
Index

0CFA, 101

« “quick check” exercise, xii

«« easy exercise, xii

««« moderate exercise, xii

«««« challenging exercise, xii

3 exercise without solution, xii

A­normal form, 253

abbreviations, see type definitions

abstract types, 245–289, see also mod­

ules, 454

access control with linear types, 3

adequacy, 277

admissible property, 259

affine types, see substructural types

Agda, 66

ALF, 68, 69

Alfa, 66

algebraic data types and type inference,

453–458

algorithmic type checking, see also un­

decidability

for the calculus of constructions,

66

for LF, 56–60, 62–63

for linear lambda­calculus, 11–14

aliasing, see also syntactic control of

interference

and typed assembly language, 156

alias types, see typed assembly language

applicative bisimilarity, 288

arrays

and typed assembly language, 170–

171

in linear type systems, 24–28

AUTOMATH, 86, 384

avoidance problem, see signatures

Barendregt cube, see lambda cube

behavioral type systems, 105

bisimilarity, 288

bunched logic, see substructural log­

ics

bunched types, see substructural types

C, 43, 90, 106, 133, 343

C#, 142

Calculus of Capabilities, 134

Calculus of Constructions, 64–71, 86

with dependent sum types, 69–71

Calculus of Inductive Constructions,

66–69

Caml, 389

capability types and typed assembly

language, 175

Cayenne, 74, 305

CC, see Calculus of Constructions

CIC, see Calculus of Inductive Construc­

tions

ciu­equivalence, 264, 288

Clean, 43, 389

CLI, see Common Language Infrastruc­

ture



568 Index

closing substitution, 263

closure analysis, 100

closures in TAL, 168–170

CLU, 343

coherence, see modules

Common Language Infrastructure, 139,

142, 178

compilation, separate, see modules

compilation, type­preserving, 141

compiler optimizations

enabled by affine and relevant types,

39–40

enabled by linear types, 19

computational λ­calculus, 105

concatenation of records, see type in­

ference

constraints, see also type inference

for type inference, 407–422

generation, 429–434

solving, 438–450

containment rules, see substructural

types

context

evaluation, 256

context splitting, see substructural types

contextual equivalence, 249, 261–266

vs. bisimilarity, 288

continuation­passing style and regions,

132

contraction, see structural properties

control flow analysis, 100

control flow safety, see typed assem­

bly language

Coq, 66, 67, 86, 175, 384

cryptographic authentication infrastruc­

ture, see proof­carrying code

Curry­Howard correspondence

and dependent types, 48–49

and linear logic, 41

cut­off compilation, 303

Cyclone, 43, 90, 132–134, 174

Damas–Milner type system, 399–406

relation with HM(X), 428–429

data types and type inference, 453–

458

decidability, see undecidability

definitional equality, see equivalence

checking

definitions, see type definitions

delta­reduction, 395

delta­reduction of type definitions, 354

Dependent ML, 74–82

dependent types, 45–86, see also LF,

calculus of constructions, calcu­

lus of inductive constructions

and typed assembly language, 171–

172

decidable type checking for restricted

systems, 75

higher­order abstract syntax and,

49, 206

implementation, 83–85

indexed types, 75

products, 46

semantics, 86

sums, 61–63, 69–71

sums vs. existentials (weak sums),

70

type inference, 82

undecidability of type checking, 74–

75

with substructural types, 43

dependently vs. statically typed lan­

guages, 305

determinate module, 363

DML, see Dependent ML

dot notation for existential types, 308

ECC, see Extended Calculus of Construc­

tions

Edinburgh Logical Framework, see LF

effect type systems, 89–90, 102–123,

see also regions

applications, 87

and interference analysis, 105

polymorphism, 114

and protocol verification, 105

region inference, 89–90



Index 569

and soundness of value flow anal­

ysis, 104

with substructural types, 43

Tofte–Talpin type system, 89, 101,

114–123

value restriction and polymorphism,

123

effects, 390

equirecursive types, 454, 459

equivalence, see contextual equivalence,

cui­equivalence

equivalence checking, 223–244

definitional equality, 54

for LF, 53–54

erasure

in region­based analysis, 111–114

in value flow analysis, 93–97

evaluation context, 256

evaluation frame, 257

exchange, see structural properties

exercises, difficulty ratings, xii

existential types, see also abstract types

in typed assembly language, 168

vs. Sigma types, 70

vs. signatures, 307, 308

in typed assembly language, 167

Extended Calculus of Constructions, 70

extensionality principle, 225, 249, 250,

252, 279

external name, see modules

external references between modules,

294

families of modules, see modules

families of signatures, see signatures

fibered signatures, see signatures

Finitary PCF, 90

first­class modules, see modules

foundational proof­carrying code (FPCC),

see proof­carrying code

frame

evaluation, 257

functors, see modules

fundamental property, see logical re­

lations

Galois connection, 267

garbage collection, see memory man­

agement

generalization of a type scheme, 402–

404

generic programming, 345

Glasgow Haskell Compiler, 39, 43

Haskell, 43, 74, 334, 342, 344, 389

Herbrand universe, 411

hiding, see abstract types, modules

higher­order abstract syntax in depen­

dent type systems, 49, 206

higher­order modules, see modules

HM(X), see type inference

Hope, 343

Howe’s method, 288

implicit syntax, see type inference and

dependent types

incremental compilation, see modules

indexed types, see dependent types

inference, see type inference

information hiding, see abstract types,

modules

instantiation of a type scheme, 402–

404, 407, 408

interfaces, see signatures

interference, see aliasing

interference analysis via effect type sys­

tems, 105

internal name, see modules

isorecursive types, 289, 454, 458, 459

Java, 90, 141, 142, 187, 300, 303, 305,

343

Java Virtual Machine, 139, 142, 178,

189

judgments­as­types, see LF

Kripke logical relation, 237

lambda cube, 71–73, 86

language­based security, see proof­carrying

code, typed assembly language



570 Index

LCF, 389

LEGO, 66, 70, 85, 86

LF, 49–63, 86, 175

algorithmic type checking, 56–60,

62–63

with dependent sum types, 61–63

implicit, in proof­carrying code sys­

tems, 211–214

Linear, 42

in proof­carrying code systems, 205–

214

linear lambda­calculus, 6–30

algorithmic type checking, 11–14

and arrays, 24–28

polymorphic, 20–24

with reference counting, 28–30

Linear LF, 42

linear logic, see substructural logics

linear types, see substructural types

linking, see modules

Lisp, 343

logical equivalence, 234

Logical Frameworks, see LF

logical relations, 223–289

fundamental property, 239–243, 274

history, 243–244

Kripke, 237

monotonicity, 235–237

operationally based, 266

and “recursive language features”,

289

manifest types, see type definitions

memory management, see also regions

with linear types, 7, 14

with linear types and regions, 42,

132

reference counting, 28–30, 41

reuse, 111

stack discipline, 30, 89, 99, 157

with substructural types, 4

and typed assembly language, 174

memory safety, see typed assembly lan­

guage

Microsoft Common Language Infras­

tructure, see Common Language

Infrastructure

mixin modules, 343

ML, 141, 142, 389–489

meanings of the term, 389

ML Kit, 90, 123, 128–130, 133

ML module system, see modules

ML type inference, see type inference

mobile code, see proof­carrying code,

typed assembly language

Modula­2 and Modula­3, 343

modules, see also signatures

abstract type components, 307–317

applicative vs. generative functors,

336–338

coherence, 327–333

determinacy, 312–315

in existing programming languages,

341–343

external references between, 294

families of, 324–338

first­class, 312, 338–339

functors, 324–338

functors and determinacy, 336–338

hierarchies, 317–320

higher­order, 339–340

internal vs. external names, 296, 317–

320

linking, 303–304

mixin modules, 343

ML module system, 341–342

phase distinction, 305–307

pragmatics of functors, 333–336

recursive, 341

separate and incremental compila­

tion, 302–303

static vs. dynamic equivalence, 340

units, 343

monad, 105

monotonicity property of logical rela­

tions, 271

nominal vs. structural signature match­

ing, 299



Index 571

nonstructural subtyping, 412

normalize­and­compare algorithm for

equivalence checking, 225

NuPrl, 54

object encodings in TAL, 168–170

Objective Caml, 342, 343

objects, type inference for, 459

occurs check, 439

opaque interface, 358

operational extensionality, see exten­

sionality principle

operational reasoning using types, 245–

289

ordered lambda­calculus, 30–36, 42

ordered logic, see substructural logics

ordered types, see substructural types

parameterized modules, see modules

parameterized signatures, see signatures

parametricity, see relational parametric­

ity

parametric polymorphism, see polymor­

phism

Pascal, 343

PCC, see proof­carrying code

Pebble, 74, 305

phantom types, 455

phase distinction, see also modules

and dependent types, 75

phase splitting, see type definitions

Pi types, see dependent types

pointers, shared vs. unique, 157

polymorphic record update, 460

polymorphic recursion, 154, 452

polymorphic variants, 483–486

polymorphism, see also type inference

and regions, 110

in effect type systems, 114

in linear type systems, 20–24

and regions, 108

in typed assembly language, 146

in value flow analysis, 101

pre­ and postconditions, in proof­carrying

code, 184

principal signature, see signatures

principal type schemes, 405, 430

principal typings, 430

privacy, guaranteeing with PCC, 216–

218

program analysis, type­based, 87–135

program equivalence, see typed oper­

ational reasoning

programming languages

C, 43, 90, 106, 133, 343

C#, 142

Caml, 389

Cayenne, 74, 305

Clean, 43, 389

CLU, 343

Cyclone, 43, 90, 132–134, 174

Dependent ML, 75–82

Haskell, 43, 74, 334, 342, 344, 389

Hope, 343

Java, 90, 141, 142, 187, 300, 303,

305, 343

LF, 86

Lisp, 343

ML, 141, 142, 389–489

ML Kit, 90, 123, 128–130, 133

Modula­2 and Modula­3, 343

Objective Caml, 342, 343

Pascal, 343

Pebble, 74, 305

Prolog, 90, 127, 134

Quest, 74

Russell, 305

Scheme, 305

Standard ML, 255, 341, 343, 345,

389

Vault, 43, 90

Prolog, 90, 127, 134

proof­carrying code, 139–140, 177–220

architecture, 178–180

beyond types, 216–218

costs, 211, 220

for cryptographic authentication, 219

efficient proof representation in im­

plicit LF, 211–214



572 Index

foundational, 155, 175, 178

guaranteeing privacy, 216–218

pre­ and postconditions, 184

program annotation, 193

proof checking as LF type check­

ing, 209–211

proof generation, 214–215

proof representation in LF, 205–214

safety policy, 182–187

and substructural types, 40

symbolic evaluation, 190–192, 194–

195

vs. typed assembly language, 141,

155, 178, 189

verification condition generation, 187–

190

propositions­as­types, see Curry­Howard

correspondence

protocol verification with effect type

systems, 105

pure type systems (PTS), 71–73

PVS, 74

qualified types, 488

qualifiers, see type qualifiers

Quest, 74

record operations, 460–489

record update and extension, polymor­

phic, 460

recursive definitions, 398

recursive modules, see modules

recursive types, see also modules, re­

cursive

in linear type systems, 17

and type inference, 453–460

reference counting, see also memory

management

in linear type systems, 28–30, 41

references, 390, 398, 435, 452, see also

effects

regions, 87–135, see also effect type

systems

and continuation­passing style, 132

erasure, 111–114

imperative, 131–132

inference, 89–90, 101, 123–127

lexically scoped, 89, 99–100

and linear types, 42, 132

polymorphic, 108–110

practical memory­management sys­

tems, 133–135

reuse of deallocated memory, 111

safety properties, 87, 106

and stack­oriented memory manage­

ment, 89, 99

and typed assembly language, 173,

175

register file type, 146

relational parametricity, 245, 271, 286,

287

relevant logic, see substructural logics

relevant types, see substructural types

resource management, see memory man­

agement, regions

row variables, see type inference

Russell, 305

safety policy, see proof­carrying code

Scheme, 305

scheme, see type scheme

Scott induction, 259

sealing, see signatures, 362

security, see proof­carrying code, typed

assembly language

separate compilation, see modules

set­based analysis, 101

Sigma types, see dependent types

signatures, see also modules

avoidance problem, 315–317, 365

dot notation, 307

vs. existential types, 307, 308

families of, 320–324

fibered vs. parameterized, 322–324

matching, 299

nominal vs. structural matching, 299

opaque, 307

principal, 298, 301

role in separate compilation, 295

sealing, 310–312



Index 573

sealing, static vs. dynamic, 338

subsumption principle for, 299

translucent, 307–310

transparent, 307

singleton kinds, see type definitions

singleton types, 385

software fault isolation, 140

sorts in pure type systems, 72

stack typing, see typed assembly lan­

guage

Standard ML, 255, 341, 343, 345, 389

statically vs. dependently typed lan­

guages, 305

strictness analysis, 43

strict types, see relevant types

strong sum types, see dependent types

structural properties, 4–6

contraction, 4, 11, 41

exchange, 4, 11, 31, 32

weakening, 4, 11, 41

structural subtyping, 412

structural vs. nominal signature match­

ing, 299

structures, see modules

submodules, see modules

substructural logics, 40–42

substructural types, 3–43

affine types, 5, 36–40, 43

bunched types, 42

containment rules, 9, 33

context splitting, 9, 42

context splitting, algorithmic, 11

with dependent types, 43

with effect type systems, 43

linear types, 5–30, 41, 43

ordered types, 5, 30–36, 42

relevant types, 5, 39

temporal resource management, 36

uniqueness types, 43

subtyping, see also constraints

and typed assembly language, 173

co­ and contra­variance, 412, 415

structural vs. nonstructural, 412

sum types, see also algebraic data types,

variant types

in dependent type systems, 61–63

in linear type systems, 17

surjective pairing, 62

symbolic evaluation, see proof­carrying

code

syntactic control of interference, 41

syntax­directedness, see algorithmic type

checking

TAL, see typed assembly language

TAPL, ix

temporal resource management with

substructural types, 36

theorem provers

Agda, 66

ALF, 68, 69

Alfa, 66

AUTOMATH, 86, 384

Coq, 66, 67, 86, 175, 384

LCF, 389

LEGO, 66, 70, 85, 86

NuPrl, 54

PVS, 74

TIL, see typed intermediate language

Tofte–Talpin type system, see effect type

systems

Touchstone PCC architecture, see proof­

carrying code

translucent sums, see type definitions

transparent interface, 358

type­based program analysis, 87–135

type checking, see algorithmic type check­

ing

type definitions, 347–385

for algebraic data types, 454

delta­reduction, 354

in module interfaces, 358–367

manifest types, 358

phase splitting, 378–384

primitive, 351–358

singleton kinds, 367–384

translucent sums, 358–367

type inference, 389–489



574 Index

and algebraic data types, 453–458

and dependent types, 82

HM(X), 389–489

objects, 459, 461, 486

polymorphic variants, 483–486

records, 460–489

and recursive types, 453–460

regions, 101, 123–127

regions and effect types, 89–90

row variables, 460–489

in typed assembly language, 154

and value flow analysis, 97–98

type­preserving compilation, 141

type qualifiers, 7

linear qualifier, 7

ordered qualifier, 32

quantification over, 21

reference counting qualifier, 28

unrestricted qualifier, 7

type reconstruction, see type inference

type scheme, 402–404, 407

typed assembly language, 139–175

and aliasing, 156

and alias types, 157

and arrays, 170–171

and capability types, 175

closures, 168–170

compiling to, 164–172

control flow safety, 142–155

and dependent types, 171–172

encoding objects, 168–170

ensuring memory safety, 155–172

and existential types, 167–168

memory management, 174

and origins of Cyclone, 134

polymorphism, 146

vs. proof­carrying code, 141, 155,

178, 189

and regions, 173, 175

stack­allocated memory, 157

and substructural types, 40

and stack typing, 173

and subtyping, 173

TALT, 173–175

TALx86, 170, 171, 173, 174

and type inference, 154

typed intermediate language, 142, see

also typed assembly language

typed operational reasoning, 245–289

typed operational semantics, 86

type and effect systems, see effect type

systems

Types and Programming Languages,

ix

undecidability

of dependent type checking, 54, 74–

75

of module type systems, 339

of type inference with polymorphic

recursion, 452

unification, 439–442

with record types, 476

uniqueness types, see substructural types

units, 343

untrusted code, see proof­carrying code,

typed assembly language

unwinding property, 259–260

UTT, 86

value flow analysis, 88, 90–102

constraint­based, 101

erasure, 93–97

polymorphic, 101

soundness with effect types, 104

type inference, 97–98

unsoundness without effect types,

88, 99

value restriction, 255, 437

in effect type systems, 123

variants, polymorphic, 483–486

Vault, 43, 90

verification conditions, see proof­carrying

code

weak head normalization, 57, 230

weak sum types, see dependent types

weakening, see structural properties

web resources, xii


