
1 Substructural Type Systems

David Walker

Advanced type systems make it possible to restrict access to data structures

and to limit the use of newly­defined operations. Oftentimes, this sort of

access control is achieved through the definition of new abstract types under

control of a particular module. For example, consider the following simplified

file system interface.

type file

val open : string → file option

val read : file → string * file

val append : file * string → file

val write : file * string → file

val close : file → unit

By declaring that the type file is abstract, the implementer of the module

can maintain strict control over the representation of files. A client has no way

to accidentally (or maliciously) alter any of the file’s representation invariants.

Consequently, the implementer may assume that the invariants that he or

she establishes upon opening a file hold before any read, append, write or

close.

While abstract types are a powerful means of controlling the structure of

data, they are not sufficient to limit the ordering and number of uses of func­

tions in an interface. Try as we might, there is no (static) way to prevent a

file from being read after it has been closed. Likewise, we cannot stop a client

from closing a file twice or forgetting to close a file.

This chapter introduces substructural type systems, which augment stan­

dard type abstraction mechanisms with the ability to control the number and

order of uses of a data structure or operation. Substructural type systems are

particularly useful for constraining interfaces that provide access to system



4 1 Substructural Type Systems

resources such as files, locks and memory. Each of these resources undergoes

a series of changes of state throughout its lifetime. Files, as we have seen, may

be open or closed; locks may be held or not; and memory may be allocated or

deallocated. Substructural type systems provide sound static mechanisms for

keeping track of just these sorts of state changes and preventing operations

on objects in an invalid state.

The bulk of this chapter will focus on applications of substructural type

systems to the control of memory resources. Memory is a pervasive resource

that must be managed carefully in any programming system so it makes an

excellent target of study. However, the general principles that we establish

can be applied to other sorts of resources as well.

1.1 Structural Properties

Most of the type systems in this book allow unrestricted use of variables in the

type checking context. For instance, each variable may be used once, twice,

three times, or not at all. A precise analysis of the properties of such variables

will suggest a whole new collection of type systems.

To begin our exploration, we will analyze the simply­typed lambda calcu­

lus, which is reviewed in Figure 1­1. In this discussion, we are going to be

particularly careful when it comes to the form of the type­checking context Γ .

We will consider such contexts to be simple lists of variable­type pairs. The

"," operator appends a pair to the end of the list. We also write (Γ1, Γ2) for

the list that results from appending Γ2 onto the end of Γ1. As usual, we al­

low a given variable to appear at most once in a context and to maintain this

invariant, we implicitly alpha­convert bound variables before entering them

into the context.

We are now in position to consider three basic structural properties sat­

isfied by our simply­typed lambda calculus. The first property, exchange,

indicates that the order in which we write down variables in the context is

irrelevant. A corollary of exchange is that if we can type check a term with

the context Γ , then we can type check that term with any permutation of the

variables in Γ . The second property, weakening, indicates that adding extra,

unneeded assumptions to the context, does not prevent a term from type

checking. Finally, the third property, contraction, states that if we can type

check a term using two identical assumptions (x2:T1 and x3:T1) then we can

check the same term using a single assumption.

1.1.1 Lemma [Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T then

Γ1, x2:T2, x1:T1, Γ2 ` t : T 2

1.1.2 Lemma [Weakening]: If Γ1, Γ2 ` t : T then Γ1, x1:T1, Γ2 ` t : T 2



1.1 Structural Properties 5

Syntax

b ::= booleans:

true true

false false

t ::= terms:

x variable

b boolean

if t then t else t conditional

λx:T.t abstraction

t t application

T ::= types:

Bool booleans

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Typing Γ ` t : T

Γ1, x:T, Γ2 ` x : T
(T­Var)

Γ ` b : Bool
(T­Bool)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

(T­If)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

Figure 1­1: Simply­typed lambda calculus with booleans

1.1.3 Lemma [Contraction]: If Γ1, x2:T1, x3:T1, Γ2 ` t : T2 then

Γ1, x1:T1, Γ2 ` [x2 , x1][x3 , x1]t : T2 2

1.1.4 Exercise [Recommended, «]: Prove that exchange, weakening and contrac­

tion lemmas hold for the simply­typed lambda calculus. 2

A substructural type system is any type system that is designed so that one

or more of the structural properties do not hold. Different substructural type

systems arise when different properties are withheld.

• Linear type systems ensure that every variable is used exactly once by

allowing exchange but not weakening or contraction.

• Affine type systems ensure that every variable is used at most once by

allowing exchange and weakening, but not contraction.

• Relevant type systems ensure that every variable is used at least once by

allowing exchange and contraction, but not weakening.

• Ordered type systems ensure that every variable is used exactly once and

in the order in which it is introduced. Ordered type systems do not allow

any of the structural properties.



6 1 Substructural Type Systems

The picture below can serve as a mnemonic for the relationship between

these systems. The system at the bottom of the diagram (the ordered type sys­

tem) admits no structural properties. As we proceed upwards in the diagram,

we add structural properties: E stands for exchange; W stands for weakening;

and C stands for contraction. It might be possible to define type systems con­

taining other combinations of structural properties, such as contraction only

or weakening only, but so far researchers have not found applications for

such combinations. Consequently, we have excluded them from the diagram.

ordered (none)

linear (E)

affine (E,W) relevant (E,C)

unrestricted (E,W,C)

The diagram can be realized as a relation between the systems. We say system

q1 is more restrictive than system q2 and write q1vq2 when system q1 exhibits

fewer structural rules than system q2. Figure 1­2 specifies the relation, which

we will find useful in the coming sections of this chapter.

1.2 A Linear Type System

In order to safely deallocate data, we need to know that the data we deallo­

cate is never used in the future. Unfortunately, we cannot, in general, deduce

whether data will be used after execution passes a certain program point: The

problem is clearly undecidable. However, there are a number of sound, but

useful approximate solutions. One such solution may be implemented using

a linear type system. Linear type systems ensure that objects are used exactly

once, so it is completely obvious that after the use of an object, it may be

safely deallocated.



1.2 A Linear Type System 7

q ::= system:

ord ordered

lin linear

rel relevant

aff affine

un unrestricted

ord v lin (Q­OrdLin)

lin v rel (Q­LinRel)

lin v aff (Q­LinAff)

rel v un (Q­RelUn)

aff v un (Q­AffUn)

q v q (Q­Reflex)

q1 v q2 q2 v q3

q1 v q3

(Q­Trans)

Figure 1­2: A relation between substructural type systems

Syntax

Figure 1­3 presents the syntax of our linear language, which is an extension

of the simply­typed lambda calculus. The main addition to be aware of, at

this point, are the type qualifiers q that annotate the introduction forms for

all data structures. The linear qualifier (lin) indicates that the data structure

in question will be used (i.e., appear in the appropriate elimination form) ex­

actly once in the program. Operationally, we deallocate these linear values

immediately after they are used. The unrestricted qualifier (un) indicates that

the data structure behaves as in the standard simply­typed lambda calculus.

In other words, unrestricted data can be used as many times as desired and

its memory resources will be automatically recycled by some extra­linguistic

mechanism (a conventional garbage collector).

Apart from the qualifiers, the only slightly unusual syntactic form is the

elimination form for pairs. The term split t1 as x,y in t2 projects the first

and second components from the pair t1 and calls them x and y in t2. This

split operation allows us to extract two components while only counting

a single use of a pair. Extracting two components using the more conven­

tional projections π1 t1 and π2 t1 requires two uses of the pair t1. (It is also

possible, but a bit tricky, to provide the conventional projections.)

To avoid dealing with an unnecessarily heavy syntax, we adopt a couple

abbreviations in our examples in this section. First, we omit all unrestricted

qualifiers and only annotate programs with the linear ones. Second, we freely

use n­ary tuples (triples, quadruples, unit, etc.) in addition to pairs and also

allow multi­argument functions. The latter may be defined as single­argument

functions that take linear pairs (triples, etc) as arguments and immediately

split them upon entry to the function body. Third, we often use ML­style type



8 1 Substructural Type Systems

Syntax

q ::= qualifiers:

lin linear

un unrestricted

b ::= booleans:

true true

false false

t ::= terms:

x variable

q b boolean

if t then t else t conditional

q <t,t> pair

split t as x,y in t split

q λx:T.t abstraction

t t application

P ::= pretypes:

Bool booleans

T*T pairs

T→T functions

T ::= types:

q P qualified pretype

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Figure 1­3: Linear lambda calculus: Syntax

declarations, value declarations and let expressions where convenient; they

all have the obvious meanings.

Typing

To ensure that linear objects are used exactly once, our type system maintains

two important invariants.

1. Linear variables are used exactly once along every control­flow path.

2. Unrestricted data structures may not contain linear data structures. More

generally, data structures with less restrictive type may not contain data

structures with more restrictive type.

To understand why these invariants are useful, consider what could hap­

pen if either invariant is broken. When considering the first invariant, as­

sume we have constructed a function free that uses its argument and then

deallocates it. Now, if we allow a linear variable (say x) to appear twice, a

programmer might write <free x,free x>, or, slightly more deviously,

(λz.λy.<free z,free y>) x x.

In either case, the program ends up attempting to use and then free x after it

has already been deallocated, causing the program to crash.

Now consider the second invariant and suppose we allow a linear data

structure (call it x) to appear inside an unrestricted pair (un <x,3>). We can



1.2 A Linear Type System 9

Context Split Γ = Γ1 ◦ Γ2

∅ =∅ ◦∅ (M­Empty)

Γ = Γ1 ◦ Γ2

Γ , x:un P = (Γ1, x:un P) ◦ (Γ2, x:un P)
(M­Un)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = (Γ1, x:lin P) ◦ Γ2
(M­Lin1)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = Γ1 ◦ (Γ2, x:lin P)
(M­Lin2)

Figure 1­4: Linear lambda calculus: Context splitting

get exactly the same effect as above by using the unrestricted data structure

multiple times:

let z = un <x,3> in

split z as x1,_ in

split z as x2,_ in

<free x1,free x2>

Fortunately, our type system ensures that none of these situations can occur.

We maintain the first invariant through careful context management. When

type checking terms with two or more subterms, we pass all of the unre­

stricted variables in the context to each subterm. However, we split the linear

variables between the different subterms to ensure each variable is used ex­

actly once. Figure 1­4 defines a relation, Γ = Γ1 ◦ Γ2, which describes how to

split a single context in a rule conclusion (Γ ) into two contexts (Γ1 and Γ2) that

will be used to type different subterms in a rule premise.

To check the second invariant, we define the predicate q(T) (and its exten­

sion to contexts q(Γ)) to express the types T that can appear in a q­qualified

data structure. These containment rules state that linear data structures can

hold objects with linear or unrestricted type, but unrestricted data structures

can only hold objects with unrestricted type.

• q(T) if and only if T = q′ P and qvq′

• q(Γ) if and only if (x:T) ∈ Γ implies q(T)

Recall, we have already defined qvq′ such that it is reflexive, transitive and

linvun.

Now that we have defined the rules for containment and context splitting,

we are ready for the typing rules proper, which appear in Figure 1­5. Keep in

mind that these rules are constructed anticipating a call­by­value operational

semantics.

It is often the case when designing a type system that the rules for the

base cases, variables and constants, are hardly worth mentioning. However,



10 1 Substructural Type Systems

Typing Γ ` t : T

un (Γ1, Γ2)

Γ1, x:T, Γ2 ` x : T
(T­Var)

un (Γ)

Γ ` q b : q Bool
(T­Bool)

Γ1 ` t1 : q Bool

Γ2 ` t2 : T Γ2 ` t3 : T

Γ1 ◦ Γ2 ` if t1 then t2 else t3 : T
(T­If)

Γ1 ` t1 : T1 Γ2 ` t2 : T2

q(T1) q(T2)

Γ1 ◦ Γ2 ` q <t1,t2> : q (T1*T2)
(T­Pair)

Γ1 ` t1 : q (T1*T2)

Γ2, x:T1, y:T2 ` t2 : T

Γ1 ◦ Γ2 ` split t1 as x,y in t2 : T
(T­Split)

q(Γ) Γ , x:T1 ` t2 : T2

Γ ` q λx:T1.t2 : q T1→T2

(T­Abs)

Γ1 ` t1 : q T11→T12 Γ2 ` t2 : T11

Γ1 ◦ Γ2 ` t1 t2 : T12

(T­App)

Figure 1­5: Linear lambda calculus: Typing

in substructural type systems these cases have a special role in defining the

nature of the type system, and subtle changes can make all the difference.

In our linear system, the base cases must ensure that no linear variable is

discarded without being used. To enforce this invariant in rule (T­Var), we

explicitly check that Γ1 and Γ2 contain no linear variables using the condition

un (Γ1, Γ2). We make a similar check in rule (T­Bool). Notice also that rule (T­

Var) is written carefully to allow the variable x to appear anywhere in the

context, rather than just at the beginning or at the end.

1.2.1 Exercise [«]: What is the effect of rewriting the variable rule as follows?

un (Γ)

Γ , x:T ` x : T
(T­BrokenVar)

The inductive cases of the typing relation take care to use context splitting

to partition linear variables between various subterms. For instance, rule (T­

If) splits the incoming context into two parts, one of which is used to check

subterm t1 and the other which is used to check both t2 and t3. As a result,

a particular linear variable will occur once in t2 and once in t3. However, the

linear object bound to the variable in question will be used (and hence de­

allocated) exactly once at run time since only one of t2 or t3 will be executed.

The rules for creation of pairs and functions make use of the containment

rules. In each case, the data structure’s qualifier q is used in the premise of

the typing rule to limit the sorts of objects it may contain. For example, in the

rule (T­Abs), if the qualifier q is un then the variables in Γ , which will inhabit

the function closure, must satisfy un (Γ). In other words, they must all have



1.2 A Linear Type System 11

unrestricted type. If we omitted this constraint, we could write the follow­

ing badly behaved functions. (For clarity, we have retained the unrestricted

qualifiers in this example rather than omitting them.)

type T = un (un bool → lin bool)

val discard =

lin λx:lin bool.

(lin λf:T.lin true) (un λy:un bool.x)

val duplicate =

lin λx:lin bool.

(lin λf:T.lin <f (un true),f (un true)>)) (un λy:un bool.x)

The first function discards a linear argument x without using it and the sec­

ond duplicates a linear argument and returns two copies of it in a pair. Hence,

in the first case, we fail to deallocate x and in the second case, a subsequent

function may project both elements of the pair and use x twice, which would

result in a memory error as x would be deallocated immediately after the first

use. Fortunately, the containment constraint disallows the linear variable x

from appearing in the unrestricted function (λy:bool. x).

Now that we have defined our type system, we should verify our intended

structural properties: exchange for all variables, and weakening and contrac­

tion for unrestricted variables.

1.2.2 Lemma [Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T then

Γ1, x2:T2, x1:T1, Γ2 ` t : T. 2

1.2.3 Lemma [Unrestricted Weakening]: If Γ ` t : T then

Γ , x1:un P1 ` t : T. 2

1.2.4 Lemma [Unrestricted Contraction]:

If Γ , x2:un P1, x3:un P1 ` t : T3 then

Γ , x1:un P1 ` [x2 , x1][x3 , x1]t : T3. 2

Proof: The proofs of all three lemmas follow by induction on the structure

of the appropriate typing derivation. 2

Algorithmic Linear Type Checking

The inference rules provided in the previous subsection give a clear, con­

cise specification of the linearly­typed programs. However, these rules are

also highly non­deterministic and cannot be implemented directly. The pri­

mary difficulty is that to implement the non­deterministic splitting operation,



12 1 Substructural Type Systems

Algorithmic Typing Γin ` t : T;Γout

Γ1, x:un P, Γ2 ` x : un P;Γ1, x:un P, Γ2
(A­UVar)

Γ1, x:lin P, Γ2 ` x : lin P;Γ1, Γ2 (A­LVar)

Γ ` q b : q Bool;Γ (A­Bool)

Γ1 ` t1 : q Bool;Γ2

Γ2 ` t2 : T;Γ3 Γ2 ` t3 : T;Γ3

Γ1 ` if t1 then t2 else t3 : T;Γ3
(A­If)

Γ1 ` t1 : T1;Γ2 Γ2 ` t2 : T2;Γ3

q(T1) q(T2)

Γ1 ` q <t1,t2> : q (T1*T2);Γ3
(A­Pair)

Γ1 ` t1 : q (T1*T2);Γ2

Γ2, x:T1, y:T2 ` t2 : T;Γ3

Γ1 ` split t1 as x,y in t2 :

T;Γ3 ÷ (x:T1, y:T2)

(A­Split)

q=un⇒ Γ1 = Γ2 ÷ (x:T1)

Γ1, x:T1 ` t2 : T2;Γ2

Γ1 ` q λx:T1.t2 : q T1→T2;Γ2 ÷ (x:T1)

(A­Abs)

Γ1 ` t1 : q T11→T12;Γ2 Γ2 ` t2 : T11;Γ3

Γ1 ` t1 t2 : T12;Γ3
(A­App)

Figure 1­6: Linear lambda calculus: Algorithmic type checking

Γ = Γ1 ◦ Γ2, we must guess how to split an input context Γ into two parts. For­

tunately, it is relatively straightforward to restructure the type checking rules

to avoid having to make these guesses. This restructuring leads directly to a

practical type checking algorithm.

The central idea is that rather than splitting the context into parts before

checking a complex expression composed of several subexpressions, we can

pass the entire context as an input to the first subexpression and have it

return the unused portion as an output. This output may then be used to

check the next subexpression, which may also return some unused portions

of the context as an output, and so on. Figure 1­6 makes these ideas concrete.

It defines a new algorithmic type checking judgment with the form Γin `

t : T;Γout , where Γin is the input context, some portion of which will be

consumed during type checking of t, and Γout is the output context, which

will be synthesized alongside the type T.

There are several key changes in our reformulated system. First, the base

cases for variables and constants allow any context to pass through the judg­

ment rather than restricting the number of linear variables that appear. In

order to ensure that linear variables are used, we move these checks to the

rules where variables are introduced. For instance, consider the rule (A­Split).

The second premise has the form

Γ2, x:T1, y:T2 ` t2 : T;Γ3

If T1 and T2 are linear, then they should be used in t2 and should not appear

in Γ3. Conversely, T1 and T2 are unrestricted, then they will always appear



1.2 A Linear Type System 13

in Γ3, but we should delete them from the final outgoing context of the rule

so that the ordinary scoping rules for the variables are enforced. To handle

both the check that linear variables do not appear and the removal of unre­

stricted variables, we use a special “context difference” operator (÷). Using

this operator, the final outgoing context of the rule (A­Split) is defined to be

Γ3 ÷ (x:T1, y:T2). Formally, context difference is defined as follows.

Γ ÷∅ = Γ

Γ1 ÷ Γ2 = Γ3 (x:lin P) 6∈ Γ3

Γ1 ÷ (Γ2, x:lin P) = Γ3

Γ1 ÷ Γ2 = Γ3 Γ3 = Γ4, x:un P, Γ5

Γ1 ÷ (Γ2, x:un P) = Γ4, Γ5

Notice that this operator is undefined when we attempt to take the dif­

ference of two contexts, Γ1 and Γ2, that contain bindings for the same linear

variable (x:lin P). If the undefined quotient Γ1 ÷ Γ2 were to appear anywhere

in a typing rule, the rule itself would not be considered defined and could not

be part of a valid typing derivation.

The rule for abstraction (A­Abs) also introduces a variable and hence it also

uses context difference to manipulate the output context for the rule. Ab­

stractions must also satisfy the appropriate containment conditions. In other

words, rule (A­Abs) must check that unrestricted functions do not contain

linear variables. We perform this last check by verifying that when the func­

tion qualifier is unrestricted, the input and output contexts from checking the

function body are the same. This equivalence check is sufficient because if a

linear variable was used in the body of an unrestricted function (and hence

captured in the function closure), that linear variable would not show up in

the outgoing context.

It is completely straightforward to check that every rule in our algorithmic

system is syntax directed and that all our auxiliary functions including con­

text membership tests and context difference are easily computable. Hence,

we need only show that our algorithmic system is equivalent to the simpler

and more elegant declarative system specified in the previous section. The

proof of equivalence can be a broken down into the two standard compo­

nents: soundness and completeness of the algorithmic system with respect to

the declarative system. However, before we can get to the main results, we

will need to show that our algorithmic system satisfies some basic structural

properties of its own. In the following lemmas, we use the notation L(Γ) and

U(Γ) to refer to the list of linear and unrestricted assumptions in Γ respec­

tively.



14 1 Substructural Type Systems

1.2.5 Lemma [Algorithmic Monotonicity]: If Γ ` t : T;Γ ′ then U(Γ ′) = U(Γ)

and L(Γ ′) ⊆ L(Γ). 2

1.2.6 Lemma [Algorithmic Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T;Γ3 then

Γ1, x2:T2, x1:T1, Γ2 ` t : T;Γ ′3 and Γ3 is the same as Γ ′3 up to transposition of

the bindings for x1 and x2. 2

1.2.7 Lemma [Algorithmic Weakening]: If Γ ` t : T;Γ ′ then Γ , x:T′ ` t : T;

Γ
′, x:T′. 2

1.2.8 Lemma [Algorithmic Linear Strengthening]: If Γ , x:lin P ` t : T;

Γ
′, x:lin P then Γ ` t : T;Γ ′. 2

Each of these lemmas may be proven directly by induction on the initial

typing derivation. The algorithmic system also satisfies a contraction lemma,

but since it will not be necessary in the proofs of soundness and complete­

ness, we have not stated it here.

1.2.9 Theorem [Algorithmic Soundness]: If Γ1 ` t : T;Γ2 and L(Γ2) = ∅ then

Γ1 ` t : T. 2

Proof: As usual, the proof is by induction on the typing derivation. The struc­

tural lemmas we have just proven are required to push through the result, but

it is mostly straightforward. 2

1.2.10 Theorem [Algorithmic Completeness]: If Γ1 ` t : T then Γ1 ` t : T;Γ2

and L(Γ2) = ∅. 2

Proof: The proof is by induction on the typing derivation. 2

Operational Semantics

To make the memory management properties of our language clear, we will

evaluate terms in an abstract machine with an explicit store. As indicated in

Figure 1­7, stores are a sequence of variable­value pairs. We will implicitly

assume that any variable appears at most once on the left­hand side of a pair

so the sequence may be treated as a finite partial map.

A value is a pair of a qualifier together with some data (a prevalue w). For

the sake of symmetry, we will also assume that all values are stored, even

base types such as booleans. As a result, both components of any pair will be

pointers (variables).

We define the operation of our abstract machine using a context­based,

small­step semantics. Figure 1­7 defines the computational contexts E, which



1.2 A Linear Type System 15

w ::= prevalues:

b boolean

<x,y> pair

λx:T.t abstraction

v ::= values:

q w qualified prevalue

S ::= stores:

∅ empty context

S, x, v store binding

E ::= evaluation contexts:

[ ] context hole

if E then t else t if context

q <E,t> fst context

q <x,E> snd context

split E as x,y in t split context

E t fun context

x E arg context

Figure 1­7: Linear lambda calculus: Run­time data

are terms with a single hole. Contexts define the order of evaluation of terms—

they specify the places in a term where a computation can occur. In our case,

evaluation is left­to­right since, for example, there is a context with the form

E t indicating that we can reduce the term in the function position before re­

ducing the term in the argument position. However, there is no context with

the form t E. Instead, there is only the more limited context x E, indicating

that we must reduce the term in the function position to a pointer x before

proceeding to evaluate the term in the argument position. We use the nota­

tion E[t] to denote the term composed of the context E with its hole plugged

by the computation t.

The operational semantics, defined in Figure 1­8, is factored into two re­

lations. The first relation, (S;t) -→ (S′;t′), picks out a subcomputation to

evaluate. The second relation, (S;t) -→β (S′;t′), does all the real work. In

order to avoid creation of two sets of operational rules, one for linear data,

which is deallocated when used, and one for unrestricted data, which is never

deallocated, we define an auxiliary function, S
q
∼ x, to manage the differences.

(S1,x, v,S2)
lin
∼ x = S1,S2

S
un
∼ x = S

Aside from these details, the operational semantics is standard.

Preservation and Progress

In order to prove the standard safety properties for our language, we need to

be able to show that programs are well­formed after each step in evaluation.

Hence, we will define typing rules for our abstract machine. Since these typing

rules are only necessary for the proof of soundness, and have no place in an



16 1 Substructural Type Systems

Top­level Evaluation (S;t) -→ (S′;t′)

(S;t) -→β (S;t′)

(S;E[t]) -→ (S;E[t′])
(E­Ctxt)

Evaluation (S;t) -→β (S′;t′)

(S;q b) -→β (S, x, q b;x) (E­Bool)

S(x) = q true

(S;if x then t1 else t2) -→β (S
q
∼ x;t1)

(E­If1)

S(x) = q false

(S;if x then t1 else t2) -→β (S
q
∼ x;t2)

(E­If2)

(S;q <y,z>) -→β (S, x, q <y,z>;x) (E­Pair)

S(x) = q <y1,z1>

(S;split x as y,z in t) -→β

(S
q
∼ x;[y, y1][z, z1]t)

(E­Split)

(S;q λy:T.t) -→β (S, x, q λy:T.t;x)

(E­Fun)

S(x1) = q λy:T.t

(S;x1 x2) -→β (S
q
∼ x1;[y, x2]t)

(E­App)

Figure 1­8: Linear lambda calculus: Operational semantics

implementation, we will extend the declarative typing rules rather than the

algorithmic typing rules.

Figure 1­9 presents the machine typing rules in terms of two judgments,

one for stores and the other for programs. The store typing rules generate a

context that describes the available bindings in the store. The program typ­

ing rule uses the generated bindings to check the expression that will be

executed.

With this new machinery in hand, we are able to prove the standard progress

and preservation theorems.

1.2.11 Theorem [Preservation]: If ` (S;t) and (S;t) -→ (S′;t′) then

` (S′;t′). 2

1.2.12 Theorem [Progress]: If ` (S;t) then (S;t) -→ (S′;t′) or t is a value. 2

1.2.13 Exercise [Recommended, «]: You will need a substitution lemma to com­

plete the proof of preservation. Is the following the right one?

Conjecture: Let Γ3 = Γ1 ◦ Γ2. If Γ1, x:T ` t1 : T1 and Γ2 ` t : T then

Γ3 ` [x, t]t1 : T1. 2

1.2.14 Exercise [«««, 3]: Prove progress and preservation using TAPL, Chapters 9

and 13, as an approximate guide. 2



1.3 Extensions and Variations 17

Store Typing ` S : Γ

` ∅ :∅ (T­EmptyS)

` S : Γ1 ◦ Γ2 Γ1 ` lin w : T

` S,x, lin w : Γ2,x:T
(T­NextlinS)

` S : Γ1 ◦ Γ2 Γ1 ` un w : T

` S,x, un w : Γ2,x:T
(T­NextunS)

Program Typing ` (S;t)

` S : Γ Γ ` t : T

` (S;t)
(T­Prog)

Figure 1­9: Linear lambda calculus: Program typing

1.3 Extensions and Variations

Most features found in modern programming languages can be defined to

interoperate successfully with linear type systems, although some are trickier

than others. In this section, we will consider a variety of practical extensions

to our simple linear lambda calculus.

Sums and Recursive Types

Complex data structures, such as the recursive data types found in ML­like

languages, pose little problem for linear languages. To demonstrate the cen­

tral ideas involved, we extend the syntax for the linear lambda calculus with

the standard introduction and elimination forms for sums and recursive types.

The details are presented in Figure 1­10.

Values with sum type are introduced by injections q inlP t or q inrP t,

where P is T1+T2, the resulting pretype of the term. In the first instance, the

underlying term t must have type T1, and in the second instance, the under­

lying term t must have type T2. The qualifier q indicates the linearity of the

argument in exactly the same way as for pairs. The case expression will exe­

cute its first branch if its primary argument is a left injection and its second

branch if its primary argument is a right injection. We assume that + binds

more tightly that → but less tightly than *.

Recursive types are introduced with a rollP t expression, where P is the

recursive pretype the expression will assume. Unlike all the other introduc­

tion forms, roll expressions are not annotated with a qualifier. Instead, they

take on the qualifier of the underlying expression t. The reason for this dis­

tinction is that we will treat this introduction form as a typing coercion that

has no real operational effect. Unlike functions, pairs or sums, recursive data

types have no data of their own and therefore do not need a separate quali­

fier to control their allocation behavior. To simplify the notational overhead



18 1 Substructural Type Systems

t ::= terms:

... as before

q inlP t left inj.

q inrP t right inj.

case t (inl x ⇒ t | inr y ⇒ t) case

rollP t roll into rec type

unroll t unroll from rec type

fun f(x:T1):T2.t recursive fun

P ::= pretypes:

... as before

a pretype variables

T1+T2 sum types

rec a.T recursive types

Typing Γ ` t : T

Γ ` t : T1 q(T1) q(T2)

Γ ` q inlT1+T2 t : q (T1+T2)
(T­Inl)

Γ ` t : T2 q(T1) q(T2)

Γ ` q inrT1+T2 t : q (T1+T2)
(T­Inr)

Γ1 ` t : q (T1+T2)

Γ2, x:T1 ` t1 : T Γ2, y:T2 ` t2 : T

Γ1 ◦ Γ2 ` case t (inl x ⇒ t1 | inr y ⇒ t2) : T
(T­Case)

Γ ` t : [a, P]q P1 P = rec a.q P1

Γ ` rollP t : q P

(T­Roll)

Γ ` t : P P = rec a.q P1

Γ ` unroll t : [a, P]q P1

(T­Unroll)

un (Γ) Γ , f:un T1→T2, x:T1 ` t : T2

Γ ` fun f(x:T1):T2.t : un T1→T2

(T­TFun)

Figure 1­10: Linear lambda calculus: Sums and recursive types

of sums and recursive types, we will normally omit the typing annotations on

their introduction forms in our examples.

In order to write computations that process recursive types, we add recur­

sive function declarations to our language as well. Since the free variables in

a recursive function closure will be used on each recursive invocation of the

function, we cannot allow the closure to contain linear variables. Hence, all

recursive functions are unrestricted data structures.

A simple but useful data structure is the linear list of Ts:

type T llist = rec a.lin (unit + lin (T * lin a))

Here, the entire spine (aside from the terminating value of unit type) is linear

while the underlying T objects may be linear or unrestricted. To create a fully

unrestricted list, we simply omit the linear qualifiers on the sum and pairs

that make up the spine of the list:

type T list = rec a.unit + T * a



1.3 Extensions and Variations 19

After defining the linear lists, the memory conscious programmer can write

many familiar list­processing functions in a minimal amount of space. For

example, here is how we map an unrestricted function across a linear list.

Remember, multi­argument functions are abbreviations for functions that ac­

cept linear pairs as arguments.

fun nil(_:unit) : T2 llist =

roll (lin inl ())

fun cons(hd:T2, tl:T2 llist) : T2 llist =

roll (lin inr (lin <hd,tl>))

fun map(f:T1→T2, xs:T1 llist) : T2 llist =

case unroll xs (

inl _ ⇒ nil()

| inr xs ⇒

split xs as hd,tl in

cons(f hd,map lin <f,tl>))

In this implementation of map, we can observe that on each iteration of the

loop, it is possible to reuse the space deallocated by split or case operations

for the allocation operations that follow in the body of the function (inside

the calls to nil and cons).

Hence, at first glance, it appears that map will execute with only a constant

space overhead. Unfortunately, however, there are some hidden costs as map

executes. A typical implementation will store local variables and temporaries

on the stack before making a recursive call. In this case, the result of f hd will

be stored on the stack while map iterates down the list. Consequently, rather

than having a constant space overhead, our map implementation will have an

O(n) overhead, where n is the length of the list. This is not too bad, but we

can do better.

In order to do better, we need to avoid implicit stack allocation of data

each time we iterate through the body of a recursive function. Fortunately,

many functional programming languages guarantee that if the last operation

in a function is itself a function call then the language implementation will

deallocate the current stack frame before calling the new function. We name

such function calls tail calls and we say that any language implementation

that guarantees that the current stack frame will be deallocated before a tail

call is tail­call optimizing.

Assuming that our language is tail­call optimizing, we can now rewrite map

so that it executes with only a constant space overhead. The main trick in­

volved is that we will explicitly keep track of both the part of the input list we

have yet to process and the ouput list that we have already processed. The



20 1 Substructural Type Systems

output list will wind up in reverse order, so we will reverse it at the end. Both

of the loops in the code, mapRev and reverse are tail­recursive functions.

That is, they end in a tail call and have a space­efficient implementation.

fun map(f:T1→T2, input:T1 llist) : T2 llist =

reverse(mapRev(f,input,nil()),nil())

and mapRev(f:T1→T2,

input:T1 llist,

output:T2 llist) : T2 llist =

case unroll input (

inl _ ⇒ output

| inr xs ⇒

split xs as hd,tl in

mapRev (f,tl,cons(f hd,output)))

and reverse(input:T2 llist, output:T2 llist)

case unroll input (

inl _ ⇒ output

| inr xs ⇒

split xs as hd,tl in

reverse(tl,cons(hd,output)))

This link reversal algorithm is a well­known way of traversing a list in

constant space. It is just one of a class of algorithms developed well before

the invention of linear types. A similar algorithm was invented by Deutsch,

Schorr, and Waite for traversing trees and graphs in constant space. Such con­

stant space traversals are essential parts of mark­sweep garbage collectors—

at garbage collection time there is no extra space for a stack so any traversal

of the heap must be done in constant space.

1.3.1 Exercise [«««]: Define a recursive type that describes linear binary trees

that hold data of type T in their internal nodes (nothing at the leaves). Write

a constant­space function treeMap that produces an identically­shaped tree

on output as it was given on input, modulo the action of the function f that

is applied to each element of the tree. Feel free to use reasonable extensions

to our linear lambda calculus including mutually recursive functions, n­ary

tuples and n­ary sums. 2

Polymorphism

Parametric polymorphism is a crucial feature of almost any functional lan­

guage, and our linear lambda calculus is no exception. The main function of

polymorphism in our setting is to support two different sorts of code reuse.



1.3 Extensions and Variations 21

1. Reuse of code to perform the same algorithm, but on data with different

shapes.

2. Reuse of code to perform the same algorithm, but on data governed by

different memory management strategies.

To support the first kind of polymorphism, we will allow quantification

over pretypes. To support the second kind of polymorphism, we will allow

quantification over qualifiers. A good example of both sorts of polymorphism

arises in the definition of a polymorphic map function. In the code below, we

use a and b to range over pretype variables as we did in the previous section,

and p to range over qualifier variables.

type (p1,p2,a) list =

rec a.p1 (unit + p1 (p2 a * (p1,p2,a) list))

map :

∀a,b.

∀pa,pb.

lin ((pa a → pb b)*(lin,pa,a) list)→(lin,pb,b) list

The type definition in the first line defines lists in terms of three parameters.

The first parameter, p1, gives the usage pattern (linear or unrestricted) for the

spine of the list, while the second parameter gives the usage pattern for the

elements of the list. The third parameter is a pretype parameter, which gives

the (pre)type of the elements of list. The map function is polymorphic in the

argument (a) and result (b) element types of the list. It is also polymorphic

(via parameters pa and pb) in the way those elements are used. Overall, the

function maps lists with linear spines to lists with linear spines.

Developing a system for polymorphic, linear type inference is a challenging

research topic, beyond the scope of this book, so we will assume that, unlike

in ML, polymorphic functions are introduced explicitly using the syntax Λa.t

or Λp.t. Here, a and p are the type parameters to a function with body t. The

body does not need to be a value, like in ML, since we will run the polymorphic

function every time a pretype or qualifier is passed to the function as an

argument. The syntax t′ [P] or t′ [q] applies the function t′ to its pretype

or qualifier argument. Figure 1­11 summarizes the syntactic extensions to the

language.

Before we get to writing the map function, we will take a look at the poly­

morphic constructor functions for linear lists. These functions will take a

pretype parameter and two qualifier parameters, just like the type definition

for lists.



22 1 Substructural Type Systems

q ::= qualifiers:

... as before

p polymorphic qualifier

t ::= terms:

... as before

q Λa.t pretype abstraction

t [P] pretype application

q Λp.t qualifier abstraction

t [q] qualifier application

P ::= pretypes:

... as before

∀a.T pretype polymorphism

∀p.T qualifier polymorphism

Figure 1­11: Linear lambda calculus: Polymorphism syntax

val nil : ∀a,p2.(lin,p2,a) list =

Λa,p2.roll (lin inl ())

val list :

∀a,p2.lin (p2 a * (lin,p2,a) list)→(lin,p2,a) list =

Λa,p2.

λcell : lin (p2 a * (lin,p2,a) list).

roll (lin inr (lin cell))

Now our most polymorphic map function may be written as follows.

val map =

Λa,b. Λpa,pb.

fun aux(f:(pa a → pb b),

xs:(lin,pa,a) list)) : (lin,pb,b) list =

case unroll xs (

inl _ ⇒ nil [b,pb] ()

| inr xs ⇒ split xs as hd,tl in

cons [b,pb] (pb <f hd,map (lin <f,tl>)>))

In order to ensure that our type system remains sound in the presence

of pretype polymorphism, we add the obvious typing rules, but change very

little else. However, adding qualifier polymorphism, as we have done, is a

little more involved. Before arriving at the typing rules themselves, we need

to adapt some of our basic definitions to account for abstract qualifiers that

may either be linear or unrestricted.

First, we need to ensure that we propagate contexts containing abstract

qualifiers safely through the other typing rules in the system. Most impor­

tantly, we add additional cases to the context manipulation rules defined in

the previous section. We need to ensure that linear hypotheses are not du­

plicated and therefore we cannot risk duplicating unknown qualifiers, which

might turn out to be linear. Figure 1­12 specifies the details.



1.3 Extensions and Variations 23

Context Split Γ = Γ1 ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ , x:p P = (Γ1, x:p P) ◦ Γ2
(M­Abs1)

Γ = Γ1 ◦ Γ2

Γ , x:p P = Γ1 ◦ (Γ2, x:p P)
(M­Abs2)

Figure 1­12: Linear context manipulation rules

∆ ::= type contexts:

∅ empty

∆, a pretype var.

∆, p qualifier var.

Typing ∆; Γ ` t : T

q(Γ) ∆, a; Γ ` t : T

∆; Γ ` q Λa.t : q ∀a.T
(T­PAbs)

∆; Γ ` t : q ∀a.T FV(P) ⊆ ∆

∆; Γ ` t [P] : [a, P]T
(T­PApp)

q(Γ) ∆, p; Γ ` t : T

∆; Γ ` q Λp.t : q ∀p.T
(T­QAbs)

∆; Γ ` t : q1 ∀p.T FV(q) ⊆ ∆

∆; Γ ` t [q] : [p, q]T
(T­QApp)

Figure 1­13: Linear lambda calculus: Polymorphic typing

Second, we need to conservatively extend the relation on type qualifiers

q1vq2 so that it is sound in the presence of qualifier polymorphism. Since

the linear qualifier is the least qualifier in the current system, the following

rule should hold.

lin v p (Q­LinP)

Likewise, since un is the greatest qualifier in the system, we can be sure the

following rule is sound.

p v un (Q­PUn)

Aside from these rules, we will only be able to infer that an abstract qual­

ifier p is related to itself via the general reflexivity rule. Consequently, lin­

ear data structures can contain abstract ones; abstract data structures can

contain unrestricted data structures; and data structure with qualifier p can

contain other data with qualifier p.

In order to define the typing rules for the polymorphic linear lambda cal­

culus proper, we need to change the judgment form to keep track of the type

variables that are allowed to appear free in a term. The new judgment uses

the type context ∆ for this purpose. The typing rules for the introduction and

elimination forms for each sort of polymorphism are fairly straightforward

now and are presented in Figure 1­13.



24 1 Substructural Type Systems

The typing rules for the other constructs we have seen are almost un­

changed. One relatively minor alteration is that the incoming type context

∆ will be propagated through the rules to account for the free type variables.

Unlike term variables, type variables can always be used in an unrestricted

fashion; it is difficult to understand what it would mean to restrict the use

of a type variable to one place in a type or term. Consequently, all parts of ∆

are propagated from the conclusion of any rule to all premises. We also need

the occasional side condition to check that whenever a programmer writes

down a type, its free variables are contained in the current type context ∆.

For instance the rules for function abstraction and application will now be

written as follows.

q(Γ) FV(T1) ⊆ ∆ ∆; Γ , x:T1 ` t2 : T2

∆; Γ ` q λx:T1.t2 : q T1→T2

(T­Abs)

∆; Γ1 ` t1 : q T1→T2 ∆; Γ2 ` t2 : T1

∆; Γ1 ◦ Γ2 ` t1 t2 : T2

(T­App)

The most important way to test our system for faults is to prove the type

substitution lemma. In particular, the proof will demonstrate that we have

made safe assumptions about how abstract type qualifiers may be used.

1.3.2 Lemma [Type Substitution]:

1. If ∆, p; Γ ` t : T and FV(q) ∈ ∆ then ∆; [p, q]Γ ` [p, q]t : [p, q]T

2. If ∆, a; Γ ` t : T and FV(P) ∈ ∆ then ∆; [a, P]Γ ` [a, P]t : [a, P]T 2

1.3.3 Exercise [«]: Sketch the proof of the type substitution lemma. What struc­

tural rule(s) do you need to carry out the proof? 2

Operationally, we will choose to implement polymorphic instantiation us­

ing substitution. As a result, our operational semantics changes very little.

We only need to specify the new computational contexts and to add the eval­

uation rules for polymorphic functions and application as in Figure 1­14.

Arrays

Arrays pose a special problem for linearly typed languages. If we try to pro­

vide an operation fetches an element from an array in the usual way, perhaps

using an array index expression a[i], we would need to reflect the fact that

the ith element (and only the ith element) of the array had been “used.” How­

ever, there is no simple way to reflect this change in the type of an array as the

usual form of array types (array(T)) provides no mechanism to distinguish

between the properties of different elements of the array.



1.3 Extensions and Variations 25

E ::= evaluation contexts:

E [P] pretype app context

E [q] qualifier app context

(S;q Λa.t) -→β (S, x, q Λa.t;x) (E­PFun)

S(x) = q Λa.t

(S;x [P]) -→β (S
q
∼ x;[a, P]t)

(E­PApp)

(S;q Λp.t) -→β (S, x, q Λp.t;x) (E­QFun)

S(x) = q Λp.t

(S;x [q1]) -→β (S
q
∼ x;[p, q1]t)

(E­QApp)

Figure 1­14: Linear lambda calculus: Polymorphic operational semantics

We dodged this problem when we constructed our tuple operations by

defining a pattern matching construct that simultaneously extracted all of

the elements of a tuple. Unfortunately, we cannot follow the same path for

arrays because in modern languages like Java and ML, the length of an array

(and therefore the size of the pattern) is unknown at compile time.

Another non­solution to the problem is to add a special built­in iterator

to process all the elements in an array at once. However, this last prevents

programmers from using arrays as efficient, constant­time, random­access

data structures; they might as well use lists instead.

One way out of this jam is to design the central array access operations so

that, unlike the ordinary “get” and “set” operations, they preserve the number

of pointers to the array and the number of pointers to each of its elements.

We avoid our problem because there is no change to the array data structure

that needs to be reflected in the type system. Using this idea, we will be able

to allow programmers to define linear arrays that can hold a collection of

arbitrarily many linear objects. Moreover, programmers will be able to access

any of these linear objects, one at a time, using a convenient, constant­time,

random­access mechanism.

So, what are the magic pointer­preserving array access operations? Actu­

ally, we need only one: a swap operation with the form swap (a[i],t). The

swap replaces the ith element of the array a (call it t′) with t and returns a

(linear) pair containing the new array and t′. Notice the number of pointers

to t and t′ does not change during the operation. If there was one pointer

to t (as an argument to swap) before the call, then there is one pointer to t

afterward (from within the array a) and vice versa for t′. If, in addition, all of

the elements of a had one pointer to them before the swap, then they will all

have one pointer to them after the swap as well. Consequently, we will find

it easy to type the swap operation, even when it works over linear arrays of

linear objects.



26 1 Substructural Type Systems

In addition to swap, we provide functions to allocate an array given its list

of elements (array), to determine array length (length) and to deallocate

arrays (free). The last operation is somewhat unusual in that it takes two

arguments a and f, where a is an array of type lin array(T) and f is a

function with type T→unit that is run on each element of T. The function

may be thought of as a finalizer for the elements; it may be used to deallocate

any linear components of the array elements, thereby preserving the single

pointer property.

Our definition of arrays is compatible with the polymorphic system from

the previous subsection, but for simplicity, we formalize it in the context of

the simply­typed lambda calculus (see Figure 1­15).

1.3.4 Exercise [Recommended, «]: The typing rule for array allocation (T­Array)

contains the standard containment check to ensure that unrestricted arrays

cannot contain linear objects. What kinds of errors can occur if this check is

omitted? 2

1.3.5 Exercise [««, 3]: With the presence of mutable data structures, it is possible

to create cycles in the store. How should we modify the store typing rules to

take this into account? 2

The swap and free functions are relatively low­level operations. Fortu­

nately, it is easy to build more convenient, higher­level abstractions out of

them. For instance, the following code defines some simple functions for ma­

nipulating linear matricies of unrestricted integers.

type iArray = lin array(int)

type matrix = lin array(iArray)

fun dummy(x:unit):iArray = lin array()

fun freeElem(x:int):unit = ()

fun freeArray(a:iArray):unit = free(a,freeElem)

fun freeMatrix(m:matrix):unit = free(m,freeArray)

fun get(a:matrix,i:int,j:int):lin (matrix * int) =

split swap(a[i],dummy()) as a,b in

split swap(b[j],0) as b,k in

split swap(b[j],k) as b,_ in

split swap(a[i],b) as a,junk in

freeArray(junk);

lin <a,k>



1.3 Extensions and Variations 27

P ::= pretypes:

... as before

array(T) array pretypes

t ::= terms:

... as before

q array(t, . . .,t) array creation

swap(t[t],t) swap

length(t) length

free(t,t) deallocate

w ::= prevalues:

... as before

array[n,x, . . .,x] array

E ::= evaluation contexts:

... as before

q array(v, . . .,v,E,t, . . .,t)

array context

swap(E(t),t) swap context

swap(v(E),t) swap context

swap(v(v),E) swap context

length(E) length context

free(E,t) free context

free(v,E) free context

Typing Γ ` t : T

q(T) Γ ` ti : T (for 1 ≤ i ≤ n)

Γ ` q array(t1, . . .,tn) : q array(T)

(T­Array)

Γ ` t1 : q1 array(T1)

Γ ` t2 : q2 int Γ ` t3 : T1

Γ ` swap(t1[t2],t3) :

lin (q1 array(T1) * T1)

(T­Swap)

Γ ` t : q array(T)

Γ ` length(t) : lin (q array(T) * int)

(T­Length)

Γ ` t1 : q array(T) Γ ` t2 : T → unit

Γ ` free(t1,t2) : unit

(T­Free)

Evaluation (S;t) -→β (S
′;t′)

(S;q array(x0, . . .,xn−1)) -→β
((S, x, q array[n,x0, . . .,xn−1];x)

(E­Array)

S(xi) = qi j

S = S1, xa , q array[n, . . .,xj, . . .], S2

S′ = S1, xa , q array[n, . . .,xe, . . .], S2

(S; swap(xa[xi],xe))

-→β (S
′ qi∼ xi;lin <xa,xj>)

(E­Swap)

S(x) = q array[n,x0, . . .,xn−1]

(S;length(x)) -→β (S;lin <x,un n>)

(E­Length)

S(xa) = q array[n,x0, . . .,xn−1]

(S;free(xa,xf))

-→β (S
q
∼ xa;App(xf,x0, . . .,xn−1))

(E­Free)

where

App(xf,·) = ()

App(xf,x0,. . . ) = xf x0;App(xf,. . .)

Figure 1­15: Linear lambda calculus: Arrays



28 1 Substructural Type Systems

fun set(a:matrix,i:int,j:int,e:int):matrix =

split swap(a[i],dummy()) as a,b in

split swap(b[j],e) as b,_ in

split swap(a[i],b) as a,junk in

freeArray(junk);

a

1.3.6 Exercise [««, 3]: Use the functions provided above to write matrix­matrix

multiply. Your multiply function should return an integer and deallocate both

arrays in the process. Use any standard integer operations necessary. 2

In the examples above, we needed some sort of dummy value to swap into

an array to replace the value we wanted to extract. For integers and arrays

it was easy to come up with one. However, when dealing with polymorphic

or abstract types, it may not be possible to conjure up a value of the right

type. Consequently, rather than manipulating arrays with type q array(a)

for some abstract type a, we may need to manipulate arrays of options with

type q array(a + unit). In this case, when we need to read out a value, we

always have another value (inr ()) to swap in in its place. Normally such

operations are called destructive reads; they are a common way to preserve

the single pointer property when managing complex structured data.

Reference Counting

Array swaps and destructive reads are dynamic techniques that can help over­

come a lack of compile­time knowledge about the number of uses of a par­

ticular object. Reference counting is another dynamic technique that serves a

similar purpose. Rather than restricting the number of pointers to an object

to be exactly one, we can allow any number of pointers to the object and keep

track of that number dynamically. Only when the last reference is used will

the object be deallocated.

There are various ways to integrate reference counts into the current sys­

tem. Here, we choose the simplest, which is to add a new qualifier rc for

reference­counted data structures, and operations that allow the programmer

to explicitly increment (inc) and decrement (dec) the counts (see Figure 1­16).

More specifically, the increment operation takes a pointer argument, incre­

ments the reference count for the object pointed to, and returns two copies

of the pointer in a (linear) pair. The decrement operation takes two argu­

ments, a pointer and a function, and works as follows. In the case the object

pointed to (call it x) has a reference count of 1 before the decrement, the

function is executed with x as a linear argument. Since the function treats x



1.3 Extensions and Variations 29

Syntax

q ::= qualifiers:

... as before

rc ref. count

t ::= terms:

... as before

inc(t) increment count

dec(t,t) decrement count

Qualifier Relations

rc v un (Q­RCUn)

lin v rc (Q­LinRC)

Typing Γ ` t : T

Γ ` t : rc P

Γ ` inc(t) : lin (rc P * rc P)
(T­Inc)

Γ ` t1 : rc P Γ ` t2 : lin P → unit

Γ ` dec(t1,t2) : unit

(T­Dec)

Figure 1­16: Linear lambda calculus: Reference counting syntax and typing

linearly, it will deallocate x before it completes. In the other case, when x has

a reference count greater than 1, the reference count is simply decremented

and the function is not called; unit is returned as the result of the operation.

The main typing invariant in this system is that whenever a reference­

counted variable appears in the static type­checking context, there is one

dynamic reference count associated with it. Linear typing will ensure the

number of references to an object is properly preserved.

The new rc qualifier should be treated in the same manner as the linear

qualifier when it comes to context splitting. In other words, a reference­

counted variable should be placed in exactly one of the left­hand context

or the right­hand context (not both). In terms of containment, the rc quali­

fier sits between unrestricted and linear qualifiers: A reference­counted data

structure may not be contained in unrestricted data structures and may not

contain linear data structures. Figure 1­16 presents the appropriate qualifier

relation and typing rules for our reference counting additions.

In order to define the execution behavior of reference­counted data struc­

tures, we will define a new sort of stored value with the form rc(n) w. The

integer n is the reference count: it keeps track of the number of times the

value is referenced elsewhere in the store or in the program.

The operational semantics for the new commands and reference­counted

pairs and functions are summarized in Figure 1­17. Several new bits of no­

tation show up here to handle the relatively complex computation that must

go on to increment and decrement reference counts. First, in a slight abuse

of notation, we allow q to range over static qualifiers un, lin and rc as well

as dynamic qualifiers un, lin and rc(n). Context will disambiguate the two



30 1 Substructural Type Systems

different sorts of uses. Second, we extend the notation S
q
∼x so that q may

be rc(n) as well as lin and un. If n is 1 then S
rc(n)
∼ x removes the binding

x,rc(n) w from S. Otherwise, S
rc(n)
∼ x replaces the binding x,rc(n) w with

x,rc(n­1) w. Finally, given a store S and a set of variables X, we define the

function incr(S;X), which produces a new store S′ in which the reference

count associated with any reference­counted variables x∈X is increased by 1.

To understand how the reference counting operational semantics works,

we will focus on the rules for pairs. Allocation and use of linear and unre­

stricted pairs stays unchanged from before as in rules (E­Pair’) and (E­Split’).

Rule (E­PairRC) specifies that allocation of reference­counted pairs is simi­

lar to allocation of other data, except for the fact that the dynamic reference

count must be initialized to 1. Use of reference­counted pairs is identical to

use of other kinds of pairs when the reference count is 1: We remove the

pair from the store via the function S
rc(n)
∼ x as shown in rule and substi­

tute the two components of the pair in the body of the term as shown in

(E­Split’). When the reference count is greater than 1, rule (E­SplitRC) shows

there are additional complications. More precisely, if one of the components

of the pair, say y1, is reference­counted then y1’s reference count must be

increased by 1 since an additional copy of y1 is substituted through the body

of t. We use the incr function to handle the possible increase. In most re­

spects, the operational rules for reference­counted functions follow the same

principles as reference­counted pairs. Increment and decrement operations

are also relatively straightforward.

In order to state and prove the progress and preservation lemmas for our

reference­counting language, we must generalize the type system slightly. In

particular, our typing contexts must be able specify the fact that a particular

reference should appear exactly n times in the store or current computation.

Reference­counted values in the store are described by these contexts and

the context­splitting relation is generalized appropriately. Figure 1­18 sum­

marizes the additional typing rules.

1.3.7 Exercise [«««, 3]: State and prove progress and preservation lemmas for

the simply­typed linear lambda calculus (functions and pairs) with reference

counting. 2

1.4 An Ordered Type System

Just as linear type systems provide a foundation for managing memory allo­

cated on the heap, ordered type systems provide a foundation for managing

memory allocated on the stack. The central idea is that by controlling the



1.4 An Ordered Type System 31

v ::= values:

... as before

rc(n) w ref­counted value

E ::= evaluation contexts:

... as before

inc(E) inc context

dec(E,t) dec context

dec(x,E) dec context

Evaluation (S;t) -→β (S
′;t′)

(q ∈ {un,lin})

(S;q <y,z>) -→β (S, x, q <y,z>;x)

(E­Pair’)

(S;rc <y,z>) -→β
(S, x, rc(1) <y,z>;x)

(E­PairRC)

S(x) = q <y1,z1>

(q ∈ {un,lin,rc(1)})

(S;split x as y,z in t) -→β

(S
q
∼ x;[y, y1][z, z1]t)

(E­Split’)

S(x) = rc(n) <y1,z1> (n > 1)

incr(S;{y1,z1}) = S′

(S;split x as y,z in t) -→β

((S′
rc(n)
∼ x);[y, y′1][z, z′1]t)

(E­SplitRC)

(q ∈ {un,lin})

(S;q λy:T.t) -→β (S, x, q λy:T.t;x)
(E­Fun’)

(S;rc λy:T.t) -→β
(S, x, rc(1) λy:T.t;x)

(E­FunRC)

S(x1) = q λy:T.t

(q ∈ {un,lin,rc(1)})

(S;x1 x2) -→β (S
q
∼ x1;[y, x2]t)

(E­App’)

S(x1) = rc(n) λy:T.t

(n > 1 and X = FV(λy:T.t))

incr(S;X) = S′

(S;x1 x2) -→β (S′
rc(n)
∼ x1;[y, x2]t)

(E­AppRC)

incr(S;{x}) = S′

(S;inc(x)) -→β (S
′;lin <x,x>)

(E­Inc)

(S(x) = rc(n) w) (n > 1)

(S;dec(x,xf)) -→β (S
rc(n)
∼ x;un ())

(E­Dec1)

S = S1,x, rc(1) w,S2

S′ = S1,x, lin w,S2

(S;dec(x,xf)) -→β (S′;xf x)
(E­Dec2)

Figure 1­17: Linear lambda calculus: Reference counting operational semantics

exchange property, we are able to guarantee that certain values, those values

allocated on the stack, are used in a first­in/last­out order.

To formalize this idea, we organize the store into two parts: a stack, which

is a sequence of locations that can be accessed on one end (the “top”) and

a heap, which is like the store described in previous sections of this chap­

ter. Pairs, functions and other objects introduced with unrestricted or linear

qualifiers are allocated on the heap as before. And as before, when a linear

pair or function is used, it is deallocated. Also, we allow programmers to allo­

cate simple data structures on the stack. Without the exchange property, an

ordered object can only be used when it is at the top of the stack. When this

happens, the ordered object is popped off the top of the stack.



32 1 Substructural Type Systems

Syntax

Γ ::= typing contexts:

... as before

Γ , x:rc(n)P rc(n) context

Store Typing

` S : Γ1 ◦ Γ2 Γ1 ` rc w : rc P

` S,x, rc(n) w : Γ2,x:rc(n) P
(T­NextrcS)

Context Splitting

Γ = Γ1 ◦ Γ2 n = i + j

Γ , x:rc(n)P =

(Γ1, x:rc(i)P) ◦ (Γ2, x:rc(j)P)

(M­RC)

(when i or j is 0, the corresponding binding is

removed from the context)

Variable Typing

un (Γ1, Γ2)

Γ1, x:rc(1)P, Γ2 ` x : rc P
(T­RCVar)

Figure 1­18: Linear lambda calculus: Reference counting run­time typing

Syntax

The overall structure and mechanics of the ordered type system are very

similar to the linear type system developed in previous sections. Figure 1­19

presents the syntax. One key change from our linear type system is that we

have introduced an explicit sequencing operation let x = t1 in t2 that first

evaluates the term t1, binds the result to x, and then continues with the eval­

uation of t2. This sequencing construct gives programmers explicit control

over the order of evaluation of terms, which is crucial now that we are intro­

ducing data that must be used in a particular order. Terms that normally can

contain multiple nested subexpressions such as pair introduction and func­

tion application are syntactically restricted so that their primary subterms

are variables and the order of evaluation is clear.

The other main addition is a new qualifier ord that marks data allocated on

the stack. We only allow pairs and values with base type to be stack­allocated;

functions are allocated on the unordered heap. Therefore, we declare types

ord T1 → T2 and terms ord λx:T.t to be syntactically ill­formed.

Ordered assumptions are tracked in the type checking context Γ like other

assumptions. However, they are not subject to the exchange property. More­

over, the order that they appear in Γ mirrors the order that they appear on

the stack, with the rightmost position representing the stack’s top.

Typing

The first step in the development of the type system is to determine how

assumptions will be used. As before, unrestricted assumptions can be used



1.4 An Ordered Type System 33

Syntax

q ::= qualifiers:

ord ordered

lin linear

un unrestricted

t ::= terms:

x variable

q b Boolean

if t then t else t conditional

q <x,y> pair

split t as x,y in t split

q λx:T.t abstraction

x y application

let x = t in t sequencing

P ::= pretypes:

Bool booleans

T*T pairs

T→T functions

T ::= types:

q P qualified pretype

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Figure 1­19: Ordered lambda calculus: Syntax

as often as the programmer likes but linear assumptions must be used ex­

actly once along every control flow path. Ordered assumptions must be used

exactly once along every control flow path,in the order in which they appear.

As before, the context splitting operator (Γ = Γ1 ◦ Γ2) helps propagate as­

sumptions properly, separating the context Γ into Γ1 and Γ2. Some sequence

of ordered assumptions taken from the left­hand side of Γ are placed in Γ1

and the remaining ordered assumptions are placed in Γ2. Otherwise, the split­

ting operator works the same as before. In the typing rules, the context Γ2

is used by the first subexpression to be evaluated (since the top of the stack

is at the right) and Γ1 is used by the second subexpression to be evaluated.

Formally, we define the "=" relation in terms of two subsidiary relations: "=1,"

which places ordered assumptions in Γ1, and "=2," which places ordered as­

sumptions in Γ2. See Figure 1­20.

The second step in the development of the type system is to determine the

containment rules for ordered data structures. Previously, we saw that if an

unrestricted object can contain a linear object, a programmer can write func­

tions that duplicate or discard linear objects, thereby violating the central

invariants of the system. A similar situation arises if linear or unrestricted

objects can contain stack objects; in either case, the stack object might be

used out of order, after it has been popped off the stack. The typing rules

use the qualifier relation q1vq2, which specifies that ordvlinvun, to ensure

such problems do not arise.

The typing rules for the ordered lambda calculus appear in Figure 1­21. For

the most part, the containment rules and context splitting rules encapsulate



34 1 Substructural Type Systems

Context Split Γ = Γ1 ◦ Γ2

Γ =2 Γ1 ◦ Γ2

Γ = Γ1 ◦ Γ2
(M­Top)

∅ =1 ∅◦∅ (M­Empty)

Γ =1 Γ1 ◦ Γ2

Γ , x:ord P =1 (Γ1, x:ord P) ◦ Γ2
(M­Ord1)

Γ =2 Γ1 ◦ Γ2

Γ , x:ord P =2 Γ1 ◦ (Γ2, x:ord P)
(M­Ord2)

Γ =1 Γ1 ◦ Γ2

Γ =2 Γ1 ◦ Γ2
(M­1to2)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:lin P =1,2 (Γ1, x:lin P) ◦ Γ2
(M­LinA)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:lin P =1,2 Γ1 ◦ (Γ2, x:lin P)
(M­LinB)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:un P =1,2 (Γ1, x:un P) ◦ (Γ2, x:un P)
(M­Un)

Figure 1­20: Ordered lambda calculus: Context splitting

the tricky elements of the type system. The rules for pairs illustrate how this

is done. The rule for introducing pairs (T­OPair) splits the incoming context

into two parts, Γ1 and Γ2; any ordered assumptions in Γ2 will represent data

closer to the top of the stack than Γ1. Therefore, if the pair (x) and its two

components x1 and x2 are all allocated on the stack, then the pointer x will

end up on top, x2 next and x1 on the bottom. The elimination rule for pairs

(T­OSplit) is careful to maintain the proper ordering of the context. As above,

the rule splits the context into Γ1 and Γ2, where Γ2, which represents data on

top of the stack, is used in a computation t1 that generates a pair. The context

Γ1, x1:T1, x2:T2 is used to check t2. Notice that if both components of the

pair, x1 and x2, were allocated on the stack when the pair was introduced,

they reappear back in the context in the appropriate order.

Consider the following function, taking a boolean and a pair allocated se­

quentially at the top of the stack. The boolean is at the very top of the stack

and the integer pair is next (the top is to the right). If the boolean is true,

it leaves the components of the pair (two unrestricted integers) in the same

order as given; otherwise, it swaps them.

λx:ord (ord (int * int) * bool).

split x as p,b in

if b then

p

else

split p as i1,i2 in

ord <i2,i1>



1.4 An Ordered Type System 35

Typing Γ ` t : T

un (Γ1, Γ2)

Γ1, x:T, Γ2 ` x : T
(T­OVar)

un (Γ)

Γ ` q b : q Bool
(T­OBool)

Γ2 ` t1 : q Bool

Γ1 ` t2 : T Γ1 ` t3 : T

Γ1 ◦ Γ2 ` if t1 then t2 else t3 : T
(T­OIf)

Γ1 ` x1 : T1 Γ2 ` x2 : T2

q(T1) q(T2)

Γ1 ◦ Γ2 ` q <x1,x2> : q (T1*T2)
(T­OPair)

Γ2 ` t1 : q (T1*T2)

Γ1, x1:T1, x2:T2 ` t2 : T

Γ1 ◦ Γ2 ` split t1 as x1,x2 in t2 : T

(T­OSplit)

q(Γ) Γ , x:T1 ` t2 : T2

Γ ` q λx:T1.t2 : q T1→T2

(T­OAbs)

Γ1 ` x1 : q T11→T12 Γ2 ` x2 : T11

Γ1 ◦ Γ2 ` x1 x2 : T12

(T­OApp)

Γ2 ` t1 : T1

Γ1, x:T1 ` t2 : T2

Γ1 ◦ Γ2 ` let x = t1 in t2 : T2

(T­OLet)

Figure 1­21: Ordered lambda calculus: Typing

Operational Semantics

To define the operational semantics for our new ordered type system, we will

divide our previous stores into two parts, a heap H and a stack K. Both are

just a list of bindings as stores were before (see Figure 1­22). We also define a

couple of auxiliary functions. The first says what it means to add a binding to

the store. This is straightforward: unrestricted and linear bindings are added

to the heap and ordered bindings are added to the top of the stack.

(H;K),x, ord w = (H;K,x, ord w)

(H;K),x, lin w = (H,x, lin w;K)

(H;K),x, un w = (H,x, un w;K)

The second function specifies how to remove a binding from the store.

Notice that ordered deallocation will only remove the object at the top of the

stack.

(H;K,x, v)
ord
∼ x = H;K

(H1,x, v,H2;K)
lin
∼ x = H1,H2;K

(H;K)
un
∼ x = H;K

With these simple changes, the evaluation rules from previous sections can

be reused essentially unchanged. However, we do need to add the evaluation

context for sequencing (let x = E in t) and its evaluation rule:

(S;let x = x1 in t2) -→β (S;[x, x1]t1) (E­Let)



36 1 Substructural Type Systems

S ::= stores:

H;K complete store

H ::= heap:

∅ empty heap

H, x, lin w linear heap binding

H, x, un w unrestricted heap binding

K ::= stack:

∅ empty stack

K, x, ord w stack binding

Figure 1­22: Ordered lambda calculus: Operational semantics

1.4.1 Exercise [Recommended, «]: Write a program that demonstrates what can

happen if the syntax of pair formation is changed to allow programmers to

write nested subexpressions (i.e., we allow the term ord <t1,t2> rather than

the term ord <x,y>). 2

1.4.2 Exercise [Recommended, ««]: Demonstrate the problem with allowing or­

dered functions (i.e., admitting the syntax ord λx:T1.t and ord T1 → T2) by

writing a well­typed program that uses ordered functions and gets stuck. 2

1.4.3 Exercise [«««]: Modify the language so that programmers can use stack­

allocated, ordered functions. There are many solutions to this problem, some

more sophisticated than others. 2

1.5 Further Applications

Memory management applications make good motivation for substructural

type systems and provides a concrete framework for studying their proper­

ties. However, substructural types systems, and their power to control the

number and order of uses of data and operations, have found many appli­

cations outside of this domain. In the following paragraphs, we informally

discuss a few of them.

Controlling Temporal Resources

We have studied several ways that substructural type systems can be used to

control physical resources such as memory and files. What about controlling

the temporal resources? Amazingly, substructural type systems can play a

role here as well: Careful crafting of a language with an affine type system,

where values are used at most once, can ensure that computations execute in

polynomial time.



1.5 Further Applications 37

To begin, we will allow our polynomial time language to contain affine

booleans, pairs and (non­recursive) functions. In addition, to make things in­

teresting, we will add affine lists to our language, which have constructors

nil and cons and a special iterator to recurse over objects with list type.

Such iterators have the following form.

iter (stop ⇒ t1 | x with y ⇒ t2)

If t1 has type T and t2 also has type T (under the assumption that x has type

T1 and y has type T1 list), our iterator defines a function from T1 lists to

objects with type T. Operationally, the iterator does a case to see whether its

input list is nil or cons(hd,tl) and executes the corresponding branch. We

can define the operation of iterators using two simple rules.1

iter (stop ⇒ t1 | hd with rest ⇒ t2) nil -→β t1 (E­IterNil)

iter (stop ⇒ t1 | hd with rest ⇒ t2) v2 -→
∗
β v′2

iter (stop ⇒ t1 | hd with rest ⇒ t2) cons(v1,v2) -→β
[hd, v1][rest, v′2]t2

(E­IterCons)

In the second rule, the iterator is invoked inductively on v2, giving the result

v′2, which is used in term t2. The familar append function below illustrates

the use of iterators.

val append : T list→T list→T list =

iter (

stop ⇒ λ(l:T list).l

| hd with rest ⇒ λ(l:T list).cons(hd,rest l))

When applied to a list l1, append builds up a function that expects a second

list l2 and concatenates l2 to the end of l1. Clearly, append is a polynomial

time function, a linear­time one in fact, but it is straightforward to write ex­

ponential time algorithms in the language as we have defined it so far. For

instance:

val double : T list→T list =

iter (stop ⇒ nil | hd with rest ⇒ cons(hd,cons(hd,rest)))

val exp : T list→T list =

iter (stop ⇒ nil | hd with rest ⇒ double (cons(hd,rest)))

1. Since we are not interested in memory management here, we have simplified our opera­

tional semantics from previous parts of this chapter by deleting the explicit store and using

substitution instead. The operational judgment has the form t -→βt
′ and, in general, is defined

similarly to the operational systems in TAPL.



38 1 Substructural Type Systems

The key problem here is that it is trivial to write iterators like double that

increase the size of their arguments. After constructing one of these, we can

use it as the inner loop of another, like exp, and cause an exponential blow­

up in running time. But this is not the only problem. Higher­order functions

make it even easier to construct exponential­time algorithms:

val compose =

λ(fg:(T list→T list) * (T list→T list)).

λ(x:T list).

split fg as f,g in f (g x)

val junk : T

val exp2 : T list→T list→T list =

iter (

stop ⇒ λ(l:T list).cons(junk,l)

| hd with rest ⇒ λ(l:T list).compose <rest,rest> l)

Fortunately, a substructural type system can be used to eliminate both

problems by allowing us to define a class of non­size­increasing functions

and by preventing the construction of troublesome higher­order functions,

such as exp2.

The first step is to demand that all user­defined objects have affine type.

They can be used zero or one times, but not more. This restriction immedi­

ately rules out programs such as exp2. System defined operators like cons

can be used many times.

The next step is to put mechanisms in place to prevent iterators from in­

creasing the size of their inputs. This can be achieved by altering the cons

constructor so that it can only be applied when it has access to a special

resource with type R.

operator cons : (R,T,T list) → T list

There is no constructor for resources with type R so they cannot be generated

out of thin air; we can only apply fcons as many times as we have resources.

We also adapt the syntax for iterators as follows.

iter (stop ⇒ t1 | hd with tl and r ⇒ t2)

Inside the second clause of the iterator, we are only granted a single resource

(r) with which to allocate data. Consequently, we can allocate at most one

cons cell in t2. This provides us with the power to rebuild a list of the same

size, but we cannot write a function such as double that doubles the length

of the list or exp that causes an exponential increase in size. To ensure that



1.5 Further Applications 39

a single resource from an outer scope does not percolate inside the iterator

and get reused on each iteration of the loop, we require that iterators be

closed, mirroring the containment rules for recursive functions defined in

earlier sections of this chapter.

Although restricted to polynomial time, our language permits us to write

many useful functions in a convenient fashion. For instance, we can still write

append much like we did before. The resource we acquire from destructing

the list during iteration can be used to rebuild the list later.

val append : T list → T list → T list =

iter (

stop ⇒ λ(l:T list).l

| hd with rest and r ⇒ λ(l:T list). cons(r,hd,rest l))

We can also write double if our input list comes with appropriate credits,

in the form of unused resources.

val double : (T*R) list → T list =

iter (

stop ⇒ nil

| hd with rest and r1 ⇒

split hd as x,r2 in cons(r1,hd,cons(r2,hd,rest)))

Fortunately, we will never be able to write exp, unless, of course, we are

given an exponential number of credits in the size of the input list. In that

case, our function exp would still only run in linear time with respect to our

overall input (list and resources included).

The proof that all (first­order) functions we can define in this language run

in polynomial time uses some substantial domain theory that lies outside

the scope of this book. However, the avid reader should see Section 1.6 for

references to the literature where these proofs can be found.

Compiler Optimizations

Many compiler optimizations are enabled when we know that there will be at

most one use or at least one use of a function, expression or data structure.

If there is at most one use of an object then we say that object has affine

type. If there is at least one use then we say the object has relevant (or strict)

type. The following sorts of optimizations employ usage information directly;

several of them have been implemented in the Glasgow Haskell Compiler.

• Floating in bindings. Consider the expression let x = e in (λy....x...).

Is it a good idea to float the binding inside the lambda and create the new



40 1 Substructural Type Systems

expression λy.let x = e in (...x...)? The answer depends in part on

how many times the resulting function is used. If it is used at most once,

the optimization might be a good one: we may avoid computing e and will

never compute it more than once.

• Inlining expressions. In the example above, if we have the further informa­

tion that x itself is used at most once inside the body of the function, then

we might want to substitute the expression e for x. This may give rise to

further local optimizations at the site where e is used. Moreover, if it turns

out that e is used zero times (as opposed to one time) we will have saved

ourselves the trouble of computing it.

• Thunk update avoidance. In lazy functional languages such as Haskell,

evaluation of function parameters is delayed until the parameter is ac­

tually used in the function body. In order to avoid recomputing the value

of the parameter each time it is used, implementers make each parameter

a thunk—a reference that may either hold the computation that needs to

be run or the value itself. The first time the thunk is used, the computation

will be run and will produce the necessary result. In general, this result is

stored back in the thunk for all future uses of the parameter. However, if

the compiler can determine that the data structure is used as most once,

this thunk update can be avoided.

• Eagerness. If we can tell that a Haskell expression is used at least once,

then we can evaluate it right away and avoid creating a thunk altogether.

The optimizations described above may be implemented in two phases. The

first phase is a program analysis that may be implemented as affine and/or

relevant type inference. After the analysis phase, the compiler uses the infor­

mation to transform programs. Formulating compiler optimizations as type

inference followed by type­directed translation has a number of advantages

over other techniques. First, the language of types can be used to communi­

cate optimization information across modular boundaries. This can facilitate

the process of scaling intra­procedural optimizations to inter­procedural op­

timizations. Second, the type information derived in one optimization pass

can be maintained and propagated to future optimization passes or into the

back end of the compiler where it can be used to generate Typed Assembly

Language or Proof­Carrying Code, as discussed in Chapters 4 and 5.

1.6 Notes

Substructural logics are very old, dating back to at least Orlov (1928), who ax­

iomatized the implicational fragment of relevant logic. Somewhat later, Moh



1.6 Notes 41

(1950) and Church (1951) provided alternative axiomatizations of the rele­

vant logic now known as R. In the same time period, Church was developing

his theory of the lambda calculus at Princeton University, and his λI calculus

(1941), which disallowed abstraction over variables that did not appear free

in the body of the term, was the first substructural lambda calculus. Lambek

(1958) introduced the first “ordered logic,” and used it to reason about natu­

ral language sentence structure. More recently, Girard (1987) developed linear

logic, which gives control over both contraction and weakening, and yet pro­

vides the full power of intuitionistic logic through the unrestricted modality

“!”. O’Hearn and Pym (1999) show that the logic of bunched implications pro­

vides another way to recapture the power of intuitionistic logic while giving

control over the structural rules.

For a comprehensive account of the history of substructural logics, please

see Došen (1993), who is credited with coining the phrase “substructural

logic,” or Restall (2005). Restall’s textbook on substructural logics (2000) pro­

vides good starting point to those looking to study the technical details of

either the proof theory or model theory for these logics.

Reynolds pioneered the study of substructural type systems for program­

ming languages with his development of syntactic control of interference

(1978; 1989), which prevents two references from being bound to the same

variable and thereby facilitates reasoning about Algol programs. Later, Gi­

rard’s development of linear logic inspired many researchers to develop func­

tional languages with linear types. One of the main applications of these new

type systems was to control effects and enable in­place update of arrays in

pure functional languages.

Lafont (1988) was the one of the first to study programming languages

with linear types, developing a linear abstract machine. He was soon followed

by many other researchers, including Baker (1992) who informally showed

how to compile Lisp into a linear assembly language in which all allocation,

deallocation and pointer manipulation is completely explicit, yet safe. An­

other influential piece of work is due to Chirimar, Gunter, and Riecke (1996)

who developed an interpretation of linear logic based on reference count­

ing. The reference counting scheme described here is directly inspired by the

work of Chirimar et al., but the technical setup is slightly different; we have

explicit operations to increment and decrement reference counts whereas in­

crementing and decrementing counts in Chirimar’s system is done implicitly.

Stephanie Weirich suggested the invariant for proving our reference count­

ing system sound. Turner and Wadler (1999) summarize two computational

interpretations that arise directly through the Curry­Howard isomorphism

from Girard’s linear logic. They differ from the account given in this chapter

as neither account has both shared, usable data structures and deallocation.

Unfortunately, these two features together appear incompatible with a type



42 1 Substructural Type Systems

system derived directly from linear logic and its single unrestricted modality.

The development of practical linear type systems with two classes of type,

one linear and one unrestricted, began with Wadler’s work (1990) in the early

nineties. The presentation given in this chapter is derived from Wadler’s work

and is also inspired by work from Wansbrough and Peyton Jones (1999) and

Walker and Watkins (2001). Wansbrough and Peyton Jones included qualifier

subtyping and bounded parametric polymorphism in their system in addition

to many of the features described here. Walker and Watkins added reference

counting features to a language with linear types and also memory regions.

The idea of formulating the system with a generic context splitting operator

was taken from Cervesato and Pfenning’s presentation of Linear LF (2002).

The algorithmic type system described in section 1­5 solves what is com­

monly known in the linear logic programming and theorem proving literature,

as the resource management problem. Many of the ideas for the current pre­

sentation came from work by Cervesato, Hodas, and Pfenning (2000), who

solve the more general problem that arises when linear logic’s additive con­

nectives are considered. Hofmann takes a related approach when solving the

type inference problem for a linearly­typed functional language (1997a).

The ordered type system developed here is derived from Polakow and Pfen­

ning’s ordered logic (1999), in the same way that the practical linear type

systems mentioned above emerged from linear logic. It was also inspired by

the ordered lambda calculus of Petersen, Harper, Crary, and Pfenning (2003),

though there are some technical differences. Ahmed and Walker (2003) and

Ahmed, Jia, and Walker (2003) use an ordered, modal logic to specify memory

invariants and have integrated the logical specifications into a low­level typed

language. Igarashi and Kobayashi (2002) have used ordered types to explore

the more general problem of resource usage analysis. In addition, they have

developed effective type inference algorithms for their type systems.

Recently, O’Hearn (2003) has proposed bunched typing, a new form of sub­

structural typing, to control interference between mutable variables, gener­

alizing Reynolds’s earlier work on syntactic control of interference. These

bunched types were derived from earlier work by O’Hearn and Pym (1999)

on bunched logic. Together, Reynolds, Ishtiaq, and O’Hearn (Reynolds, 2000;

Ishtiaq and O’Hearn, 2001) have used bunched logic to develop a system for

verifying programs that explicitly allocate and deallocate data.

Analysis and reasoning about the time and space complexity of programs

has always been an important part of computer science. However, the use

of programming language technology, and type systems in particular, to au­

tomatically constrain the complexity of programs is somewhat more recent.

For instance, Bellantoni and Cook (1992) and Leivant (1993) developed pred­

icative systems that control the use and complexity of recursive functions.



1.6 Notes 43

It is possible to write all, and only, the polynomial­time functions in their

system. However, it is not generally possible to compose functions and there­

fore many “obviously” polynomial­time algorithms cannot be coded naturally

in their system. Girard (1998), Hofmann (2000; 1999), and Bellantoni, Niggl,

and Schwichtenberg (2000) show how linear type systems can be used to al­

leviate some of these difficulties. The material presented in this chapter is

derived from Hofmann’s work.

One of the most successful and extensive applications of substructural

type systems in programming practice can be found in the Concurrent Clean

programming language (Nöcker, Smetsers, van Eekelen, and Plasmeijer, 1991).

Clean is a commercially developed, pure functional programming language. It

uses uniqueness types (Barendsen and Smetsers, 1993), which are a variant of

linear types, and strictness annotations (Nöcker and Smetsers, 1993) to help

support concurrency, I/O and in­place update of arrays. The implementation

is fast and is fully supported by a wide range of program development tools

including an Integrated Development Environment for project management

and GUI libraries, all developed in Clean itself.

Substructural type systems have also found gainful employment in the in­

termediate languages of the Glasgow Haskell Compiler. For instance, Turner,

Wadler, and Mossin (1995) and Wansbrough and Peyton Jones (1999) showed

how to use affine types and affine type inference to optimize programs as

discussed earlier in this chapter. They also use extensive strictness analysis

to avoid thunk creation.

Recently, researchers have begun to investigate ways to combine substruc­

tural type systems with dependent types and effect systems such as those

described in Chapters 2 and 3. The combination of both dependent and sub­

structural types provides a very powerful tool for enforcing safe memory

management and more general resource­usage protocols. For instance, De­

Line and Fähndrich developed Vault (2001; 2002), a programming language

that uses static capabilities (Walker, Crary, and Morrisett, 2000) (a hybrid

form of linear types and effects) to enforce a variety of invariants in Microsoft

Windows device drivers including locking protocols, memory management

protocols and others. Cyclone (Jim et al., 2002; Grossman et al., 2002), a

completely type­safe substitute for C, also uses linear types and effects to

grant programmers fine­grained control over memory allocation and deallo­

cation. In each of these cases, the authors do not stick to the pure linear types

described here. Instead, they add coercions to the language to allow linearly­

typed objects to be temporarily aliased in certain contexts, following a long

line of research on this topic (Wadler, 1990; Odersky, 1992; Kobayashi, 1999;

Smith, Walker, and Morrisett, 2000; Aspinall and Hofmann, 2002; Foster, Ter­

auchi, and Aiken, 2002; Aiken, Foster, Kodumal, and Terauchi, 2003).


