
1 Evolutionary and Neural Synthesis of Intelligent Agents

Karthik Balakrishnan and Vasant Honavar

1.1 Introduction

From its very inception in the late 1950s and early 1960s, the field of Arti-
ficial Intelligence, has concerned itself with the analysis and synthesis of in-
telligent agents. Although there is no universally accepted definition of intel-
ligence, for our purposes here, we treat any software or hardware entity as
an intelligent agent, provided it demonstrates behaviors that would be char-
acterized as intelligent if performed by normal human beings under similar
circumstances. This generic definition of agency applies to robots, software
systems for pattern classification and prediction, and recent advances in mo-
bile software systems (softbots) for information gathering, data mining, and
electronic commerce. The design and development of such agents is a topic
of considerable ongoing research and draws on advances in a variety of dis-
ciplines including artificial intelligence, robotics, cognitive systems, design of
algorithms, control systems, electrical and mechanical engineering, program-
ming languages, computer networks, distributed computing, databases, pro-
gramming languages, statistical analysis and modeling, etc.

In very simplistic terms, an agent may be defined as an entity that perceives
its environment through sensors and acts upon it through its effectors [76].
However, for the agents to be useful, they must also be capable of interpreting
perceptions, reasoning, and choosing actions autonomously and in ways suited
to achieving their intended goals. Since the agents are often expected to operate
reliably in unknown, partially known, and dynamic environments, they must
also possess mechanisms to learn and adapt their behaviors through their
interactions with their environments. In addition, in some cases, we may
also require the agents to be mobile and move or access different places or
parts of their operating environments. Finally, we may expect the agents to
be persistent, rational, etc., and to work in groups, which requires them to
collaborate and communicate [76, 87, 60].

It can be seen that this definition of agents applies to robots that occupy
and operate in physical environments, software systems for evaluation and op-
timization, softbots that inhabit the electronic worlds defined by computers and
computer networks, and even animals (or biological agents) that cohabit this
planet. Robots have been used in a wide variety of application scenarios like
geo, space, and underwater exploration, material handling and delivery, secu-

MIT Press Math6X9/2001/02/08:14:23 Page 1

2 Karthik Balakrishnan and Vasant Honavar

rity patrolling, control applications in hazardous environments like chemical
plants and nuclear reactors, etc., [14, 18, 90, 62]. Intelligent software systems
have been extensively used as automated tools for diagnosis, evaluation, anal-
ysis and optimization. Softbots are being increasingly used for information
gathering and retrieval, data mining, e-commerce, news, mail and information
filtering, etc., [7].

In general, an agent can be characterized by two elements: its program and
its architecture. The agent program is a mapping that determines the actions
of the agent in response to its sensory inputs, while architecture refers to the
computing and physical medium on which this agent program is executed [76].
For example, a mail filtering agent might be programmed in a language such
as C++ and executed on a computer, or a robot might be programmed to move
about and collect empty soda cans using its gripper arm. Thus, the architecture
of the agent, to a large extent, determines the kinds of things the agent is
capable of doing, while the program determines what the agent does at any
given instance of time. In addition to these two elements, the agent environment
governs the kinds of tasks or behaviors that are within the scope of any agent
operating in that environment. For instance, if there are no soda cans in the
robot’s environment, the can collecting behavior is of no practical use.

Given a particular agent environment the question then is, how can we
design agents with the necessary behaviors and abilities to solve a given task
(or a set of tasks)?

The field of Artificial Intelligence (AI) has long concerned itself with the
design, development, and deployment of intelligent agents for a variety of prac-
tical, real-world applications [73, 86, 81, 76]. A number of tools and tech-
niques have been developed for synthesizing such agent programs (e.g., expert
systems, logical and probabilistic inference techniques, case-based reasoning
systems, etc.) [73, 24, 40, 17, 16, 76].

However, designing programs using most of these approaches requires
considerable knowledge of the application domain being addressed by the
agent. This process of knowledge extraction (also called knowledge engineer-
ing) is often difficult either owing to the lack of precise knowledge of the do-
main (e.g., medical diagnosis) or the inability to procure knowledge owing
to other limitations (e.g., detailed environmental characteristics of, say, planet
Saturn). We thus require agent design mechanisms that work either with little
domain-specific knowledge or allow the agent to acquire the desired informa-
tion through its own experiences. This has led to considerable development of
the field of machine learning (ML), which provides a variety of modes and

MIT Press Math6X9/2001/02/08:14:23 Page 2

Evolutionary and Neural Synthesis of Intelligent Agents 3

methods for automatic synthesis of agent programs [35, 36, 44, 74, 58].

1.2 Design of Biological Agents

Among the processes of natural adaptation responsible for the design of bio-
logical agents (animals), probably the most crucial is that of evolution, which
excels in producing agents designed to overcome the constraints and limita-
tions imposed by their environments. For example, flashlight fish (photoble-
pharon palpebratus), inhabits deep-waters where there is little surface light.
However, this is not really a problem since evolution has equipped these crea-
tures with active vision systems. These fishes produce and emit their own light,
and use it to detect obstacles, prey, etc. This vision system is unlike any seen
on surface-dwelling organisms [27].

Apart from evolution, learning is another biological process that allows an-
imals to successfully adapt to their environments. For instance, animals learn
to respond to specific stimuli (conditioning) and ignore others (habituation),
recognize objects and places, communicate, engage in species-specific behav-
iors, etc., [51, 23, 27, 52]. Intelligent behavior in animals emerges as a result of
interaction between the information processing structures possessed by the an-
imal and the environments that they inhabit. For instance, it is well known that
marine turtles (e.g., Chelonia mydas) lay their eggs on tropical beaches (e.g.,
Ascension Island in the Atlantic ocean). When the eggs hatch, the young au-
tomatically crawl to the water without any kind of parental supervision. They
appear to be genetically programmed to interpret cues emanating from large
bodies of water or patches of sky over them [27]. Animals are also capable of
learning features of specific environments that they inhabit during their life-
time. For instance, rodents have the ability to learn and successfully navigate
through complex mazes [82, 61].

These processes of natural adaptation, namely, evolution and learning,
play a significant role in shaping the behaviors of biological agents. They
differ from each other in some significant aspects including the spatio-temporal
scales at which they operate. While learning operates on individuals, evolution
works over entire populations (or species). Further, learning operates during
the lifetime of the individual and is presumably aided by long lifespans,
while evolution works over generations, well beyond an individual’s effective
lifespan [1].

Despite these apparent differences, evolution and learning work synergis-

MIT Press Math6X9/2001/02/08:14:23 Page 3

4 Karthik Balakrishnan and Vasant Honavar

tically to produce animals capable of surviving and functioning in diverse en-
vironments. While the architectures of biological agents (e.g., digestive, respi-
ratory, nervous, immune, and reproductive systems) are shaped by evolution,
the agent programs (e.g., behaviors like foraging, feeding, grooming, sleep-
ing, escape, etc.) are affected and altered by both evolutionary and learning
phenomena. In such cases, evolution produces the innate (or genetically pro-
grammed) behaviors which are then modified and contoured to the animal’s
experiences in the specific environment to which it is exposed. Thus, by equip-
ping the agents with good designs and instincts, evolution allows them to sur-
vive sufficiently long to learn the behaviors appropriate for the environment in
question.

Although the processes of evolution and learning are reasonably well de-
tailed, there are still many gaps to be filled before a complete understanding of
such processes can be claimed. Ongoing research in the neurosciences, cogni-
tive psychology, animal behavior, genetics, etc., is providing new insights into
the exact nature of the mechanisms employed by these processes: the struc-
tures they require and the functions they compute. This has led to many new
hypotheses and theories of such mechanisms. Computational modeling efforts
complement such research endeavors by providing valuable tools for testing
theories and hypotheses in controlled, simulated environments. Such modeling
efforts can potentially identify and suggest avenues of further research that can
help fill in the gaps in current human understanding of the modeled processes
[10].

As outlined in the previous sections, the enterprise of designing agents has
to take into account three key aspects: the nature of the environment, agent
architecture, and agent program. The primary focus of this book is on evo-
lutionary synthesis of intelligent agents with a secondary focus on the use of
learning mechanisms to enhance agent designs. The chapters that follow con-
sider the design of agent programs using processes that are loosely modeled
after biological evolution. They explore several alternative architectures and
paradigms for intelligent agent architectures including artificial neural net-
works. They provide several examples of successful use of evolutionary and
neural approaches to the synthesis of agent architectures and agent programs.

MIT Press Math6X9/2001/02/08:14:23 Page 4

Evolutionary and Neural Synthesis of Intelligent Agents 5

1.3 Agent Programs

As we mentioned earlier, the agent program is primarily responsible for the
behavior of the agent or robot in a given environment. The agent program
determines the sensory inputs available to the agent at any given moment in
time, processes the inputs in ways suited to the goals (or functionalities) of the
agent, and determines appropriate agent actions to be performed.

In order to be used in practice, these programs have to be encoded within
the agents using an appropriate language and the agents must possess mech-
anisms to interpret and execute them. Some of the earliest programs were
realized using circuits and control systems that directly sensed input events,
processed them via appropriate transfer functions, and directly controlled the
output behaviors of the robot [46]. Examples of such representations include
systems used in the control of industrial robots, robotic arms, etc. [2]. However,
these approaches require the transfer function to be known and appropriately
implemented, which is often difficult in practice. In addition, these control
mechanisms are rather inflexible and reprogramming the robot for a different
behavior or task may entail extensive changes.

The advent of computers and their ability to be effectively reprogrammed,
opened up entirely new possibilities in the design of agent programs for
modern-day robots and software agents. In these cases, the agent programs are
written in some computer language (e.g., C++, Java, LISP), and executed by
the computer. The program receives the necessary inputs from the agent sen-
sors, processes them appropriately to determine the actions to be performed,
and controls the agent actuators to realize the intended behaviors. The sensors
and actuators may be physical (as in the case of robots) or virtual (as in the
case of most software agents). The behavior of the agent can be changed by
changing the agent program associated with it.

The question then is, how can we develop agent programs that will enable
the agent to exhibit the desired behaviors?

Designing Control Programs for Agent Behaviors

Many contemporary agents make use of programs that are manually devel-
oped. This is a daunting task, given the fact that the agent-environment inter-
actions exhibit a host of a priori unknown or unpredictable effects. In addition,
complex agent behaviors often involve tradeoffs between multiple competing
alternatives. For example, suppose a robot has the task of clearing a room by
pushing boxes to the walls. Let us also assume that the robot has limited sens-

MIT Press Math6X9/2001/02/08:14:23 Page 5

6 Karthik Balakrishnan and Vasant Honavar

ing ranges that prevent it from observing the contents of the entire room and it
does not have any means to remember the positions of boxes it has observed in
the past. Suppose this robot currently observes two boxes. Which one should
it approach and push? This decision is critical as it directly affects the subse-
quent behaviors of the robot. We may program the robot to approach the closer
of the two boxes, but can we be sure that such a decision made at the local
level will indeed lead to any kind of globally optimal behavior? Manually de-
signing control programs to effectively address such competing alternatives is
an equally challenging proposition.

We thus need approaches to automate the synthesis of scalable, robust,
flexible, and adaptive agent programs for a variety of practical applications. In
recent years two kinds of automatic design approaches have met with much
success: discovery and learning. Approaches belonging to the former category
typically include some mechanism to search the space of agent programs in
the hope of finding or discovering a good one. Each program found during
this search is evaluated in environments that are representative of those that
are expected to be encountered by the agent and the best ones are retained.
Some discovery approaches (e.g., evolutionary search) use these evaluations
to guide or focus the search procedure, making the process more efficient.
The latter category includes approaches that allow the robot behaviors to be
modified based on the experiences of the agent, i.e., the robot learns the correct
behaviors based on its experience in the environment.

In the remainder of this chapter we will introduce two paradigms that aid
in the automatic synthesis of agent programs. Artificial neural networks, finite
state automata, rule-based production systems, Lambda Calculus, etc., offer
alternative computational models for the design of agent programs. As shown
by the pioneering work of Turing, Church, Post, Markov, and others, they are
all essentially equivalent in terms of the class of information processing opera-
tions that they can realize [83, 56, 47]. However, in practice, each paradigm has
its own advantages and disadvantages in the context of specific applications. It
is therefore not at all uncommon to use hybrid models that integrate and exploit
the advantages of multiple paradigms in synergistic and complementary ways
[38, 80, 26]. In what follows, we focus primarily on evolutionary synthesis of
neural architectures for intelligent agents. However, many of the same issues
arise in the automated synthesis of agents with other information processing
architectures as well (e.g., rule-based systems).

MIT Press Math6X9/2001/02/08:14:23 Page 6

Evolutionary and Neural Synthesis of Intelligent Agents 7

1.4 Artificial Neural Networks as Agent Programs

Artificial neural networks offer an attractive paradigm of computation for the
synthesis of agent programs for a variety of reasons including their potential for
massively parallel computation, robustness in the presence of noise, resilience
to the failure of components, and amenability to adaptation and learning via
the modification of computational structures, among others.

What are Artificial Neural Networks?

Artificial neural networks are models of computation that are inspired by,
and loosely based on, the nervous systems in biological organisms. They are
conventionally modeled as massively parallel networks of simple computing
elements, called units, that are connected together by adaptive links called
weights, as shown in Figure 1.1. Each unit in the network computes some
simple function of its inputs (called the activation function) and propagates
its outputs to other units to which it happens to be connected. A number of
activation functions are used in practice, the most common ones being the
threshold, linear, sigmoid, and radial-basis functions. The weights associated
with a unit represent the strength of the synapses between the corresponding
units, as will be explained shortly. Each unit is also assumed to be associated
with a special weight, called the threshold or bias, that is assumed to be
connected to a constant source of +1 (or a -1). This threshold or bias serves
to modulate the firing properties of the corresponding unit and is a critical
component in the design of these networks.

Weights

Threshold function

-1

1
Output

Net input

Hidden units Output unitsInput units

Recurrent links

Figure 1.1
Artificial neural network (left) and the bipolar threshold activation function (right).

MIT Press Math6X9/2001/02/08:14:23 Page 7

8 Karthik Balakrishnan and Vasant Honavar

The input to an n-input (including the bias) unit is typically represented by
a pattern vector X 2 Rn or in the case of binary patterns, by a binary vector
X 2 [0; 1]n. The weights associated with an n-input unit i are typically repre-
sented by an n-dimensional weight vectorWi 2 Rn. By popular convention,
the first element of the weight vector usually represents the threshold (or bias).
The input activation of a unit i, represented by Ai, in response to a pattern X
on its input links is usually given by the vector dot product: Ai =Wi:X. The
output of the unit is a function of Ai and is dictated by the activation func-
tion chosen. For example, the bipolar threshold activation function, shown in
Figure 1.1, produces: Oi = 1 if Ai =Wi:X � 0 and Oi = �1 otherwise.

Units in the network that receive input directly from the environment are
referred to as input units, while the units that provide the environment with
the results of network computations are called output units. In conventional
neural network terminology, the set of input and output units are said to reside
in input and output layers. In addition to these kinds of units, the networks can
also have other units that aid in the network computations but do not have a
direct interface to or from the external environment. Such units are referred
to as hidden units. Often, the hidden units critically determine the kinds of
mappings or computations the networks are capable of performing.

In a typical neural network the activations are propagated as follows. At
any given instance of time, the input pattern is applied to the input units
of the network. These input activations are then propagated to the units that
are connected to these input units, and the activations of these second layer
units are computed. Now the activations of these units are propagated via their
output links to other units, and this process continues until the activations reach
the units in the output layer. Once the computations of the output layer units are
complete (or in the case of recurrent networks the network activity stabilizes),
the resulting firing pattern across the output layer units is said to be the output
of the network in response to the corresponding input pattern. Thus, in a typical
neural network, activations enter the input units, propagate through links and
hidden units, and produce an activation in the units of the output layer.

A wide variety of artificial neural networks have been studied in the lit-
erature. Apart from differences stemming from the activation functions used,
neural networks can also be distinguished based on their topological organi-
zation. For instance, networks can be single-layered or multi-layered; sparsely
connected or completely connected; strictly layered or arbitrarily connected;
composed of homogeneous or heterogeneous computing elements, etc. Per-
haps the most important architectural (and hence functional) distinction is be-

MIT Press Math6X9/2001/02/08:14:23 Page 8

Evolutionary and Neural Synthesis of Intelligent Agents 9

tween networks that are simply feed-forward (where their connectivity graph
does not contain any directed cycles) and recurrent (where the networks con-
tain feedback loops). Feed-forward networks can be trained via a host of sim-
ple learning algorithms and have found widespread use in pattern recognition,
function interpolation, and system modeling applications. In contrast to feed-
forward networks, recurrent networks have the ability to remember and use
past network activations through the use of recurrent (or feedback) links. These
networks have thus found natural applications in domains involving temporal
dependencies, for instance, in sequence learning, speech recognition, motion
control in robots, etc. For further details regarding artificial neural networks
and their rather chequered history, the reader is referred to any of a number of
excellent texts [15, 32, 45, 22, 43, 31, 74].

Design of Artificial Neural Networks

As may be inferred, the input-output mapping realized by an artificial neural
network is a function of the numbers of units, the functions they compute, the
topology of their connectivity, the strength of their connections (weights), the
control algorithm for propagating activations through the network, etc., [35].
Thus, to create a neural network with a desired input-output mapping, one
has to appropriately design these different components of the network. Not
surprisingly, network synthesis of this sort is an extremely difficult task because
the different components of the network and their interactions are often very
complex and hard to characterize accurately.

Much of the research on neural network synthesis has focused on algo-
rithms that modify the weights within an otherwise fixed network architec-
ture [22]. This essentially entails a search for a setting of the weights that
endows the network with the desired input-output behavior. For example, in a
network used in classification applications we desire weights that will allow
the network to correctly classify all (or most of) the samples in the training set.
Since this is fundamentally an optimization problem, a variety of optimization
methods (gradient-descent, simulated annealing, etc.) can be used to determine
the weights. Most of the popular learning algorithms use some form of error-
guided search (e.g., changing each modifiable parameter in the direction of
the negative gradient of a suitably defined error measure with respect to the
parameter of interest). A number of such learning algorithms have been devel-
oped, both for supervised learning (where the desired outputs of the network
are specified by an external teacher) and unsupervised learning (where the net-
work learns to classify, categorize, or self-organize without external supervi-

MIT Press Math6X9/2001/02/08:14:23 Page 9

10 Karthik Balakrishnan and Vasant Honavar

sion). For details regarding these learning paradigms, the reader is referred to
[22, 43, 30, 74].

Although a number of techiniques have been developed to adapt the
weights within a given neural network, the design of the neural architecture
still poses a few problems. Conventional approaches often rely on human ex-
perience, intuition, and rules-of-thumb to determine the network architectures.
In recent years, a number of constructive and destructive algorithms have been
developed, that aid in the design of neural network architectures. While con-
structive algorithms incrementally build network architectures one unit (or one
module) at a time [34, 37, 63, 89], destructive algorithms allow arbitrary net-
works to be pruned one unit (or one module) at a time. Thus, not only do these
approaches synthesize network architectures, but also entertain the possibility
of discovering compact (or minimal) networks. A number of such constructive
and destructive learning algorithms have been developed, each offering its own
characteristic bias.

In addition to these approaches, evolutionary algorithms (to be descibed
shortly) have also been used to search the space of neural architectures for
near-optimal designs (see [5] for a bibliography). This evolutionary approach
to the design of neural network architectures forms the core of this compilation.

1.5 Evolutionary Algorithms

Evolutionary algorithms, loosely inspired by biological evolutionary pro-
cesses, have gained considerable popularity as tools for searching vast, com-
plex, deceptive, and multimodal search spaces [33, 25, 57]. Following the
metaphor of biological evolution, these algorithms work with populations
of individuals, where each individual represents a point in the space being
searched. Viewed as a search for a solution to a problem, each individual then
represents (or encodes) a solution to the problem on hand. As with biological
evolutionary systems, each individual is characterized by a genetic representa-
tion or genetic encoding, which typically consists of an arrangement of genes
(usually in a string form). These genes take on values called alleles, from a
suitably defined domain of values. This genetic representation is referred to
as the genotype in biology. The actual individual, in our case a solution, is
referred to as the phenotype. As in biological evolutionary processes, pheno-
types in artificial evolution are produced from genotypes through a process of
decoding and development, as shown in Figure 1.2. Thus, while a human being

MIT Press Math6X9/2001/02/08:14:23 Page 10

Evolutionary and Neural Synthesis of Intelligent Agents 11

corresponds to a phenotype, his/her chromosomes correspond to the genotype.
The processes of nurture, growth, learning, etc., then correspond to the decod-
ing/developmental processes the transform the genotype into a phenotype.

Fitness evaluation label

Decoding

Recombination
Mutation

Selection

Offspring

Genotypes Phenotypes

on application domain
Evaluate phenotype

Figure 1.2
The functioning of an evolutionary algorithm.

In artificial evolution (also referred to as simulated evolution), solutions
represented by the phenotypes are evaluated based on the target problem for
which solutions are being sought. This evaluation of the phenotypes assigns
differential fitness labels to the corresponding genotypes. Processes akin to
natural selection then preferentially choose genotypes of higher fitness to par-
ticipate in probabilistically more numbers of matings. These matings between
chosen individuals leads to offsprings that derive their genetic material from
their parents via artificial genetic operators that roughly correspond to the bio-
logical operators of recombination and mutation. These artificial genetic oper-
ators are popularly referred to as crossover and mutation. The offspring geno-
types are then decoded into phenotypes and the process repeats itself. Over
many generations the processes of selection, crossover, and mutation, gradu-
ally lead to populations containing genotypes that correspond to high fitness
phenotypes. This general procedure, perhaps with minor variations, is at the
heart of most evolutionary systems.

The literature broadly distinguishes between four different classes of evo-
lutionary approaches: genetic algorithms, genetic programming, evolutionary
programming, and evolutionary strategies. While genetic algorithms typically
use binary (or bit) strings to represent genotypes [33, 25], genetic program-
ming evolves programs in some given language [42]. Both these paradigms

MIT Press Math6X9/2001/02/08:14:23 Page 11

12 Karthik Balakrishnan and Vasant Honavar

perform evolutionary search via genetic operators of crossover and mutation.
Evolutionary programming, on the other hand, allows complex structures in
the genotypes but only uses a mutation operator [20]. Evolution strategies are
typically used for parameter optimization [78, 3]. They employ recombina-
tion and mutation, and also permit self-learning (or evolutionary adaptation) of
strategy parameters (e.g., variance of the Gaussian mutations). In recent years,
the distinctions between these different paradigms have become rather fuzzy
with researchers borrowing from the strengths of different paradigms. For in-
stance, we use complex data structures for representing genotypes and employ
both recombination as well as mutation operators to perform the evolutionary
search [4]. In this regard our approach may be described as a combination of
evolutionary programming and genetic algorithms. For these reasons we prefer
to use the generic term, evolutionary algorithms, to describe our approach to
the use of artificial evolution.

As each population member represents a potential solution, evolutionary
algorithms effectively perform a population-based search in solution space.
Since this is equivalent to exploring multiple regions of the space in parallel,
evolutionary algorithms are efficient search tools for vast spaces. In addition,
the population-based nature of evolutionary search often helps it overcome
problems associated with local maxima, making it very suitable for searching
multi-modal spaces. Further, the genetic encoding and genetic operators can
be chosen to be fairly generic, requiring the user to only specify the decoding
function and the fitness or evaluation function. In most cases these functions
can be specified using little domain-specific knowledge. Thus, one does not
necessarily have to understand the intricacies of the problem in order to use an
evolutionary approach to solve it.

Evolutionary Synthesis of Agent Programs

As demonstrated by several of the chapters that follow, evolutionary algorithms
offer a promising approach to synthesis of agent programs (in the form of
artificial neural networks, LISP programs, etc.) for a wide variety of tasks
[68, 19, 71, 29, 70, 64, 72, 69, 88, 13, 53, 85, 41, 12, 48, 54, 59, 8, 50].

In such cases, evolutionary search operates in the space of agent pro-
grams, with each member of the population representing an agent behavior.
By evaluating these behaviors on the target agent task and performing fitness-
proportionate reproduction, evolution discovers agent programs that exhibit the
desired behaviors.

MIT Press Math6X9/2001/02/08:14:23 Page 12

Evolutionary and Neural Synthesis of Intelligent Agents 13

1.6 Evolutionary Synthesis of Neural Systems

In an earlier section we alluded to the difficulty of synthesizing artificial neu-
ral networks that possess specific input-output mappings. Owing to the many
properties of evolutionary algorithms, primarily their ability to search vast,
complex, and multimodal search spaces using little domain-specific knowl-
edge, they have found natural applications in the automatic synthesis of arti-
ficial neural networks. Several researchers have recently begun to investigate
evolutionary techniques for designing such neural architectures (see [5] for a
bibliography).

Probably the distinguishing feature of an evolutionary approach to network
synthesis is that unlike neural network learning algorithms that typically deter-
mine weights within a priori fixed architectures and constructive/destructive
algorithms that simply design network architectures without directly adapting
the weights, evolutionary algorithms permit co-evolution or co-design of the
network architecture as well as the weights. Evolutionary algorithm may be
easily extended to automatically adapt other parameters such as rates of mu-
tation [79] and learning rate [77], and even the learning algorithm [9]. In ad-
dition, by appropriately modifying the fitness function, the same evolutionary
system can be used to synthesize vastly different neural networks, each satis-
fying different task-specific performance measures (e.g., accuracy, speed, ro-
bustness, etc.) or user-specified design constraints (e.g., compactness, numbers
of units, links and layers, fan-in/fan-out constraints, power consumption, heat
dissipation, area/volume when implemented in hardware, etc.). Evolutionary
algorithms also allow these networks to be optimized along multiple dimen-
sions either implicitly [4] or explicitly via the use of different multi-objective
optimization approaches [21, 67, 66, 39].

An Example of Evolutionary Synthesis of Neural Networks

A number of researchers have designed evolutionary systems to synthesize
neural networks for a variety of applications. Here we will present the approach
adopted by Miller et al. (1989).

In their system, Miller et al., encode the topology of an N unit neural
network by a connectivity constraint matrix C, of dimension N � (N + 1),
as shown in Figure 1.3. Here, the first N columns specify the constraints
on the connections between the N units, and the final column codes for the
connection that corresponds to the threshold or bias of each unit. Each entry
Cij , of the connectivity constraint matrix indicates the nature of the constraint

MIT Press Math6X9/2001/02/08:14:23 Page 13

14 Karthik Balakrishnan and Vasant Honavar

on the connection from unit j to unit i (or the constraint on the threshold bias
of unit i if j = N + 1). While Cij = 0 indicates the absence of a trainable
connection between units j and i, a value of 1 signals the presence of such a
trainable link. The rows of the matrix are concatenated to yield a bit-string of
length N � (N + 1). This is the genotype in their evolutionary system.

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

00 0

1 1
1 1

1 1

1
1
1

000000

0000000000000110001110001001101

1 2

3 4

5

Bit-string Genotype

Network Architecture

Connectivity Constraint Matrix

000000
110001

001101
110001

From Unit: 1 2 4 5 bias

To Unit: 1
2

5

3
4

3

Figure 1.3
An example of an evolutionary approach to the synthesis of neural networks.

The fitness of the genotype is evaluated as follows. First, the genotype
is decoded into the corresponding neural network (or the phenotype). This
decoded network has connections (or weights) between units that have a 1
in the corresponding position in the connectivity constraint matrix (or the
genotype), as explained earlier. Even though feedback connections can be
specified in the genotype, they are ignored by the decoding mechanism. The
system thus evolves purely feed-forward networks. Next, all the connections
in the network are set to small random values and trained for a fixed number

MIT Press Math6X9/2001/02/08:14:23 Page 14

Evolutionary and Neural Synthesis of Intelligent Agents 15

of epochs on a given set of training examples, using the back-propagation
algorithm [75]. The total sum squared error (E) of the network, at the end
of the training phase, is used as the fitness measure, with low values of E
corresponding to better performance and hence a higher fitness label for the
corresponding genotype.

The system maintains a population of such genotypes (bit-strings), and
uses a fitness-proportionate selection scheme for choosing parents for repro-
duction. The genetic operator crossover swaps rows between parents while mu-
tation randomly flips bits in the genotype with some low, pre-specified proba-
bility. The researchers used this evolutionary system to design neural networks
for the XOR, four-quadrant and pattern-copying problems [55].

1.7 Genetic Representations of Neural Architectures

Central to any evolutionary design system is the choice of the genetic represen-
tation, i.e., the encoding of genotypes and the mechanism for decoding them
into phenotypes. The choice of the representation is critical since it not only
dictates the kinds of phenotypes (and hence solutions) that can be generated by
the system, but also determines the amount of resources (e.g., time, space, etc.)
expended in this effort. Further, the genetic operators for the system are also
defined based largely on the representation chosen. These factors contribute
directly to the efficiency (e.g., time, space, etc.) and the efficacy (e.g., quality
of solution found, etc.) of the evolutionary search procedure [66, 65]. Thus,
a careful characterization of the properties of genetic representations as they
relate to the performance of evolutionary systems, is a necessary and useful
venture.

Some authors have attempted to characterize properties of genetic repre-
sentations of neural architectures [11, 28]. However, most such characteriza-
tions have been restricted to a specification of the properties of the encoding
scheme without considering in detail the associated decoding process. This is
an important oversight because the decoding process not only determines the
phenotypes that emerge from a given genotype, but also critically influences
the resources required in the bargain. For instance, a cryptic encoding scheme
might be compact from a storage perspective but might entail a decoding pro-
cess that is rather involved (both in terms of time and storage space). If we
were blind to the effects of the decoding process, we might be enamoured by
this encoding scheme and use it as our genetic representation. This would have

MIT Press Math6X9/2001/02/08:14:23 Page 15

16 Karthik Balakrishnan and Vasant Honavar

severe consequences on the performance of the evolutionary system.
For these reasons it is imperative that we consider the encoding and the

decoding process as a closely related pair while characterizing different prop-
erties of genetic representations. Given this motivation, we have identified and
precisely defined a number of key properties of genetic representations of neu-
ral architectures, taking both the encoding and the decoding processes into ac-
count [6]. However, it must be pointed out that this is only a preliminary char-
acterization and we expect these definitions to get more refined as we examine
a large variety of evolutionary systems more closely. The following section
describes these properties.

Properties of Genetic Representations of Neural Architectures

In order to develop formal descriptions of properties of genetic representations,
we need the following definitions.

� GR is the space of genotypes representable in the chosen genetic representa-
tion scheme R. GR may be explicitly enumerated or implicitly specified using
a grammar � whose language L(�) = GR.

� p = D(g; ED), where D is the decoding function that produces the phe-
notype p corresponding to the genotype g possibly under the influence of the
environment ED (e.g., the environment may set the parameters of the decoding
function). A value of � for ED denotes the lack of direct interaction between
the decoding process and the environment. It should be borne in mind that D
may be stochastic, with an underlying probability distribution over the space
of phenotypes.

� p2 = L(p1; EL), where the learning procedure L generates phenotype p2
from phenotype p1 under the influence of the environment EL. The environ-
ment may provide the training examples, set the free parameters (e.g., the
learning rate used by the algorithm) etc. We will use L = � to denote the
absence of any form of learning in the system. In the following discussion we
will use the term decoding function to refer to both D and L. This slight abuse
of notation allows the following properties to apply to genetic representations
in general, even though they are presented in the context of evolutionary design
of neural architectures.

� PR is the space of all phenotypes that can be constructed (in principle) given
a particular genetic representation schemeR. Mathematically,PR = fp=9g 2
GR[(p1 = D(g; ED)) ^ (p = L(p1; EL))]

MIT Press Math6X9/2001/02/08:14:23 Page 16

Evolutionary and Neural Synthesis of Intelligent Agents 17

� S is the set of solution networks, i.e., neural architectures or phenotypes that
satisfy the desired performance criterion (as measured by the fitness function
�) in a given environment E�. If an evolutionary system with a particular
representationR is to successfully find solutions (even in principle), S � PR,
or, at the very least, S \ PR 6= ;. In other words, there must be at least one
solution network that can be constructed given the chosen representationR.

� A is the set of acceptable or valid neural architectures. For instance, a
network may be deemed invalid or unacceptable if it does not have any paths
from the inputs to the outputs. In general, A may be different from PR.
However, it must be the case thatA\S 6= ; if a particular evolutionary system
is to be useful in practice.

We now identify some properties of genetic representations of neural archi-
tectures. Unless otherwise specified, we will assume the following definitions
are with respect to an a priori fixed choice of ED;L, and EL.

1. Completeness: A representationR is complete if every neural architecture
in the solution set can be constructed (in principle) by the system. Formally,
the following two statements are equivalent definitions of completeness.
� (8s 2 S)(9g 2 GR)[(p1 = D(g; ED)) ^ (s = L(p1; EL))]
� S � PR
Thus, completeness demands that the representation be capable of producing
all possible solutions to the problem. Often, this may be hard to satisfy and one
may have to choose between partially complete representations. In such cases,

another figure of merit called solution density, denoted by jS\PRj

jPRj
, might

be useful. One would then choose representations that correspond to higher
solution densities, since this implies a higher likelihood of finding solutions. It
should be noted that if the solution density is very high, even a random search
procedure will yield good solutions and one may not have much use for an
evolutionary approach.

2. Closure: A representation R is completely closed if every genotype de-
codes to an acceptable phenotype. The following two assertions are both equiv-
alent definitions of closure.
� (8g 2 GR)[(p1 = D(g; ED)) ^ (L(p1; EL) 2 A)]
� PR � A
A representation that is not closed can be transformed into a closed system
by constraining the decoding function, thereby preventing it from generating
invalid phenotypes. Additionally, if the genetic operators are designed to have

MIT Press Math6X9/2001/02/08:14:23 Page 17

18 Karthik Balakrishnan and Vasant Honavar

the property of closure, then one can envision constrained closure wherein
all genotypes do not correspond to acceptable phenotypes, however, closure
is guaranteed since the system never generates the invalid genotypes. Closure
has bearings on the efficiency of the evolutionary procedure as it determines
the amount of effort (space, time, etc.) wasted in generating unacceptable
phenotypes.

3. Compactness: Suppose two genotypes g1 and g2 both decode to the same
phenotype p, then g1 is said to be more compact than g2 if g1 occupies less
space than g2:
� (p1 = D(g1; ED)) ^ (p = L(p1; EL)) ^ (p2 = D(g2; ED)) ^ (p =

L(p2; EL))^ j g1 j<j g2 j
where j g j denotes the size of storage for genotype g.
This definition corresponds to topological-compactness defined by
Gruau (1994). His definition of functional-compactness – which compares
the genotype sizes of two phenotypes that exhibit the same behavior, can be
expressed in our framework (for solution networks) as
� (p1 = D(g1; ED)) ^ (L(p1; EL) 2 S) ^ (p2 = D(g2; ED)) ^ (L(p2; EL) 2
S)^ j g1 j<j g2 j
Compactness is a useful property as it allows us to choose genetic representa-
tions that use space more efficiently. However, compact and cryptic representa-
tions often require considerable decoding effort to produce the corresponding
phenotype. This is the classic space-time tradeoff inherent in algorithm design.
Hence, the benefits offered by a compact representation must be evaluated in
light of the increased decoding effort before one representation can be declared
preferable over another.

4. Scalability: Several notions of scalability are of interest. For the time being
we will restrict our attention to the change in the size of the phenotype,
measured in terms of the numbers of units, connections, or modules. This
change in the size of the phenotype manifests itself as a change in the size
of the encoding (space needed to store the genotype), and a corresponding
change in decoding time. We can characterize the relationship in terms of the
asymptotic order of growth notation commonly used in analyzing computer
algorithms — O(�).
For instance, let nN;C 2 A be a network (phenotype) with N units and
C connections (the actual connectivity pattern does not really matter in this
example). We say that the representation is O(K)–size-scalable with respect
to units if the addition of one unit to the phenotype nN;C requires an increase

MIT Press Math6X9/2001/02/08:14:23 Page 18

Evolutionary and Neural Synthesis of Intelligent Agents 19

in the size of the corresponding genotype by O(K), where K is some function
ofN andC. For instance, if a given representation isO(N2) size-scalable with
respect to units,
then the addition of one unit to the phenotype increases the size of the genotype
by O(N2). Size-scalability of encodings with respect to connections, modules,
etc., can be similarly defined.
The representation is said to be O(K)– time-scalable with respect to units if
the time taken for decoding the genotype for nN+1;C exceeds that used for
nN;C by no more than O(K). Similarly, time-scalability with respect to the
number of connections, modules, etc., can also be defined.
Scalability is central to understanding the space-time consequences of using a
particular genetic representation scheme in different contexts. In conjunction
with completeness and compactness, scalability can be effectively used to
characterize genetic representations.

5. Multiplicity: A representationR is said to exhibit genotypic multiplicity if
multiple genotypes decode to an identical phenotype. In other words, the de-
coding function is a many to one mapping from the space of genotypes to the
corresponding phenotypic space.
� (9n 2 PR) (j fg 2 GR=(p = D(g; ED)) ^ (n = L(p; EL))g j> 1)

Genotypic multiplicity may result from a variety of sources including the en-
coding and decoding mechanisms. If a genetic representation has the property
of genotypic multiplicity, it is possible that multiple genotypes decode to the
same solution phenotype. In such cases, if the density of solutions is also high,
then a large fraction of the genotypic space corresponds to potential solutions.
This will make the evolutionary search procedure very effective.
A representation R is said to exhibit phenotypic multiplicity if different in-
stances of the same genotype can decode to different phenotypes. In other
words, the decoding function is a one to many mapping of genotypes into phe-
notypes.
� (9g1; g2 2 GR)[(p1 = D(g1; ED)) ^ (n1 = L(p1; EL))) ^ (p2 =

D(g2; ED)) ^ (n2 = L(p2; EL))) ^ (g1 = g2) ^ (n1 6= n2)]

Phenotypic multiplicity may result from several factors including the effects
of the environment, learning, or stochastic aspects of the decoding process.
If the density of solutions is low, then the property of phenotypic multiplicity
increases the possibility of decoding to a solution phenotype.

6. Ontogenetic Plasticity: A representation R exhibits ontogenetic plastic-
ity if the determination of the phenotype corresponding to a given geno-

MIT Press Math6X9/2001/02/08:14:23 Page 19

20 Karthik Balakrishnan and Vasant Honavar

type is influenced by the environment. This may happen as a result of either
environment-sensitive developmental processes (in which case ED 6= �), or
learning processes (in which case L 6= �).
Ontogenetic plasticity is a useful property for constraining or modifying the
decoding process based on the dictates of the application domain. For instance,
if one is evolving networks for a pattern classification problem, the search for a
solution network can be dramatically enhanced by utilizing a supervised learn-
ing algorithm for training individual phenotypes in the population. However,
if such training examples are not available to permit supervised learning, one
will have to be content with a purely evolutionary search.

7. Modularity: Gruau’s notion of modularity [28] is as follows: Suppose a
network n1 includes several instances of a subnetwork n2 then the encoding
(genotype) of n1 is modular if it codes for n2 only once, with instructions
to copy it that would be understood by the decoding process. Modularity
is closely tied to the existence of organized structure or regularity in the
phenotype that can be concisely expressed in the genotype in a form that can
be used by the decoding process. Other notions of modularity dealing with
functional modules, recursively-defined modules etc., are also worth exploring.
It can be observed that the property of modularity automatically results in
more compact genetic encodings and a potential lack of redundancy (described
below). In modular representations any change in the genotypic encoding of
a module, either due to genetic influences or errors, affects all instances of
the module in the phenotype. Non-modular representations, on the other hand,
are resistive to such complete alterations. It is hard to decide a priori which
scenario is better, since modular representations benefit from benign changes
while non-modular representations are more robust to deleterious ones.

8. Redundancy: Redundancy can manifest itself at various levels and in
different forms in an evolutionary system. Redundancy often contributes to
the robustness of the system in the face of failure of components or processes.
For instance, if the reproduction and/or decoding processes are error-prone, an
evolutionary system can benefit from genotypic redundancy (e.g., the genotype
contains redundant genes) or decoding redundancy (e.g., the decoding process
reads the genotype more than once). If the phenotype is prone to failure
of components (e.g., units, connections, sub-networks, etc.), the system can
benefit from phenotypic redundancy. Phenotypic redundancy can be either
topological (e.g., multiple identical units, connections, etc.) or functional (e.g.,
dissimilar units, connections, etc., that somehow impart the same function).

MIT Press Math6X9/2001/02/08:14:23 Page 20

Evolutionary and Neural Synthesis of Intelligent Agents 21

It is worth noting that genotypic redundancy does not necessarily imply pheno-
typic redundancy and vice versa (depending on the nature of the decoding pro-
cess). This simply reiterates the importance of examining the entire represen-
tation (encoding as well as decoding) when defining properties of evolutionary
systems. Also note that there are many ways to realize both genotypic as well
as phenotypic redundancy: by replication of identical components (structural
redundancy) or by replication of functionally identical units, or by building in
modules or processes that can dynamically restructure themselves when faced
with failure of components etc. [84].

9. Complexity: Complexity is perhaps one of the most important properties
of any evolutionary system. However, it is rather difficult to characterize satis-
factorily using any single definition. It is probably best to think of complexity
using several different notions including: structural complexity of genotypes,
decoding complexity, computational (space/time) complexity of each of the
components of the system (including decoding of genotypes, fitness evalua-
tion, reproduction, etc.), and perhaps even other measures inspired by infor-
mation theory (e.g., entropy, Kolmogorov complexity, etc.) [49].
Although it is clear that one would like to use a genetic representation that
leads to lower system complexities, the many interacting elements of the evolu-
tionary system, genetic representations and their properties, and the existence
of many different kinds of complexities, make it hard to arrive at one scalar
measure that would satisfy all. Needless to say, characterization of complexity
remains a subjective measure of the user’s preferences and the dictates of the
application problem.

This list of properties, although by no means complete, is nevertheless
relevant in an operationally useful characterization of evolutionary systems in
general, and the design of neural architectures in particular. Table 1.1 illustrates
a characterization of the evolutionary system proposed by Miller et al., that was
described in Section 1.6.

1.8 Summary

In this chapter we have introduced the evolutionary approach to the synthesis
of agent programs in general, and artificial neural networks in particular. That
evolution is a powerful, and more importantly, an aptly suited design approach
for this undertaking, will be amply demonstrated in the chapters to follow.

Since the efficiency and efficacy of any evolutionary design system is crit-

MIT Press Math6X9/2001/02/08:14:23 Page 21

22 Karthik Balakrishnan and Vasant Honavar

Table 1.1
Properties of the genetic representation used by Miller et al.

Property Satisfied? Comments

Completeness
p

With respect to feed-forward networks.
Closure � Invalid networks can result.
Topological Compactness

p
Determined by back-propagation.

Functional Compactness
p

Also possible.
Space Scalability

p
O(N) with respect to units.

Time Scalability
p

O(N) with respect to units.
Genotypic Multiplicity � No genotypic multiplicity.
Phenotypic Multiplicity

p
Dictated by back-propagation.

Ontogenetic Plasticity
p

Back-propagation used for training.
Modularity � Genotype only specifies connections.
Genotypic/Decoding Redundancy � One gene for each connection.
Phenotypic Redundancy

p
Units and modules, but not connections.

Space Complexity
p

Dictated by genotype size.
Time Complexity

p
Dictated by GA and back-propagation.

ically governed by the encoding mechanism chosen for specifying the geno-
types and the decoding mechanism for transforming them into phenotypes,
extreme care must be taken to ensure that these two mechanisms are designed
with the application problem in mind. To aid this process, in this chapter, we
identified and formalized a number of properties of such genetic representa-
tions. To the extent possible, we have tried to characterize each property in
precise terms. This characterization of properties of genetic representations
will hopefully help in the rational choice of genetic representations for differ-
ent applications.

For instance, suppose we need to design neurocontrollers for robots that
have to operate in hazardous and a priori unknown environments. Examples
of such applications include exploration of unknown terrains, nuclear waste
cleanup, space exploration, etc. Since robots in such environments are required
to plan and execute sequences of actions (where each action in a sequence may
be dependent on previous actions performed as well as the sensory inputs), a
recurrent neural network is probably needed. Further, if the system is to be
used to design robots capable of functioning in different, a priori unknown
environments, the robot controllers must have ontogenetic plasticity, i.e., the
robots must be capable of learning from their experiences in the environment.
The hazardous nature (e.g., in nuclear waste cleanup) or remoteness of the
environment (e.g., in the case of robots used to explore distant planets) makes it
desirable that the controllers operate robustly in the face of component failures
etc., which calls for phenotypic redundancy of some form (e.g., duplication of

MIT Press Math6X9/2001/02/08:14:23 Page 22

Evolutionary and Neural Synthesis of Intelligent Agents 23

units, links, or modules of the neurocontroller). In addition, implementation
technology and cost considerations might impose additional constraints on
the design of the controller. For instance, hardware realization using current
VLSI technology would benefit from locally connected, modular networks
built from simple processors. Also extended periods of autonomous operation
might require designs that are efficient in terms of power consumption, etc.

In order to design a robot controller satisfying these multiple performance
constraints, one might resort to an evolutionary design approach. In such cases,
a number of these constraints translate into properties that we have identified in
Section 1.7. Using these, one can choose an appropriate genetic representation
that can be used to evolve appropriate robot behaviors. Elsewhere we have
demonstrated an evolutionary approach to the synthesis of robot behaviors for
a box-pushing task, where we choose a genetic representation based on the
properties we have identified in this chapter [4].

The remaining chapters in this volume address fundamental concerns and
demonstrate successful applications of evolutionary search in the synthesis of
intelligent agent designs and behaviors. The chapters are authored by promi-
nent researchers, each an authority in his/her area of expertise. In this sense,
this compilation presents a unique snapshot of cutting-edge research from lead-
ing researchers around the world.

References

[1]D. H. Ackley and M. L. Littman. Interactions between learning and evolution. In Proceedings
of the Second International Conference on Artificial Life, pages 487–509, 1991.

[2]D. Anand and R. Zmood. Introduction to Control Systems. Butterworth-Heinemann, Oxford,
1995.

[3]T. Bäck, G. Rudolph, and H.-P. Schwefel. Evolutionary programming and evolution
strategies: Similarities and differences. In Proceedings of the Second Annual Conference on
Evolutionary Programming, pages 11–22. 1993.

[4]K. Balakrishnan. Biologically Inspired Computational Structures and Processes for
Autonomous Agents and Robots. PhD thesis, Department Of Computer Science, Iowa State
University, Ames, IA, 1998.

[5]K. Balakrishnan and V. Honavar. Evolutionary design of neural architectures — a preliminary
taxonomy and guide to literature. Technical Report CS TR 95-01, Department of Computer
Science, Iowa State University, Ames, IA, 1995.

[6]K. Balakrishnan and V. Honavar. Properties of genetic representations of neural architectures.
In Proceedings of the World Congress on Neural Networks, pages 807–813, 1995.

[7]J. Bradshaw, editor. Software Agents. MIT Press, Cambridge, MA, 1997.

[8]F. Cecconi, F. Menczer, and R. Belew. Maturation and evolution of imitative learning in
artificial organisms. Adaptive Behavior, 4(1):179–198, 1995.

[9]D. J. Chalmers. The evolution of learning: An experiment in genetic connectionism. In

MIT Press Math6X9/2001/02/08:14:23 Page 23

24 Karthik Balakrishnan and Vasant Honavar

Proceedings of the 1990 Connectionist Models Summer School, pages 81–90, 1990.
[10]P. Churchland and T. Sejnowski. The Computational Brain. MIT Press, Cambridge, MA,
1992.
[11]R. Collins and D. Jefferson. An artificial neural network representation for artificial
organisms. In Proceedings of the Conference on Parallel Problem Solving from Nature, pages
259–263, 1990.
[12]R. Collins and D. Jefferson. Antfarm: Towards simulated evolution. In Proceedings of the
Second International Conference on Artificial Life, pages 579–601, 1991.
[13]M. Colombetti and M. Dorigo. Learning to control an autonomous robot by distributed
genetic algorithms. In From Animals to Animats 2: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, 1992.
[14]I. Cox and G. Wilfong, editors. Autonomous Robot Vehicles. Springer-Verlag, New York,
NY, 1990.
[15]J. Dayhoff. Neural Network Architectures: An Introduction. Van Nostrand Reinhold, New
York, 1990.
[16]T. Dean, J. Allen, and Y. Aloimonos. Artificial Intelligence - Theory and Practice. Benjamin
Cummings, Redwood City, CA, 1995.
[17]J. Durkin. Expert Systems – Design and Development. Macmillan, New York, NY, 1994.
[18]H. Everett. Sensors for Mobile Robots: Theory and Application. A. K. Peters Ltd, Wellesley,
MA, 1995.
[19]D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic evolution
of a neural-network driven robot. In from Animals to Animats 3: Proceedings of the Third
International Conference on Simulation of Adaptive Behavior, pages 421–430, 1994.
[20]D. Fogel. Asymptotic convergence properties of genetic algorithms and evolutionary
programming: Analysis and experiments. Cybernetics and Systems: An International Journal,
25:389–407, 1994.
[21]C. Fonseca and P. Fleming. An overview of evolutionary algorithms in multi-objective
optimization. Evolutionary Computation, 3(1):1–16, 1995.
[22]S. Gallant. Neural Network Learning and Expert Systems. MIT Press, Cambridge, MA,
1993.
[23]C. Gallistel. The Organization of Learning. MIT Press, Cambridge, MA, 1990.
[24]M. Ginsberg. Essentials of Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1993.
[25]D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison
Wesley, Reading, MA, 1989.
[26]S. Goonatilake and S. Khebbal, editors. Intelligent Hybrid Systems. John Wiley, West
Sussex, UK, 1995.
[27]J. Grier and T. Burk. Biology of Animal Behavior. Mosley-Year Book, New York, NY, 2
edition, 1992.
[28]F. Gruau. Genetic micro programming of neural networks. In K. Kinnear, editor, Advances
in Genetic Programming. MIT Press, Cambridge, MA, 1994.
[29]I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial evolution, real vision. In
From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of
Adaptive Behavior, 1994.
[30]M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA,
1995.
[31]S. Haykin. Neural Networks. Macmillan, New York, NY, 1994.
[32]J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation.
Addison Wesley, Redwood City, CA, 1991.
[33]J. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press,

MIT Press Math6X9/2001/02/08:14:23 Page 24

Evolutionary and Neural Synthesis of Intelligent Agents 25

Ann Arbor, 1975.

[34]V. Honavar. Generative Learning Structures and Processes for Generalized Connectionist
Networks. PhD thesis, Department of Computer Science, University of Wisconsin, Madison, WI,
1990.

[35]V. Honavar. Toward learning systems that integrate different strategies and representations.
In V. Honavar and L. Uhr, editors, Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration, pages 561–580. Academic Press, San Diego, CA, 1994.

[36]V. Honavar. Intelligent agents. In J. Williams and K. Sochats, editors, Encyclopedia of
Information Technology. Marcel Dekker, New York, NY, 1998.

[37]V. Honavar and L. Uhr. Generative learning structures and processes for generalized
connectionist networks. Information Sciences, 70:75–108, 1993.

[38]V. Honavar and L. Uhr, editors. Artificial Intelligence and Neural Networks – Steps toward
Principled Integration. Academic Press, San Diego, CA, 1994.

[39]J. Horn and N. Nafpliotis. Multiobjetive optimization using the niched pareto genetic
algorithm. Illigal technical report 93005, University of Illinois, Urbana-Champaign, IL, 1993.

[40]J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA, 1993.

[41]J. Koza. Genetic evolution and co-evolution of computer programs. In Proceedings of the
Second International Conference on Artificial Life, pages 603–629, 1991.

[42]J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, 1992.

[43]S. Y. Kung. Digital Neural Networks. Prentice Hall, New York, NY, 1993.

[44]P. Langley. Elements of Machine Learning. Morgan Kauffman, San Mateo, CA, 1995.

[45]D. Levine. Introduction to Neural and Cognitive Modeling. Lawrence Earlbaum Associates,
Hillsdale, NJ, 1991.

[46]F. Lewis, C. Abdallah, and D. Dawson, editors. Control of Robot Manipulators. Macmillan,
New York, NY, 1993.

[47]H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice Hall,
Englewood Cliffs, NJ, 1981.

[48]M. Lewis, A. Fagg, and A. Sodium. Genetic programming approach to the construction of a
neural network for control of a walking robot. In Proceedings of the IEEE International
Conference on Robotics and Automation, 1992.

[49]M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, New York, NY, 1997.

[50]H. Lund, J. Hallam, and W.-P. Lee. Evolving robot morphology. In Proceedings of IEEE
Fourth International Conference on Evolutionary Computation, 1997.

[51]N. Mackintosh. Conditioning and Associative Learning. Clarendon, New York, NY, 1983.

[52]D. McFarland. Animal Behavior. Longman Scientific and Technical, Essex, England, 1993.

[53]F. Menczer and R. Belew. Evolving sensors in environments of controlled complexity. In
Proceedings of the Fourth International Conference on Artificial Life, 1994.

[54]O. Miglino, K. Nafasi, and C. Taylor. Selection for wandering behavior in a small robot.
Artificial Life, 2(1):101–116, 1994.

[55]G. Miller, P. Todd, and S. Hegde. Designing neural networks using genetic algorithms. In
Proceedings of the Third International Conference on Genetic Algorithms, pages 379–384, 1989.

[56]M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs,
NJ, 1967.

[57]M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

[58]T. Mitchell. Machine Learning. McGraw Hill, New York, NY, 1997.

[59]S. Nolfi, J. Elman, and D. Parisi. Learning and evolution in neural networks. Adaptive

MIT Press Math6X9/2001/02/08:14:23 Page 25

26 Karthik Balakrishnan and Vasant Honavar

Behavior, 3(1):5–28, 1994.
[60]H. Nwana. Software agents: An overview. Knowledge Engineering Review, 11(3), 1996.
[61]J. O’Keefe and L. Nadel. The Hippocampus as a Cognitive Map. Clarendon, Oxford, UK,
1978.
[62]O. Omidvar and P. van der Smagt, editors. Neural Systems for Robotics. Academic Press,
San Diego, CA, 1997.
[63]R. Parekh. Constructive learning: Inducing grammars and neural networks. PhD thesis,
Department of Computer Science, Iowa State University, Ames, IA, 1998.
[64]M. Patel. Concept formation: A complex adaptive approach. Theoria, (20):89–108, 1994.
[65]M. Patel. Situation assessment and adaptive learning: Theoretical and experimental issues.
In Proceedings of the Second International Round-Table on Abstract Intelligent Agents, 1994.
[66]M. Patel. Constraints on task and search complexity in ga+nn models of learning and
adaptive behaviour. In T. Fogarty, editor, Evolutionary Computing 2, pages 200–224.
Springer-Verlag, Berlin, 1995.
[67]M. Patel. Heuristic constraints on search complexity for multi-modal non-optimal models.
In IEEE International Conference on Evolutionary Computation, 1995.
[68]M. Patel, M. Colombetti, and M. Dorigo. Evolutionary learning for intelligent automation: A
case study. Journal of Intelligent Automation and Soft Computing, 1(1):29–42, 1995.
[69]M. Patel and M. Dorigo. Adaptive learning of a robot arm. In Selected Papers from AISB
Workshop on Evolutionary Computation, pages 180–194, 1994.
[70]M. Patel and V. Maniezzo. Nn’s and ga’s: Evolving co-operative behaviour in adaptive
learning agents. In IEEE World Congress on Computational Intelligence, 1994.
[71]C. Reynolds. Evolution of corridor following behavior in a noisy world. In From Animals to
Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive
Behavior, 1994.
[72]C. Reynolds. Evolution of obstacle avoidance behavior: Using noise to promote robust
solutions. In K. Kinnear, editor, Advances in Genetic Programming. MIT Press, Cambridge,
MA, 1994.
[73]E. Rich and K. Knight. Aritificial Intelligence. McGraw Hill, New York, NY, 1991.
[74]B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, New
York, NY, 1996.
[75]D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Processing, Vol I-II.
MIT Press, Cambridge, MA, 1986.
[76]S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.
[77]R. Salomon. Improved convergence rate of back-propagation with dynamic adaptation of the
learning rate. In Proceedings of the First International Conference on Parallel Problem Solving
from Nature, pages 269–273, 1991.
[78]H.-P. Schwefel, editor. Numerical Optimization of Computer Models. John Wiley,
Chichester, UK, 1981.
[79]H.-P. Schwefel. Collective phenomena in evolutionary systems. In Proceedings of 31st
Annual Meeting of the International Society for General System Research, pages 1025–1033,
1987.
[80]R. Sun and L. Bookman, editors. Computational Architectures Integrating Symbolic and
Neural Processes. Kluwer Academic, New York, NY, 1994.
[81]S. L. Tanimoto. Elements of Artificial Intelligence Using Common Lisp. Computer Science
Press, New York, NY, 1995.
[82]E. Tolman. Cognitive maps in rats and men. Psychological Review, 55:189–208, 1948.
[83]L. Uhr and V. Honavar. Introduction. In V. Honavar and L. Uhr, editors, Artificial

MIT Press Math6X9/2001/02/08:14:23 Page 26

Evolutionary and Neural Synthesis of Intelligent Agents 27

Intelligence and Neural Networks: Steps Toward Principled Integration. Academic Press, San
Diego, CA, 1994.
[84]J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. In C. Shannon and J. McCarthy, editors, Automata Studies, pages 43–98. Princeton
University Press, Princeton, NJ, 1956.
[85]J. Walker. Evolution of simple virtual robots using genetic algorithms. Master’s thesis,
Department of Mechanical Engineering, Iowa State University, Ames, IA, 1995.
[86]P. Winston. Artificial Intelligence. Addison Wesley, New York, NY, 1992.
[87]M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115–152, 1995.
[88]B. Yamauchi and R. Beer. Integrating reactive, sequential, and learning behavior using
dynamical neural networks. In From Animals to Animats 3: Proceedings of the Third
International Conference on Simulation of Adaptive Behavior, pages 382–391, 1994.
[89]J. Yang, R. Parekh, and V. Honavar. DistAl: An inter-pattern distance-based constructive
learning algorithm. In Proceedings of the International Joint Conference on Neural Networks,
Anchorage, Alaska, 1998. To appear.
[90]A. Zalzala and A. Morris, editors. Neural Networks for Robotic Control: Theory and
Applications. Ellis Horwood, New York, NY, 1996.

MIT Press Math6X9/2001/02/08:14:23 Page 27

