
Preface

Overview

Work in type systems for programming languages now touches many parts

of computer science, from language design and implementation to software

engineering, network security, databases, and analysis of concurrent and dis

tributed systems. The aim of this book, together with its predecessor, Types

and Programming Languages (Pierce [2002]—henceforth TAPL) is to offer a

comprehensive and accessible introduction to the area’s central ideas, results,

and techniques. The intended audience includes graduate students and re

searchers from other parts of computer science who want get up to speed in

the area as a whole, as well as current researchers in programming languages

who need comprehensible introductions to particular topics. Unlike TAPL, the

present volume is conceived not as a unified text, but as a collection of more

or less separate articles, authored by experts on their particular topics.

Required Background

Most of the material should be accessible to readers with a solid grasp of the

basic notations and techniques of operational semantics and type systems—

roughly, the first half of TAPL. Some chapters depend on more advanced

topics from the second half of TAPL or earlier chapters of the present vol

ume; these dependencies are indicated at the beginning of each chapter. Inter

chapter dependencies have been kept to a minimum to facilitate reading in

any order.

Topics

Precise Type Analyses The first three chapters consider ways of extending

simple type systems to give them a better grip on the run time behavior of



x Preface

programs. The first, Substructural Type Systems, by David Walker, surveys

type systems based on analogies with “substructural” logics such as linear

logic, in which one or more of the structural rules of conventional logics—

which allow dropping, duplicating, and permuting assumptions—are omitted

or allowed only under controlled circumstances. In substructural type sys

tems, the type of a value is not only a description of its “shape,” but also

a capability for using it a certain number of times; this refinement plays a

key role in advanced type systems being developed for a range of purposes,

including static resource management and analyzing deadlocks and livelocks

in concurrent systems. The chapter on Dependent Types, by David Aspinall

and Martin Hofmann, describes a yet more powerful class of type systems, in

which the behavior of computations on particular runtime values (not just

generic “shapes”) may be described at the type level. Dependent type sys

tems blur the distinction between types and arbitrary correctness assertions,

and between typechecking and theorem proving. The power of full dependent

types has proved difficult to reconcile with language design desiderata such

as automatic typechecking and the “phase distinction” between compile time

and run time in compiled languages. Nevertheless, ideas of dependent typ

ing have played a fruitful role in language design and theory over the years,

offering a common conceptual foundation for numerous forms of “indexed”

type systems. Effect Types and RegionBased Memory Management, by Fritz

Henglein, Henning Makholm, and Henning Niss, introduces yet another idea

for extending the reach of type systems: in addition to describing the shape

of an expression’s result (a static abstraction of the possible values that the

expression may yield when evaluated), its type can also list a set of possible

“effects,” abstracting the possible computational effects (mutations to the

store, input and output, etc.) that its evaluation may engender. Perhaps the

most sophisticated application of this idea has been in memory management

systems based on static “region inference,” in which the effects manipulated

by the typechecker track the program’s ability to read and write in particular

regions of the heap. For example, the ML Kit Compiler used a region analy

sis internally to implement the full Standard ML language without a garbage

collector.

Types for LowLevel Languages The next part of the book addresses an

other research thrust that has generated considerable excitement over the

past decade: the idea of adapting type system technologies originally devel

oped for highlevel languages to lowlevel languages such as assembly code

and virtual machine bytecode. Typed Assembly Language, by Greg Morrisett,

presents a lowlevel language with a type system based on the parametric

polymorphism of System F and discusses how to construct a typepreserving



Preface xi

compiler from a highlevel language, through a series of typed intermedi

ate languages, down to this typed assembly code. ProofCarrying Code, by

George Necula, presents a more general formulation in a logical setting with

close ties to the dependent types described in Aspinall and Hofmann’s chap

ter. The strength of this presentation is that it offers a natural transition

from conventional type safety properties, such as memory safety, to more

general security properties. A driving application area for both approaches is

enforcing security guarantees when dealing with untrusted mobile code.

Types and Reasoning about Programs One attraction of rich type systems

is that they support powerful methods of reasoning about programs—not

only by compilers, but also by humans. One of the most useful, the tech

nique of logical relations, is introduced in the chapter Logical Relations and a

Case Study in Equivalence Checking, by Karl Crary. The extended example—

proving the correctness of an algorithm for deciding a typesensitive behav

ioral equivalence relation on terms in the simply typed lambdacalculus with

a Unit type—foreshadows ideas developed further in Christopher Stone’s

chapter on type definitions. Typed Operational Reasoning, by Andrew Pitts,

develops a more general theory of typed reasoning about program equiv

alence. Here the examples focus on proving representation independence

properties for abstract data types in the setting of a rich language combin

ing the universal and existential polymorphism of System F with records and

recursive function definitions.

Types for Programming in the Large One of the most important projects

in language design over the past decade and more has been the use of type

theory as a framework for the design of sophisticated module systems—

languages for assembling large software systems from modular components.

One highly developed line of work is embodied in the module systems found

in modern ML dialects. Design Considerations for MLStyle Module Systems,

by Robert Harper and Benjamin C. Pierce, offers an informal guided tour of

the principal features of this class of module systems—a “big picture” intro

duction to a large but highly technical body of papers in the research litera

ture. Type Definitions, by Christopher A. Stone, addresses the most critical

and technically challenging feature of the type systems on which MLstyle

module systems are founded: singleton kinds, which allow type definitions to

be internalized rather than being treated as metalevel abbreviations.

Type Inference The ML family of languages—including Standard ML, Objec

tive Caml, and Moscow ML, as well as more distant relatives such as Haskell—



xii Preface

has for decades been a showcase for advances in typed language design and

compiler implementation, and for the advantages of software construction in

richly typed languages. One of the main reasons for the success of these lan

guages is the combination of power and convenience offered by their type

inference (or type reconstruction) algorithms. Basic ML type inference has

been described in many places, but descriptions of the more advanced tech

niques used in production compilers for fullblown languages have until now

been widely dispersed in the literature, when they were available at all. In

The Essence of ML Type Inference, François Pottier and Didier Rémy offer a

comprehensive, unified survey of the area.

Exercises

Most chapters include numerous exercises. The estimated difficulty of each

exercise is indicated using the following scale:

« Quick check 30 seconds to 5 minutes

«« Easy ≤ 1 hour

««« Moderate ≤ 3 hours

«««« Challenging > 3 hours

Exercises marked « are intended as realtime checks of important concepts.

Readers are strongly encouraged to pause for each one of these before mov

ing on to the material that follows. Some of the most important exercises are

labeled Recommended.

Solutions to most of the exercises are provided in Appendix A. To save

readers searching for solutions to exercises for which solutions are not avail

able, these are marked 3.

Electronic Resources

Additional materials associated with this book can be found at:

http://www.cis.upenn.edu/~bcpierce/attapl

Resources available on this site will include errata for the text, pointers to

supplemental material contributed by readers, and implementations associ

ated with various chapters.

Acknowledgments

Many friends and colleagues have helped to improve the chapters as they

developed. We are grateful to Amal Ahmed, Lauri Alanko, Jonathan Aldrich,



Preface xiii

Derek Dreyer, Matthias Felleisen, Robby Findler, Kathleen Fisher, Nadji Gau

thier, Michael Hicks, Steffen Jost, Xavier Leroy, William Lovas, Kenneth Mac

Kenzie, Yitzhak Mandelbaum, Martin Müller, Simon Peyton Jones, Norman

Ramsey, Yann RégisGianas, Fermin Reig, Don Sannella, Alan Schmitt, Peter

Sewell, Vincent Simonet, Eijiro Sumii, David Swasey, Joe Vanderwaart, Yanling

Wang, Keith Wansbrough, Geoffrey Washburn, Stephanie Weirich, Dinghao

Wu, and Karen Zee for helping to make this a much better book than we could

have done alone. Stephanie Weirich deserves a particularly warm round of

thanks for numerous and incisive comments on the whole manuscript. Nate

Foster’s assistance with copy editing, typesetting, and indexing contributed

enormously to the book’s final shape.

The work described in many chapters was supported in part by grants from

the National Science Foundation. The opinions, findings, conclusions, or rec

ommendations expressed in these chapters are those of the author(s) and do

not necessarily reflect the views of the NSF.


