
Introduction

~

�

An algorithm animation environment is an " exploratorium " for investigating
the dynamic behavior of programs , one that makes possible a fundamental
improvement in the way we understand and think about them . It presents
multiple graphical displays of an algorithm in action , exposing properties of
the program that might otherwise be difficult to understand or might even
remain unnoticed . All views of the algorithm are updated simultaneously in

real time as the program executes ; each view is displayed in a separate window
on the screen , whose location and size is control led by the end -user . The

end -user can zoom into the graphical (currently , two -dimensional) image to
see more detailed information , and can scroll the image horizontally and vertically

. Views can also be used for specifying input to programs graphically .

A specialized interpreter controls execution in units that are meaningful for

the program , and allows multiple algorithms to be run simultaneously for
comparing and contrasting . The end -user can control how the algorithms
are synchronized by manipulating the amount of time each unit takes to execute

. Programmers can implement new algorithms , graphical displays , and

input generators and run them with existing libraries of algorithms , displays ,
and inputs .

While an algorithm animation environment is a rich environment for actively
exploring algorithms , in many situations a passive , guided approach

using a prepared " script " is more appropriate . For example , when dynamic
material is a visual aid in a lecture or when it complements a traditional

textbook or journal article , the audience is interested in viewing the " virtual
videotape " as the author conceived it , not in exploring the material independently

. And when an algorithm is being viewed for the first time , self -guided

exploration can easily result in distorted or incorrect interpretations and
leave important aspects of the algorithm undiscovered .

Introduction2

To a first approximation , an algorithm animation script is a record of an
end -user 's session that can be replayed . At one end of the spectrum , a script
is merely a videotape that can be viewed passively . At the other , more
interesting end of the spectrum , a script is an innovative communication
medium : the viewer of a script can customize the movie interactively , and

can readily switch between passively viewing it and actively exploring its
contents . Scripts can be used as high -level macros , thereby extending the
set of commands available to end -users of the algorithm animation system ,
and can also serve as the basis for broadcasting one end -user 's session to
other end -users on other machines . End -users can create scripts easily by
instructing the system to " watch what I do ." Scripts are stored as readable
and editable PASCAL programs .

Systems for algorithm animation can be realized with current hardware :

personal work stations - with their high -resolution displays , powerful dedicated
processors , and large amounts of real and virtual memory - can support

the required interactiveness and dynamic graphics . In the future , such

work stations will become cheaper , faster , and more powerful , and will have
better resolution . An algorithm animation environment exploits these characteristics

, and can also take advantage of a number of features expected

to become common in future hardware , such as color , sound , and parallel
processors .

We develop here a model for creating real -time animations of algorithms
with minimal intrusions into the algorithm 's original source code , as well
as a framework for interacting with these animations . We also describe
a prototype system , BALSA - II , and its feasibility study system , BALSA -

I , that realize the conceptual model . Currently , BALSA - II is being used
in teaching parts of a data structures course , for research in the design
and analysis of algorithms , and for technical drawings in research papers
and textbooks . BALSA - I has been in production use since 1983 in Brown

University 's "Electronic Classroom ." Appendix A documents some of our
experiences using the environment as a principal mode of communication

during lectures in an introductory programming course and in an algorithms
and data structures course . Appendix B cites publications describing various
aspects of the project .

1.1 Thesis Contributions 3

1.1 Thesis Contributions

The primary contributions of this thesis are its models for (1) programmers
creating animations, (2) end-users interacting with the animations, and (3)
end-users creating , editing , and replaying dynamic documents . These models

have been realized in the BALSA - I and BALSA - II systems. A secondary
contribution of this research is the numerous static and dynamic graphical
displays of a wide range of algorithms and data structures we have created
using the prototype systems, most of which had never been displayed or
even conceived previously . The domain includes sorting , searching , string
processing , parsing , graphs , trees, computational geometry , mathematics ,
linear and dynamic programming , systolic architectures , and graphics . The
systems have also be used to show innovative dynamic illustrations of fundamental

concepts in procedural programming languages. The diagrams in this
document are a small sampling of these images ; others have been reported
elsewhere [16, 17, 18].

We now elaborate on the primary contributions of this thesis .

(1) A model for programmers creating animations . The programmer
model is independent of the contents of all algorithms , inputs and views ;
hence, it can be used to animate any algorithm in a systematic manner .
Moreover , the model makes it easy to animate new algorithms and create
new displays .

Algorithms being animated are separated into three components : the
algorithm itself , an input generator that provides data for the algorithm
to manipulate , and graphical views that present the animated pictures of
the algorithm in execution . Views are built following a classical graphics
modeler- renderer paradigm , and an adapter allows any particular view
to be used to display aspects of many different algorithms . Modelers
can be chained to provide views of views, and renderers can be based
on multiple modelers . Algorithms are annotated with interesting events
to indicate phenomena of interest that should give rise to the displays
being updated ; in addition , the events provide the abstraction for end-
users to control the execution .

(2) A model for end -users interacting with animated algorithms .
The end-user model , like the programmer model , is independent of the
algorithms , inputs , and views ; thus , end-users interact with animations

4 Introduction

in a consistent manner . This model gives well - defined semantics for each

end - user command ; in fact , BALSA - I and BALSA - II can be thought of

as merely two different user interfaces that manipulate these properties .

The interactive environment is characterized at any point by its structural

, temporal and presentation properties . The structural properties

are the set of algorithms currently running and the data they are processing

. Information concerning the specialized interpreter , such as the

program - specific units chosen for stopping and stepping points and how

multiple algorithms are synchronized , are the temporal properties . The

configuration of view windows on the screen are considered the presentation

properties . In addition to providing data for algorithms to process ,

end - users can manipulate the underlying algorithms , input generators

and views through the concept of parameters for each component . That

is , end - users can select among parameters preset by the programmers ;

end - users cannot create new variants at runtime .

(3) Model for end - users creating , editing , and replaying dynamic

doc ~ ments . Dynamic documents , called scripts , are created by having

the system watch what the end - user does . However , a semantic interpretation

of the actions is maintained in a textual file - an executable

PASCAL program - not a command or key stroke history . Scripts form

a basis for passively watching the dynamic material like a videotape ,

or actively interacting with the material . The script model is mostly

independent of an algorithm animation system : the principals can be

applied to virtually any system with well - defined structural , temporal

and presentation properties .

1 . 2 Applications of Algorithm Animation

An obvious application of an algorithm animation environment is computer

science instruction , particularly courses dealing with algorithms and data

structures , e . g . , compilers , graphics , databases , algorithms , programming .

Rather than using a chalkboard or viewgraph to show static diagrams , in -

structors can present simulations of algorithms and programming concepts

on work stations . Moreover , students can tryout the programs on their own

data , at their own pace , and with different displays (from a library of existing

1.2 Applications of Algorithm Animation

displays) from those the instructor chose. Non-naive students can code their
own algorithms and utilize the same set of displays used by the instructor
in demonstration programs . As mentioned earlier , the appendices describe
how BALSA - I was used in computer science instruction .

Another proven application of an algorithm animation environment is as
a tool for research in algorithm design and analysis . Human beings ' ability
to quickly process large amounts of visual information is well documented ,
and animated displays of algorithms provide intricate details in a format
that allows us to exploit our visual capabilities . For instance , experimenting
with an animation of Knuth 's dynamic Huffman trees [43] revealed strange
behavior of the tree dynamics with a particular set of input . This lead to
a new, improved algorithm for dynamic Huffman trees [70]. A variation of
Shellsort was discovered in conjunction with static color displays of Bub -
blesort, Cocktail-Shaker Sort, and standard Shellsort [41]. An early version
of BALSA - I was used to help understand and analyze a newly discovered
stable Mergesort [36].

Animations developed for instruction can be used for research, and vice
versa. For example , animations for an algorithms course were used with
minor changes to investigate shortest -path algorithms in Euclidean graphs
[61]. Conversely, displays developed in conjunction with research on pairing
heaps [29] were later incorporated into classroom lectures on priority queues.

Another application for an algorithm animation environment is as a testbed
for technical drawings of data structures . It allows interactive experimentation

with input data and algorithm parameters to produce a picture that

best illustrates the desired properties . Furthermore , the drawings produced
are always accurate , even ones which would tax the best of draftsmen . For
example , it is laborious indeed for a draftsman to take a set of points and
prepare the sequence in Figure 1.1 showing the construction of a Voronoi
diagram and its dual . As more and more researchers begin to typeset their
own papers and books , this application will become increasingly important .

A prime but so far unexplored application area for algorithm animation is
in programming environments . Pioneering environments on graphics -based
work stations , such as Cedar [65], Interlisp [64], and especially Smalltalk [31] ,
are, by and large , text -oriented . Recent work station -based program development

environments incorporate graphical views of the program structure

and code, not data , and consequently have had limited success in giving
additional insight into the programs : "The experience we have had with

5

Introduction6

Figure 1.1: Construction of a Voronoi diagram .

PECAN , however , has shown that such graphical views are limited in their
power and use fulness when they are tied to syntax . The syntactic basis forces
the user to treat these two - dimensional representations in a one -dimensional

way , and the graphics do not provide any significant advantage over text "

[57] . These systems could be greatly enhanced by the display capabilities of
an algorithm animation environment .

Algorithm animation has also been used for performance tuning [24] , and
has the potential to be helpful in documenting programs [47] and in systems
modeling , especially for multithreaded applications .

1.3 Conceptual Model

Algorithm animation involves two types of users: end-users and client -
programmers . The end-users watch and interact with the animations on
a work station , whereas the programmers implement the algorithms , displays

, and input generators that the end-users see and manipulate . An
algorithm animation system itself is domain -independent : the system does
not know whether an algorithm sorts numbers or produces random numbers ,
or whether a view shows a tree or a table . It does not attempt to decide what
phenomena are interesting in a program , or what styles of input or visual
representations are appropriate . Rather , it provides tools so that a large variety

can be easily implemented and end-users can watch and interact with
them in a consistent manner .

We will use the terms algorithm animation environment and algorithm animation
system to reflect the two types of users. The algorithm animation

1.3 Conceptual Model '1

system is the code with which client -programmers interface , and the algorithm
animation environment is the runtime environment that end-users see.

It is the result of compiling the code that client -programmers implement with
the algorithm animation system.

For end-users, the main goal of the algorithm animation environment is
to provide a consistent manner in which to interact with animations , independent

of who happened to prepare the animation and what domain the

animation happens to be from . Once an end-user has used the system for
one algorithm , he should know how to use it for any and all algorithms .

For client -programmers , the main goal of an algorithm animation system
is to provide all of the ancillary functions needed to make an interactive
animation . Each programmer should not need to reinvent and reimplement
facilities common to all views , such as zooming into displays . A second
important goal is to provide a model whereby the animation code is separated

from the algorithm . Moreover , the code relating t ~ the animation

(and to preparing input for an algorithm) should be shareable by many algorithms
. Thus , a programmer implementing an algorithm should be able to

concentrate primarily on the algorithm , independent of input generators and
ilisplays and the window configuration selected by the end-user. Conversely ,
a programmer implementing a display should do so without concern for the
algorithm , input generators or the end-users.

The program being animated must be split into various pieces so that
the algorithm animation system, as well as the end-users, can manipulate
them systematically . Programs are separated into three components : the
algorithm itself , the various input generators that provide data for the algorithm

to manipulate , and the various graphical displays , or ,views, that

present the animated pictures of the algorithm in execution .
The remainder of this section presents a high -level overview of the model

an algorithm animation systems gives to its two types of users. The descriptions
of the models here are necessarily brief and incomplete ; Chapters 3

and 4 are devoted to end-users, and Chapters 5 and 6 to programmers .

End - User 's Model

The end -user of an algorithm animation environment is always in a " setup -
run " loop :

Setup : The end -user arranges the screen and decides which algorithms to

8 Introduction

run , which input generator and views to use , and what the values

of any parameters to each of these should be . Each algorithm has a

default setup that can be designated and changed by the end - user .

Run : The end - user runs the algorithms and watches them in the view

windows on the screen . While the algorithms are running , the end -

user can suspend them to change the ensemble of views on the

screen as well as the program ' s speed and breakpoints .

Changing or creating the content of an algorithm , view , and input generator

is done , strictly speaking , not by an end - user but by a programmer .

Such editing is done outside of the algorithm animation environment , using

the standard editors and compilers . If the machine supports multiple pro -

cesses as well as dynamic loading and unloading , the algorithm animation

environment does not have to be exited .

Because the notion of parameters to algorithms , input generators , and

views is rather unconventional , we now elaborate .

Algorithms , input generators , and views can all be tuned directly by the

end - user . Just what the parameters mean for any particular algorithm ,

input generator , or view depends on how it was implemented . Thus , it is

the programmer , not the end - user , who decides what the parameters are -

whether the particular component will even have any parameters , what the

user interface will be that controls how they are set , what their default

values are , and so forth . The user interface management tools and guidelines

of the underlying work station environment promote consistency in the user

interface for manipulating parameters across many domains .

Algorithm parameters affect the algorithm , not the data that the algorithm

manipulates . For example , should the lexical analyzer in an animated

compiler use a hash table of size 119 or 2001 ? Or should it use a binary

tree (or some specific type of balanced tree) rather than a hash table ? Input

parameters affect the input generators . For example , the input parameter

to a generator that reads numbers from a file for sorting algorithms would

be the name of the file . Another generator for the same sorting algorithm

might produce random numbers ; the parameters for this generator would

be how many numbers to produce and a seed for a random number generator

. Of course , an input parameter will affect the data indirectly , which

in turn will affect the algorithm . View parameters affect how information

is displayed in a particular view window ; they do not affect the algorithm

1.3 Conceptual Model 9

or input generator . For example , should a node in a graph be displayed as
a circle or as a square ? Should text inside the node scale with the size of

the node , or stay a fixed size ? The end -user 's display preferences are not
relevant to the algorithm or to the input generator .

Using parameters to interact with programs is a novel approach . It provides
a consistent framework for allowing end -users to specify various types

of information when they want , not when the program wants it . In general ,
algorithm and input generator parameters are specified before an algorithm
runs ; view parameters can be changed while a program is running or even after

it has finished . At any time , the end -user can observe the current values

of any of the parameters . Unfortunately , this strategy does not work 100 %
of the time . There are situations in which information cannot be specified
before a program runs - for example , picking a node to delete in a binary
tree - because they are based to some extent on the current runtime state of

the algorithm . Such information is called runtime -specifics .

Programmer ' s Model

While algorithms , input generators , and views are highly interrelated , they
must also be independent and must conform to rigid interface specifications
in order to work with one another and with the algorithm animation system .
Each algorithm has two parts : code to implement the algorithm and code
to manipulate end -userparameters . Similarly , each input generator and
each view has a separate part to handle its end -userparameters . As will be
described in later chapters , each component has additional parts to handle
other specific functions . An overview of the relationship among components
is shown in Figure 1.2 .

Algorithms are coded in a high -level language such as PASCAL and are
annotated with markers called interesting events or algorithm events , indicating

the phenomena that will be of interest when the program runs . One

type of algorithm event , an output event , corresponds to the points at which
a Writeln might have been placed for debugging , tracing or generating output

of the algorithm in a non -graphical environment . When the program

runs within the algorithm animation environment , all views on the screen
are notified whenever an output event occurs and each view updates itself as
appropriate to reflect the event . The other type of algorithm event , an input
event , corresponds to the place at which a Readln might have appeared in

Introduction10

Figure 1 .2 : Relationship among components that a client -programmer implements
to animate algorithms . Boxes represent components implemented

by the progmmmer , and ovals represent parts of the algorithm animation system
that are responsible for routing information among components . Solid

arrows indicate unidirectional flow of information , and dashed arrows indicate
bidirectional flow . The renderer associated with the view window having

the keyboard focus is highlighted .

a conventional implementation of the algorithm . During execution , the current
input generator is notified of each input event and responds by returning

some data to the algorithm .
Events are an important aspect of the conceptual model . Essentially , an

event is a "code atom " which serves the following purposes : (1) it gives a

name to a segment of code so end-users can refer to it ; (2) the end-user can
associate a cost to computing the segment; (3) the end-user can single-step
and set breakpoints based on events ; and finally (4a) an output event is a
signal for the views to update themselves and (4b) an input event is a signal
for the input generator to provide the algorithm with data .

Algorithm events are the software analogue of an oscilloscope : the output

Algorithm

- c:

- ~
: I Modeler
-

-
-

Renderer -1

- Adapter
- - -

: i i~~[~:::;:;:;:::;:;:::;:::::::::;:;:::;:::;:;::::~~~~~
: : ~:~1~ Renderer-2 ~~~jj
- f ~j[~~::::::::::::::::::::::;:::::::::::::;:;:::::lji11

.

rat correla/eM SO@ Renderer-3- - - - ~ 5g
Router

1.3 Conceptual Model 11

events correspond to points on a circuit where the probe leads are attached

to observe signals of interest , and input events correspond to connecting a
circuit 's input port to power , ground , or some other circuit . The end -user
is aware of events because they provide the abstraction through which the
algorithm 's execution is control led .

A view embodies a synthetic , dynamic , graphical entity . The image displayed
on the screen is the result of update messages the view receives ; a

view does not access an algorithm 's data structures . A view is internally
structured into a modeler and a renderer : the modeler maintains the model

which the renderer displays on the screen in a view window . Multiple renderers
can be simultaneously displaying (in different ways) the same model

(in separate windows) . An adapter converts algorithm output events into
update messages understood by the modelers and renderers . Consequently ,
views can be used without change in a variety of algorithms ; in addition , as
we shall see, views can be chained together to display aspects of themselves .

Views can also be used to allow the end -user to provide input graphically in
response to an algorithm input event by pointing in a view window . Because

only the renderer knows how the model is displayed on the screen , the input
generator must query the renderer to correlate a point on the screen to the
model . The adapter is also used to convert the queries and responses between
the input generator and the renderer associated with the view window that

has the current keyboard focus ; the queries are called correlate messages .

Syntactic error -checking can be done in the renderer , but semantic checking
must be done either by the input generator or the algorithm . Specifying
information graphically is not always meaningful in all views .

Cast of Characters

Algorithm animation involves a variety of activities , each of which draws on
the skills of a particular group of people . Because a primary focus of this

thesis is to consider just what tools are needed to animate programs , we first
need to identify this cast of characters . These classifications are just for the
sake of analysis ; a single person often plays multiple roles .

The end -users actually use the environment interactively to explore algorithms
in action . They use a specialized interpreter to control the execution

of the available algorithms , and a specialized user interface to manipulate
windows in which to view the execution via any of the available graphical
displays . They can run the algorithms using a wide assortment of input

generators and various instantiations of any particular input generator . Because
there are many possible ways to connect algorithms , views , and inputs ,

end-users can generate displays never seen by the client -programmers who
implemented the pieces.

End -users are called script authors and script readers when they use the
system as an electronic medium for communication by creating and replaying
scripts . In an educational setting , the script authors are often the instructors
and the readers are the students . Often , a person coding a new algorithm
or view will also prepare a script to illustrate properties of the algorithm
or view . When an end-user is devising a new script or browsing through
an existing script , there are additional commands that are not normally
available , e.g., commands that control what type of information is saved or
restored , command that traverse the dynamic document , and so on.

There are two types of client -programmers . The first type , algorithmati -
clans , take the actual algorithms being animated , often from a textbook ,
journal paper , or even existing applications , and augment them with markers

indicating interesting phenomena that should give rise to some type of
display . The algorithmaticians usually also implement the input generators
and the adapters . In an educational setting , the course instructor and teaching

assistants are usually the algorithmaticians . In a research environment ,

the researchers themselves are usually the algorithmaticians . This process
must require only a nominal amount of effort in order for an algorithm animation

system to be successful.
The second type of client -programmer , animators , design and implement

the view code which actually displays algorithms in execution , i .e., renderers
and modelers . They code in a high -level language , such as PASCAL or C, and
use a library of graphical primitives provided through the algorithm animation

system . Ideally , these people should have training in graphic design; in
reality , however , these people are usually computer scientists without formal
artistic training . They should have access to graphic designers with whom
effective displays can be jointly developed . Achie ,,'ing real -time animation
often requires low -level system-dependent coding .

The central figure in any software environment is the systems guru , the
person responsible for implementing , maintaining , enhancing and debugging
the system . Systems gurus must be very competent systems programmers ;
they serve as the interface between the people who use the system interactively

(end-users in general , and script authors and script readers inpartic -

Introduction12

1.4 Perspective on Graphics in Programming 13

ular) and those who use the algorithm animation system as programmers
(algorithmaticians and animators) . As an algorithm animation system matures

, the need for a systems guru diminish es.

Static displays of program data are more difficult to create automatically
than static displays of code. One problem is that a given data structure

1 .4 Perspective on Graphics in Programming

Algorithm animation is a form of program visualization , " the use of the
technology of interactive graphics and the crafts of graphic design, typog -
raphy , animation , and cinematography to enhance the presentation and understanding

of computer programs . Program visualization is related to but

distinct from the discipline of visual progmmming which is the use of various
two -dimensional or diagrammatic notations in the programming process"

[8] . Visual programming also includes those programming -by-example , by-
demonstration or by -constraints systems that use graphical objects as fundamental

computational entities . A number of surveys about visual programming
have appeared recently [20, 21, 32, 55] . Displays of the execution

of visual languages used in visual programming can be easily confused with
program visualization . More to the point , they should be entirely similar !
Systems such as GARDEN [58] strive to unify these two disciplines ; that
approach , however , is not our concern here.

Program visualization systems can be classified by whether they illustrate
code or data , and whether displays are dynamic or static [53]. Inaddition

, dynamic displays are either interactive or passive, such as a videotape .
Algorithm animation displays are dynamic displays showing a program 's fundamental

operations ; operations embody both transformations and access es
to data and to a lesser extent , flow -of-control .

Typical static displays of program code are flowcharts , N assi- Shneiderman
diagrams , scoping diagrams , and module interconnections , as well as text itself

when enhanced through formatting and typography . Numerous systems

have been developed to display one or more such diagrams automatically
from programs coded in high -level procedural languages , and to use the
diagrams for editing the underlying program . Static displays of program
structure can be animated automatically by highlighting the appropriate
parts as the code runs .

shown in Figure 1.3. The content of the displays ranges from direct representations
of the program 's data to synthetic images information not necessar-

ily inside the program . The persistence dimension ranges from displays that
show only the current state of information to those that show a complete
history of each change in the information . The transformation dimension
ranges from displays that show changes in the pictures discretely to those
that show incremental and continuous changes.

Readers are encouraged to pause at this point to scan through the screen
images in Chapter 3. We will refer to those images in the remainder of this
section to illustrate the various types of algorithm animation displays . In
addition , Figures 1.4 and 1.5 show typical displays in the BALSA - I algorithm
animation environment . Figure 1.4 shown First -Fit Binpacking operating on

Introduction14

can be implemented in many different ways, and a second problem is that
a data structure has many different representations . Typically the more
informative displays are not the canonical displays that can be created automatically

, but are those discovered only through experimentation . Even
canonical displays are difficult to construct for arbitrarily linked structures ;
they tend to look like rat 's nests and lose meaning . This thesis presents
no new layout algorithms for static displays of data structures . We assume
that either such a package is Available (Chapter 2 cites some packages) or
the user is interested in a customized display to illustrate particular features
of an algorithm .

Creating dynamic displays of program data has all of the problems that
creating static displays has and more . In particular , dynamic displays must
decide when the display should be updated and how this should be done
incrementally tq look effective . The precise definition of what constitutes an
"effective " display is beyond our scope here. It is subjective , and involves
many complex , interacting and competing factors , such as the viewer 's visual
vocabulary , the speed of the changes, the techniques used for highlighting ,
and so on .

Algorithm animation displays can be thought of a dynamic displays of an
algorithm 's operations , not merely its data or structure . We now explore
the nature of these displays in depth .

Algorithm Animation Displays

Algorithm animation displays can be described using three dimensions , .as

1.4. Perspective on Graphics in Programming 15

Incremental

Current

Figure 1.3: Attributes of dynamic algorithm animation displays along three
axes. Displays classified in the rear upper right corner (synthetic , history ,
and incremental) are usually the most intricate to implement , and those in
the front lower left (direct , current , and discrete) the easiest. ", .

a relatively small amount of data ; Figure 1.5 shows four different binpacking
algorithms operating on a much larger amount of data .

First , we will look at the content axis . Direct displays are pictures that
are isomorphic to one or more data structures in the program . At a given
instant , the data structures) could be constructed from the display , and
the display could be constructed from the data structures) . No additional
information is needed. For example , the Bins view (Figure 1.4) in a direct
view of the array bins. The Dots view (Figure 3.3) is a direct view of the
array of numbers being sorted .

Synthetic displays , on the other hand , do not have a mapping to any program
variables . They can show the operations causing changes in the data ,

or can be abstractions of the data . The Waste view (Figures 1.4 and 1.5)

16 Introduction

Figure 1.4 : First -fit binpacking algorithm .

is a good example of a synthetic view: after each weight is inserted in the
bin, the graphs are continued at the right edge to show how much space is
wasted. The top graph shows the wasted space and the bottom graph shows
the lower bound of this quantity. The concept of wasted space is not in the
program. The Probes view (Figure 1.4) is also a synthetic view. Each row
corresponds to searching for a bin in which to insert a new weight. A hollow
icon indicates a bin did not have enough room for the weight, whereas a
filled icon indicates that it did. A square icon indicates that the weight is
the first one in a bin; the circle indicates a bin that has been started already.

Many displays are composites of direct and synthetic components. For
example, the Compare-Exchange view (Figure 3.1) shows some values of the
array; additional information (showing the results of comparisons or exchanges

) is encoded as the color of the elements. A proper reading of the
picture would enable the current contents of the array to be reconstructed,
although this property is not invertible: the picture could not be reconstructed

just by knowing the contents of the array at an instant of time.
This view shows more than simply changes to the algorithms data structure;
it shows both the fundamental operations the algorithm performs, and the

1.4 Perspective on Graphics in Programming 1 '1

Figure 1.5: Four binpacking algorithms .

flow of control : each iteration of the algorithm 's main loop is displayed on a
separate line .

A second criterion for classifying displays is whether a display shows current
information or illustrates a history of what has happened . In Figure 1.4,

all views except for the Bins view shows some history . The Weights view is
a history of each weight inserted into a bin , the variable wt . A triangle is
drawn beneath a weight when that weight causes a new bin to be started ;
thus , it . is a history of a synthetic entity . In the Waste view , only the right
edge shows the current waste ; the part of the graph leading up to the right
edge is a history of the waste as each weight is processed. The Probes view
shows a history of each and every bin that was tested to see whether or not
it could support the new weight . Even the Code view shows history !

The third and final criterion by which we can classify animations is based
on the nature of the transitions from the old displays to the new ones. Incremental

transformations show a smooth transition . For example , in the

Packing w/ probes view in Figure 1.4, the dotted box showing the attempt
to put a new weight into each of the bins , advances smoothly from one bin
to the next , while also keeping a trace of itself . Discrete transitions are just

18 Introduction

that : the old value is erased and the new value is drawn . All of the views in

Figure 1.4, with the above mentioned exception , are discrete transitions .
Discrete transformations are perceived as incremental when the difference

between the new and old pictures is "small enough" in relationship to the
complexity of the data . Genuinely discrete transformations tend to be most
useful on large sets of data . Incremental transitions are most effective when
users are examining an algorithm running on a small set of data ; in fact ,
incremental transformations tend to hinder the display of large data because
they slow down the animation significantly and contain too much low -level
detail . Unless a good animation package is provided , incremental transitions
are often tedious and difficult to program .

Another issue that incremental transformations must address is how much

time they should consume. For example , changing a single pointer in a tree
might cause a very large subtree to move a large distance (which might also
necessitate repositioning all nodes in the tree) . How fast should the subtree
movement be? Should it be at the same speed as if it moved a small amount ?
Or should the total movement consumf; a constant amount of time , so that
it moves quickly if it has a large distance to cover?

1 . 5 Automatic Algorithm Animations

What is it about algorithm animation that is more than simply monitoring
a variable ? That is , why could we not simply associate a procedure with a
variable that would be called each time the variable is modified or accessed ,
with information about which part of it was modified or accessed ? Inparticular

, annotating the algorithm with interesting event markers and creating

the specialized displays are time -consuming and error -prone activities . Can
these activities be automated or eliminated ?

Algorithm animation displays cannot be created automatically because
they are essentially monitors of the algorithm 's fundamental opemtions ; an
algorithm 's operations cannot be deduced from an arbitrary algorithm automatically

but must be denoted by a person with knowledge of the operations

performed by the algorithm . In addition , there are problems relating
to real -time performance and to informative displays . We shall return to
these problems below .

Even if we assume that an algorithm 's operations have been identified ,

1.5 Automatic Algorithm Animations 19

automatically creating pictures to depict the operations is not currently feasible
. Although graphic designers have worked on a semiology of display

techniques for static information [12, 13, 67] , except in a few highly spe-
cialized application domains , they have not had the tools to create dynamic
displays and therefore have not looked at the issues involved in their semiol -
ogy. Moreover , many data structures and algorithms are highly specialized
and require one-of-a-kind displays to make aspects of their properties understandable

. Some knowledge -based systems have been built that present

meaningful pictures and even animations , but in restricted domains [25, 48] .
More experience is needed with animated algorithm displays before we can
hope to automate the task , though libraries of standard displays are possible .

Automatic Program Visualization Displays

We now examine in more detail the nature of program visualization displays
that can be created automatically . Dynamic displays require two types of
information : the entity to be displayed and a delta describing the change in
the entity . Static displays need only information regarding the entity .

Dynamic and static displays of static or even executing code or program
structures can be created automatically because the set of entities and deltas
is well -defined and can be accessed directly by a display routine . The entities
are derived from the source code, and the deltas from the changes in the
program counter . Examples of code entities are procedures , statements ,
files , and blocks ; examples of deltas are advancing to the next line of code,
entering or exiting a procedure , and entering or exiting a block .

Dynamic and static displays of data can also be created automatically .
The entities are the data structures) to be displayed , and the deltas can
be inferred by examining the data each time it is accessed or modified . A
routine to display a static picture of the data structure automatically would
access the data through the runtime environment . It would need to be
told how the data is represented in the program (i .e., a mapping into a
canonical representation) and what type of display is desired (i .e., a display
technique for the canonical representation) . Although canonical displays
can be created without modifying the algorithm , they are not always very
informative , especially for non-trivial data structures .

Moreover , dynamic displays created automatically do not show the delta
in the way the change is conceptualized . This problem is because only the
"before" and "after " conditions of the data are known and the display can do

if r - 1 :5 M then
for i := 2 to N do

begin
v := a[i] ; j := i ;
while aU - 1] > v do

begin aU] := aU - 1]; j :=
aU] := v
end

If the subfile being sorted (the elements between 1 and r) is small enough , Insertion
sort is used to sort the subfile . Two fundamental operations are being

performed on the array : " set value " (in the then part) and " exchange " (in

20 Introduction

nothing more than interpolate between the two states . Consequently , views
that are direct views of data structures and are updated discretely can be
created automatically , subject to the inherent problems with displaying data
mentioned above , because they do not attempt to display the deltas .

the problems with creating algorithm animation

j - 1; end -,

Jo .- 1 - 1. J. 0- ro.- , .- ,

Difficulties of Algorithm Animation Displays

We now examine in Detail

displays automatically .

Problem 1 . Capturing operations . Algorithm operations do not nec -

essarily correspond to each access or modification of the algorithm ' s data

structures . In particular , (a) accessing a particular variable has different

meanings at different locations in the algorithm , and (b) an arbitrary number

of access es and modifications (including zero) results in a single operation .

The following fragment of Quicksort illustrates the first of these problems :

1.5 Automatic Algorithm Animations 21

the else part) . A client -programmer would like to illustrate these operations
differently .

A monitor cannot not know which access es to array a constitute a "set
value ," and which an " exchange ." Even if this problem were eliminated ,
say by re -coding the Insertion sort phase using exchanges , a second , more
difficult , problem remains : how can a monitor infer which access es comprise
an exchange ? It is the result of a variable number of modifications to the
array ; it is not the result of every other modification . Of course , one could

always change the Quicksort code fragment to guarantee that every exchange
is the result of exactly two modifications . We assert , however , that to do so

would be just as difficult and error -prone - if not more so - than adding the
algorithm event annotations that our model requires . Moreover , it would

be counter to one of our primary goals : minimal intrusions into the original
algorithm 's original source code .

The second aspect of the problem , that of an arbitrary number of access es
and modifications resulting in a single operation , is seen in the Partition - Tree

view in Figure 3 .5 . The shape of the tree is determined by the algorithm
operation , " Element In Place ." To simplify the discussion , assume that Insertion

sort is not used for the small subfiles . That is , remove all code in

Quicksort fragment above except the body of the else statement . After the

modified fragment has been executed , the value stored in alii is finalized .
This abstract operation cannot be inferred by simply monitoring variables :
it is a conceptual operation that is essentially triggered by the control flow .

Another example of this second aspect of the problem is illustrated in the

following fragment of code from an implementation of Pairing Heaps [29]
(the pairing heap is stored using right -sibling and left -child links , with back
pointers to each node 's parent) :

22 Introduction

. . .

back[O] := 0;
if (info [x] < info [y])

then begin rbro [x] := rbro [y]; back[rbro [y]] := X; end
else begin

back[y] := back[x];
if (rbro [back[x]] = x)

then rbro [back[x]] := y
else lson[back[x]] := y ;

t . - X . X . - Y . Y . - t .. - , . - , . - ,

end '
,

rbro [y] := lson[x]; back[lson[x]] := y ;
lson[x] := y ; back[y] := x ;
. . .

This rather complex sequence of pointer manipulations performs a single
(and rather simple) "link " operation of sub trees x and y . Linking two subtrees

involves making the subtree with the larger root node the leftmost son
of the other subtree . A monitor would need to coordinate access es and mod -

ifications to four arrays (info, back, rbro, and lson). Note that displaying
the data at each operation would result in pictures that are misleading and
would obscure the essence of the link operation .

Problem 2 . Real - time performance . In general , the data being accessed
or modified may be costly to identify , resulting in unacceptable performance .
For example , knowing which node in a tree is being modified may lead to
costly computation to determine its parent , siblings , and children . Just
because a task is expensive does not mean that it is impossible ; however , for
the real -time interactive systems that we address in this thesis , performance
is a real issue. One cannot just hope for faster hardware or clever display
algorithms , since for every increase in hardware or algorithm speed, the
complexity of the algorithms and the size of the data that one will wish to
animate is bound to also increase .

Problem 3 . Informative displays . Many displays necessitate detailed
knowledge about the algorithm 's runtime behavior and the specific data
upon which the algorithm will be run . In fact , the optimal size and layout
parameters for some displays require two passes . For example , because the
Partition - Tree view knows that .the height of the tree will be about equal to
the binary logarithm of the number of elements in the corresponding array ,

1.5 Automatic Algorithm Animations 23

However . it cannotit can allocate that much vertical space from the start .
know the exact height until the algorithm runs .

Towards Automatic Algorithm Animation Displays

Algorithm operations must be identified by a programmer . Languages that
support abstract data types are particularly well -suited to this approach .
For example , in Smalltalk , entities and their deltas are defined by objects
and the messages they react to . Given a properly modularized Smalltalk
program , one just needs to specify how the objects and messages map into
entities and deltas . This approach is not limited to Smalltalk , object -oriented
programming languages, or data abstraction languages. In conventional programming

languages, such as PASCAL or C, one could encapsulate the operations
in procedure calls (there would be a one-to-one mapping between the

procedure calls and the Smalltalk messages), which could then be monitored
automatically .

It is tempting to believe that such a strategy is a panacea. However , algorithms
from textbooks and journals are given in " straight -line " code; they

are not broken into procedures . It is impossible to take straight -line code and
to infer automatically the correct abstractions to form the encapsulations .

Consider , for instance , the fragment of Quicksort from above. After the
algorithm operations have been encapsulated (by hand) into procedure calls,
it becomes :

. . .

repeat

repeat i := i + 1; until Compare (a[i] , v , ' ~ ') ;
repeat j := j - 1; until Compare(aU], v, ' ~ ');
Exchange(a[i] , aU]);

until j :$: i ;
Exchange(a[i] , aU]); Exchange(a[i] , a[r]) ;
Elementln Place(i) ;
. . .

The procedure Elementln Place does nothing ; it has been added strictly for
animation purposes . The difficult issue of annotating an algorithm is one of
identifying the phenomena of interest in the program ; the appropriate syntax:
for enunciating the abstractions mayor may not be directly supported in
the implementation language .

24 Introduction

The approach we have taken in BALSA - I and BALSA - II is to annotate
algorithms with "events" rather than forcing the algorithmatician to radically

proceduralize his algorithm to encapsulate each meaningful operation .
This approach minimizes the changes to the algorithm , since the algorithm
is augmented , not transformed . Of course, if an algorithmatician is willing
to procedurize the algorithm , events can be inferred "automatically " by a
rather simple preprocessor that inserts an annotation as the first statement
of each procedure . The parameters of the event would be the name of the
procedure , followed by the arguments of the procedure .

Events also help to solve the second and third problems mentioned above.
Data that may be costly to identify automatically can often be identified
by the algorithm and associated with the event . Other events can broadcast

information of interest concerning the characteristics of the algorithms ;

displays can adjust parameters appropriately .
There are numerous additional pleasant side-effects of having annotations

in the algorithm which we shall discuss briefly here and explore more fully
in later chapters . The end-user can specify events for setting breakpoints ,
setting granularity of single stepping , and marking how much time each
event should take to execute . The animator can debug a view independent
of the algorithm , by feeding it a stream of events generated by hand (or
even randomly) . The algorithm need not be implemented in any specific
language as long as it is callable by the algorithm animation system , nor
are there any restrictions on the data structures used in the algorithm . The
systems guru can give the end-user the illusion of an interpreter - one that
is language-independent ! Annotations give flow of control back to the algorithm

animation system , which can then poll the end-user to see whether

execution should be paused.

1.6 Disclaimers

This thesis does not address the issue of what makes for the most effective

displays of operations , data , or code ; we have noted some preliminary

observations elsewhere [18] . Fortunately , the pictures that concern us do
not need to be realistic images . They can have "jaggies " and do not need
texture , shadows , reflections , or refractions . They exist to communicate

information , not as objects of art - although many images , especially those

251.6 Disclaimers

involving color , are quite attractive . In fact , it is unlikely that one could ever
claim that one particular display is the best . Each display highlights particular

features of the program , and thus is more or less desirable depending on

its intended use . Moreover , a given picture can mean several different things
to each viewer , and the meaning will change depending on many factors ,
such as what other images are simultaneously begin displayed , how developed

one 's " visual vocabulary " is , and so on . Consequently , an algorithm

animation system should not impose a rigid set of displays for programs ;
rather , it should make it easy to create new displays and use e.xisting displays

to explore the runtime nature of a wide variety of programs .

Another aspect we do not address here is how fast the animation should
take place , or with what granularity . It is essential , however , that an algorithm

animation system allow users to control the speed . Not surprisingly , it
has been shown that information is lost if an animation is either too fast or

too slow [49] . The optimum speed depends on the viewer and the purpose of
the animation . In practice , we have found that , as one would expect , viewers

can get a high -level intuition for the dynamics of an algorithm when relatively
fast speeds are used . To understand details of the behavior , however ,

relatively slow speeds are required . The absolute speed also depends on the
complete ensemble of views on the screen ; complex views or multiple views
often require slower speeds to let the user digest all of the information on
the screen . Displays showing representations that are unfamiliar to viewers
also require slow speeds - at least until the displays are incorporated into
the viewer 's visual vocabulary .

Our environment for algorithm animation is oriented to sequential programming
in the small . It has been tuned for " algorithms " such as those

found in a typical textbook or journal article . These are usually less than a

page - or two of high -level procedural code , and are self - contained with sim -
plified data assumptions . For example , a priority queue " algorithm " might
operate on small integers , whereas in practice the priority queue " program "

might be embedded in a database system and would operate on names and
manufacturers of automobiles . " Programming in the small " does not , by

any means , imply trivial or toy programs . Experience has shown that relatively
little is understood mathematically or otherwise about many small (in

size) , well -known , fundamental algorithms . There is a huge world of small
programs to be explored , many of which form the basis of large real -world
systems . While many aspects of an algorithm animation environment scale

26 Introduction

to large systems, however , programming in the large needs additional tools

1.7 Thesis Outline

In the next chapter , we review previous work on animation of programs .
We limit ourselves to displays of data , not program structure or code, both
static and dynamic . This chapter provides background reading and is selfcontained

. In Chapter 3, we present a tour through the interactive environment
of our prototype system, BALSA - II . Here we discuss not how one goes

about animating a program , but rather how one uses the environment for
exploring algorithms . We also present a formal description of the interactive
environment . If you read only one chapter , read this one. If you read more
than one other chapter , also read this one; the remaining chapters assume
familiarity with the interactive nature of the prototype . Chapter 4 discuss es
using the interactive environment for creating dynamic documents . It describes

our model of dynamic documents and the user interface presented

to script writers and script readers, and discuss es various implementation
aspects.

In Chapter 5, we leave the realm of the end-user and enter that of the
programmer . We present in detail our model of how client -programmers go
about animating their algorithms , implementing the necessary input gener-
ators , and building graphical displays . In Chapter 6, we present an overview
of how BALSA - II is implemented . The system is the glue that binds the
algorithms , input generators , and views , to the end-users, script writers ,
and script viewers . We conclude in Chapter 7 with a discussion of areas for
future research, both short -term and long -term .

that are beyond the scope of this research .

