
1 Introduction

1.1 Orientation

A brief outline by chapters of the content of this monograph seems
appropriate in order to focus attention on the subject matter, the
original results, and the framework of the presentation. The first
chapter is introductory ; it deals mainly with mathematical preliminaries
of a general nature.

The second chapter is devoted to the study of operators and specifically
discuss es questions related to the invertibility of nonlinear operators.
This study is made in an algebraic framework, and special emphasis is
placed on the properties of causal (nonanticipatory) operators. Causal
operators are indeed of particular interest to engineers and physicists.
The concept of causality is roughly equivalent to that of a " dynamical
system" and is a basic restriction of physical realizable systems. In the
algebraic framework employed in this monograph, causal operators
are considered as a subalgebra in the algebra of (in general, nonlinear)
operators. Another heavily emphasized and exploited concept is that
of extended spaces. These consist of functions which are well-behaved
on bounded intervals, but which do not satisfy any regularity conditions
at infinity . Extended spaces have not been used extensively in analysis;
however, they are the natural setting for the study of causal operators,
and they form a very elegant conceptual framework for the study of
dynamical systems described, for instance, by an ordinary differential
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2 INTRODUCTION

1.2 Mathematical Preliminaries

This section introduces some notation and definitions which will

be freely used throughout this monograph . More details may be found ,
for instance , in Refs. 1, 2.

A set (or space) is a collection of objects with a common property .
The set, S, of objects with property P is denoted by S b {x I x has
property P } . A subset SI of a set S, denoted SI c S, is defined as

SI = {x I XES and x has property PI } and is sometimes denoted by
SI = {x ES I x has property PI }. The sets R , R+, I , and 1+ denote
respectively the real numbers , the nonnegative real numbers , the
integers , and the nonnegative integers.

equation with specified initial conditions or by Volterra integral
equations .

The analysis in the third chapter is devoted to the derivation of

some specific positive operators , which yield the inequalities leading
to some general frequency -power formulas and stability conditions .

The basic concepts related to feedback systems are introduced in the
fourth chapter . Only the analysis problem is considered , and the main

questions investigated are well -posed ness, stability , and continuity .
This theory is developed in the framework of input -output descriptions
of systems, and thus- following the modern trend of mathematical
system theory - departs somewhat from the classical methods , which
consider undriven systems with initial disturbances .

The fifth chapter discuss es the Nyquist criterion and the circle

criterion . These yield graphical conditions for stability and instability
of linear (possibly time -varying ) systems in terms of frequency -response
data .

The sixth chapter is devoted to the study of some more complex
stability criteria , which apply to systems with a linear time -invariant
system in the forward loop and a periodically time -varying gain or a
monotone memoryless nonlinearity in the feedback loop .

The final chapter discuss es linearization techniques and shows that
properly defined linearizations can indeed be success fully used for the
analysis of the continuity of feedback systems. This linearization ,
however , is of a dynamical type and leads to time -varying systems even
when the original system is time invariant . The final chapter also
contains a simple and rather general class of counterexamples to
Aizerman 's conjecture .



MATHEMATICAL PRELIMINARIES

The union of the sets Sl and S2, denoted by Sl U S2, is defined as

Sl U S2 ~ {x I x E Sl or x E S2}. The intersection of the sets Sl and
S2, denoted by Sl n S2, is defined as Sl n S2 ~ {x I x E Sl and
x E S2}. The Cartesian product of two sets, denoted by Sl x S2, is
defined as Sl x S2 ~ {(XI,X2) I Xl E Sl, x2 E S2}.

A map F (or operator or function ) , from a set Sl into a set S2 is a law
which associates with every element x E Sl an element Fx E S2. Sl is
called the domain of the operator. If S~ c S; (S~ c S~) and if F' and
F" are maps from S; into S2 and S~ into S2 such that F ' x = F" x for all
x ES~ (x ES~), then F ' is called the restriction (an extension) of F " to
S{ (S; ). A sequence is a map from / ([ +) to a set S and will be denoted by
{xn} , nE / (nE [ +).

A metric space is a set X and a map , d , from X x X into R + such that

for all x , y , Z E X , the following relations hold : d(x ,y ) = d(y ,x) > 0 ;
d(x ,y) + d(y ,z) > d(x ,z) (the triangle inequality); and d(x ,y) = 0 if
and only if x = y .

A sequence {Xn} , nE [ +, of elements of a metric space X is said to
com'erge to a point x E X if limn -. co d(xn,x) = O. This limit point x is
denoted by limn -. co Xn.

A subsetS , of a metric space , X , is said to be open if for any x EX

there exists an E > 0 such that the set NE(x) ~ {yE X I d(x,y) < E} is a
subset of S. A subsetS, of a metric space , X , is said to be closed if any

converging sequence {Xn} , nE / +, of points in S converges to a point
in S. A sequence {Xn} , nE / +, of elements of a metric space S is said to
be a Cauchy (or fundamental ) sequence if given any E > 0 there exists
an integer N such that d(xn ,xm) < E for all n, m ~ N . A metric space
is said to be complete if every Cauchy sequence converges. Completeness
is one of the most important properties of metric spaces. A subset of a
metric space is said to be compact if every bounded sequence has a

convergent subsequence.
A vector space (sometimes called a linear space or a linear vector

space) is a set V and two maps, one called addition , denoted by + ,
from V x V into V, and the other called multiplication from the
Cartesian product of the field of scalars K (which will throughout be
taken to be the real or complex number system) and V into V such that
for all x , y , z EVand a , ,BE K :

1. (x + y ) + z = x + (y + z) ;
2. there exists a zero element, denoted by 0, with x + 0 = 0 + x = x ;
3. there exists a negative element, denoted by - x , with x + ( - x) = 0

(y + ( - x) will be denoted by y - x ) ;



A vector space is called a real or complex vector space according to
whether the field K is the real or complex number system. Rn denotes
the real vector space formed by the n-tupies of real numbers with
addition and multiplication defined in the obvious way . A vector space
V is called a normed vector space if a map (the norm) , denoted by
II II, from V into R+ is defined on it , such that :

1.
2.
3.

II
II
II

The norm induces a natl;lralmetric d(x ,y ) ~ Ilx - yll , and all statements
(e.g. concerning convergence) always refer to this metric , unless
otherwise mentioned . Sometimes the norm is subscripted for emphasis,
as 1111v, but the subscript will be deleted whenever there is no danger of
confusion .

IlxIIL:<S) ~ (1 Ilx(t)ll~ dt)!!"

The space L ~ (S) is defined as the collection of all measurable B-valued

xii = 0 ifand only if x = 0 ;
axil = lalllxll ;

x + yll ~ Ilxll + Ilyll (the triangle inequality).

A Banach space is a complete normed vector space. This completeness
is, of course , to be understood in the topology induced by the natural
metric . A very useful class of Banach spaces are the so-cal Ied L ~-spaces.
These consist of Banach space B-valued functions defined on a
measurable set S c R , for which the pth power of the norm is
integrablel in the case 1 So p < 00, with the norm defined by
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x + y = y + z ;

(~ + ,B)x = ~X + ,Bx;
~(x + y ) = ~X + ~y ;
(~,B)x = ~(,Bx) b ~,Bx'
1 . x = x .

functions defined on a measurable set S c R which are essentially
bounded (i .e., there exists a real number M < CX) such that Ilx(t) Lin ~ M
for almost all tE S) with

IlxIIL~(S) ~ { infM Illx (t) IIB < M almost everywhere on S} .

1 The integration and measurability considerations refer to Lebesgue measure and
integration when the Banach space B is finite-dimensional. Otherwise, these notions
are to be interpreted in the sense of Bochner (see, e.g., Ref. 1, p. 78).



(X ' Y)L2"<S) ~ JS(X( t ) ,Y( t) II dt .

Similarly , l ~l ( 5 ) with S c I is a Hilbert space , with

(x ,Y) z <S) ~ L ( xn ,Yn ) II .
nE S
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The sequence spaces I~ are defined in an analogous way, with the
integral replaced by a summation. When B is taken to be the real or
complex numbers and S is the interval (- 00, + 00) for Lp-spaces or
S = I for Iv-spaces, then L: (S) and I~(S) will be denoted by Lp and Ip
respectively, when no confusion can occur. The Lp-spaces are very
often used in analysis. The triangle inequality for Lp-spaces is known
as Minkowski's inequality. Another useful inequality for Lp-spaces is
Holder's inequality, which states that fortE Lp(S) and g E Lq(S) with
I Ip + I /q = I and I -< p~ q -< 00, fg E L1(S), and

Ilfg I ILl{S) < Ilf Il Lp{S) I Ig Il Lq{S).

An inner product space is a linear vector space, V, with a map,
denoted by < > and called the inner prodz,lct, from V x Vinto the scalars
K such that for all x , y , Z EVand scalars CI., ,8, the following relations
hold :

1. (x,y) = (y;x) (the overbar denotes complex conjugation);
2. (ax + py, z) = a(x ,z) + P(y ,z) ; and
3. (x ,x ) > 0 and (x ,x ) = 0 if and only if x = O.

The inner product induces a natural norm Ilxll = .JM and all-
statements (e.g., concerning convergence) always refer to the metric
induced by this norm , unless otherwise mentioned . Sometimes the
inner product is denoted by (,)v, but the subscript will be deleted
whenever there is no danger of confusion .

The Cauchy-Sch}.jiartz inequality states that I (x ,y )\ < I Ixll lIyll.
A Hilbert space is a complete inner product space. This completeness

is, of course, to be understood in the topology induced by the natural
norm. The standard example of a Hilbert space is Rn with (X'Y)Rn =
Ir =l Xi Yi where x = (Xl' X2, . . . , xn) and y = (YI, Y2, . . . , Yn). A very
useful class of Hilbert spaces are the L2-spaces . These consist of

Hilbert space H -valued functions defined on a measurable set S c R ,

for which the square of the norm is integrable , and with



6

Definitions.. If x ELI , then the function X defined by

x(t)e- jrot dtX(jcv) = J-+(X)
OO

X (jw ) = Jim IT x (t)e- irot dtT-+oo - T

where the limit is to be taken in the L2 sense. (It is easily verified that
this induces a particular choice for the Cauchy sequence {xn}.) The
notation that will be used for the limit -in-the-mean transform is

J+OOX(jw) = I.i.m. -00 x(t)e-:irot at.

INTRODUCTION

1.3 Transfonn Theory

is called the Fourier transform of x . Clearly X EL (X) and IIXIIL(X) <
!lxllLl ; if x(t) is real, then X(jw) = X( - jw). Since this transform need
not belong to L1, it is in general impossible to define the inverse Fourier
transform. However, if X itself turns out to belong to Ll then

1 f+oo .x(t) = - X ( jw )eJa>tdw
27T - 00

(As always, this equality is to be taken in the Ll sense, that is, except
on a set of zero Lesbesgue measure.) Thus the need of a slightly more
general transform in which the inverse transform can always be defined
is apparent. This is done by the limit -in-the-mean transform. It is well
known that if x , yE L2 n Ll then X , YE L2 and (x ,y ) = (X , Y)/21T
(Parseval 's equality ) . Let x E L2. Since Ll n L2 is dense in " L2, i .e.,
since any L2-function can be approximated arbitrarily closely (in the L2
sense) by a function in Ll n L2, there exists a sequence of functions
{xn} in L2 n Ll which is a Cauchy sequence and which converges to x
(in the L2 sense) . Let Xn be the Fourier transform of x "' . It follows from

the Parseval relation that Ilxn - xmll = (21T)- 1/21IXn - Xmll and that
Xn E L2. Thus since L2 is complete , these transforms , Xn, converge to an
element XofL2 . This element Xis called the limit -in-the-mean transform

of x . It follows that the limit -in -the-mean-transform maps L2 into itself
and that (x ,y ) = (X , Y)/21T for all x , yE L2 and their limit -in -the-mean
transforms X , Y .

One way of defining a limit -in -the-mean transform is by
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X (z) = I.i .m. I XkZ- k
k = - oo

and the in L'erse z-transform

Xk = ~ ~'1~1X(Z)Z- l dz

is well defined since L2 ( O , T ) c Ll ( O , T ) , and is called the Fourier series

of x ( t ) . Clearly X E 100 and Xk = X - k whenever x ( t ) is real . The Parseval

relation states that if Xl ' X2 E L2 ( O , T ) and if Xl , X2 are their Fourier

series , then Xl , X2 E 12 and ( Xl , X2 ) L2 ( O , TJ = 21T ( xi , X2 ) ~ 2 '

In trying to obtain the inverse Fourier series formula , the same

difficulties are encountered as with the inverse Fourier transform , and

the same type of solution is presented . This leads to

+ 00

x ( t ) = I . i . m . I xkeik2 ; rt / T .

k = - oo

One . way of expressing this I . i . m . summation is by

N

x ( t ) = Iim I xkeik2 ; rt / T ,

"\ rook = - . V

where the limit is to be taken in the L2 ( O , T ) sense .

If x Ell , then the function X defined by

+ 00

X ( z ) = I XkZ - k

k = - oo

exists for all Izi = 1 and is called the z - transform of x . In trying to

extend this notion to sequences in 12 the same difficulties and the same

solution as in the previous cases present themselves . This leads to the

limit - in - the mean z - transform

TRANSFORM THEORY 7

With this definition of transforms , the inversion is always possible , and
the inverse transform formula states that
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I -:
I. 1im -T-oo 2T x(t)e- jrot dt

i : Xl (t)X2(t) dt(Xl,X2) = Jim -1--T--oo 2T
for Xl ' Xz almost periodic functions . (This inner product space is,
however , not complete and not separable.) Let X be an almost
periodic function and let {(I)k} be the set of values for which the limit

in (6) does not vanish and let Xk be the value of that limit for W = Wk.
The sequence {Xk} is called the generalized Fourier series of x (t ) . If

space with

vanish es for all but a countable number of values of ()).

7. The space of almost periodic functions forms an inner product
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where the integral is interpreted in the usual manner since

Lz(lzl = 1) c L1(lzl = 1).

A continuous function , x , from R into K is said to be almost periodic
if for every E > 0 there exists a real number I such that every interval
of the real line of length I contains at least one number T such that

Ix(t + T) - X(t) ! < E for all t.

Some properties of almost periodic functions are:

1. Every almost periodic function is bounded and uniformly continuous.
2. Continuous periodic functions are almost periodic.
3. The sums, products, and limits of uniformly convergent almost

periodic functions are almost periodic.
4. The limit , as T - - 00, of the mean value

1 iT
Xl * Xz ~ Jim - Xl (t - T)XZ(T) dT.

T-+oo 2T - T

Moreover , Xl * X2 = X2 * Xl and Xl * (X2 * xa) = (Xl * X2) * Xa for
all almost periodic functions Xl ' X2, Xa.
The function
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x(t) is real, then (J) belongs to the set {(J)k} if and only if - (J) does
and the values xk associated with (J) and - (J) are complex conjugates.
The in L'erse Fourier series is defined as

J.V
x( t) = Jim I xkej(l>ktN -I- co k=- . \?

This limit, which exists, is to be taken in the metric induced by the
inner product on the space of almost periodic functions.2

2 For more details on transform theory, see Refs. 3, 4.
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