Index

3M, 250–251, 259–260

,	A .: 1: 201
	Antitrust policy, 291
Abramovitz, M., 225–227	Aoki, Masahiko, 316–317, 321
Abrams, S., 468	Apache software, 371, 373–375, 378, 396,
Academic Tribes and Territories (Becher),	415, 420
78	Apotex, 145
Academy of Natural Sciences (Philadelphia),	Apple Computer Inc., 282
116	Archives. See Epistemic infrastructure
Academy of Sciences (Petrograd), 116	Argonne National Laboratory, 434
Access, 12	Armstrong, John A., 199
Adams, John, 119	Arora, A., 278
Address Resolution Protocol (ARP), 420	ARPANET, 395, 431
Advice on Building Up a Library (Naude),	Arrow, Kenneth, 67, 72, 138, 380
118	arXiv, 445
Aerospace, 209, 455, 473	ASET, 170
Aghion, P., 45	Ásgeirsdóttir, Berglind, 17–23
Air France, 136	Ashmole, Elias, 115
Alexander, Christopher, 307, 309	Ashmolean Museum, 114-115, 119
Allen, I. E., 154, 156	AT&T, 370, 381
Allen, R. C., 246	Atkins, D. E., 151–152, 455, 458
Allen, T., 262	Aubert, Jean-Eric, 37, 231
Alliance for Cell Signaling (AFCS), 400-	Australia, 156, 195, 208, 210
401, 406–407	Austria, 181
Allison, J. R., 333	AutoZone, 381
Altera Corporation, 271, 274	
Alzheimer's disease, 352	Bacon, Francis, 119
Amazon.com, 124, 126	Bakke, Geir, 239
American Institute of Physics, 199	Baldwin, Carliss, 280, 299-328
American Revolution, 120	Basic, 370
Amin, A., 92, 99	Bayh-Dole Act, 140, 169, 171, 183, 357
Amsden, A. H., 223	biomedical research and, 393, 399, 406-
Analog devices, 207	407
Anderson, Ross, 378–379	Diamond v. Chakrabarty and, 175

Antilocking braking systems (ABSs), 286

Bayh-Dole Act (cont.)	patents and, 177, 359, 362-365, 401,
effects of, 176–180	405–406
embeddedness and, 170	pharmaceutical companies and, 145, 333,
Institutional Patent Agreements (IPAs) and,	351–352
175	pure play companies and, 362
international emulation of, 180-182	random screening and, 354
OECD and, 178	secret nature of, 391
origins of, 174–176	system performance and, 353
Beasley, 223	vertical dis-integration and, 394-395
Beaumont Hospital, 422–424	wet lab systems projects and, 399-401,
Becher, Tony, 78	405-407
Bell Labs, 370	Blakeslee, T. R., 280
Benkler, Y., 249	BLAST, 364
Bergquist, M., 417	BMW, 261
Berkeley Software Distribution (BSD), 371,	Bodelian Library, 117
376, 378, 418, 420	Bodley, Thomas, 117
Berlin Declaration, 445	Boehm, B. W., 465
Berman, F., 455	Boeing, 238
Bessen, James, 249, 378	Bogenrieder, I., 100
Bethesda Principles, 445	Bonding costs, 243
Bibliothèque du Roi, 117–118	Boston Athenaeum, 121
Bind, 415	Boyer, R., 151, 153
BioMed Central, 445	Bradner, E., 468
Biomedical Informatics Research Network	Brady, H., 455
(BIRN), 471	Bresnahan, R., 44
Biomedical research, 209	British Museum, 116
academic science and, 363–365	Brooks, Fred, 319, 419
Bayh-Dole Act and, 393, 399, 406–407	Brown, Gordon, 200
bioinformatics software and, 397–398,	Brown, J. S., 92, 102–103
402–403	Bruland, K., 222–223
Biomedical Informatics Research Network	Buckley, Chris, 204
(BIRN) and, 471	Buderi, R., 199
cell signaling and, 400-401, 406-407	Burke, Peter, 116
changing structure in, 353–358	Burrelli, Joan, 212
component performance and, 353	Burt, R., 78
database projects and, 398–399, 403–404	Bush Boake Allen (BBA), 267
expenditure rates in, 351–353	
Food & Drug Administration (FDA) and, 351	Cabinets of Curiosities, 115–116, 119, 122–123
innovation in, 392–393	CAD/CAE/CAM programs, 270
investment and, 352, 355-358, 391	Cadence, 207
modularity and, 405	Cai, Yuanfang, 309
New Active Substances and, 352	Caldera, 423
NME approval rates and, 351–352	California Institute of Technology, 401
not-for-profit, 355	Callon, M., 103–104
open and collaborative approach to, 391-	Campbell, E. G., 180
408	Canada, 34, 37

knowledge economy and, 21 Compaq Computer, 316 skilled labor and, 195, 206-208, 210 Competition 1990s and, 195-198 technology transfer and, 181 biomedical research and, 358-363 Canberra Manual, 32 Capability maturity model (CMM), 419 capacity, 227–230 CAP Gemini Ernst & Young, 207 economic catch-up and, 217-218, 221-Carlile, Paul, 313 231 Carnap, Rudolf, 463 European Union and, 30–31, 199–200 Carnegie Mellon University, 160–161 "A Nation at Risk" and, 193-195 Casadesus-Masanell, Ramon, 379–380 open source software and, 374–376 Celera database, 403-404 platforms and, 278–295 Cell Migration Consortium, 405 poverty and, 217-231 Center for Addiction and Mental Health, United States and, 193–195 Computer science, 461–464 Chataway, Joanne, 37 Concurrent Versioning System (CVS), 420 Chaturvedi, Sachin, 208 Coninvention costs, 10 Copyleft, 391 Chief Programmer Team, 419 China, 195, 197–198, 200 Copyright, 129, 160, 246, 249 degree data and, 202–203 Cornell University, 445 global knowledge network and, 211-212 Corrigan, Wilf, 269, 273 Great Cultural Revolution and, 202 Cottam, Hilary, 86–87 higher education and, 201–205 Cottrell, Frederick, 174 Court of Appeals for the Federal Circuit, investment in, 204–205 MNEs and, 211 175, 393 open source software and, 379 Cowan, Robin, 135–149 Cowen, T., 99 research and development (R&D) and, 203-205 Cox, Alan, 418 skilled labor and, 194, 201–205, 209 C programming language, 370 Tenth Five-Year Plan and, 203 Creative Commons, 125 Christensen, C., 262 Cross-licensing, 4 Christensen, J. L., 64 Crouch, Tom, 123 Ciborra, C. U., 101 Cuisinart, 281 Cisco, 204, 207 Cummings, Jonathon N., 468-469 Clark, Kim B., 280, 299–328 Cutter, Charles, 121 Clemens, Samuel L., 331 Cyberinfrastructure Climate prediction, 434 automated operations and, 471–473 Cliques, 95 Biomedical Informatics Research Network Clocks, 141 (BIRN) and, 471 Cloudscape, 375 collaboration and, 435-450, 455-456 Coase, Ronald, 394 computer science and, 461-464 Cockburn, Iain M., 351–368 confidentiality and, 472–473 Cohen, W. R., 171–172, 221, 227 developer interactions and, 464–465 Cohendet, Patrick, 91-109 distance and, 468 e-science and, 435-441, 460 Collab.Net, 375–376 Collectivism, 416–418 further research for, 474–476 Columbia University, 121 Grid for Physics Network (GriPHyN) and, Colyvas, Jeanette, 179 471-472

Cyberinfrastructure (cont.) Galison gap and, 320–321 grid technologies and, 431-435, 471-472 games and, 315–319 importance of, 456–458 improvement and, 300 institutions of innovation and, 315-319 institutional boundaries and, 460–469 Knowledge and Distributed Intelligence modularity and, 306, 309-312, 314, 317-(KDI) program and, 468-469 language issues and, 467 net option value (NOV) and, 301, 314meaning incommensurability and, 463 315, 321 multidisciplinary research and, 461-469 non-rival, 302 multi-institutional research and, 467–469 open source software and, 312, 318–319 peer-to-peer applications and, 434, 438 options and, 302 scaling up and, 469-474 process of, 299–300 scientific research and, 432-433 reification and, 302 social-technical aspects of, 456-460 rules for, 309, 314-315 supercomputers and, 459-460, 466 Simon and, 302, 307, 309, 312-313, 320trading zones and, 465-466 structure matrix (DSM), 301, 305-313, virtual organization alignment and, 470-471 321 virtuous cycle and, 464 study integration for, 300-301 value and, 302, 304, 313–319 D'Adderio, L., 288 variety and, 300 Dahlman, Carl J., 37, 222-223, 231 Dessein, Wouter, 375 DaimlerChrysler, 207, 381 Dewey Decimal System, 121 DG Enterprise, 50, 52 Dark Ages, 113–114 Dasgupta, P., 160–161, 180 Diabetes, 352 David, P. A., 471 Diamond v. Chakrabarty, 175 Bayh-Dole Act and, 180 Dickinson, Q. T., 178 cyberinfrastructure and, 431–453 Dierkes, Meinolf, 37 education and, 65, 152, 160-161 Digital Millennium Copyright Act, 249 Disease, 259, 352, 394 platforms and, 278 stastistics and, 29 Distributed annotation system (DAS), 398-Davidson, E., 473-474 399, 403-404 DC Principles, 445 Division of labor, 65 DEC, 317 platforms and, 278–295 Dell Computer Company, 316 Dosi, G., 221 Democratization, 13 D-Space, 445 Duguid, P., 92, 102-103 Denmark, 180-181 Design, 237 DUI (doing, using, interacting) learning, 68– architectures and, 299-300 complete, 300 Dumont, Jean-Christophe, 197 critical properties and, 302–305 DuPont, 204 dependencies and, 301-302, 305-313, 321 Dynamic effects, 65 direct consumption and, 302 Earl, Louise, 36 ex ante, 302 ex post, 302 Earthquakes, 457-458, 465-467, 474 external variables and, 309 Ecole des Chartes, 118

E Commorae 425	Enos John Layyrongo 220
E-Commerce, 435 Economic Policy Committee, 46–47	Enos, John Lawrence, 239
	Enron, 4
Edison, Thomas Alva, 260–262	ENSEMBL, 364
Education, 2–3, 29, 37	Epistemic infrastructure
China and, 201–205	access and, 127
degree data and, 202–203	Amazon.com and, 126
e-learning and, 152–167	ancient libraries and, 113–114
European Union and, 49	Bacon and, 119
experimental approaches and, 151–152	book organization and, 118, 120–121
foreign students and, 195, 197–198	controversies in, 123–124
global knowledge network and, 211–212	copyright and, 129
India and, 205–208	cost accounting and, 125-126
information and communication tech-	Cutter and, 121
nologies (ICTs) impact and, 151-167	Dark Ages and, 113–114
interactive learning and, 63-73	development of, 113–119
new millennium and, 198–208	Dewey and, 121
security effects and, 199	Enlightenment and, 116–117
skilled labor and, 193-213	fossil record and, 115, 123-124, 130
universities and, 135–147	global climate change and, 129-130
U.S. school performance and, 193, 195, 197	Google Print and, 124–129
vocational, 146	human genome and, 130
E-Europe, 48–49	industrial era and, 119-124
Efficiency, 70, 158–159	information property and, 129
Einstein, Albert, 35, 140–141	information quality and, 121-122, 127-
Eisenberg, Rebecca, 175, 180, 332, 382	128
E-learning, 152, 167	International Standard Book Number
adoption of, 153-156	(ISBN) and, 126
copyright and, 160	Internet and, 124-128
cost-efficiency of, 158–159	knowledge economy and, 124-131
educational quality and, 156-157	Open Source software and, 125
faculty engagement and, 164-166	printing and, 116–118
innovation cycle for, 159–162	private benefactors and, 120
learning objects and, 160-161	role of, 114–119
open resources for, 152, 161–166	Royal Society and, 115
promise of, 152–159	Scientific Revolution and, 114, 116-117
sustainability and, 163–164	social memory and, 128-129
United States and, 154–156	transparency issues and, 123
Electrolux, 207	Webster and, 119–120
Emery, F. E., 458	E-science
Encryption, 28–29	collaboration and, 435–450, 455–456
Engineering, 10, 223. See also Skilled labor	cyberinfrastructure and, 435–441, 460
China and, 203	grid technologies and, 431–450
degree data on, 195, 197–198, 203	information commons and, 444–450
e-science and, 431–450 (<i>see also</i> Science)	institutional impediments to, 435–436
Enlightenment era, 116–117	intellectual property and, 442–444
Enola Gay, 123–124	legal framework for, 442–444
Lnow Juy, 125-127	16501 110111CWOLK 101, TT2-TTT

E-science (cont.)	Fagerberg, Jan, 217–234		
middleware and, 433, 438-439	Fairchild Semiconductor, 269		
organizational environment of, 436-438	Fair use practices, 129		
Pilot Projects and, 438-439	Farrell, Joseph, 375		
virtual organizations and, 470-471	Federal Trade Commission, 333, 365		
Ethics, 145	Ferlie, E., 86		
Europe, 30–31, 203, 445	Field programmable gate arrays (FPGAs),		
aggregation measurement and, 55-56	271		
capacity competitiveness and, 229	Field programmable logic devices (FPLDs)		
Community Innovation Survey (CIS) and,	270–271		
30	Finholt, T. A., 455, 464		
Dark Ages and, 113-114	Finkelstein, S. N., 246		
Economic Policy Committee and, 46-47	Finland, 194		
Framework programs and, 146	Firewalls, 434		
global knowledge network and, 211-212	Fisher, R., 262		
innovative capacity and, 54–56	Fitzgerald, Brian, 415-427		
Lisbon process and, 43, 47-57, 199-200	Flaatten, P., 417		
MNEs and, 211	Flexibility effect, 66		
patents and, 332-347	Florida, Richard, 36		
performance evaluation and, 52-54	FLOSS (free/libre/open source software),		
productivity performance of, 44-48	417–418, 421		
research and development (R&D) and,	Food & Drug Administration (FDA), 351		
199–200	Foray, Dominique, 81–82, 220		
skilled labor and, 199-200, 208	education and, 65, 151		
STI policies and, 56–57	knowledge optimization and, 9-15		
systemic policy and, 46-48, 54	stastistics and, 28-29, 31		
target definition for, 48-52	user innovation and, 248		
European Commission Framework	Ford Motor Company, 204		
Programme, 137–138	Foss, N., 100		
European Innovation Scoreboard (EIS), 31-	Fossil record, 115, 123-124, 130		
32, 39, 50, 56	France, 22, 136, 222		
European Knowledge Area (EKA), 48-50	National Museum of Natural History,		
Eurostat Labour Force Survey, 32	116		
Experimentation, 257	Revolution of, 117–118, 120		
changing economics of, 263–266	Franke, N., 240–241, 246, 248, 251, 378		
customers and, 266–268	FreeBSD, 378		
custom integrated circuits and, 268-271	Freedom of Information Act, 3		
design of, 263–264	Freeman, C., 45		
industry effects and, 272-274	Freeman, Peter A., 455–478		
learning by, 262–263	Free Software Foundation, 371		
managing uncertainty and, 261-262	Friedel, R., 260		
rapid feedback and, 258-259	Fry, Arthur, 260		
rationale behind, 259–261	Fujitsu, 272–274		
scope of, 258	Functional groups, 94		
toolkits and, 266–271	Furman, J., 45–46		

Galison, Peter, 140–141, 320–321, 465–466 Games, 315–319 Garrett, R., 154–155, 158 Garvin, D., 262 Gate arrays, 270–271	Google Print, 124–129 Gordon, R., 47 Goto, A., 224 Granovetter, M., 77 Granstrand, O., 220 Great Exhibition of 1851, 116
Gaudeul, Alexandre, 376	Greece, 113–114, 261
Gault, Fred, 27–42	Greenland, 473
General Electric, 204, 207, 267	Greenspan, Alan, 63
General Motors, 204	Greenstein, S., 278
General Public License, 371, 375, 377, 381–382, 396, 447	Grid for Physics Network (GriPhyN), 471–472
Genetics, 130, 398–399	Grid technologies
Georgia State, 397	collaboration and, 435-450
Germany, 181	e-science and, 431–450
patents and, 334, 338, 343	information commons and, 444–450
poor countries and, 217–218, 222, 225	Internet and, 433–434
skilled labor and, 194	intraorganizational applications and, 439-
Gerschenkron, Alexander, 217–218, 222–	440
227, 231	middleware and, 433, 438–439
Gesta Grayorum (Bacon), 119	peer-to-peer applications and, 434
Ghemawat, Pankaj, 379–380	web services and, 434
Ghosh, R., 417	Griffith, R., 210
Gibbons, M., 85	Grove, Andy, 317–318
Gilman, Alfred, 400–401	Growth, 1, 9 Rayh Dolo Act and 169, 184
Global climate change, 129–130 Globalization	Bayh-Dole Act and, 169–184
competitiveness and, 193–195	capacity competitiveness and, 227–230 China and, 201–205
knowledge network and, 211–212	competitiveness and, 193–195
MNEs and, 204–205, 211–212	economic catch-up and, 217–218, 221–
new millennium and, 198–208	231
OECD work and, 17–23	Europe and, 43–57, 217–231
poor countries and, 217–231	India and, 205–208
poverty and, 217–231	innovation capacity and, 43–58
of production, 277	interactive learning and, 64
skilled labor and, 193–213	Japan and, 223–225
Global Positioning System (GPS), 151	neo-classical growth theory and, 218–219
Global Seismographic Network (GSN), 457, 474	OECD and, 15 poverty and, 217–231
Gnome, 378	skilled labor and, 193-213
GNU Project, 371, 415, 423, 447	
Godin, B., 34	Hagadoorn, J., 30
Goldfarb, B., 181	Hall, B. H., 332–333, 340, 342, 384
Gongla, P., 104–105	Hamerly, Jim, 377
Google, 6, 207, 370	Hammond, C., 87

Hann, Il-Horn, 373 Human genome, 130, 398–399 Hare, R., 259 Hutchins, E., 151 Harhoff, Dietmar, 246, 331-350 Iacono, C. Suzanne, 455–478 Harris, Richard G., 208 Hartswood, M., 472 IBM, 423 Haruvy, Ernan, 374 design and, 316-317, 319 Harvard University, 116 Global Services, 104–105 Hatzichronoglou, T., 28 innovation and, 272 Healy, David, 145 open source production and, 369–370, Hedstrom, Margaret, 113–134 374, 381 Heller, Michael, 180, 332, 382 platforms and, 281-282, 293 Henderson, R. A., 175–176, 179 skilled labor and, 204, 207 Henkel, J., 246, 248 IDEO, 258 Iguanadon, 115, 123-124 Henrekson, M., 181 Herstatt, C., 239 India, 195, 197–198, 200 Hertel, G., 244 global knowledge network and, 211-212 Hewlett-Packard, 207, 374-375, 383 investment in, 207-208 Hienerth, Christoph, 251 offshoring and, 206–207 Hierarchy, 96–102 skilled labor and, 205–209 Highwire Press, 445 Indian Ocean, 457, 474 Individualism, 416-418 Hine, C., 472 Hobday, M., 231 Industry Hodgson, G. M., 29 academic influence and, 171–173 Hofstede, G., 465 Bayh-Dole Act and, 169-184 Holmström, Bengt, 372 biomedical research and, 351–365 Hong Kong, 194–195 bonding cost and, 243 custom products and, 242 Horwitz, Rick, 405 Hospitals, 422–424 division of labor and, 277–295 Howitt, P., 45 epistemic infrastructure and, 119-124 How to Arrange a Library (de Aráoz), 118 European Union and, 43-57 Human capital, 9, 20, 259 experimentation and, 257-274 competitiveness and, 193-195 firm potential and, 102–104 cyberinfrastructure and, 431-450, 455functional relationships and, 238–241 476 interactive learning and, 66, 70–71 design and, 299-321 knowledge communities and, 91-106 division of labor and, 65, 278-295 modular clusters and, 317-318 education and, 151 (see also Education) pharmaceutical, 351-365 (see also Pharmaceutical industry) e-science and, 431–450 European Union and, 51 platforms and, 278–295 experimentation and, 257–274 R&D and, 28 (see also Research and information commons and, 444–450 development (R&D)) interactive learning and, 63–73 Science, Technology and Industry open source software and, 380-381 Scoreboard and, 76 research and development (R&D) and, 21skilled labor and, 193-213 22 steam engine and, 120

Taylorist organization and, 99 diffusion of, 249-251 university technology transfer and, 145, DUI learning and, 68-70 169 - 184e-learning and, 159–162 Information, 1. See also Knowledge European Innovation Scoreboard and, 31asymmetric endowments of, 277 32, 39, 50, 56 collaboration and, 435-450 experimentation and, 257-274 design structure matrices (DSMs) and, 301, firm potential and, 102-104 functional relationships and, 238-241 305-313,321quality insurance and, 12 Great Exhibition of 1851 and, 116 Information and communication grid technologies and, 431–435 technologies (ICTs) innovate-or-buy decisions and, 242-244 access and, 127 interactive learning and, 63-73 capacity competitiveness and, 227-230 investment in, 22 China and, 201–205 Iapan and, 52-53description of, 9-10 linear model and, 138-143 educational impact of, 151–167 low-cost niches and, 244–245 e-learning and, 152-167 measurement of, 30-32 European Union and, 43–57 National Innovation Systems model and, externalities and, 10 India and, 205-208 national system for, 208-210 ISIC and, 28 patents and, 343 (see also Patents) IT bubble and, 63 platforms and, 278–295 markets and, 27 policy adaptation and, 248-249 networks and, 78 (see also Networks) rapid prototyping and, 266–267 OECD and, 19–20 R&D and, 138 (see also Research and open distributed systems and, 14 development (R&D)) optimization of, 9-10 sectoral systems and, 278 research and development (R&D) and, 10, skilled labor and, 193-213 21 - 22Smith and, 68-70 skilled labor and, 193-213 STI learning and, 68–70 InfoWorld, 416 systemic approach and, 46-48, 54 Innovation toolkits and, 237, 266-272 academic influence and, 171-173 transparency and, 245–247 aggregation measurement and, 55-56 United States and, 52-53 universities and, 138-147 assessing capacity of, 43–58 user-centered, 237-252 Bayh-Dole Act and, 140, 169-184 biomedical research and, 351-365, 392-In Search of Excellence (Peters & 393 Waterman), 258 bonding cost and, 243 Institutions, 12–13, 28 communities for, 247–248 design and, 301 custom integrated circuits and, 268-271 e-science and, 435–450 custom products and, 242 intellectual property and, 33 democratization of, 237-252 knowledge communities in, 91-106 design and, 237, 299-321 knowledge measurement and, 36-37 Diamond v. Chakrabarty and, 175 OECD work and, 17–23

Institutions (cont.) internal static effect and, 65 R&D and, 33-34 (see also Research and IT bubble and, 64 development (R&D)) knowledge communities and, 94 Taylorist organization and, 99 market competition and, 70-71 trade secrecy and, 36 networks and, 66 Institutions of innovation, 315–319 Pasinetti model and, 64 Intangible value, 1, 3-4 producer, 64 Integrated circuits, 268–271 Smith and, 68–70 Integrated Ocean Drilling Program, 457 stagnation and, 64 Intel Corporation, 204, 207, 272, 316 static scale effects and, 65 Intellectual property, 12, 35, 219–220 STI, 68-70 Bayh-Dole Act and, 169–184, 393, 399 transaction costs and, 65-66 biomedical research and, 356–358, 393, by using, 67 405-406 Interdisciplinarity, 79 copyleft, 391 Internal static effect, 65 copyright, 129, 160, 246, 249 International Flavors and Fragrances (IFF), determining value of, 4 Diamond v. Chakrabarty and, 175 International Haplotype Mapping Project Digital Millennium Copyright Act and, 249 (HapMap), 399 e-learning and, 160 International Monetary Fund (IMF), 219 epistemic infrastructure and, 129 International Standard Book Number e-science and, 442-444 (ISBN), 126 Google Print and, 124-129 International Standard Industrial Classificain-firm transfer and, 33 tion of All Economic Activities, 28 information commons and, 444–450 Internet, 1, 230 innovation and, 245-249 access and, 127 licensing and, 33 (see also Licensing) Amazon and, 124, 126 commercialization of, 3, 124-125 Mertonian rules and, 356–357 opacity issues and, 4–5 cyberinfrastructure and, 431-450 open source production and, 369-385, e-learning and, 152-167 416-418 (see also Open source epistemic infrastructure and, 124-128 production) Google and, 6, 124-129, 207, 370 patents and, 3–4, 7 (see also Patents) grid technologies and, 431-450 trade secrecy and, 36 growth of, 153-155 United States and, 47 ICT sector and, 6 Interactive learning, 63, 92 institutional coevolution and, 12-13 consumer, 64 LAM technology and, 12 division of labor and, 65 middleware and, 433, 438-439 by doing, 67 peer-to-peer applications and, 434, 438 DUI, 68-70 World Wide Web Consortium and, 283 external specialization and, 65 Internet Public Library, 127–128 flexibility effect and, 66 Invention. See Innovation growth and, 64 Investment, 22. See also Research and industrial organization and, 66, 70-71 development (R&D) in-firm, 96-102 biomedical research and, 352, 355-358, internal specialization and, 65 391

China and, 204–205 coinvestment costs and, 10 European Union and, 51 India and, 207–208 intellectual property and, 219–220 (see also Intellectual property) MNEs and, 204–205, 211–212	Kline, S. J., 30 Kling, R., 456, 458–459, 470 Knowledge, 8 across boundaries, 2 activities and, 30–32 codification of, 29 collaboration and, 435–450
Ireland, 22, 181	commercial exploitation and, 351–365
Islamic libraries, 113–114, 116	cyberinfrastructure and, 431–450, 455–478
Israel, P., 260	
Italy, 222	Dark Ages and, 113–114 design and, 299–321
Jacobides, Michael, 318	encryption and, 28–29
Jaffe, Adam B., 382, 384	epistemic infrastructure and, 113–131
Japan, 22, 218, 222, 231, 457	
global knowledge network and, 212	European goal of, 1, 43 experimentation and, 257–274
innovation and, 52–53	Freedom of Information Act and, 3
Meiji-restoration and, 224–225	funding influence on, 145
research and development (R&D) and,	global network for, 211–212
200–201	growth and, 1, 9
skilled labor and, 194, 200–201, 203, 208	ICT sector and, 6–10 (see also Information
technology transfer and, 170, 181, 183	and communication technologies (ICTs))
Zaibatsus and, 224	importance of, 13–14
Japan Society for the Promotion of Science	industry and, 28 (see also Industry)
(JSPS), 201	infinite expansibility and, 1
Java, 370	information commons and, 444-450
Jefferson, Thomas, 119	institutional characteristics and, 11-12,
Jensen, M. C., 243	36–37
Jeppesen, L. B., 249	interactive learning and, 63-73
Johnson, B., 29, 67	linkages and, 32–35
Johnson, C. A., 223	markets and, 2
Johnson, Justin P., 379	measurement of, 30–32, 36–39
Jokivirta, L., 154–155, 158	modularity and, 279-289
Jovanovic, B., 44	OECD work and, 17–23
	optimization of, 9–15
Kahin, Brian, 1–8	outcomes and, 35
Katz, Michael L., 375	platforms and, 278–285
Katz, R., 251	policy prospects for, 108
Kenney, T., 422–423	property rights and, 3-5 (see also Intellec-
Kenwood, 281	tual property)
Kerr, Clark, 78	propositional, 299
Ketteringham, J., 260	public good and, 135, 137–138, 146, 217,
Khadria, Binod, 206, 208	219
Kiesler, Sara, 468–469	public vs. private, 2–3, 6
King, A., 458–459	Renaissance and, 114
King, John Leslie, 113–134	Scientific Revolution and, 114, 116

Knowledge (cont.) virtual organizations and, 470-471 sources of, 32-34 Knowledge economy, 27 statistics role and, 27–39 Bayh-Dole Act and, 169-184 trust and, 5, 11-12 bonding costs and, 243 validation of, 84–85, 94 definition for, 9 waterfall model and, 355 designs and, 299-321 widespread assumption and, 277 division of labor and, 277-295 Knowledge and Distributed Intelligence e-Commerce and, 435 (KDI) program, 468–469 economic catch-up and, 217–218, 221– Knowledge communities 231 Biomedical Informatics Research Network epistemic infrastructure and, 124-131 (BIRN) and, 471 experimentation and, 257-274 boundaries and, 93 funding influence and, 145 characteristics of, 93-96 industry and, 28 cliques and, 95 innovation and, 239 (see also Innovation) coalitions and, 95 interactive learning and, 63-73 cognitive distance and, 96 IT bubble and, 63 communication quality and, 97-104 mapping of, 83–87 communities of practice, 93 markets and, 28-29 (see also Markets) cyberinfrastructure and, 431-450, 455networks and, 29, 75-88 478 OECD work on, 17–23 definition for, 91 open source production and, 415-425 (see also Open source production) enactment and, 101-102 epistemic, 93 platforms and, 278–295 e-science and, 431–450 poor countries and, 217–231 firm potential and, 102-104 poverty and, 217-231 functional groups and, 94 purchasing power parity and, 28 goal objectives and, 94 universities and, 135–147 Grid for Physics Network (GriPHyN) and, Kok group, 52, 54 471-472 Korea hierarchy role and, 96-102 poor countries and, 218, 223-225, 231 in-firm interaction and, 96-102 skilled labor and, 194, 201, 206-207 information commons and, 444-450 Kuan, Jennifer, 377–378 interactive learning and, 63-73, 92, 94, Kuhn, Thomas, 463 96 - 102invisible communities and, 96 Lach, Saul, 382 knowledge validation and, 94 Lakhani, Karim, 244, 374 limits of, 95–96 Lall, S., 225 management processes and, 99 LAM (libraries, archives, and museums), 12 networks and, 75–88 (see also Networks) epistemic infrastructure and, 113–119 in organization, 91–106 printing and, 116–117 project teams and, 95 Lamb, R., 473-474 repetitiveness and, 97-102 Landes, D., 219 social capital and, 63-88 Lanjouw, J. O., 333 task forces and, 95 Larsen, Kurt, 151–168 Taylorist organization and, 99 Latour, B., 103

Lave, J., 93	open source production and, 370, 398		
Leadbeater, Charles, 86–87	(see also Open source production)		
Lee, E. A., 286	Lilien, Gary L., 239, 251		
Legal issues, 4	Lilly, Eli, 261		
ancient, 113-114	Linux, 396, 415		
antitrust policy and, 291	Caldera and, 423		
Bayh-Dole Act and, 169-184	individualism and, 416-418		
biomedical research and, 363-365	innovation and, 246, 318-319		
changing standards in, 6-7	modularity and, 420		
Court of Appeals for the Federal Circuit	Red Hat and, 402, 416, 422		
and, 393	technology sharing economics and, 369-		
Diamond v. Chakrabarty and, 175	370, 374, 381		
Digital Millennium Copyright Act and, 249	Torvalds and, 371, 416-418		
Freedom of Information Act and, 3	Ljungberg, J., 417		
ICT sector and, 6–7	Logiscope, 420		
intellectual property and, 47 (see also	LSI Logic, 269–274		
Intellectual property)	Lucent Technologies, 204		
open source production and, 376–377,	Lundval, Bengt-Ake, 29, 45, 63-74		
381-382, 416-418 (see also Open source	Lussier, S., 418		
production)	Lüthje, C., 240		
printing and, 117–118			
scientific collaboration and, 442-444	McKim, G., 458–459		
Lemaitre, Georges, 197	McKusick, M., 418		
Lerner, Josh, 369–389, 417	Mahroum, Sami, 199		
Lessig, L., 249	Mansfield, Edwin, 171		
Lettl, C., 251	Mark, G., 468		
Levin, R. C., 171	Markets, 2		
Levinthal, D., 221, 227	biomedical research and, 358-363		
Libraries, 12	China and, 201–205		
Amazon.com and, 124, 126	competitiveness and, 193-195		
epistemic infrastructure and, 113–131	cross-licensing and, 4		
Google Print and, 124–129	custom products and, 242		
International Standard Book Number	economic catch-up and, 217-218, 221-		
(ISBN) and, 126	231		
Online Computer Library Center and,	European Union and, 43–57		
126	experimentation and, 257–274		
Open Source software and, 125	free, 218–219		
social memory and, 128-129	globalization and, 6		
Library Bureau, 121	India and, 205–208		
Library of Alexandria, 113	information and communication		
Library of Congress, 119, 121	technologies (ICTs) and, 27		
Licensing, 4, 33, 44, 246, 249	innovation and, 30-31, 241 (see also		
Bayh-Dole Act and, 169–184	Innovation)		
biomedical research and, 393	intellectual property and, 129 (see also		
bright-line policies and, 398	Intellectual property)		
information commons and, 444–450	interactive learning and, 70–71		

Markets (cont.)	knowledge distribution and, 281
IT bubble and, 63	open source production and, 419-421
MNEs and, 204–205, 211–212	platforms and, 279–289
mutually assured destruction and, 4	role of standards and, 281-286
neo-classical growth theory and, 218-219	simulation and, 287–289
new millennium and, 198-208	Mokyr, Joel, 299
nonassertion agreements and, 4	Montgomery, D., 264
offshoring and, 206–207	Moore's law, 280
online, 124–125	Moris, Francisco, 205
open source production and, 125, 379-380	Morrison, P. D., 240, 246
(see also Open source production)	Mosaic, 431
organization of, 9	Motorola, 204, 207
patent pools and, 4	Mowery, David C., 169-189, 222-223, 277
platforms and, 289-292	Mozilla, 319, 377
poor countries and, 217–231	Multimedia Educational Resource for
poverty and, 217–231	Learning and Online Teaching
purchasing power parity and, 28	(MERLOT), 160, 166
skilled labor and, 193-213	Multinational enterprises (MNEs), 204-205
specialization and, 45	211–212
trade secrecy and, 36	Musaeum Tradescantianum, 115
uncertainty and, 261-262	Museums. See Epistemic infrastructure
Marx, Karl, 217–218, 416	Mutually assured destruction, 4
Maskell, Peter, 86	MySQL, 420
Massachusetts Institute of Technology	Mythical Man-Month, The (Brooks), 319
(MIT), 371, 398, 402, 445, 466	
Massy, W. F., 153, 159	Nakakoji, L., 420
Mathematics, 171–172, 193–194, 197	Napster, 434
Matthew Effect, 355	National Academies, 334, 365, 385
Mead, George Herbert, 71	National Air and Space Museum, 123
Meckling, W. H., 243	National Association of Software & Service
MeetingPlace, 468	Companies (NASSCOM), 207
Merges, Robert, 180	National Human Genome Research Institute
Merton, Robert, 392	(NHGRI), 398–399
Microsoft	National Innovation Systems model, 139
cyberinfrastructure and, 466	National Institute of General Medical
open source production and, 369, 373,	Science (NIGMS), 400
379, 418, 422	National Institutes of Health (NIH), 395,
platforms and, 287	398–399
skilled labor and, 204	National Museum of Denmark, 116
Middleware, 433, 438–439	National Science Foundation, 33–35
Mimoso, M., 420	cyberinfrastructure and, 432, 457–458,
Mintzberg, H., 97	461
Mockus, A., 418	education and, 164
Modularity	Knowledge and Distributed Intelligence
biomedical research and, 405	(KDI) program and, 468-469
design and, 306, 309-312, 314, 317-318	skilled labor and, 198-199, 203

National security, 199 "Nation at Risk, A" (study), 193-195 Nayak, P., 260 Nelson, Richard, 45, 138, 152, 180, 221, Neo-classical growth theory, 218–219 Netcraft, 369 Net option value (NOV), 301, 314–315, 321 Netscape, 312–313, 377 Network for Earthquake Engineering and Simulation (NEES), 457, 465-466 Networks, 29, 34–35 ARPANET, 395 Biomedical Informatics Research Network (BIRN), 471 cliques and, 95 cyberinfrastructure and, 431-450, 455-476 externalities and, 290 flexibility effect and, 66 Grid for Physics Network (GriPHyN), 471-472 information and communication technologies (ICTs) and, 78 innovation communities and, 247–248 interactive learning and, 66 interdisciplinarity and, 79 knowledge economies and, 83-87 OECD and, 75-76 open source production and, 395 (see also Open source production) platforms and, 278-295, 282-283 Program for International Student Assessment (PISA) and, 36 research and development (R&D) and, 34-35, 76 social capital interactions and, 76–83 virtual organizations and, 470-471 New economy, 10, 152, 163 competitiveness and, 193-195 debate over, 63 e-learning and, 153 Newell, Allen, 312-313 New England Journal of Medicine, 145 Ninth Basic Plan on Employment Measures, 201

Nobel Prize, 35, 400–401 Nokia, 204 Nonaka, I., 102 Nonassertion agreements, 4 Nooteboom, B., 100 Norris, J., 420 North, Douglass, 70–72 Novell, 381 Nuvolari, A., 246 Nye, J., 199 Oakley, A., 79

Observatory on Borderless Higher Education (OBHE), 154–155 Odagiri, H., 224 Offshoring, 206–207 Ogawa, S., 244 Olivieri, Nancy, 145 Olson, Erik L., 239 Olson, J. S., 468–469, 473 Online Computer Library Center, 126 OpenCourseWare, 445 Open educational resource (OER) initiatives, 152, 161–166 Open Learning Initiative, 160–161, 164 Open Office, 422 Open source production, 125, 283, 312 academia and, 384–385 alumni effect and, 373 Apache software and, 371, 373-375, 378, 396, 415, 420 appropriate policies for, 379-381 Berkeley Software Distribution and, 371, 376, 378, 418, 420 biomedical research and, 391-408 capability maturity model (CMM) and, 419 career concern and, 417-418 code release strategy and, 374 Collab.net and, 375-376 collectivism and, 416-418 community values and, 422-424 competition and, 374-376 Concurrent Versioning System (CVS) and, contributor motivations and, 372–374, 417-418

Open source production (cont.) copyleft and, 391 cost and, 421 critical issues in, 415–425 design and, 318-319 distributed annotation system (DAS) and, 398-399, 403-404 ego gratification and, 417 entrepreneurship and, 380–381 e-science and, 431–450 firm benefits and, 383-384 FLOSS and, 417–418, 421 formal processes and, 418-421 "free" connotation and, 421 Free Software Foundation and, 371 General Public License and, 371, 375, 377, 381–382, 396, 447 GNU and, 371, 415, 423, 447 historical perspective on, 370–371 human capital and, 380-381 individualism and, 416-418 information commons and, 444–450 legal issues and, 376–377 Linux and, 246, 318–319 (see also Linux) media portrayal of, 417 modularity and, 419-421 OSS 2.0 and, 421–425 paradigm shift in engineering and, 418-421 patents and, 381-382, 384 President's Information Technology Advisory Committee and, 379 published work and, 384–385 quality of, 377–379, 420 Red Hat and, 402, 416, 422 self-imposed commitments and, 383–384 software crisis and, 415, 418 SourceForge.net and, 370, 377 Spectrum Object Model-Linker and, 374 strategic complementarities and, 372 Torvalds and, 371, 416–418 Open University of Catalonia, 158 Oracle, 204, 207, 287, 370 O'Reilly publishing, 376 Organisation for Economic Co-operation and Development (OECD)

Bayh-Dole Act and, 178 Centre for Educational Research and Innovation, 152–159 competition and, 194-195, 197 global knowledge network and, 211-212 Growth Project and, 15 human capital and, 20–21 information and communication technologies (ICTs) and, 19-20 knowledge economy and, 17–23 Program for International Student Assessment (PISA) and, 36 R&D and, 19–22, 30, 33–34, 38, 76 social capital and, 75-76, 821 Original equipment manufacturers (OEMs), 231 Orlikowski, W., 456 Oslo Manual, 30-31, 38 Oxford University, 114–115, 117

Palo Alto Research Center (PARC), 370 Panizzi, Anthony, 120–121 Parker, D., 99 Parkinson's disease, 352 Pasinetti, L., 64 Pasteur, Louis, 259–260 Patent Cooperation Treaty, 335 Patents, 3, 7, 11, 30, 35, 169 Bayh-Dole Act and, 169-184 biomedical, 177, 359, 362–365, 401, 405– 406 black box of, 331–332 claim flooding and, 335 creep and, 365 criteria for granting rights, 343 Diamond v. Chakrabarty and, 175 Europe and, 332, 334–347 improving system of, 342–347 incentive structures and, 340-342 litigation systems and, 345–346 NBER Patent Citations Database and, 384 open source software and, 381-382, 384 paradox of, 331-332 patent pools and, 4 quality and, 332–340

quantity and, 342-343

. 11 222	P. 1. 1.404
questionable, 332	Poland, 194
refusal and, 344	Policy
sanctions and, 344	antitrust, 291
third parties and, 344–345	balkanization of, 2–3
United States and, 332–334	Bayh-Dole Act and, 140, 169-184, 357
universities and, 174–183	biomedical research and, 351-365
Paulk, M., 419	bright-line, 398
Peal Museum, 116	economic catch-up and, 217-218, 221-
Peer-to-peer applications, 434, 438	231
PERL, 369	Economic Policy Committee and, 46-47
Peters, T., 258	emulation and, 170, 180-182
Pharmaceutical industry	epistemic infrastructure and, 121
biomedical research and, 145, 333, 351-	European Union and, 43–57
352	evidence-based, 14–15, 27
changing structure in, 353–358	Freedom of Information Act and, 3
databases and, 403–404	globalization and, 6
mergers and, 355–356	horizontal coordination and, 56–57
	ICT sector and, 6–7
performance consequences and, 358–363	
profit motives and, 363	incomplete knowledge and, 5
racing behavior and, 361	innovation, 1, 43–58, 208–210, 248–249
specialization and, 358	liberalization of, 18
Philips, 204, 281	Lisbon process and, 43, 47–57, 199–200
PHP, 369	"A Nation at Risk" and, 193–194
Physics, 171–172, 199, 471–472	open source software and, 379–381
Piller, F., 251	platforms and, 291–294
Plan for Arranging a Library (Leibnitz), 118	poor countries and, 217–231
Platforms, 295	poverty and, 217–231
antitrust policy and, 291	security effects and, 199
compatibilities and, 279	skilled labor and, 208-213
cyberinfrastructure and, 431–450, 455–	statistics' role and, 27-39
476	Stevenson-Wydler Act and, 357
defined, 278	systemic, 46–48, 54
division of labor and, 279	universities and, 136–137
electronics industry and, 280-286	vertical coordination and, 57
examples of, 278–279	Politics, 5
governing, 289–294	Bayh-Dole Act and, 169-171, 174-183
market building and, 289-292	funding influence and, 145
modularity and, 279-289	imperialism and, 223
Moore's law and, 280	innovation democratization and, 237-252
networks and, 282-283	open source software and, 379–381
openness and, 281–282	poor countries and, 217–231
robustness and, 286	President's Information Technology
role of standards and, 281–294	Advisory Committee and, 379
simulation of, 287–289	Zaibatsus and, 224
specification of, 281–284	Polymers, 259–260
World Wide Web Consortium and, 283	Pope, Alexander, 320
word wide web Consortium and, 200	1 ope, Alexander, 320

Porter, M., 36	Raymond, Eric, 246, 318–319, 377–378,
Poverty	419
capacity competitiveness and, 227–230	Readings, Bill, 135, 144
economic catch-up and, 217–218, 221–	Reasoning, Inc., 396, 420
231	Red Hat, 402, 416, 422
grid technologies and, 431	Reification, 302
Japan and, 223–225	Renaissance, 114
Marx and, 217–218	Research and development (R&D), 102
neo-classical growth theory and, 218–219	academic influence and, 171–173
productivity and, 219	Bayh-Dole Act and, 169–184
public good and, 217, 219	biomedical, 351–365, 391–408
technology and, 220–221	Canada and, 37
Powell, Walter W., 460	capacity competitiveness and, 229
Printing, 116–118	China and, 203–205
Privatization, 3	cyberinfrastructure and, 431–450, 455–
Procassini, A., 278	476
Proceedings of the National Academies of	DUI learning and, 68–70
Sciences, 385	economic catch-up and, 222–227
Product Innovation and User-Producer	European Union and, 43–57, 199–200
Interaction (Lundvall), 64	experimentation and, 257–274
Production	funding influence on, 145
biomedical research and, 356-358	global knowledge network and, 211-212
competition and, 193-195	human capital and, 21
custom products and, 242	India and, 205–208
designs and, 299-321	industry and, 28
experimentation and, 257-274	in-firm transfer and, 33
interactive learning and, 63-73	information and communication tech-
internationalization of, 277	nologies (ICTs) and, 10, 21-22
platforms and, 278–295	innovation and, 257
poverty and, 219	Japan and, 200–201
Science, Technology and Industry	as knowledge activity, 30
Scoreboard and, 76	knowledge sources and, 32-34
uncertainty and, 261-262	linear model and, 138-143
Program for International Student	MNEs and, 204–205, 211–212
Assessment (PISA), 36	multi-institutional, 467–469
Project teams, 95	National Science Foundation and, 33–35
Proximity, 13	networks and, 34–35, 75–88
Public good, 135, 137–138, 146, 217, 219	OECD and, 19–22, 30, 33–34, 38, 76
Public Library of Science, 385, 445	patents and, 333 (see also Patents)
Purchasing power parity (PPP), 28	platforms and, 278–295
	public good and, 138
Quillen, C. D., 334	SEMATECH and, 170
D : A : IV 204 442	skilled labor and, 193–194, 199–200,
Rai, Arti K., 391–413	203–205
Rai, Saritha, 207	STI learning and, 68–70
Rapid-cycle methods, 312	systemic approach and, 46–48, 54

e-science and, 431-450, 455-456, 460, System of National Accounts and, 38 uncertainty and, 261-262 470-471 United States and, 46–47 Grid for Physics Network (GriPHyN) and, universities and, 138-143 471-472 Research Corporation, The, 174 Knowledge and Distributed Intelligence Rhoten, Diana, 467 (KDI) program and, 468-469 Richardson, G. B., 66 multi-institutional research and, 467-469 Riggs, William, 244 open, 169–170 Rights-based contracts, 3 physics and, 171–172, 199, 471–472 Rizzuot, C. R., 104–105 STI learning and, 68–70 Robey, D., 474 supercomputers and, 459–460, 466 Roman libraries, 113–114 U.S. school performance and, 193–197 Romer, Paul, 45, 219–220, 380 virtual organizations and, 470–471 Rosenberg, Nathan, 30, 67, 138, 141–142, Science, Technology and Industry Score-239 board (OECD), 17, 76 Science parks, 169 Rousseau, P., 44 Royal Society, 115 Scientific Revolution, 114, 116 Ruhleder, K., 456 SCO Group, 381, 423 Russia, 194, 222 Seaman, J., 154, 156 Search of Excellence, In (Peters & Saint-Paul, Gilles, 380 Waterman), 258 Sampat, Bhaven, 169–189 SELETE, 170 Sanyo, 281 Semantic Web, 432 SAP, 207, 287 SEMATECH (SEmicondutor MAnufacturing Saxenian, Anna Lee, 198, 212 TECHnology), 170 Semiconductors, 170, 268–271 Scarcity-based value, 7 Schaaper, Martin, 193–216 Sen, A., 84 Schankerman, Mark, 333, 382 Seti at home, 434 Shah, S., 239-240, 246, 248, 251 Schmidt, Klaus, 380 Schnitzer, Monika, 380 Shapiro, Carl, 249, 290, 380–381 Schreier, M., 251 Sharman, David, 313 Schuller, Tom, 75–89 Sheehan, Jerry, 200 Schumpeter, J., 31 Shin, Jang-Sup, 223 Science, 10, 199, 223 Siemens, 204 Bayh-Dole Act and, 169–184 Silicon Valley, 22, 198, 211 big-scale, 473–474 Silver, Spencer, 259–260 biomedical research and, 351-365, 391-Simon, Herbert, 455 408 design and, 302, 307, 309, 312–313, 320– China and, 203 collaboration and, 435-450, 455-456 innovation and, 262 commercial exploitation and, 351–365 platforms and, 280 cyberinfrastructure and, 431–450, 455– Singapore, 223–224 478 Skilled labor, 231 designs and, 299-321 1990s and, 195–198 domain, 464–465 brain drain and, 195, 197-201, 208-209

China and, 201-205, 209

epistemic infrastructure and, 113-131

Skilled labor (cont.)	universities and, 135-147
competitiveness and, 193-195	Social memory, 12, 128–129
degree data and, 195, 197-198, 202-203	Social Science Research Network, 445
division of labor and, 277-295	Social-technical interaction network (STIN),
European Union and, 199-200	470
global knowledge network and, 211-212	Solow, Robert, 218–220
growth and, 193	Somaya, D., 333
India and, 205–209	Sondrestom Observatory, 473
Japan and, 200-201	Song, Weiguo, 202
macroeconomic effects and, 210–211	SourceForce.net, 370, 377
national innovation system and, 208-210	Space Physics and Aeronomy Research
"A Nation at Risk" and, 193-195	Collaboratory (SPARC), 455, 473
new millennium and, 198-208	Spain, 22, 181, 194
offshoring and, 206-207	Specialization, 65
policy and, 208-213	Spectrum Object Model-Linker, 374
research and development (R&D) and,	Spence, M., 438, 447
193–194, 199–200, 203–205	Sperry Univac, 317
security effects and, 199	Stamelos, I., 420
U.S. school performance and, 193-194	Standish, T., 417
Sloan Survey of Online Learning, 154	Stanford University, 402, 445
Small and medium enterprises (SMEs), 51,	Star, S. L., 456
56, 102, 346	Static effects, 65
Smith, Adam, 65, 68–70, 239	Stationer's Company, 117
Smith, J. M., 160–161	Statistics, 35
Smithsonian Institution, 123	education and, 37
SNP Consortium, 360	European Innovation Scoreboard and, 31-
Social capability, 227, 230	32, 39
Social capital	knowledge economy and, 27-28
bonding, 76–83	knowledge measurement and, 27-39
bridging, 76–83	networks and, 34–35
cocreation and, 86–87	System of National Accounts and, 28, 38
cyberinfrastructure and, 431–450, 455–	UNESCO Institute of Statistics and, 33-34
478	Steam engine, 120
design and, 301	Stehr, Nico, 29
epistemic infrastructure and, 113-131	Stein, Lincoln, 398–399
e-science and, 431–450	Steinmueller, W. Edward, 277-297
exclusion and, 77-78	Stevenson-Wydler Act, 357
information commons and, 444–450	Steward, Donald, 307, 309
interactive learning and, 63–73	STI (science, technology, innovation)
interdisciplinarity and, 79	learning, 68–70
linking, 76–86	Sullivan, Kevin, 309
mapping of, 83–87	Sun Microsystems, 369
networks and, 66, 75–88, 445 (see also	Supercomputers, 459–460, 466
Knowledge communities)	SuSE Linux, 420
poverty and, 217–231	Sweden, 22, 181
skilled labor and, 193–213	Symeonidis, G., 102
,	

Systemic approach, 46–48, 54 System of National Accounts (SNA), 28, 38 Taiwan, 218, 223-225 Takeuchi, H., 102 Task forces, 95 Tavistock Institute of Human Relations, 458 Taylor, T., 417 Taylorism, 99 Technology, 1 Bayh-Dole Act and, 169-184 biomedical, 351–365 capacity competitiveness and, 227-230 clocks and, 141 cyberinfrastructure and, 431-450, 455-476 design and, 299-321 developmental state and, 218 digital, 2–3 economic catch-up and, 217–218, 221– 231 e-learning and, 152–167 epistemic infrastructure and, 113–131 European Union and, 43–57 experimentation and, 257–274 Google Print and, 124–129 grid, 431–435 information commons and, 444-450 innovation and, 30-31, 257 (see also Innovation) institutions and, 12–13 interactive learning and, 63–73 IT bubble and, 63 knowledge economy and, 28 LAM, 12 middleware and, 433, 438–439 OECD work and, 17–23 open source production and, 382-383 (see *also* Open source production) peer-to-peer, 434, 438 platforms and, 278-295 printing and, 116–118 R&D and, 141 (see also Research and development (R&D))

Systema naturae (Linneaus), 116

Science, Technology and Industry Scoreboard and, 76 Scientific Revolution and, 114, 116 semiconductors and, 268-271 steam engine and, 120 supercomputers and, 459-460, 466 uncertainty and, 261-262 Terrorism, 199 Texas Instruments, 207 Thille, C., 160–161 Thomke, Stefan, 251, 257–275 Thompson, 207 Tirole, Jean, 369–389, 417 Toolkits, 237, 266-267 benefits of, 271-272 experimentation and, 268-272 Torvalds, Linus, 371, 416-418 Tradescant, John, 114–115 Trading zones, 465–466 Trajtenberg, Manuel, 44, 384 Transaction costs, 65–66 Tripsas, M., 251 Trist, E. L., 458 Trust, 5, 11–12 Twain, Mark, 331 Tyre, M., 67

Uncertainty, 65–66 UNESCO Institute of Statistics, 33–34 United Kingdom, 195, 208, 217 e-science and, 438-439 Open University, 158–159 Research Councils, 447 United States, 223, 225, 445 American Revolution and, 120 Bayh-Dole Act and, 169–184 Chinese investment and, 204–205 competitiveness and, 193–195 Court of Appeals for the Federal Circuit and, 175, 393 Digital Millennium Copyright Act and, 249 e-learning and, 154–156 Federal Trade Commission and, 333, 365 Food & Drug Administration (FDA), 351 Freedom of Information Act and, 3 global knowledge network and, 211-212

United States (cont.) Upper Atmospheric Research Collaboratory, innovation and, 52-53 455 Urban, G. L., 239 intellectual property and, 47 new millennium and, 198-208 President's Information Technology Vaccines, 259 Advisory Committee, 379 Value-capture games, 315–319 productivity in, 44–45 van der Ven, A., 221 research and development (R&D) and, 22 Varian, Hal R., 249, 290, 380-381 school performance and, 193–197 Veblen, Thorstein, 217, 221–223 security effects and, 199 Venture, Craig, 399, 403 Verbick, L., 154 skilled labor and, 193–213 specialization in, 45 Veugelers, Reinhilde, 43–59 U.S. Constitution, 119 Vincent-Lancrin, Stéphan, 151–168 U.S. Patent and Trademark Office, 178, Virtual organizations, 470–471 331-335, 341-342 VLSI Technology, 269, 271–274 United States Super Computer Centers, von Hippel, Eric, 474 466 education and, 67 U.S. Supreme Court, 175 innovation and, 237-255 Universities, 12, 46–47, 148, 223 networks and, 81-82 Bayh-Dole Act and, 140, 169-184 open source production and, 374, 378 e-learning and, 152-167 statistics' role and, 33 universities and, 138, 142 funding influences and, 145 identity and, 136-138 von Krogh, G., 248 industry technology transfer and, 169-184 von Linné, Carl, 116 innovation and, 138-147 interdisciplinarity and, 79 Wade, R., 223 internationalization and, 137 Wagner, S., 334, 338 Kerr on, 78 Wang, 317 linear model and, 138-143 Waterman, R., 258 patents and, 174–183 Wealth of Nations (Smith), 68 public good and, 135, 137-138, 146 Webster, Daniel, 119-120 reflection activity and, 144-145 Weinberg, G., 417 research and development (R&D) and, Well-Being of Nations, The (OECD), 75 138 - 143Wenger, E., 92–93, 95 university of culture and, 135–137, 144, Wharton, Thomas, 115 Whitehead, Alfred North, 5 Whitney, Daniel, 305, 307, 309 University in Ruins, The (Readings), 135, 144 Williamson, Oliver, 65–67 University of California, 401 WINTEL, 281-284 University of Michigan, 128, 464, 473 Winter, S. G., 221 University of Phoenix, 156 Wolf, B., 244 University of Texas, 398, 400–402 Wood, M., 86 University of Toronto, 145 Working Party on Indicators for the University of Washington, 397 Information Society (WPIIS), 28 UNIX, 370–371, 381 World Bank, 219

World Economic Forum (WEF)
Competitiveness Index Rankings, 194–
195
World Wide Web. See Internet
Wunderkammern (Cabinets of Curiosities),
115–116, 119, 122–123
Wyckoff, Andrew, 193–216

Xerox, 103, 370 Xilinx, Inc., 271, 274 Xuan, Zhaohui, 202

Yakamoto, K., 420 Yassine, Ali, 313 Yasufuku, 273 Young, Bob, 416

Zachary, G., 423 Zaibatsus, 224 Zemsky, R., 153, 159 Ziedonis, R. H., 332–333, 340