum cost path are called

source and destination nodes, as typically done in the literature on minimum cost

path problems (when the cost of arcs is given by their length, the minimum cost

path problem is the same as the shortest-path problem); sometimes, in analogy to

the shortest-path–finding behavior of real ants, we will also call them nest and food

source.

Unfortunately, if we try to solve the minimum cost path problem on the graph G

using artificial ants whose behavior is a straightforward extension of the behavior of

the ants described in the previous section, the following problem arises: the ants,

while building a solution, may generate loops. As a consequence of the forward

pheromone trail updating mechanism, loops tend to become more and more attrac-

tive and ants can get trapped in them. But even if an ant can escape such loops, the

overall pheromone trail distribution becomes such that short paths are no longer

favored and the mechanism that in the simpler double bridge situation made the ant

choose the shortest path with higher probability does not work anymore. Because

this problem is due to forward pheromone trail updating, it might seem that the

simplest solution to this problem would be the removal of the forward updating

mechanism: in this way ants would rely only on backward updating. Still, this is not

a solution: as was said before (see section 1.1.2, but see also exercise 1.1 at the end of

this chapter), if the forward update is removed the system does not work anymore,

not even in the simple case of the double bridge experiment.

We therefore need to extend the capabilities of the artificial ants in a way that,

while retaining the most important characteristics of real ants, allows them to solve

minimum cost path problems on generic graphs. In particular, artificial ants are

Source

Destination

Figure 1.7
Ants build solutions, that is, paths from a source to a destination node.
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given a limited form of memory in which they can store the partial paths they have

followed so far, as well as the cost of the links they have traversed. Via the use of

memory, the ants can implement a number of useful behaviors that allow them to

e‰ciently build solutions to the minimum cost path problem. These behaviors are (1)

probabilistic solution construction biased by pheromone trails, without forward

pheromone updating; (2) deterministic backward path with loop elimination and

with pheromone updating; and (3) evaluation of the quality of the solutions gen-

erated and use of the solution quality in determining the quantity of pheromone to

deposit (note that while in the simple case of minimum cost path search an estimate

of the solution quality can be made by the ant also during the solution construction,

this is not necessarily true in other problems, in which there may not exist an easy

way to evaluate partial solutions).

Additionally, we show that by taking into account pheromone evaporation,

which was not necessary to explain real ants’ behavior, performance can be greatly

improved.

In the following we briefly explain how the above-mentioned ants’ behavior, as

well as pheromone evaporation, is implemented in an algorithm that we call Simple-

ACO (S-ACO for short). It should be noted that, although it represents a significant

step toward the definition of an e‰cient algorithm for the solution of minimum cost

problems on graphs, S-ACO should be taken for what it is: a didactic tool to explain

the basic mechanisms underlying ACO algorithms.

Probabilistic forward ants and solution construction. S-ACO ants can be thought of

as having two working modes: forward and backward. They are in forward mode

when they are moving from the nest toward the food, and they are in backward

mode when they are moving from the food back to their nest. Once an ant in forward

mode reaches its destination, it switches to backward mode and starts its travel back

to the source. In S-ACO, forward ants build a solution by choosing probabilistically

the next node to move to among those in the neighborhood of the graph node on

which they are located. (Given a graph G ¼ ðN;AÞ, two nodes i; j A N are neighbors

if there exists an arc ði; jÞ A A.) The probabilistic choice is biased by pheromone trails

previously deposited on the graph by other ants. Forward ants do not deposit any

pheromone while moving. This, together with deterministic backward moves, helps

in avoiding the formation of loops.

Deterministic backward ants and pheromone update. The use of an explicit memory

allows an ant to retrace the path it has followed while searching the destination

node. Moreover, S-ACO ants improve the system performance by implementing

loop elimination. In practice, before starting to move backward on the path they

1.3 Artificial Ants and Minimum Cost Paths 11



memorized while searching the destination node (i.e., the forward path), S-ACO ants

eliminate any loops from it. While moving backward, S-ACO ants leave pheromone

on the arcs they traverse.

Pheromone updates based on solution quality. In S-ACO the ants memorize the

nodes they visited during the forward path, as well as the cost of the arcs traversed if

the graph is weighted. They can therefore evaluate the cost of the solutions they

generate and use this evaluation to modulate the amount of pheromone they deposit

while in backward mode. Making pheromone update a function of the generated

solution quality can help in directing future ants more strongly toward better solu-

tions. In fact, by letting ants deposit a higher amount of pheromone on short paths,

the ants’ path searching is more quickly biased toward the best solutions. Interest-

ingly, the dependence of the amount of pheromone trail deposit on the solution

quality is also present in some ant species: Beckers et al. (1993) found that in the ant

species Lasius niger the ants returning from rich food sources tend to drop more

pheromone than those returning from poorer food sources.

Pheromone evaporation. In real ant colonies, pheromone intensity decreases over

time because of evaporation. In S-ACO evaporation is simulated by applying an ap-

propriately defined pheromone evaporation rule. For example, artificial pheromone

decay can be set to a constant rate. Pheromone evaporation reduces the influence of

the pheromones deposited in the early stages of the search, when artificial ants can

build poor-quality solutions. Although in the experiments run by Deneubourg and

colleagues (Deneubourg et al., 1990; Goss et al., 1989) pheromone evaporation did

not play any noticeable role, it can be very useful for artificial ant colonies, as we will

show in the following sections.

1.3.1 S-ACO

We now present the details of the S-ACO algorithm which adapts the real ants’ be-

havior to the solution of minimum cost path problems on graphs. To each arc ði; jÞ
of the graph G ¼ ðN;AÞ we associate a variable tij called artificial pheromone trail,

shortened to pheromone trail in the following. Pheromone trails are read and written

by the ants. The amount (intensity) of a pheromone trail is proportional to the util-

ity, as estimated by the ants, of using that arc to build good solutions.

Ants’ Path-Searching Behavior

Each ant builds, starting from the source node, a solution to the problem by applying

a step-by-step decision policy. At each node, local information stored on the node

itself or on its outgoing arcs is read (sensed) by the ant and used in a stochastic way

to decide which node to move to next. At the beginning of the search process, a
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constant amount of pheromone (e.g., tij ¼ 1, Eði; jÞ A A) is assigned to all the arcs.

When located at a node i an ant k uses the pheromone trails tij to compute the

probability of choosing j as next node:

pk
ij ¼

taijP
l AN k

i
tail

; if j A N k
i ;

0; if j B N k
i ;

8><
>: ð1:8Þ

where N k
i is the neighborhood of ant k when in node i. In S-ACO the neighbor-

hood of a node i contains all the nodes directly connected to node i in the graph

G ¼ ðN;AÞ, except for the predecessor of node i (i.e., the last node the ant visited

before moving to i). In this way the ants avoid returning to the same node they

visited immediately before node i. Only in case N k
i is empty, which corresponds to

a dead end in the graph, node i’s predecessor is included into N k
i . Note that this

decision policy can easily lead to loops in the generated paths (recall the graph of

figure 1.7).

An ant repeatedly hops from node to node using this decision policy until it even-

tually reaches the destination node. Due to di¤erences among the ants’ paths, the

time step at which ants reach the destination node may di¤er from ant to ant (ants

traveling on shorter paths will reach their destinations faster).

Path Retracing and Pheromone Update

When reaching the destination node, the ant switches from the forward mode to the

backward mode and then retraces step by step the same path backward to the source

node. An additional feature is that, before starting the return trip, an ant eliminates

the loops it has built while searching for its destination node. The problem of loops is

that they may receive pheromone several times when an ant retraces its path back-

ward to deposit pheromone trail, leading to the problem of self-reinforcing loops.

Loop elimination can be done by iteratively scanning the node identifiers position by

position starting from the source node: for the node at the i-th position, the path is

scanned starting from the destination node until the first occurrence of the node is

encountered, say, at position j (it always holds that ia j because the scanning pro-

cess stops at position i at the latest). If we have j > i, the subpath from position i þ 1

to position j corresponds to a loop and can be eliminated. The scanning process is

visualized in figure 1.8. The example also shows that our loop elimination procedure

does not necessarily eliminate the largest loop. In the example, the loop 3 -4 -5 -3 of

length 3 is eliminated. Yet, the longest loop in this example, the loop 5 -3 -2 -8 -5 of

length 4, is not eliminated because it is no longer present after eliminating the first

loop. In general, if the path contains nested loops, the final loop-free path will
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depend on the sequence in which the loops are eliminated. In S-ACO, loop elimina-

tion is implemented so that loops are eliminated in the same order as they are created.

During its return travel to the source the k-th ant deposits an amount Dtk of

pheromone on arcs it has visited. In particular, if ant k is in the backward mode and

it traverses the arc ði; jÞ, it changes the pheromone value tij as follows:

tij  tij þ Dtk: ð1:9Þ

By this rule an ant using the arc connecting node i to node j increases the proba-

bility that forthcoming ants will use the same arc in the future.

An important aspect is the choice of Dtk. In the simplest case, this can be the same

constant value for all the ants. In this case, only the di¤erential path length works in

favor of the detection of short paths: ants which have detected a shorter path can

deposit pheromone earlier than ants traveling on a longer path. In addition to the

deterministic backward pheromone trail update, the ants may also deposit an

amount of pheromone trail which is a function of the path length—the shorter the

path the more pheromone is deposited by an ant. Generally, we require the amount

of pheromone deposited by an ant to be a nonincreasing function of the path length.

Pheromone Trail Evaporation

Pheromone trail evaporation can be seen as an exploration mechanism that avoids

quick convergence of all the ants toward a suboptimal path. In fact, the decrease in

  0  -  1  -  3  -  4  -  5  -  3  -  2  -  8  -  5  -  6  -  9

First node to scan

Source Destination

Scanning direction

.

.

  0  -  1  -  3  -  4  -  5  -  3  -  2  -  8  -  5   -  6  -  9

Scanning for node 3

Source Destination

First occurrence of node 
3 when scanning from 
destination node

Eliminated loop

  0  -  1  -  3  -  2  -  8  -  5  -  6  -  9

Final loop free path

Figure 1.8
Illustration of the scanning process for loop elimination.
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pheromone intensity favors the exploration of di¤erent paths during the whole search

process. In real ant colonies, pheromone trails also evaporate, but, as we have seen,

evaporation does not play an important role in real ants’ shortest-path finding. The

fact that, on the contrary, pheromone evaporation seems to be important in artificial

ants is probably due to the fact that the optimization problems tackled by artificial

ants are much more complex than those real ants can solve. A mechanism like

evaporation that, by favoring the forgetting of errors or of poor choices done in the

past, allows a continuous improvement of the ‘‘learned’’ problem structure seems

therefore to be necessary for artificial ants. Additionally, artificial pheromone evap-

oration also plays the important function of bounding the maximum value achiev-

able by pheromone trails.

Evaporation decreases the pheromone trails with exponential speed. In S-ACO,

the pheromone evaporation is interleaved with the pheromone deposit of the ants.

After each ant k has moved to a next node according to the ants’ search behavior

described earlier, pheromone trails are evaporated by applying the following equa-

tion to all the arcs:

tij  ð1� rÞtij ; Eði; jÞ A A; ð1:10Þ

where r A ð0; 1� is a parameter. After pheromone evaporation has been applied to

all arcs, the amount of pheromone Dtk is added to the arcs. We call an iteration

of S-ACO a complete cycle involving ants’ movement, pheromone evaporation, and

pheromone deposit.

1.3.2 Experiments with S-ACO

We have run experiments to evaluate the importance of some aspects of S-ACO:

evaporation, number of ants, and type of pheromone update (function of the solution

quality or not).

In the experiments presented in the following the behavior of S-ACO is judged

with respect to convergence toward the minimum cost (shortest) path, in a way sim-

ilar to what was done for the outcome of the simulation experiments of Deneubourg

et al. and for the experiments with the discrete model introduced in section 1.2. In-

formally, by convergence we mean that, as the algorithm runs for an increasing

number of iterations, the ants’ probability of following the arcs of a particular path

increases—in the limit to a point where the probability of selecting the arcs of this

path becomes arbitrarily close to 1 while for all the others, it becomes arbitrarily

close to 0.

The experiments have been run using two simple graphs: the double bridge of

figure 1.5b and the more complex graph called extended double bridge given in figure
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1.9. This second graph is designed in such a way that converging to the minimum

cost path is not a trivial task for S-ACO. The di‰culty of the graph is given by the

fact that, in order to find the minimum cost path, an ant has to make a number of

‘‘correct’’ choices and if some of these choices are wrong, the ant generates sub-

optimal paths. To understand why, consider the graph of figure 1.9: ants exiting the

source node have to choose between the loop-free, but worse than optimal, upper

path of the graph, and the set of paths in the lower part of the same graph that con-

tains two optimal paths of length 5, as well as many longer loop-free paths and infi-

nitely many, much longer ‘‘loopy’’ paths. There is a trade-o¤ between converging

toward the use of an ‘‘easy’’ but suboptimal path, and searching for the optimal path

in a region of the search space where suboptimal paths can easily be generated. In

other words, to obtain convergence to the optimal solutions the ants need to choose

the lower part of the graph, but then the greater number of decisions to be taken

makes converging to the minimum cost path a di‰cult task.

Note that the choice of judging the algorithm using convergence as defined above

instead of using more standard performance indices, such as the time or the number

of iterations necessary to find the optimal solution, is consistent with our goals, that

is, studying and understanding the relationship between design choices and the algo-

Source

Destination

Figure 1.9
Extended double bridge. An ant starting in the source node can choose between the upper and the lower
parts of the graph. The upper part consists of a single path of length 8 leading directly to the destination
node. Di¤erently, the lower part of the graph consists of a set of paths (which includes many paths shorter
than eight steps) and the ant has many decisions to do before reaching the destination node. Therefore,
ants choosing the upper part will always find a path of length 8, while ants choosing the lower part may
find paths shorter than 8, but they may also enter loops and generate very long paths.
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rithm’s behavior. In fact, such a study requires working on simple graphs like those

discussed above so that simulation times remain reasonably short and the behavior

of ants can be easily observed. But in simple graphs the shortest path is always found

very quickly because of the large number of ants compared to the relatively small

search space. Therefore, a performance index based on the time (or number of iter-

ations) necessary to find the optimal solution would not be very meaningful. In fact,

convergence as defined above, by requiring that all the ants do use the same path, is a

more reasonable index for our purposes.

On the contrary, as we will see in the forthcoming chapters, when attacking more

complex problems like NP-hard optimization problems or routing in dynamic net-

works, the way experimental results are judged is di¤erent. In NP-hard optimization

problems the main goal is to find quickly very high-quality solutions and therefore

we are interested mainly in the solution quality of the best solution(s) found by the

ACO algorithm. In dynamic networks routing the algorithm has to be able to react

rapidly to changing conditions and to maintain exploration capabilities so that it can

e¤ectively evaluate alternative paths which, due to the dynamics of the problem, may

become more desirable; in both cases we will need a di¤erent definition of algorithm

convergence.

Number of Ants and Types of Pheromone Update: Experiments with the Double Bridge

We ran a first set of experiments in which we studied the influence that the number of

ants used and the way the amount of pheromone to be deposited is determined by

ants have on the behavior of S-ACO. The experiments were run using the double

bridge (see figure 1.5b). The choice of the double bridge was due to the desire of

comparing the results obtained with S-ACO to those obtained with the model of real

ants’ behavior described in section 1.2. Note that a major di¤erence between that

model and S-ACO is that equations (1.4) through (1.7) describe the average behavior

of the system, whereas in S-ACO a fixed number of ants move autonomously on the

graph. Intuitively, an increasing number of ants in S-ACO should approximate better

and better the average behavior given by equations (1.4) through (1.7).

In the following we report the results of two experiments:

1. Run S-ACO with di¤erent values for the number m of ants and with ants depos-

iting a constant amount of pheromone on the visited arcs [i.e., Dtk ¼ constant in

equation (1.9)].

2. Same as in 1. above, except that the ants deposit an amount of pheromone which

is inversely proportional to the length of the path they have found (i.e., Dtk ¼ 1=Lk,

where Lk is the length of ant k’s path).
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For each experiment we ran 100 trials and each trial was stopped after each ant

had moved 1000 steps. Evaporation [see equation (1.10)] was set to r ¼ 0, and the

parameter a [see equation (1.8)] was set to 2, as in equation (1.1) of Deneubourg

et al. approximating real ants’ behavior. At the end of the trial we checked whether

the pheromone trail was higher on the short or on the long path. In table 1.1, which

gives the results of the two experiments, we report the percentage of trials in which

the pheromone trail was higher on the long path. We found that, for the given pa-

rameter settings, S-ACO showed convergence behavior after 1000 ant steps so that

the reported percentage is significant for understanding the algorithm behavior.

Let us focus first on the results of experiment 1. For a small number of ants (up

to 32), S-ACO converged relatively often to the longer path. This is certainly due to

fluctuations in the path choice in the initial iterations of the algorithm which can lead

to a strong reinforcement of the long path. Yet, with an increasing number of ants,

the number of times we observed this behavior decreased drastically, and for a large

number of ants (here 512) we never observed convergence to the long path in any of

the 100 trials. The experiments also indicate that, as could be expected, S-ACO per-

forms poorly when only one ant is used: the number of ants has to be significantly

larger than one to obtain convergence to the short path.

The results obtained in experiment 2 with pheromone updates based on solution

quality are much better. As can be observed in table 1.1, S-ACO converged to the

long path far less frequently than when pheromone updates were independent of the

solution quality. With only one ant, S-ACO converged to the long path in only 18

out of 100 trials, which is significantly less than in experiment 1, and with eight ants

or more it always converged to the short path.

In additional experiments, we examined the influence of the parameter a of equa-

tion (1.8) on the convergence behavior of S-ACO, in particular investigating the

cases where a was changed in step sizes of 0.25 from 1 to 2. Again, the behavior was

dependent on whether pheromone updates based on solution quality were used or

Table 1.1
Percentage of trials in which S-ACO converged to the long path (100 independent trials for varying values
of m, with a ¼ 2 and r ¼ 0)

m 1 2 4 8 16 32 64 128 256 512

without path length 50 42 26 29 24 18 3 2 1 0

with path length 18 14 8 0 0 0 0 0 0 0

Column headings give the number m of ants in the colony. The first row shows results obtained performing
pheromone updates without considering path length; the second row reports results obtained performing
pheromone updates proportional to path length.
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not. In the first case we found that increasing a had a negative e¤ect on the con-

vergence behavior, while in the second case the results were rather independent of

the particular value of a. In general, we found that, for a fixed number of ants, the

algorithm tended to converge to the shortest path more often when a was close to 1.

This is intuitively clear because large values of a tend to amplify the influence of

initial random fluctuations. If, by chance, the long path is initially selected by the

majority of ants, then the search of the whole colony is quickly biased toward it. This

happens to a lower extent when the value of a is close to 1.

These results show that, as in the case of real ants, in S-ACO both autocatalysis

and di¤erential path length are at work to favor the emergence of short paths. While

the results with S-ACO indicate that di¤erential path length alone can be enough to

let S-ACO converge to the optimal solution on small graphs, they also show that

relying on this e¤ect as the main driving force of the algorithm comes at the price of

having to use large colony sizes, which results in long simulation times. In addition,

the e¤ectiveness of the di¤erential path length e¤ect strongly decreases with increas-

ing problem complexity. This is what is shown by the experiments reported in the

next subsection.

Pheromone Evaporation: Experiments with the Extended Double Bridge

In a second set of experiments, we studied the influence that pheromone trail evapo-

ration has on the convergence behavior of S-ACO. Experiments were run using the

extended double bridge graph (see figure 1.9).

In these experiments the ants deposit an amount of pheromone that is the inverse

of their path length (i.e., Dtk ¼ 1=Lk); also, before depositing it, they eliminate loops

using the procedure described in figure 1.8.

To evaluate the behavior of the algorithm we observe the development of the path

lengths found by the ants. In particular, we plot the moving averages of the path

lengths after loop elimination (moving averages are calculated using the 4 �m most

recent paths found by the ants, where m is the number of ants). In other words, in the

graph of figure 1.10 a point is plotted each time an ant has completed a journey from

the source to the destination and back (the number of journeys is on the x-axis), and

the corresponding value on the y-axis is given by the length of the above-mentioned

moving average after loop elimination.

We ran experiments with S-ACO and di¤erent settings for the evaporation rate

r A f0; 0:01; 0:1g (a ¼ 1 and m ¼ 128 in all experiments). If r ¼ 0, no pheromone

evaporation takes place. Note that an evaporation rate of r ¼ 0:1 is rather large,

because evaporation takes place at each iteration of the S-ACO algorithm: after ten

iterations, which corresponds to the smallest number of steps that an ant needs to
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build the shortest path and to come back to the source, roughly 65% of the pher-

omone on each arc evaporates, while with r ¼ 0:01 this evaporation is reduced to

around 10%.

Figure 1.10 gives the observed moving averages. Although the graphs only show

results of a single run of the algorithm, they are representative of the typical algo-

rithm behavior. If no evaporation is used, the algorithm does not converge, which

can be seen by the fact that the moving average has approximately the value 7.5,

which does not correspond to the length of any path (with these parameter settings,

this result typically does not change if the run lasts a much higher number of itera-

tions). With pheromone evaporation, the behavior of S-ACO is significantly di¤er-

ent. After a short transitory phase, S-ACO converges to a single path: either the

shortest one (the moving average takes the value 5 for r ¼ 0:01) or the path of length

6 for r ¼ 0:1. A closer examination of the results revealed that in both cases at con-

vergence all the ants had built loop-free paths of the indicated length.

In further experiments with S-ACO on this graph we made the following general

observations:

9 Without pheromone updates based on solution quality, S-ACO performance is

much worse. In particular, the algorithm converges very often to the suboptimal so-
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Figure 1.10
The graph plots the moving averages (given on the y-axis) of the ants’ path length for the graph of figure
1.9 as a function of the number of completed paths (given on the x-axis). We give plots for not using
evaporation (r ¼ 0), low evaporation (r ¼ 0:01), and high evaporation (r ¼ 0:1). The trials were stopped
after 5000 iterations; a ¼ 1 and m ¼ 128.
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lution of length 8; the larger the parameters a or r, the faster S-ACO converges to

this suboptimal solution.

9 The pheromone evaporation rate r can be critical. In particular, we observed that

S-ACO often converged to suboptimal paths when evaporation was set to a value

that was too high. For example, in fifteen trials with r set to 0:2, S-ACO converged

once to a path of length 8, once to a path of length 7, and twice to a path of length 6.

Setting r to 0.01 S-ACO converged to the shortest path in all trials.

9 Large values of a generally result in a worse behavior of S-ACO because they ex-

cessively emphasize the initial random fluctuations.

Discussion

We have seen that in real ant colonies the emergence of high-level patterns like

shortest paths is only possible through the interaction of a large number of individ-

uals. It is interesting that experimental results show that the same is true to a large

extent for S-ACO: the use of a colony of ants is important to exploit the di¤erential

path length e¤ect and to increase the robustness of the algorithm and reduce its de-

pendence on parameter settings. As we have seen, a colony size larger than one is

necessary to solve even simple problems like the double bridge.

In general, we noticed that as problems become more complex, the parameter set-

tings of S-ACO become increasingly important to obtain convergence to the optimal

solution. In particular, the experimental results presented above support the follow-

ing conclusions: (1) the di¤erential path length e¤ect, although important, is not

enough to allow the e¤ective solution of large optimization problems; (2) pheromone

updates based on solution quality are important for fast convergence; (3) large values

for parameter a lead to a strong emphasis of initial, random fluctuations and to bad

algorithm behavior; (4) the larger the number of ants, the better the convergence be-

havior of the algorithm, although this comes at the cost of longer simulation times;

and (5) pheromone evaporation is important when trying to solve more complex

problems. These observations will be of importance in the following chapters, where

design decisions will be made both to define the ACO metaheuristic and to apply it

to a multitude of di¤erent discrete optimization problems.

1.4 Bibliographical Remarks

The term stigmergy was introduced by Grassé to describe a form of indirect com-

munication mediated by modifications of the environment that he observed in the

workers caste of two species of termites, Bellicositermes natalensis and Cubitermes sp.
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The original definition of stigmergy (see Grassé, 1959, p. 79), was: ‘‘Stimulation of

workers by the performance they have achieved.’’

Termite nest building is the typical example of stigmergy, and is also the original

example used by Grassé to introduce the concept. Termite workers build their nest

using soil pellets, which they impregnate with a di¤using chemical substance called

pheromone. They start nest construction (Grassé, 1959) by randomly depositing pel-

lets on the ground. The deposits of soil pellets stimulate workers to accumulate more

material on top of them through a positive feedback mechanism, since the accumu-

lation of material reinforces the attraction of deposits by means of the di¤using

pheromone emitted by the pellets (Bruinsma, 1979). This process works only if the

density of the termites is above a given threshold. In fact, if the density is too low,

pheromones are not added quickly enough and the positive feedback mechanism is

inhibited by pheromone evaporation.

Although Grassé introduced the term stigmergy to explain the behavior of termite

societies, the same term has later been used to indicate indirect communication

mediated by modifications of the environment that can be observed also in other so-

cial insects. As we have seen, the foraging behavior of ant colonies described in this

chapter is an example of stigmergy: ants stimulate other ants by modifying the envi-

ronment via pheromone trail updating. A brief history of the notion of stigmergy can

be found in Theraulaz & Bonabeau (1999).

1.5 Things to Remember

9 Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) have

shown in controlled experimental conditions that foraging ants can find the shortest

path between their nest and a food source by marking the path they follow with a

chemical called pheromone.

9 The foraging behavior of ant colonies can be replicated in simulation and inspires a

class of ant algorithms known as ‘‘ant colony optimization’’ (ACO). ACO, the sub-

ject of this book, is currently one of the most successful examples of ant algorithms.

9 In experiments with foraging ants, it was shown that the pheromone evaporation

rate is so slow compared to the time necessary for the ant colony to converge to the

short path that, for modeling purposes, it can be neglected. When considering artifi-

cial ants things are di¤erent. Experimental results show that on very simple graphs,

like the ones modeling the double bridge or the extended double bridge setups,

pheromone evaporation is also not necessary. On the contrary, it improves the algo-

rithm’s performance in finding good solutions to the minimum cost path problem on

more complex graphs.
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9 Biologists have found that stigmergy is a useful concept to help explain the self-

organizing capabilities of social insects (Theraulaz & Bonabeau, 1999; Dorigo,

Bonabeau, & Theraulaz, 2000a).

1.6 Thought and Computer Exercises

Exercise 1.1 Prove by hand calculation that artificial ants using only forward (or

only backward) pheromone update do not converge toward the common use of the

minimum cost path in the double bridge experiment.

Exercise 1.2 Prove by hand calculation that, if artificial ants are given the capabil-

ity (through the use of memory) to retrace their path to the destination node (recall

section 1.3), then they are able to find the minimum cost path in the double bridge

experiment even when they use only backward pheromone update.

Exercise 1.3 Implement a computer program that simulates the artificial ants in the

double bridge experiment. You can do this in two ways: either by numerically solv-

ing equations (1.4) through (1.7), in this way obtaining the expected behavior of the

system, or by running simulations. Is there any di¤erence in the results? What hap-

pens if you only use a few ants in the simulation?

Exercise 1.4 Using the program above, study what happens when you change the

a and r parameters. In particular, if you set a ¼ 1, does the probability of choosing

the short branch still converge to 1? And how do the convergence properties of the

algorithm change when increasing the branch length ratio r?

Exercise 1.5 An alternative model of the double bridge experiment to the one pre-

sented in section 1.2 [equations (1.4)–(1.7)] is the following. Let the amount of pher-

omone on a branch be proportional to the number of ants that used the branch in the

past and let msðtÞ and mlðtÞ be the numbers of ants that have used the short and the

long branches after a total of t ants have crossed the bridge, with msðtÞ þmlðtÞ ¼ t.

The probability psðtÞ with which the ðtþ 1Þ-th ant chooses the short branch can then

be written as

psðtÞ ¼
msðtÞa

msðtÞa þmlðtÞa
¼ 1� plðtÞ: ð1:11Þ

The number of ants choosing the short branch is given by

msðtþ 1Þ ¼ msðtÞ þ 1; if qa psðtÞ;
msðtÞ; otherwise;

�
ð1:12Þ
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and the number of ants choosing the long branch by

mlðtþ 1Þ ¼ mlðtÞ þ 1; if q > plðtÞ;
mlðtÞ; otherwise;

�
ð1:13Þ

where q is a uniform random number drawn from the interval ½0; 1�.
Run Monte Carlo simulations of the dynamic system defined by the above equa-

tions and compare the results with those obtained in the first and second computer

exercise.

Exercise 1.6 The ants’ path-marking and foraging behavior can also be studied in

unconstrained settings. Consider the following experimental setup: a squared envi-

ronment contains three food sources and one nest. Ants leave the nest to search for

food and, once food has been found, they go back to the nest depositing a pher-

omone trail on the ground. When they are looking for food, ants move stochastically

using a probabilistic rule biased by pheromones they sense in the environment (see

also Resnick, 1994). Implement a program which simulates the system described

above and study how the ants’ performance changes for di¤erent implementation

choices. For example, you can study di¤erent forms of the probabilistic rules used by

the ants, di¤erent ways of depositing pheromone on the ground (only while searching

for food, only when going back to the nest, in both cases), di¤erent pheromone

evaporation rates, and so on. (Hint: You may want to use Mitchel Resnick’s Star-

Logo programming language, available at education.mit.edu/starlogo/).

Exercise 1.7 Develop an outline for the implementation of S-ACO (section 1.3.1).

Consider the following issues:

9 How do you build a structure which represents the individual ants?

9 How do you represent the graph, the pheromone trails, and the heuristic informa-

tion?

9 How do you implement the solution construction policy?

9 How do you implement loop elimination?

9 How do you implement pheromone update?

Once you have implemented the algorithm, run it on a number of graphs. What are

your experiences with the algorithm? How do you judge the quality and the conver-

gence of the algorithm? Would you use this algorithm for attacking large minimum

cost path problems? (Consider that there exist algorithms, such as the one proposed

by Dijkstra [1959], that solve the minimum cost (shortest) path problem in Oðn2Þ).
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